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Abstract

Let {Sk,k > 0} be a symmetric random walk on Z%, and {n(z),z € Z%} an inde-
pendent random field of centered i.i.d. with tail decay P(n(z) > t) ~ exp(—t%). We
consider a Random Walk in Random Scenery, that is X,, = n(Sp) + -+ + n(S,). We
present asymptotics for the probability, over both randomness, that {X, > n? } for
1/2 < B < 1and 1 < «. To obtain such asymptotics, we establish large deviations esti-
mates for the the self-intersection local times process > 12 (x), where l,,(z) = 1{Sy =
x}+---+ I{S, = x} is the local time of the walk.

Keywords and phrases: moderate deviations, self-intersection, local times, random walk,
random scenery.

AMS 2000 subject classification numbers:

Running head: Random Walk in Random Scenery.

1 Introduction.

We study transport in divergence free random velocity fields. For simplicity, we discretize
both space and time and consider the simplest model of shear flow velocity fields:

Vo,y € Zx 2%,  V(z,y) =n(y)e.,

where e, is a unit vector in the first coordinate of Z4*1 and {n(y),y € Z} are i.i.d. real
random variables. Thus, space consists of the sites of the cubic lattice Z%*! and the direction
of the shear flow is e,. We wish to model a polluant evolving by two mechanisms:

e a passive transport by the velocity field;

e collisions with the other fluid particles; this is modeled by random symmetric incre-
ments {(a,, 3,) € Z x Z%, n € N}, independent of the velocity field.
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Thus, if R, € Z x Z% is the polluant’s position at time n, then
Ry — R, = V(Rn) + (OKn+17 5n+1), and Ry= (07 O)- (1)

When solving by induction for R, ([) yields

R, = (Z oy + ZU(Z Bi), Zﬂk) : (2)

k=

The sum (;+- - -+ /3, is denoted by S,,, and called the Random Walk (RW). The displacement
along e, consists of two independent parts: a sum of i.i.d. random variables oy + - - - + ay,,
and a sum of dependent random variables 1n(Sy) + - - - 4+ 1(.S,), which we denote by X,, and
call the Random Walk in Random Scenery (RWRS). Writing it in terms of local times of
the RW {S,,,n € N}, we get

n

Xo =Y n(Sk) =Y L(x)(x), where I(z)=> {3 =ux}. (3)

x€Z4 k=0

The process {X,,,n € N} was studied at about the same time by Kesten & Spitzer [[T],
Borodin [}, fi], and Matheron & de Marsily [[§]. The fact that in dimension 1, E[X?2] ~ n®/?
made the model popular and led the way to examples of superdiffusive behaviour. However,
the typical behaviour of X, resembles that of a sum of n independent variables all the more
when dimension is large.

Our goal is to estimate the probability that X, be large. By probability, we consider
averages with respect to the two randomness, and P = Py ® P,, where P is the law of the
nearest neighbor symmetric random walk {Sj, k € N} on Z¢ with Sy = 0, and P, is the law
of the velocity field.

Now, when d > 3, Kesten and Spitzer established in [L1] that X, /y/n converges in law
to a Gaussian variable. Thus, by large, we mean {X, > n”} with 8 > 1/2. We expect
P(X, > nP) ~ exp(—nSI) with constant rate I > 0, and we characterize in this work the
exponent (. For this purpose, the only important feature of the n-variables is the a-exponent
in the tail decay:

log P, (n(x) > 1)

tlim o = —c¢, for a positive constant c. (4)

Let us now recall the classical estimates for P(Y; +--- + Y, > n?), where 8 > 1/2 and
the {Y,,,n € N} are centered i.i.d. with tail decay P(Y, > t) ~ exp(—t%), with a > 0.
There is a dichotomy between a “collective” and an “extreme” type of behaviour. In the
former case, each variable contributes about the same, whereas in latter case, only one
term exceeds the level n”, when the others remain small. Thus, it is well known that
P(Yy +---+Y, > n?) ~ exp(—n®) with three regimes (since only the exponent ¢ interests
us, we have omitted all constants).

e When 3 < 1 and (2 —a) < 1, a small collective contribution yields ¢ = 24 — 1.

e When § > 1 and a > 1, a large collective contribution yields ( = (5 — 1)a + 1.
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Figure 1: (-exponent diagram

e When 3> 1/(2 —a) and a < 1, an extreme contribution yields ¢ = fa.

For the RWRS, one expects a rich interplay between the scenery and the random walk. To
get some intuition about the relationship between ( and «, 3, we propose simple scenarii

leading to the left diagram in Figure [. Here also, we focus on the exponent, and constants
are omitted.

e Region I. No constraint is put on the walk. When d > 3, the range is of order n and

sites of the range are typically visited once. Thus, {X,, > nP} ~ {m +---+n, > n’}.
When 3 < 1 the latter sum performs a moderate deviations of order n®. Since the
n-variable satisfy Cramer’s condition, we obtain P(X, > nf) > exp(—n?’~1).

Region II, IV. A few sites are visited often, so that X,, ~ 7(0)l,(0). Now, using
the tail behaviour of n(x), and the fact that in d > 3, [,,(z) is almost an exponential
variable, we obtain

PX,>n"] > PL,0)n0)>n"] ~supPl,(x) = k] P, [n(x) > ”5}

k<n
n?.,
~ supexp(—k — (5-)%).
k<n
Now, the minimum of k — k +n®/k® is reached for k* = n®®/(®+1) Since, we impose
also that k < n, two different exponents prevail according to the value of (:

(I) B < (a+1)/a, and ¢ = Ba/(a+1). The RW spends a time of order n*/(@+1) on
favorite sites.



(IV) B> (a+1)/a, and ( = a(f — 1). The RW spends a time of the order of n on
one favorite site.

e Region IIl.a, II1.b. The random walk is localized a time 7T in a ball B, of radius r,
with 2 < T this costs of the order of exp(—T/r?). Then, during this period, each
site of B, is visited about T'/r¢, and we further assume that r¢ < T. Thus

nPrd/2

P [Xn > nﬁ} > exp(

(5)

\Fzm‘

Two different exponents prevail according to (:

(IILa) B < 1. The condition 1 <« n%r%? /T < r%? means that the sum of 7-s performs a
moderate (up to large) deviations and this costs of the order of exp(—n??r?/T?).

When the two costs are equalized, we obtain that the walk is localized a time
T = nP on a ball of radius r = n%/(4*1)  and that ¢ = dB/(d + 2).

(IIL.b) 6 > 1. Here T' = n and we deal with a very large deviations for a sum of i.i.d. .
This has a cost of order exp(—n®#~Yrd). Choosing r so that n/r? = n*B=1yd
we obtain ( = (d 4+ 2a(8 — 1))/(d + 2). The condition r > 1 is equivalent to

g <1+ é The walk is localized all the time on a ball of radius r satisfying
Fd+2 — p1=a(B-1)

The following regions have already been studied.

e o = 400 (bounded scenery) and # = 1 in []] (actually Brownian motion is considered
there instead of RW);

e o =2 (Gaussian scenery) and 3 € [1,1+ 1/a] in [B, {;
e Region III.b (a > d/2,1 <[ <1+ 1/a) in [I0];
e 3=1and a <d/2in [}.

In the first three cases, the precise decay rate is obtain (i.e. both the (-exponent and the
rate I). In the case § = 1 and a < d/2, distinct lower and upper bounds with the same
exponent are given in []. Outside the diagram of Figure [], in the region 0 < a < 1 and
0 < 1+a , in d > 3, precise estimates are established in [g].

ThlS paper is devoted to regions I and II. Henceforth, we consider d > 5, unless explicitly

mentioned.

Proposition 1.1 Upper Bounds for the RWRS.

1. Region I. We assume (i) § < min(g—i;, jgi;) and (i) B < dgcf2d2 1~ There exists an

explicit yo, such that for y > yo, there exists a constant ¢; > 0, and

P(X, > nﬁy) < exp(—c’lnzﬁ_l). (6)



2. Region II. Let a < d/2, B > max{g—i;; #&1_)2)}. For y > 0, there exists a constant
¢ > 0, such that

P(X, > nPy) < exp(—GnPe/@th), (7)

Remark 1.2 In our context dz‘djzﬁ is smaller than 75—, bul we insisted on keeping the

latter exponent in the definition of Region I, since the j/ormer s a technical artifact.

d/24+1

We indicate below lower bounds for P(X, > n”y), which prove that we have caught the
correct rates of the logarithmic decay of P(X,, > nPy). These lower bounds are given under
an additional symmetry assumption on the scenery, which is not crucial, but simplifies the
proofs. Hence, we say that a real random variable is bell-shaped, if its law has a density
with respect to Lebesgue which is even, and decreasing on R™.

Proposition 1.3 Lower Bounds for the RWRS.
Assume d > 3, and that the random variables {n(z),z € Z*} are bell-shaped.

1. Region I. Let 1 > 3 > 1/2. For all y > 0, there exists a constant ¢, > 0, such that

P(X, > nﬁy) > exp(—glnzﬁ_l) ) (8)

2. Region II. Let 3 <1+ 1/a. For ally > 0, there exists a constant ¢, > 0, such that

P(X,, > n"y) > exp(—cyn /T, (9)

The right diagram in Figure [l summarizes the logarithmic decay rate of P [Xn > nﬁy}.
The hatched areas are explored territories (bold lines excluded), and the horizontal stripes
correspond to Propositions [[.1 and [[.3.

In the process of establishing Proposition([l.1), one faces the problem of evaluating the
chances the random walk visits often the same sites. More precisely, a crucial quantity is
the self-intersection local time process (SILT):

2= D) =nt+14+2 > I{S =Sp} (10)

x€Z4 0<k<k’'<n

It is expected that ¥2 would show up in the study of RWRS. Indeed, 2 is the variance
of X,, when averaged over P,. If we assume for a moment that the n-variables are standard
Gaussian, then conditionally on the random walk, X, is a Gaussian variable with variance
2 so that

RS ne)a) > 1) " (1)
nx)l, () >n §exp<——) 11
"2 73 o ()
It is well known that ([[1]) holds for any tail behaviour () with @ > 2. Now, if we average
with respect to the random walk law, then for any v > 0

P(X,>n") < E [eXp G#ﬁli(az))}



< exp(—n*T) + Py (ZF >n'y>. (12)

xeZd

Hence, at least for large «, we have to evaluate the logarithmic decay of quantities such as
Po (3, cz4 l2(x) > n7). Note first that for d > 3, and n — oo,

Eo [ I ]~n2Gd<> 1), (13)

zEL?
where G is the Green kernel
Ga(x) £ By [loo(z)] .
Therefore, we have to take v > 1 to be in a large deviations scaling. For large deviations of

SILT in d = 1, we refer the reader to Mansmann [[4], and Chen & Li [§], while in d = 2,
this problem is treated in Bass & Chen [J].

We first present large deviations estimates for the SILT.

Proposition 1.4 Assume d > 5. Fory >1+2%" ., Gq(x)?, there are positive constants
¢, ¢ such that

exp(—cv/n) > Py [ > L) > ny] > exp(—cyn). (14)
zEZ?
Proposition [[.4is a corollary of the next result where we prove that the main contribution
in the estimates comes from the region where the local time is of order y/n.

Proposition 1.5 1. Fore >0, andy >1+42%, ;. Gy(x)?,

1
lim sup NG log Py Z P(z)>ny| = —c0. (15)
el x:lp (x)<nl/2—e

2. Fory >0 and e > 0, there exists a constant ¢ > 0, such that

1
lim sup NG log Py Z 2(z) >ny| < —¢. (16)
e zily (z)>nl/27¢

Let us give some heuristics on the proof of Proposition [J. First of all, we decompose 32
using the level sets of the local time. Note that it is not useful to consider {z : [,,(x) > /n},
since [, (x) is bounded by an exponential variable. Now, for a subdivision {b; };en of [0,1/2],
let Dy, = {x € Z%,n" < 1,(x) < n¥+}. Denoting by [A| the number of sites in A C Z¢, we

then have
=3 2a) <) a™

7 :CE'DZ,Z.

Hence, choosing (ys,)ien such that >y, < v,

Py 22 >ny ZPO Z l2 ) > nyp, <ZP0 ‘®b|>n1 2bl+1yb} .

:L‘E'Db

A first estimate of the right hand term is given by Lemma 1.2 of [P].
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Lemma 1.6 Assume d > 3. There is a constant kg > 0 such that for any A C Z2, and any
t>0

Plla(A) > 1] < exp (ﬁdIAIL?/d)’ where Lo(A) = 3 lao()

€A

Hence, if we drop the index 4, and set b = b; 11 ~ b;, for L = n'~%y,, we have

Po[|Dy| > L] < > Py (Dy=Al(A) >nL)
AC]—n;n[?,|A|=L
< (2n)™ exp(—rkayn’) with §:b+(1—§)(1—2b). (17)

Since ¢ > 1/2 when b < 1/2 and d > 4, this estimate would suffice if the combinatorial
factor (2n)%* were negligible. This case corresponds to “large” b. For “small” b, we need to
get rid of the combinatorial term. We propose a reduction to intersection local times of two

independent random walks. Assume for a moment that in place of Y s, I7(x), we were to
deal with ) o Lo(2)l,(2), where (I,(%))seze is an independent copy of (I,(2))yeze. Then,

using Lemma, E, we obtain

7 > |7 1-b nl_byb
Z Lo(2)l(x) > nyy | < Po® Py [ln(Db) >n yb} < Eq |exp —mdw )

z€Dy

Py ® Py

Now, the simplest upper bound on the volume of Dy, is n’|Dy| < 37 p, In(x) < 7, so that

[Z n(@)l(2) > nyb] < exp(—kaypn' M)

€Dy

In this crude way, we have obtain a weaker bound than ([[7), but without the combinatorial
term. This can be improved as we improve on the upper bound for the volume of Dy,

The paper is organized as follows. In Section [J, we prove the lower bound in Proposi-
tion ([[.4), and present an upper bound rougher than ([[4). Indeed, the first step in establish-
ing ([[4) is to reduce SILT into intersection local times of two independent walks. However,
this reduction only yields

[Z 2(z) > ny] < exp (—c%@) . (18)

z€Z4

For pedagogical reasons, we first prove ([§), whereas its refinements are proved in Section fl.
We gather the technical Lemmas in Section fJ. The results of Section Jj are applied to the
problem of large deviations for SILT in Section [}, to obtain Proposition [.§. In Section [,
we treat the problem of large and moderate deviations estimates for the RWRS, and prove
Proposition [[LJ. Finally, the corresponding lower bounds (Proposition [J) are shown in
Section f.



2 Rough estimates for SILT
Lower Bound. For k € N, let To(k) be the k-th return time at 0:
7020, T 2 inf {n > kD g = o} .

For y > 0,

P

v

Pin(0)

v
5
=l
_l’_
=
Il
i)
o)ﬂﬁ
3
IA
Ii]

PG ny]

xCZ4

> P[wce{1,---L,/—nyJ},T§’“>—TO(’H’g i ]

v

P[Togi

o
=l

— <P[T0<oo]—Pl%<To<oo

)\/@

This proves the lower bound since lim,, o, P [% <Ty < oo} =0, and P(Tp < o0) < 1 for
d> 3.

Upper bound ([[§).
We write the proof of the upper bound for n = 2V since this simplifies notations. The
trivial extension to general n is omitted. First, note that

> P)=n+1+220 with 20 = Y I{S =S}

reZd 0<k<k'<n

The idea is to reduce Z(© to the intersection times of two independent random walks stem-
ming from S,/, as in Le Gall [[3]. Then, we use moment estimates for intersection of
independent random walks obtained in [1J].

We divide Z© into

20=z"+z"+ Y I{S), = S},
0<k<2N-l<k/<2N
with,
Z) =3 o<k <k <2V} I{S = S},
koK'
and,
Z3) =3 W2V <k <k <2V} 1{S, = Sw}.
kok!
Thus, we can define two independent walks for times k € {0,...,2V¥"1}

Sk71 = SgN—l - SgN—l_k, and Sk,g = 52N71 - 52N71+k..
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Finally, we obtain Z(© < Zf ) + Z(l) + I ) with for i = 1,2

ZW =3 o<k <K <2V I{Ski = Spab, and LY = lover (2)lon-1 5(2)

kK zeZd

where for i = 1,2, (It ;(z))ren denotes the local times of the random walk (Sj ;)ken. Iterating
this procedure, we get

N-12!-1
I)
70 < v, (19)
I=1 k=1
where for each | € {1,--- — 1}, the random variables (I,gl 1 < k<271 are iid.

and are distributed as erzd lon—1(x)lon—1(z), (I(z), z € Z%) being an independent copy of
(L(z), z € Z%). Hence, to prove (), it is enough to prove that for all y > Y, Ga(z)?,

Py 2 > 2Ny] < exp (—é . 2Ny> : (20)

N
Now, for any {y1,...,yn_1} positive reals summing up to y < y, we have
N-1 21
Po(Z0 > 2Vy) <SP [ Y1 > 2Ny
=1 k=1

The strategy is now the following:

e When [ is small, we bound each term of {],gl), k=1,...,271} by a sequence {I}, k =

1,...,2!71} of i.i.d. random variables distributed as I.,, where
Lo = ls(@)l
T€Z

(Ioo())geza being an independent copy of (lo(2))yeza. The estimate Po(ls > t) <
exp(—#sV/1) is proved in [[F. Thus, in each generation, we are dealing with a sum of
independent variables with the right streched exponential tails.

e When [ is large, we use the trivial bound I ,gl) < 22(N=D and the classical Cramer’s
estimates.

First, we choose the {y;}. Note that for d > 5, my = Eo[Is] = Y, 70 Ga(x)* < 00, so that
we have to choose y; such that

2Ny > 2 my > 2R 1]
A convenient choice is the following: for [* = 9N/10,
e y=y/(2N) for [ < I*.

y = y/2N"H for [ > 17



Thus, S0 My < (I°/(2N) +1/2)y < y, and we obtain Py(Z© > 2Ny) < Ry + R, with

2l—1 ol—1

Ri=YP Zl(l —Ny , and Ry =Y P Z[ > 2y —my) |,

<l >0

where IV = 1) — E[1"].
Case I < I*. We take advantage of the small size of the [-th generation to compare /. ,gl) with
I, and use the bounds of [[J]. Set zy = 2V /N and J;, = I,gl) I[{Ilgl) < zn'}, so that

2l71 2l71

SO > 2V | <27 (10 > ) + P [ 30> 2V,
=1 k=1

For any A > 0,
2l71

Z Jk Z 2Nyl S 6_>\2Nyl (Eo[e)‘J’“])?il .

k=1

Now, using [[7],
ZN ZN
Eole**] =1 +/ NN P(Jy, > u)du < 1+ )\/ MRV,
0 0

We choose A = k4/2,/zy so that kgy/u > 2 u for u < zy. For such a choice, there is ¢g > 0
such that Eo[e**] < 1+ ¢p), and

L N
(Bole™))” <%, for A=1/%

Finally,

2l1

2N K s N
ZI y §21exp(—/~€5\/ﬁ)—l—exp( y\/ N2N + COH Q_N)

This provides the desired bound as long as 2! < 2V /N, which is always the case for [ < [*.

Case [ > I*. Note that for all I, I) < 22(N=D_ Hence, for large [, we use large deviations es-
timates for sums of i.i.d. “small” random variables. More precisely, using Markov inequality,
for all A > 0,

2l1

ZI > 27y —my) | < exp (=227 (y — ma)) Bo [exp (ATV)]

2l71

We choose A < 1/22(V= and use the fact that exp(x) < 1+ + 222 for || < 1, to obtain
E, [exp (Aik(”ﬂ <14+ 22E[(L")2 < 1+ 2ma)?,

10



where my = Eq [I2] < oo by [[F]. Thus,

Ry < Zexp 2l "Ny —m) — 2ma))) . (21)

>0

Thus, we need (y —my) > 2moX and A < 1/220V=0 for [ > [*. For I* = 9N/10, it is enough
to choose A = 271/%, ]

3 Technical Lemmas.

This Section provides the key estimates for the probability that > () be large. In a first
reading of Lemmas B.9 and B.3, we suggest the reader to think of the case p = 2, v = 1,
¢ = 1/2, on which relies our results on SILT. The cases p # 2 are needed for the proofs of
the moderate deviations for the RWRS, but involve no additional ideas.

We begin with a simple improvement of Lemma [.G.

Lemma 3.1 Assume d > 3. There exists a constant kg > 0 such that for anyt >0, L > 1,

Po (| {x: Ly(z) >t} | > L] < (20)% exp(—rgt L' =2/%). (22)

Proof: The proof is a simple application of Lemma [.§ of [].

P(|{z:l,(x) >t}|>L) < > P(VzeAl(z)>t)
AC]-nin[%|Al=L
< > P(lu(A) = Lt) < n™ exp(—rgtL' 7). (23)

AC]—n;n[%|Al=L

|

As a corollary of Lemma B.1], we obtain the following estimates for the regions where the

local times are large. We recall that for p > 1, we denote by p* := p/(1 — p) the conjugate
exponent.

Lemma 3.2 Assume d > 3, and fix positive real numbers a,b,~y,(,p,y, with

di/2<b<a and define @:{x:nbgln(aj)gn“}.

We assume either of the following two conditions.
: ¢(d/2)"
(1) p 2 (d/2)"; € < Sapamni @ < i@

.. " d/2)* —
(ii) 1< p<(df2)7;b> L2

Then, for a constant ¢ (depending on a,b,p,v,(,y) and for n large enough,

Py [Z (x) >n’ ] < exp(—ecn®). (24)

z€D

11



Proof: The strategy is to slice the above sum according to the level sets of the local times.
Thus, we decompose D into a finite number M of regions. For ¢ =0,..., M, let

D; = {z nh < I(z) < nbi“}, where b=0by<b <---<by, by >a. (25)

M and the sequence {b;;0 < i < M} will be chosen later. Then,

M-1

nﬁ/

P, [Zzp >m] < Y B Zzp y] (26)
€D 1=0 LzeD;

M-1 ¢

< Py ||Ds] >

=0 -

We now use Lemma B.1] with t = n% and L = n?~Pbi+1y /M to get

(27)

M-1
P, [Z P(z) >n ] < Z pdn TPy /M exp (_Hdnbi+(1_2/d)(7_l’bi+1)(y/M)1_2/d) . (28)

zeD =0

To conclude, it is now enough to check that we can find a finite sequence (b;,0 < i < M),
such that by = b, by; > a and satisfying the constraints

Y = pbiv1 < b+ (1 —2/d)(y — pbit1) biv1 > 5 — _b (C2)
C < b+ (1= 2/d)(y = phinr) Qb <itati-0 (G . (29)
bi < b1 biv1 > b; (Co)
y Yy
Dy
Dy
Dy D, Do Dy
az b=by b a by ao e ap a2 b b a by T
Causepzd;f2 Casep<d;f2

Figure 2: Construction of (b;,0 <7 < M) for D

Let Dy be the line y = x, Dy be the line y = 7+p(d 2)(36 (), and D, the line y = 5—%:6

Case p > (d/2)*: In that case, the slope of D is less than 1. Let ag (resp. az) be the abscisse
of the intersection of D; with Dy (resp. Ds)

BTt/
T op—(d/2r T (d/2)’

12




Then, the region of constraints is non empty (see figure f]) if and only if

v

< S —.
a2 <06 <o

In that case, it is always possible to construct a finite sequence (b;)o<i<nm satisfying the
constraints (Cy), (C1), (Cy) and by = b, by > a, as soon as b > as and a < ag. A possible
choice is to take b;; 1 = % + Iﬁ(bi — (), M being defined by byr—1 < a < by,.

Case p < (d/2)*: In that case, the slope of D; is strictly greater than 1, and the region of
constraints is never empty. It is always possible to construct a finite sequence (b;)o<i<m
satisfying the constraints (Cy), (C1), (C2) as soon as b > ag, and b > ay. A possible choice is

to take by = % + Zﬁ(bi — (), M being defined by by;_1 < a < byy. [

We deal now with the regions where the local times are small.

Lemma 3.3 Assume d > 5, and fix positive real numbers b, (,y. Let
Dy ={zeZ l,(x) <n’} .

Assume that

2 y >0 ify>1
>1: —b——=(1-0): )
y>1; (<vy-=0b d(l b); and { y> 1425 i Galx)? ify=1. (30)
Then, for a constant ¢ (depending on b, v, ¢, y) and for n large enough, we have
Po | Y 2(z) > n7y| < exp(—cn). (31)

2€Dy

Proof: We again perform the decomposition in terms of level sets with D, as in (BF).
However, we are now in a region where the estimate () is useless since the combinatorial
factor is dominant. To overcome this problem, we rewrite SILT in Proposition [.4 in terms
of intersections of independent random walks, as explained in the introduction. We assume
from now on, that n is a power of 2, n = 2. As in Proposition [[4,

Y B@)<n+1+2Z9 with zO0=)" > 1{S =Sy =1} (32)

z€Dy z€Dy 0<k<k/<2N

Now,

ZO < N Wlowa(z) <2V Y I{Si =Sy =}

0<k<k/<2N-1

+ 3 Wlow (@) — lovs () <21 Y 1{S), = S = z}

IN-1<k<k/<2N

+ > Wlpvr () < 2} > 1{S), = Sy =z}

0<k<2N-1<Lp/<2N

>

20+ 7250 + I

13



With the same notations than in the proof of Proposition [[.4, for i = 1,2

Z(l Z ]I{SQN 1= y} Z ]I{ZQN 1\Yy — ZL’) < 2Nb} Z ]I{Sk,z = Sk’,i =Y - ZL’}

y 0<k<k/<2N-1

Changing = in y — x in the second summation, we obtain for ¢ = 1, 2

ZV =3 Wl y(@) <28 YT I{Ski = Sp =}

x 0<k<k/<2N-1

The self-intersection times of the two independent strands is denoted

J1(1) - Z I{lon-14(z) < 2Nb}l2N*1,1(x)l2N*1,2(‘T)‘

xT

Iterating this procedure, we get

,_.

2l
70 < J (33)
=1 k=

2

[y

where for each [ € {1,---, N — 1}, the random variables {J,gl);l <k<2-'}areiid. , and
are distributed as a variable, say J®, with

J(l) = Z lngz (.Z’)ZQNfl (SL’),

@il () <2Nb

where {I,,(z),x € Z%} is an independent copy of {l,(z), z € Z%}. Now, note that

-1

N 2
SN TP <2V Gae)?

=1 k=1

Hence, if J_k(l) = Jlgl) - EO[JS)],

2l1
) n“*y—n—l
Po | Y 2 2 y| <B |33 A0 > PRIl S g
z€Dy =1 k=1 ez

; N 271 7(1) N~
Thus, we need to prove that there exists a constant ¢ such that Py |> 5,2, > 7, J,' > 2Vy| <
exp(—c2™¢). Now

N 27l N 27t 9N~
Po | SN T =My <SR DAY > Ny . (34)
I=1 k=1 1=1 k=1

We wish to use Cramer’s estimates, so that we need the existence of some exponential
moments for the J,gl). For this purpose, we choose {b;,i = 0,..., M} a regular subdivision
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of [0,b] of mesh § > 0 to be chosen later, such that b =0, byy = Mé > b > (M — 1)d. Let
D; = {x;2M% < lyv—i(x) < 2V} For each [ and k, and any u > 0, we have, using Lemma
[.g, and independence between [ and l~,

M-1
ol u
]P)()(,](l) > U) < 2; IP)(] (; lngl(.flf) > m)

M-1

u
< 2 o0 (s g ) %)
We now use a rough upper bound for D;: 2V%|D;| < 2V, to obtain
= Kql Kql
0] N d N d
Po(JY > u) < Zexp( QNQ-M) SMexp( 72Nmax(g)M> , (36)

with ¢ = b1 + 2(1 = b;) =4i6(1 — 2/d) + 2/d + 6. Thus,
max((;) = M§(1—2/d) +2/d+6 < (b+6)(1 —2/d) +2/d +§,

and for any € > 0, we can choose § such that max(¢;) < b+ 2(1 — b) + 5. Thus we have a
constant C. such that

Po(JO > u) < Cexp(—Enu), with &y = %Q_N(b“l_m/d“/z). (37)

Note that this estimate is better than the estimate of [[[J]
Po(JD > 1) < Py(loe > u) < exp(—ksv/0), (38)

only for u > k4/&%,. However, it permits us to consider exponential moment E[exp(AJy,)] for
A < &n. We now go back to the standard Cramer’s method. For simplicity of notations, we
drop the indices [ and k& when unambiguous. Returning now to (B4), for any 0 < X\ < &y,

P, QZ JO > 2];\:?’ < exp (-ij\;y) Eo [exp(A])]” (39)
Now, using the fact that e® < 1+ x + 222 for x < 1,
Eo[e™] = EoleM 1{J < 1/A}] + Eo[e™ 1{J > 1/A}] (40)
< Eole 1{J < 1/A}] + Eo[e™ 1{J > 1/A}] (41)
< Eo [(T4+ AT +2X2(J)°) I{J < 1/A}] + Eo [eM T{J > 1/7}] (42)
< 1+ AEo [|J] I{J > 1/A}] + 2N°Eg [J°] + Eo [e¥ T{J > 1/A}],  (43)

where we have used the fact that Eg [ﬂ = 0. Now,

1/2

Eo [|7] T{J > 1/A}] <Bo [(J)*] "R [J 2 1/N"? < A [J7] < AEo(I2).

15



Note that by the results of [[J], Eo(/2) < co. Hence, for some constant c,
Eo[eM] <1+ eX? + By [N T{J > 1/A}] .

We now show that for some constant C, E [e* T{J > 1/A}] < CA%.. We decompose this
last expectation into

Eo [ T{J > 1/A}] = e'Po(A] > 1) + I < e'Bo[I2]\* + I,

with
En
2log(1/&3%)

To bound I, we use estimate (B7), A < {y/2 and N large enough

I :/ AeMPy(J > u)du, and we choose \ =
/A

2\
I < /)\e)‘“ 5N“du<£— (§N/2)e_(5N/2)“du
1/

1/
3

2V = Tog(1/2%)

Thus, there is a constant C' such that

< 4Enlog(1/€63)A* < A% (44)

Eolexp(AJ)] < 1+ CN < exp(CA?),

which together with (BY), yield

2

(45)

??‘

12l 1
2N“{ 2N’Y 2 2l
y < Nexp <— Y N R C§N )
2N 2log(1/€)  4log?(1/€3)

2N79§N
8N 1og(1/§?v))

where we used that 27y > 20NEN2!/ log(1/£3;) for any [ < N and N large enough, as soon
as € is chosen so that v —b—2(1—b) —¢/2 > 0. Now, we can use an extra €/2 to swallow the

denominator N log(1/£3;) in the exponential, and the N factor in front of the exponential in
(3). We obtain then for large enough N,

=1 k=1

< Nexp <— (46)

N—12\-1

Z Zjlgl) > 2N’Yy < exp (_CQNC) , with ¢ = v — b— 3(1 — b) — €. (47)

=1 k=1

4 Refined upper bound estimates for SILT.

In this Section, we prove Proposition [[.J. In the first Subsection, we apply Lemmas B.2
and B.3 to deal with the case d > 6, then we improve Lemma B.J to treat separetely the case
d = 5, which we have added as a Lemma.
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4.1 Proof of 1. of Proposition [I[.5]

The region {:E Cp(x) < nl/Z_E} is split into two regions
Dé{x:nb<ln(x)§nl/2_e}, and Dy = {z: Iy( n’},

(b to be chosen later) so that for any y > 1+2%" G3(x),

P > B@)zny| <P

xilp (z)<nl/2-¢

Z 2(z) > ny

zeD

+P le >nys|

2€Dy

where y; >0, yo > 14+2>. G3(z), 1+y2<y
For the first region, we apply Lemma B Wlth p=2,v=1. Since d > 4 we are in Case
(i) of Lemma B.3, so that ¢ has to verify ¢ < 4+d Note that for d > 5, 4+d > 1/2, so that
we can choose ¢ = 1/2 + n where n > 0 is such that 1/2 4+ 71 < 4+d We want now to take
a =1/2 — ¢, so that n has also to satisfy
y(d—2)—d¢ d—2—-d(1/2+n) 1 dn d—4

A RN 1)) S _ -
S ppa TYPes d—4 2 d—a "7y

€.

Thus for b= 2 =1 + 21 Temma B3 allows to conclude that

lim sup — log Py [Z 2(z) > ny1] = —00. (48)
e \/_ xeD

For the region D,, we use Lemma B3, withy =1, { =1+, b=
just have to check that we can find n > 0 such that

+2y =y We

Ul

2
(<7—b—§(1—b)<:>(d2+2d—4)77<%—3d+2.

This is possible when % —3d+2>0,ie when d > 6.

For the case d = 5, we need a special treatment.

Lemma 4.1 Assume d = 5. There exists € > 0 such that for b < 1/d + ¢, fory > 1+

232, Gilx),

lim —logIPo Zl ) >ny | = —oc. (49)

n—oo
Dy

Proof: We use the same decomposition as in the proof of Lemma B3, up to inequality (BJ),
where we use the rough estimate for |D;| only for the young generations.

Case [ > (2/d*)N. We denote D% = {z : 2N < lynoig(z) < 2NPr}, where we have
associated lyv-1, with the k-th variable J,gl) appearing in (B4). We actually add an index k
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and [ to make precise this correspondence. Hence, the rough bound is |D§f,1|2N bi < IN=l 5o
that after the appropriate changes, (B7) reads: V§ > 0, 3C such that VI > (2/d?)N,

Po(JY > u) < exp(—C27"), with ¢ =b(1 — %) + 3(1 - %) + 0. (50)

By proceeding as in the proof of Lemma B.J, we obtain that for [ > (2/d?)N,

2l71
Py | YT > 2Ny | <exp (—C2N070) (51)
k=1
It is easy to check that one can find § > 0 such that 1—{ > 1/2 as soon as b < —2&__42) + 7d2(3_2).

Note that for d = 5, this last quantity is strictly bigger than é.

Case | < (2/d?*)N. The strategy for the old generations is to control the size of D; by a
boostrap-type argument. That is, if D; is large, then ), [?(x) is large and Lemma can
be applied to control this term. Thus, for any ~;,

(1D > 2Y07) € {3 By () > 2Ny, (52)

0
‘Di,k

and we can invoke Lemma to obtain a good ~;. Before doing so, we go back to the right
hand side of (B4)), and for a fixed [, we define

A= {Vl{} = 17 . 21—1;Vz’ = 1, RN ]\47 ‘Ql(,ll)f| < 2N(1—“/i)}
and perform the following partitioning
ol=1 2l—1

_ 9Ny _
Py |30 > Ny <P AT+ Py | Y TP >
k=1 k=1

2N“/y
N

Al (53)

Now, for { < ZN, N —1> N(1— %), and DEZ,)Q C {a:; lon—i(z) < 2(N_l)bi+1/(1‘2/d2)}. Hence,

2l71
PoA] < 30D R [ID{)] = 2V0)] 5
k=1 i
< 21—1ZIP>0 Z 1 vy tisd lg}\_l(x)22(N—l)(1+2bi—%-) (55)
i x {lyn—1(x)<2 ’)m}

We can now apply Lemma B.3 at time 2V, to bound Py [A°] by exp(—2V=0¢). To obtain
Py [A] < exp(—C2Y/%), we have to take ¢ > (1/2)/(1 — 2/d?). We have thus to choose v;
in order to satisfy the following conditions

1/2 2. b 2

142 — > 1, —L 142 — i — (1 — =)t =
+ v > 1—2/d2< + 7 — ( ) (56)
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We choose v; = b;(1 +2/d). In that case, the two conditions in (5{) are satisfied for d = 5,
and b < 13/12.
For the second term on the right hand side of (53), we follow the same lines than (BJ)-

(1), now taking advantage of the fact that the volume of DEZ,)Q is small. As in (B3), for fixed
[ and k, we have now

P, [J(l) > u; Vi, |@£ll)€| < QN(l—w)} < M exp <_KL]\;2—NmaX(bi+1+(1—%)2/d)) .
With the previous choice for the ~;, this yields

2 4 2
Py [J(l) > u; Vi, |@£l,)€| < 2N(1_%’)} < exp(—C27 ) with € = b(1 — 'l ﬁ) + y + 4.
Therefore, VA > 0,

2l1

2l71
ZJ 24l < exp(—A2"Vy/N)Ey |exp(AJP); Vi, | DY) < 2N<1—%>] .

Following the same lines than ([4)-([7), we end up with

2l1

N
Po [S T > Ny A| < exp(—C2N0-9)y
k=1
Now 1 =& > 1/2if b < 5575, and for d = 5, 1/d < 53570 ]

4.2 Proof of 2. of Proposition [[5]

Since

Po| Y D)=yl < Po[3zhx)>vn]< > Polllz)>vn]

x:ln () >/n x€]—n;n[?

< Y Bu(H, < 0)B.(l(x) = Vi)

z€]—n;n[?

< en™Py(ln(0) > V/n) < enexp(—cv/n),

it is enough to prove that for d > 5, for any y > 0 and any € €]0,1/2 — 1/d[, 3¢ > 0 such
that

lim sup —log Py Z Z(z) >ny| < —¢. (57)
n—00 \/_ zinl/2=e<l, (z)</n

We write again {x : n'/27¢ < I, (z) < v/n} C UM D;, by < 1/2—¢, byy = 1/2, but this time,
M will depend on n (actually M ~ log(log(n)). Let (y;,;i =0--- M —1) be positive numbers
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such that > .vy; < 1. Then,

Py Z li(ﬂf) > ny

x: n1/2*5<ln( <vn

M- M-1
< Z [Z [2(x) > nyiy ] <) OB [|Di] = 0ty
=0 zeD; =0
M-1
< ndn172bi+1yiy exp (—/{dnbi_(l_wd)(l_%i“)(yiy)l_wd) ’
1=0

by Lemma B.]. Therefore, we need to choose (y;,b;,0 < i < M — 1) such that for some
g >0,

nbi—(1—2/d)(1—2bi+1)yi1 2/d N Bnt/2=b < n2(1—2/d)(1/2—b@-+1)yil‘z/d
(58)
For i = M — 1, the second condition in (B§) is fn!/?7bv-1 < y]l\f{d, so that we have to

take 1/2 — byy_1 = 1/log(n), and yp—1 = (ﬁe)%
condition in (p§) is satisfied.

For the others b; (Z < M —2), we take by — 1/2 = a(b; — 1/2), with d PICED)
Hence for i <M — 1, 2 —b; = ()M~ Zlogl(n)' If we want by < 1 — € < a, we have now to

take M — 1 = [%] With these choices, the second condition in (F§) becomes for

i< M—2, y; > feg= exp (—2(1/a)M‘i_1(a - 2(%_2))), and we take y; to satisfy the equality.

Now, the first condition in (B§) is for i < M — 2,

57 exp (d;iQ G) M_H> < 10;/(71) < f7 oxp (d%g (E)AH) < loggl) . (59)

Recalling the value of M, this is satisfied as soon as

2 <d%'l2) < % (60)

But for € < 1/2 — 1/d, one can find a 6]2(61;{2)’ 1[ such that (B0) holds.
It remains now to check that we can take ( in order to get Zf\ifl y; < 1. But,

sz e + M exp <_2 (0 ) (1))]
< Bat _eddz + :1 exp (—2 (a _ 2(%_2)) (%))] .

Since the last series is convergent, one can obviously find 3 such that Ez 0 Ly < 1. |

{ nt=2bit1y Jog(n) < nbi=(1-2/d1-2bir1), 1= 2/d (:){ (n'=2bery) 2 log(n) < nb

For this choice of by;_1, yar—1, the first

< a< 1l

M

»
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5 Upper bounds for the deviations of the RWRS

The aim of this Section is to prove Proposition [L1. Let A denote the log-Laplace transform
of n(0):
Vt € R, A(t) =log E, [exp(tn(0))] .

Since 1(0) is centered, there exists a constant Cj such that for |[t] < 1, A(t) < Cyt®. By
Tauberian Theorem, for n(0) having the tail behavior (f), A(t) is of order t* for large t,
where o* is the conjugate exponent of « (é + ai = 1). Hence, there exists a constant C.,
such that for t > 1, A(t) < Cot®".

Let b be any positive real, and let as usual D, = {x € 7% 1,(z) > nb} and D, =
{z € Z%1,(x) <nP}. Then, for all y1,y» > 0, such that y; + y» =y,

P <P Y n@)(z) =0’y | + P | Y n@)i(z) = ny,| . (61)

SCE'Eb IEG&

S 0@l (x) = n’y

oo

Let A be the event {erﬁb 12" (z) > nﬁ_bJra*b%}-

P Z n(x)l(z) > nly | < Py [A]+ P | A, Z n(x)l,(z) > nPy

-’Eeﬁb ZEE:Db

_ I ()
b n
< Py [A] + exp(—n”"y1)Eq | Tue exp E A( b )

Now, on Dy, I,(x) > n’, so that using the behaviour of A near infinity,

T4 exp (wa” (62)

< By | YU (@) 2t ol | exp(—n Ty /2) (63)

P Z n(@)l(z) > nPy | < Po[A] +e

SCE'D_Z,

SCE'D_Z,

Exactly in the same way, but using this time the behiavour of A near 0,

P n@)iale) 2 0| < By | 3 B() 2 0P 5B | bexp(—n®n/2). (64)
z€Dy z€Dy

Proposition [[.1] is now a consequence of the following two Lemmas.

Lemma 5.1 Let d > 3, b >0,y >0, a > 1, and 8 > 0 be such that B < (1 + «)b,
B < (1+9)b. Then there exists a constant C' such that for large enough n,

Py | Y18 (@) > n ety | < exp(—CnPh).
ZBE@[,
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Lemma 5.2 Assume d > 5. Choose positive b, y, 8 satisfying B+ b > 1,

c_i>b'b(d2+d—2)—d  and y >0 if B+b>1;
2" d—2 ! y>1425 G3x) if B+b=1.

f# < min ((1+

Then, there is a constant C' so that for large enough n

Z 12(x) > nPThy| < exp(—Cn~?)
z€Dy

Suppose now that Lemma p.1] and (.9 hold.

Region I. Choose b=1— 0, y1 >0, yo > 2(1+ 2, G3(2))Cy in (B3) and (54). In order
to apply Lemmas p.1] and p.3, 3 has to verify

§<(1+a)(1-p) <o
B<(1+H(1-7) s f<i
-2 <(-B@+d-2)-d | gt

Note that W < d+2 Therefore, if 3 < °‘+1 and 3 < d2 2, Lemmas F1] and -2, and
equations () (63) and (B4) lead to, for all y =1y + Y2 > 2MCy, and large enough n,

Zn )>n y] < exp(—Cn”™?).

This is () of Proposition [, since 5 — b= 24 — 1.

Region II. Choose b = aLj-l’ y1 >0, yo > 0 in (6J) and (B4). In order to apply Lemmas p.1|
and p.3, # has now to verify

ﬁ+b>1 >a_+1
< (1+ab v 3”

d =4 a<3
B<(1435)b dlat1)
Bd—2) <b(d®+d—2)—d B> padiza

Under these conditions, Lemmas p.1 and p.3, and equations (61)), (B3) and (£4) lead to, for
all y = y1 +y2 > 0, and large enough n,

S otomia = 4] < it

This is ([d) of Proposition [, since 5 — b = Ba/(a+1). ]
Proof of Lemma p.1: We apply Lemma .3 with
p:a*> VZﬁ—b‘l‘a*ba Czﬁ_b
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Note that the condition b > 2(/d is equivalent to 5 < (1 4 d/2)b.

Case a > 4: We have p < (d/2)*. The condition b > dc(“’i(d)z) is equivalent to § < (14-d/2)b.

It only remains to invoke Lemma .3 (ii).

Case o < 4: We have p > (d/2)*. The condition ¢ < ~vd/(2a* + d) is equivalent to
ﬁ < (1+d/2)b. Hence, Lemma B.3 allows to conclude that for all y > 0, for a < (y(d —2) —
d¢)/((d — 2)a* — d), and n sufficiently large,

Po| Y I(x) =ny) < exp(—Cn®T).

<y (x)<no

On the other side, for all y > 0,

Py Z 197 (z) > nf 0yl <Py [3z €] — nyn[h L(z) > 0P <exp(—Cn??).
il (z)>nf P
Hence, we are left with § —b < (y(d —2) — d({)/((d — 2)a* — d), which is equivalent to
B < (a+1)b.
It remains now to treat the case § = (a+ 1)b. In that case, § —b=ab, § —b+ a*b =
(a + a*)b = aa*b. Lemma B.3 allows to conclude that for all y > 0, and all € > 0,

Bl S (@) >0ty | < exp(—Cnt).

b <y (z)<nab—ec

Hence, it remains to prove that for all y > 0, all ¢ > 0, and n sufficiently large,

Po| S () 2 noty| < exp(—Cn).

xnb—e<l, (z)<nab

We are in exactly the same situation than in point 2. of Proposition [[.J. The proof is the
same, and is left to the reader.
n

Proof of Lemma [5.2. We begin by applying Lemma B3 with p =2, v =3+0b, ( = 3 — b,
and a = b. The conditions C < (yd)/(2p+d) and a < (7( 2) —d¢)/((d—2)p — d) are
both equivalent to g < (1 + )b Therefore, if § < (1 + )b Lemma (.7 yields that Vy > 0,
and for n large enough,

Py >, B(z) > n™*y| < exp(—Cn®Y). (65)

x:n2(B=b)/d<], (x)<nb

We apply now Lemma B.3 with v = 3+ b, ( = 3 — b, and consider only sites where the
local time satisfies [,,(x) < n?(#=%)/4. The second condition of (7)) in Lemma -] is equivalent
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of(d—2) <b(d®*+d—2)—d. Thus, for B+b>1, 3(d—2) < b(d®>+d—2)—d, and all
y>0if B+b>1ory> Mif 3+b= 1, we obtain by Lemma B.J that for n large enough,

Po Z 2(z) > n’y| <exp(—Cn’™"). (66)
@il (x)<n2(6-b)/d

Putting together (bJ) and (BG), we conclude Lemma B.T]. u

6 Lower Bounds for the RWRS.

This Section is devoted to the proof of Proposition [[.3. The symmetry assumption simplifies
the proof, thanks to the following Lemma

Lemma 6.1 (Lemma 2.1 of [B]) When {n(z),x € Z*} are independent and have bell-shaped
densities, then for any A finite subset of Z¢, and any y > 0

P <Z agn(z) > y) <P (Z Ben(x) > y) , if 0<a, <p, forallz e A. (67)
TEA €A
Region I. Let us denote by R,, the range of the random walk
R, = {3 1n(x) > 1} .

Under the symmetry assumption, Ve > 0,

Zn ) > n’y > Znﬁy] :
j=1

Now, it is well known, that for d > 3, there is ¢ > 0 such that lim,, . Py(|R,| > cn) = 1.
For the other terms, if 1/2 < # < 1, we are in a regime of moderate deviations for a sum of
i.i.d., and there is C' > 0 such that

> P

S () > nﬁy] > Py(|R,| = en) P,

TERR

h}lr_l)g)lf n25 - log P,

ZmZn ]2—6’.

7j=1

This gives the result for region I.

Region II. Under the symmetry assumption, Ve > 0

Pt 2

Now, for 2 —77 < 1, the second probability is of order exp(— Cno%al), which is also the order
of the first one. ThlS leads to the lower bound in region II.

> P [n(0)l,,(0) > nﬁy] > P, [77(0) > natl y/c] Py [ln(()) > cna_H] :
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