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39 Rue Joliot-Curie,

F-13453 Marseille cedex 13, France
asselah@cmi.univ-mrs.fr & castell@cmi.univ-mrs.fr

Abstract

Let {Sk, k ≥ 0} be a symmetric random walk on Z
d, and {η(x), x ∈ Z

d} an inde-
pendent random field of centered i.i.d. with tail decay P (η(x) > t) ≈ exp(−tα). We
consider a Random Walk in Random Scenery, that is Xn = η(S0) + · · · + η(Sn). We
present asymptotics for the probability, over both randomness, that {Xn > nβ} for
1/2 < β < 1 and 1 < α. To obtain such asymptotics, we establish large deviations esti-
mates for the the self-intersection local times process

∑

l2n(x), where ln(x) = 1I{S0 =
x} + · · · + 1I{Sn = x} is the local time of the walk.

Keywords and phrases: moderate deviations, self-intersection, local times, random walk,
random scenery.

AMS 2000 subject classification numbers:
Running head: Random Walk in Random Scenery.

1 Introduction.

We study transport in divergence free random velocity fields. For simplicity, we discretize
both space and time and consider the simplest model of shear flow velocity fields:

∀x, y ∈ Z × Z
d, V (x, y) = η(y)ex,

where ex is a unit vector in the first coordinate of Z
d+1, and {η(y), y ∈ Z

d} are i.i.d. real
random variables. Thus, space consists of the sites of the cubic lattice Z

d+1 and the direction
of the shear flow is ex. We wish to model a polluant evolving by two mechanisms:

• a passive transport by the velocity field;

• collisions with the other fluid particles; this is modeled by random symmetric incre-
ments {(αn, βn) ∈ Z × Z

d, n ∈ N}, independent of the velocity field.
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Thus, if Rn ∈ Z × Z
d is the polluant’s position at time n, then

Rn+1 − Rn = V (Rn) + (αn+1, βn+1), and R0 = (0, 0). (1)

When solving by induction for Rn, (1) yields

Rn =

(

n
∑

k=1

αk +

n
∑

k=0

η(

k
∑

i=1

βi),

n
∑

k=1

βk

)

. (2)

The sum β1+· · ·+βn is denoted by Sn, and called the Random Walk (RW). The displacement
along ex consists of two independent parts: a sum of i.i.d. random variables α1 + · · · + αn,
and a sum of dependent random variables η(S0) + · · · + η(Sn), which we denote by Xn and
call the Random Walk in Random Scenery (RWRS). Writing it in terms of local times of
the RW {Sn, n ∈ N}, we get

Xn =

n
∑

k=0

η(Sk) =
∑

x∈Zd

ln(x)η(x), where ln(x) =

n
∑

k=0

1I{Sk = x}. (3)

The process {Xn, n ∈ N} was studied at about the same time by Kesten & Spitzer [11],
Borodin [4, 5], and Matheron & de Marsily [15]. The fact that in dimension 1, E[X2

n] ∼ n3/2

made the model popular and led the way to examples of superdiffusive behaviour. However,
the typical behaviour of Xn resembles that of a sum of n independent variables all the more
when dimension is large.

Our goal is to estimate the probability that Xn be large. By probability, we consider
averages with respect to the two randomness, and P = P0 ⊗ Pη, where P0 is the law of the
nearest neighbor symmetric random walk {Sk, k ∈ N} on Z

d with S0 = 0, and Pη is the law
of the velocity field.

Now, when d ≥ 3, Kesten and Spitzer established in [11] that Xn/
√

n converges in law
to a Gaussian variable. Thus, by large, we mean {Xn > nβ} with β > 1/2. We expect
P (Xn > nβ) ≈ exp(−nζI) with constant rate I > 0, and we characterize in this work the
exponent ζ . For this purpose, the only important feature of the η-variables is the α-exponent
in the tail decay:

lim
t→∞

log Pη(η(x) > t)

tα
= −c, for a positive constant c. (4)

Let us now recall the classical estimates for P (Y1 + · · · + Yn > nβ), where β > 1/2 and
the {Yn, n ∈ N} are centered i.i.d. with tail decay P (Yn > t) ≈ exp(−ta), with a > 0.
There is a dichotomy between a “collective” and an “extreme” type of behaviour. In the
former case, each variable contributes about the same, whereas in latter case, only one
term exceeds the level nβ , when the others remain small. Thus, it is well known that
P (Y1 + · · · + Yn > nβ) ∼ exp(−nζ) with three regimes (since only the exponent ζ interests
us, we have omitted all constants).

• When β < 1 and β(2 − a) < 1, a small collective contribution yields ζ = 2β − 1.

• When β ≥ 1 and a > 1, a large collective contribution yields ζ = (β − 1)a + 1.
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Figure 1: ζ-exponent diagram

• When β > 1/(2 − a) and a < 1, an extreme contribution yields ζ = βa.

For the RWRS, one expects a rich interplay between the scenery and the random walk. To
get some intuition about the relationship between ζ and α, β, we propose simple scenarii
leading to the left diagram in Figure 1. Here also, we focus on the exponent, and constants
are omitted.

• Region I. No constraint is put on the walk. When d ≥ 3, the range is of order n and
sites of the range are typically visited once. Thus, {Xn > nβ} ∼ {η1 + · · ·+ ηn > nβ}.
When β < 1 the latter sum performs a moderate deviations of order nβ . Since the
η-variable satisfy Cramer’s condition, we obtain P (Xn > nβ) ≥ exp(−n2β−1).

• Region II, IV. A few sites are visited often, so that Xn ∼ η(0)ln(0). Now, using
the tail behaviour of η(x), and the fact that in d ≥ 3, ln(x) is almost an exponential
variable, we obtain

P
[

Xn ≥ nβ
]

≥ P
[

ln(0)η(0) ≥ nβ
]

∼ sup
k≤n

P0 [ln(x) = k] Pη

[

η(x) ≥ nβ

k

]

∼ sup
k≤n

exp(−k − (
nβ

k
)α) .

Now, the minimum of k 7→ k + nβα/kα is reached for k∗ = nβα/(α+1). Since, we impose
also that k ≤ n, two different exponents prevail according to the value of β:

(II) β < (α + 1)/α, and ζ = βα/(α+ 1). The RW spends a time of order nβα/(α+1) on
favorite sites.
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(IV) β ≥ (α + 1)/α, and ζ = α(β − 1). The RW spends a time of the order of n on
one favorite site.

• Region III.a, III.b. The random walk is localized a time T in a ball Br of radius r,
with r2 ≪ T : this costs of the order of exp(−T/r2). Then, during this period, each
site of Br is visited about T/rd, and we further assume that rd ≪ T . Thus

P
[

Xn ≥ nβ
]

≥ exp(− T

r2
)Pη

[

1√
rd

∑

Br

ηj ≥
nβrd/2

T

]

. (5)

Two different exponents prevail according to β:

(III.a) β ≤ 1. The condition 1 ≪ nβrd/2/T ≪ rd/2 means that the sum of η-s performs a
moderate (up to large) deviations and this costs of the order of exp(−n2βrd/T 2).
When the two costs are equalized, we obtain that the walk is localized a time
T = nβ on a ball of radius r = nβ/(d+1), and that ζ = dβ/(d + 2).

(III.b) β > 1. Here T = n and we deal with a very large deviations for a sum of i.i.d. .
This has a cost of order exp(−nα(β−1)rd). Choosing r so that n/r2 = nα(β−1)rd,
we obtain ζ = (d + 2α(β − 1))/(d + 2). The condition r ≫ 1 is equivalent to
β < 1 + 1

α
. The walk is localized all the time on a ball of radius r satisfying

rd+2 = n1−α(β−1).

The following regions have already been studied.

• α = +∞ (bounded scenery) and β = 1 in [1] (actually Brownian motion is considered
there instead of RW);

• α = 2 (Gaussian scenery) and β ∈ [1, 1 + 1/α] in [6, 7];

• Region III.b (α > d/2, 1 ≤ β < 1 + 1/α) in [10];

• β = 1 and α < d/2 in [2].

In the first three cases, the precise decay rate is obtain (i.e. both the ζ-exponent and the
rate I). In the case β = 1 and α < d/2, distinct lower and upper bounds with the same
exponent are given in [2]. Outside the diagram of Figure 1, in the region 0 < α < 1 and
β < 1+α

2
, in d ≥ 3, precise estimates are established in [9].

This paper is devoted to regions I and II. Henceforth, we consider d ≥ 5, unless explicitly
mentioned.

Proposition 1.1 Upper Bounds for the RWRS.

1. Region I. We assume (i) β ≤ min(α+1
α+2

, d/2+1
d/2+2

) and (ii) β < d2−2
d2+2d−4

. There exists an
explicit y0, such that for y > y0, there exists a constant c̄1 > 0, and

P (Xn ≥ nβy) ≤ exp(−c̄1n
2β−1). (6)
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2. Region II. Let α < d/2, β > max
{

α+1
α+2

; d(α+1)
d2−α(d−2)

}

. For y > 0, there exists a constant

c̄2 > 0, such that
P (Xn ≥ nβy) ≤ exp(−c̄2n

βα/(α+1)). (7)

Remark 1.2 In our context d2−2
d2+2d−4

is smaller than d/2+1
d/2+2

, but we insisted on keeping the
latter exponent in the definition of Region I, since the former is a technical artifact.

We indicate below lower bounds for P (Xn ≥ nβy), which prove that we have caught the
correct rates of the logarithmic decay of P (Xn ≥ nβy). These lower bounds are given under
an additional symmetry assumption on the scenery, which is not crucial, but simplifies the
proofs. Hence, we say that a real random variable is bell-shaped, if its law has a density
with respect to Lebesgue which is even, and decreasing on R

+.

Proposition 1.3 Lower Bounds for the RWRS.
Assume d ≥ 3, and that the random variables {η(x), x ∈ Z

d} are bell-shaped.

1. Region I. Let 1 ≥ β > 1/2. For all y > 0, there exists a constant c1 > 0, such that

P (Xn ≥ nβy) ≥ exp(−c1n
2β−1) . (8)

2. Region II. Let β ≤ 1 + 1/α. For all y > 0, there exists a constant c2 > 0, such that

P (Xn ≥ nβy) ≥ exp(−c2n
βα/(α+1)). (9)

The right diagram in Figure 1 summarizes the logarithmic decay rate of P
[

Xn ≥ nβy
]

.
The hatched areas are explored territories (bold lines excluded), and the horizontal stripes
correspond to Propositions 1.1 and 1.3.

In the process of establishing Proposition(1.1), one faces the problem of evaluating the
chances the random walk visits often the same sites. More precisely, a crucial quantity is
the self-intersection local time process (SILT):

Σ2
n =

∑

x∈Zd

l2n(x) = n + 1 + 2
∑

0≤k<k′≤n

1I{Sk = Sk′}. (10)

It is expected that Σ2
n would show up in the study of RWRS. Indeed, Σ2

n is the variance
of Xn when averaged over Pη. If we assume for a moment that the η-variables are standard
Gaussian, then conditionally on the random walk, Xn is a Gaussian variable with variance
Σ2

n, so that

Pη(
∑

x∈Zd

η(x)ln(x) > nβ) ≤ exp

(

− n2β

2
∑

x∈Zd l2n(x)

)

(11)

It is well known that (11) holds for any tail behaviour (4) with α ≥ 2. Now, if we average
with respect to the random walk law, then for any γ > 0

P (Xn > nβ) ≤ E0

[

exp

(

− n2β

2
∑

x∈Zd l2n(x)

)]
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≤ exp(−n2β−γ) + P0

(

∑

x∈Zd

l2n(x) > nγ

)

. (12)

Hence, at least for large α, we have to evaluate the logarithmic decay of quantities such as
P0

(
∑

x∈Zd l2n(x) > nγ
)

. Note first that for d ≥ 3, and n → ∞,

E0

[

∑

x∈Zd

l2n(x)

]

≃ n(2Gd(0) − 1) , (13)

where Gd is the Green kernel
Gd(x) , E0 [l∞(x)] .

Therefore, we have to take γ ≥ 1 to be in a large deviations scaling. For large deviations of
SILT in d = 1, we refer the reader to Mansmann [14], and Chen & Li [8], while in d = 2,
this problem is treated in Bass & Chen [3].

We first present large deviations estimates for the SILT.

Proposition 1.4 Assume d ≥ 5. For y > 1 + 2
∑

x∈Zd Gd(x)2, there are positive constants
c, c̄ such that

exp(−c̄
√

n) ≥ P0

[

∑

x∈Zd

l2n(x) ≥ ny

]

≥ exp(−c
√

n) . (14)

Proposition 1.4 is a corollary of the next result where we prove that the main contribution
in the estimates comes from the region where the local time is of order

√
n.

Proposition 1.5 1. For ǫ > 0, and y > 1 + 2
∑

x∈Zd Gd(x)2,

lim sup
n→∞

1√
n

log P0





∑

x:ln(x)≤n1/2−ǫ

l2n(x) ≥ ny



 = −∞ . (15)

2. For y > 0 and ǫ > 0, there exists a constant c̃ > 0, such that

lim sup
n→∞

1√
n

log P0





∑

x:ln(x)>n1/2−ǫ

l2n(x) ≥ ny



 ≤ −c̃ . (16)

Let us give some heuristics on the proof of Proposition 1.5. First of all, we decompose Σ2
n

using the level sets of the local time. Note that it is not useful to consider {x : ln(x) ≫ √
n},

since ln(x) is bounded by an exponential variable. Now, for a subdivision {bi}i∈N of [0, 1/2],
let Dbi

=
{

x ∈ Z
d, nbi ≤ ln(x) < nbi+1

}

. Denoting by |Λ| the number of sites in Λ ⊂ Z
d, we

then have
Σ2

n =
∑

i

∑

x∈Dbi

l2n(x) ≤
∑

i

n2bi+1 |Dbi
| .

Hence, choosing (ybi
)i∈N such that

∑

i ybi
≤ y,

P0

[

Σ2
n ≥ ny

]

≤
∑

i

P0





∑

x∈Dbi

l2n(x) ≥ nybi



 ≤
∑

i

P0

[

|Dbi
| ≥ n1−2bi+1ybi

]

.

A first estimate of the right hand term is given by Lemma 1.2 of [2].

6



Lemma 1.6 Assume d ≥ 3. There is a constant κd > 0 such that for any Λ ⊂ Z
d, and any

t > 0

P [l∞(Λ) > t] ≤ exp

(

−κd
t

|Λ|2/d

)

, where l∞(Λ) =
∑

x∈Λ

l∞(x) .

Hence, if we drop the index i, and set b = bi+1 ≈ bi, for L = n1−2byb, we have

P0 [|Db| ≥ L] ≤
∑

Λ⊂]−n;n[d,|Λ|=L

P0

(

Db = Λ, ln(Λ) ≥ nbL
)

≤ (2n)dL exp(−κdybn
ζ) with ζ = b + (1 − 2

d
)(1 − 2b). (17)

Since ζ > 1/2 when b < 1/2 and d > 4, this estimate would suffice if the combinatorial
factor (2n)dL were negligible. This case corresponds to “large” b. For “small” b, we need to
get rid of the combinatorial term. We propose a reduction to intersection local times of two
independent random walks. Assume for a moment that in place of

∑

x∈Db
l2n(x), we were to

deal with
∑

x∈Db
ln(x)l̃n(x), where (l̃n(x))x∈Zd is an independent copy of (ln(x))x∈Zd . Then,

using Lemma 1.6, we obtain

P0 ⊗ P̃0

[

∑

x∈Db

ln(x)l̃n(x) ≥ nyb

]

≤ P0 ⊗ P̃0

[

l̃n(Db) ≥ n1−byb

]

≤ E0

[

exp

(

−κd
n1−byb

|Db|2/d

)]

.

Now, the simplest upper bound on the volume of Db is nb|Db| ≤
∑

x∈Db
ln(x) ≤ n, so that

P0

[

∑

x∈Db

ln(x)l̃n(x) ≥ nyb

]

≤ exp(−κdybn
1−b−2/d(1−b)) .

In this crude way, we have obtain a weaker bound than (17), but without the combinatorial
term. This can be improved as we improve on the upper bound for the volume of Db.

The paper is organized as follows. In Section 2, we prove the lower bound in Proposi-
tion (1.4), and present an upper bound rougher than (14). Indeed, the first step in establish-
ing (14) is to reduce SILT into intersection local times of two independent walks. However,
this reduction only yields

P0

[

∑

x∈Zd

l2n(x) ≥ ny

]

≤ exp

(

−c̄

√
n

√

log(n)

)

. (18)

For pedagogical reasons, we first prove (18), whereas its refinements are proved in Section 4.
We gather the technical Lemmas in Section 3. The results of Section 3 are applied to the
problem of large deviations for SILT in Section 4, to obtain Proposition 1.5. In Section 5,
we treat the problem of large and moderate deviations estimates for the RWRS, and prove
Proposition 1.1. Finally, the corresponding lower bounds (Proposition 1.3) are shown in
Section 6.
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2 Rough estimates for SILT

Lower Bound. For k ∈ N, let T
(k)
0 be the k-th return time at 0:

T
(0)
0 , 0 , T

(k)
0 , inf

{

n > T
(k−1)
0 , Sn = 0

}

.

For y > 0,

P

[

∑

x∈Zd

l2n(x) ≥ ny

]

≥ P [ln(0) ≥ ⌊√ny⌋ + 1] = P
[

T
(⌊√ny⌋)
0 ≤ n

]

≥ P

[

∀k ∈ {1, · · · ⌊√ny⌋}, T (k)
0 − T

(k−1)
0 ≤ n

⌊√ny⌋

]

≥ P

[

T0 ≤
n√
ny

]

√
ny

=

(

P [T0 < ∞] − P

[√
n√
y

< T0 < ∞
])

√
ny

This proves the lower bound since limn→∞ P
[√

n
y

< T0 < ∞
]

= 0, and P (T0 < ∞) < 1 for

d ≥ 3.

Upper bound (18).
We write the proof of the upper bound for n = 2N since this simplifies notations. The

trivial extension to general n is omitted. First, note that

∑

x∈Zd

l2n(x) = n + 1 + 2Z(0), with Z(0) =
∑

0≤k<k′≤n

1I{Sk = Sk′} .

The idea is to reduce Z(0) to the intersection times of two independent random walks stem-
ming from Sn/2, as in Le Gall [13]. Then, we use moment estimates for intersection of
independent random walks obtained in [12].

We divide Z(0) into

Z(0) = Z
(1)
1 + Z

(1)
2 +

∑

0≤k<2N−1<k′≤2N

1I{Sk = Sk′},

with,

Z
(1)
1 =

∑

k,k′

1I{0 ≤ k < k′ ≤ 2N−1} 1I{Sk = Sk′},

and,

Z
(1)
2 =

∑

k,k′

1I{2N−1 ≤ k < k′ ≤ 2N} 1I{Sk = Sk′}.

Thus, we can define two independent walks for times k ∈ {0, . . . , 2N−1}

Sk,1 = S2N−1 − S2N−1−k, and Sk,2 = S2N−1 − S2N−1+k.

8



Finally, we obtain Z(0) ≤ Z
(1)
1 + Z

(1)
2 + I

(1)
1 with for i = 1, 2

Z
(1)
i =

∑

k,k′

1I{0 ≤ k < k′ ≤ 2N−1} 1I{Sk,i = Sk′,i}, and I
(1)
1 =

∑

x∈Zd

l2N−1,1(x)l2N−1,2(x) ,

where for i = 1, 2, (lk,i(x))k∈N denotes the local times of the random walk (Sk,i)k∈N. Iterating
this procedure, we get

Z(0) ≤
N−1
∑

l=1

2l−1
∑

k=1

I
(l)
k , (19)

where for each l ∈ {1, · · · , N − 1}, the random variables (I
(l)
k ; 1 ≤ k ≤ 2l−1) are i.i.d. ,

and are distributed as
∑

x∈Zd l2N−l(x)l̃2N−l(x), (l̃n(x), x ∈ Z
d) being an independent copy of

(ln(x), x ∈ Z
d). Hence, to prove (18), it is enough to prove that for all y >

∑

x∈Zd Gd(x)2,

P0

[

Z(0) ≥ 2Ny
]

≤ exp

(

−c̄

√

2Ny

N

)

. (20)

Now, for any {y1, . . . , yN−1} positive reals summing up to ȳ ≤ y, we have

P0(Z
(0) ≥ 2Ny) ≤

N−1
∑

l=1

P0





2l−1
∑

k=1

I
(l)
k ≥ 2Nyl



 .

The strategy is now the following:

• When l is small, we bound each term of {I(l)
k , k = 1, . . . , 2l−1} by a sequence {Ik, k =

1, . . . , 2l−1} of i.i.d. random variables distributed as I∞, where

I∞ =
∑

x∈Zd

l∞(x)l̃∞(x) ,

(l̃∞(x))x∈Zd being an independent copy of (l∞(x))x∈Zd. The estimate P0(I∞ > t) ≤
exp(−κs

√
t) is proved in [12]. Thus, in each generation, we are dealing with a sum of

independent variables with the right streched exponential tails.

• When l is large, we use the trivial bound I
(l)
k ≤ 22(N−l), and the classical Cramer’s

estimates.

First, we choose the {yk}. Note that for d ≥ 5, m1 = E0[I∞] =
∑

x∈Zd Gd(x)2 < ∞, so that
we have to choose yl such that

2Nyl > 2l−1m1 ≥ 2l−1
E0[I

(l)
k ] .

A convenient choice is the following: for l∗ = 9N/10,

• yl = y/(2N) for l < l∗.

• yl = y/2N−l+1, for l ≥ l∗.

9



Thus,
∑N−1

l=1 yl ≤ (l∗/(2N) + 1/2)y < y, and we obtain P0(Z
(0) > 2Ny) ≤ R1 + R2 with

R1 =
∑

l<l∗

P0





2l−1
∑

k=1

I
(l)
k ≥ 2Ny

2N



 , and R2 =
∑

l≥l∗

P0





2l−1
∑

k=1

Ī
(l)
k ≥ 2l−1(y − m1)



 ,

where Ī
(l)
k = I

(l)
k − E[I

(l)
k ].

Case l < l∗. We take advantage of the small size of the l-th generation to compare I
(l)
k with

I∞ and use the bounds of [12]. Set zN = 2N/N and Jk = I
(l)
k 1I{I(l)

k < zN}, so that

P0





2l−1
∑

k=1

I
(l)
k ≥ 2Nyl



 ≤ 2l−1
P0

(

I
(l)
k ≥ zN

)

+ P0





2l−1
∑

k=1

Jk ≥ 2Nyl



 .

For any λ > 0,

P0





2l−1
∑

k=1

Jk ≥ 2Nyl



 ≤ e−λ2N yl
(

E0[e
λJk ]
)2l−1

.

Now, using [12],

E0[e
λJk ] = 1 +

∫ zN

0

λeλuP (Jk > u)du ≤ 1 + λ

∫ zN

0

eλu−κs
√

udu.

We choose λ = κs/2
√

zN so that κs

√
u ≥ 2λu for u ≤ zN . For such a choice, there is c0 > 0

such that E0[e
λJk ] ≤ 1 + c0λ, and

(

E0[e
λJk ]
)2l

≤ eλc02l

, for λ =
κs

2

√

N

2N
.

Finally,

P0





2l−1
∑

k=1

I
(l)
k ≥ 2Ny

2N



 ≤ 2l exp(−κs

√

2N

N
) + exp(−κsy

4N

√
N2N +

c0κs2
l

2

√

N

2N
).

This provides the desired bound as long as 2l ≪ 2N/N , which is always the case for l < l∗.
Case l ≥ l∗. Note that for all l, I(l) ≤ 22(N−l). Hence, for large l, we use large deviations es-

timates for sums of i.i.d. “small” random variables. More precisely, using Markov inequality,
for all λ > 0,

P0





2l−1
∑

j=1

Ī
(l)
k ≥ 2l−1(y − m1)



 ≤ exp
(

−λ2l−1(y − m1)
)

E0

[

exp
(

λĪ(l)
)]2l−1

.

We choose λ ≤ 1/22(N−l) and use the fact that exp(x) ≤ 1 + x + 2x2 for |x| ≤ 1, to obtain

E0

[

exp
(

λĪk
(l)
)]

≤ 1 + 2λ2E[(Īk
(l)

)2] ≤ 1 + 2m2λ
2 ,

10



where m2 = E0 [I2
∞] < ∞ by [12]. Thus,

R2 ≤
∑

l≥l∗

exp
(

−2l−1λ ((y − m1) − 2m2λ)
)

. (21)

Thus, we need (y − m1) > 2m2λ and λ ≤ 1/22(N−l) for l ≥ l∗. For l∗ = 9N/10, it is enough
to choose λ = 2−N/5.

3 Technical Lemmas.

This Section provides the key estimates for the probability that
∑

lpn(x) be large. In a first
reading of Lemmas 3.2 and 3.3, we suggest the reader to think of the case p = 2, γ = 1,
ζ = 1/2, on which relies our results on SILT. The cases p 6= 2 are needed for the proofs of
the moderate deviations for the RWRS, but involve no additional ideas.

We begin with a simple improvement of Lemma 1.6.

Lemma 3.1 Assume d ≥ 3. There exists a constant κd > 0 such that for any t > 0, L ≥ 1,

P0 [| {x : ln(x) ≥ t} | ≥ L] ≤ (2n)dL exp(−κdtL
1−2/d) . (22)

Proof: The proof is a simple application of Lemma 1.6 of [2].

P (| {x : ln(x) ≥ t} | ≥ L) ≤
∑

Λ⊂]−n;n[d;|Λ|=L

P (∀x ∈ Λ, ln(x) ≥ t)

≤
∑

Λ⊂]−n;n[d;|Λ|=L

P (ln(Λ) ≥ Lt) ≤ ndL exp(−κdtL
1−2/d). (23)

As a corollary of Lemma 3.1, we obtain the following estimates for the regions where the
local times are large. We recall that for p > 1, we denote by p∗ := p/(1 − p) the conjugate
exponent.

Lemma 3.2 Assume d ≥ 3, and fix positive real numbers a, b, γ, ζ, p, y, with

ζ

d/2
≤ b < a, and define D =

{

x : nb ≤ ln(x) ≤ na
}

.

We assume either of the following two conditions.

(i) p ≥ (d/2)∗; ζ < γ
p(2/d)+1

; a < γ−ζ(d/2)∗

p−(d/2)∗
.

(ii) 1 < p < (d/2)∗; b > ζ(d/2)∗−γ
(d/2)∗−p

.

Then, for a constant c (depending on a, b, p, γ, ζ, y) and for n large enough,

P0

[

∑

x∈D

lpn(x) ≥ nγy

]

≤ exp(−cnζ) . (24)

11



Proof: The strategy is to slice the above sum according to the level sets of the local times.
Thus, we decompose D into a finite number M of regions. For i = 0, . . . , M , let

Di =
{

x : nbi ≤ ln(x) < nbi+1
}

, where b = b0 < b1 < · · · < bM , bM ≥ a. (25)

M and the sequence {bi; 0 ≤ i ≤ M} will be chosen later. Then,

P0

[

∑

x∈D

lpn(x) ≥ nγy

]

≤
M−1
∑

i=0

P0

[

∑

x∈Di

lpn(x) ≥ nγy

M

]

(26)

≤
M−1
∑

i=0

P0

[

|Di| ≥
nγ−pbi+1y

M

]

. (27)

We now use Lemma 3.1 with t = nbi and L = nγ−pbi+1y/M to get

P0

[

∑

x∈D

lpn(x) ≥ nγy

]

≤
M−1
∑

i=0

ndnγ−pbi+1y/M exp
(

−κdn
bi+(1−2/d)(γ−pbi+1)(y/M)1−2/d

)

. (28)

To conclude, it is now enough to check that we can find a finite sequence (bi, 0 ≤ i ≤ M),
such that b0 = b, bM > a and satisfying the constraints






γ − pbi+1 < bi + (1 − 2/d)(γ − pbi+1)
ζ ≤ bi + (1 − 2/d)(γ − pbi+1)
bi < bi+1

⇔







bi+1 > γ
p
− d

2p
bi (C2)

bi+1 ≤ γ
p

+ d
p(d−2)

(bi − ζ) (C1)

bi+1 > bi (C0)

. (29)

x

D2

D0

y

b1

D1

bMx

Case p ≥ d
d−2 Case p < d

d−2

b1

D1

D2

D0

y

bM
a2a2 a ab = b0 a0

a0 b

Figure 2: Construction of (bi, 0 ≤ i ≤ M) for D

Let D0 be the line y = x, D1 be the line y = γ
p

+ d
p(d−2)

(x− ζ), and D2 the line y = γ
p
− d

2p
x.

Case p ≥ (d/2)∗: In that case, the slope of D1 is less than 1. Let a0 (resp. a2) be the abscisse
of the intersection of D1 with D0 (resp. D2)

a0 =
γ − ζ(d/2)∗

p − (d/2)∗
, a2 =

ζ

(d/2)
.
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Then, the region of constraints is non empty (see figure 2) if and only if

a2 < a0 ⇔ ζ <
γ

1 + 2p/d
.

In that case, it is always possible to construct a finite sequence (bi)0≤i≤M satisfying the
constraints (C0), (C1), (C2) and b0 = b, bM ≥ a, as soon as b ≥ a2 and a < a0. A possible
choice is to take bi+1 = γ

p
+ d

p(d−2)
(bi − ζ), M being defined by bM−1 < a ≤ bM .

Case p < (d/2)∗: In that case, the slope of D1 is strictly greater than 1, and the region of
constraints is never empty. It is always possible to construct a finite sequence (bi)0≤i≤M

satisfying the constraints (C0), (C1), (C2) as soon as b > a0, and b ≥ a2. A possible choice is
to take bi+1 = γ

p
+ d

p(d−2)
(bi − ζ), M being defined by bM−1 < a ≤ bM .

We deal now with the regions where the local times are small.

Lemma 3.3 Assume d ≥ 5, and fix positive real numbers b, ζ, y. Let

Db =
{

x ∈ Z
d : ln(x) ≤ nb

}

.

Assume that

γ ≥ 1 ; ζ < γ − b − 2

d
(1 − b); and

{

y > 0 if γ > 1 ,
y > 1 + 2

∑

x∈Zd Gd(x)2 if γ = 1 .
(30)

Then, for a constant c (depending on b, γ, ζ, y) and for n large enough, we have

P0





∑

x∈Db

l2n(x) ≥ nγy



 ≤ exp(−cnζ). (31)

Proof: We again perform the decomposition in terms of level sets with Di as in (25).
However, we are now in a region where the estimate (22) is useless since the combinatorial
factor is dominant. To overcome this problem, we rewrite SILT in Proposition 1.4 in terms
of intersections of independent random walks, as explained in the introduction. We assume
from now on, that n is a power of 2, n = 2N . As in Proposition 1.4,

∑

x∈Db

l2n(x) ≤ n + 1 + 2Z(0), with Z(0) =
∑

x∈Db

∑

0≤k<k′≤2N

1I{Sk = Sk′ = x} . (32)

Now,

Z(0) ≤
∑

x

1I{l2N−1(x) ≤ 2Nb}
∑

0≤k<k′≤2N−1

1I{Sk = Sk′ = x}

+
∑

x

1I{l2N (x) − l2N−1(x) ≤ 2Nb}
∑

2N−1≤k<k′≤2N

1I{Sk = Sk′ = x}

+
∑

x

1I{l2N−1(x) ≤ 2Nb}
∑

0≤k≤2N−1≤k′≤2N

1I{Sk = Sk′ = x}

, Z
(1)
1 + Z

(1)
2 + J

(1)
1 .

13



With the same notations than in the proof of Proposition 1.4, for i = 1, 2

Z
(1)
i =

∑

y

1I{S2N−1 = y}
∑

x

1I{l2N−1,i(y − x) ≤ 2Nb}
∑

0≤k<k′≤2N−1

1I{Sk,i = Sk′,i = y − x} .

Changing x in y − x in the second summation, we obtain for i = 1, 2

Z
(1)
i =

∑

x

1I{l2N−1,i(x) ≤ 2Nb}
∑

0≤k<k′≤2N−1

1I{Sk,i = Sk′,i = x} .

The self-intersection times of the two independent strands is denoted

J
(1)
1 =

∑

x

1I{l2N−1,1(x) ≤ 2Nb}l2N−1,1(x)l2N−1,2(x) .

Iterating this procedure, we get

Z(0) ≤
N−1
∑

l=1

2l−1
∑

k=1

J
(l)
k , (33)

where for each l ∈ {1, · · · , N − 1}, the random variables {J (l)
k ; 1 ≤ k ≤ 2l−1} are i.i.d. , and

are distributed as a variable, say J (l), with

J (l) =
∑

x:l
2N−l (x)≤2Nb

l2N−l(x)l̃2N−l(x),

where {l̃n(x), x ∈ Z
d} is an independent copy of {ln(x), x ∈ Z

d}. Now, note that

E0





N
∑

l=1

2l−1
∑

k=1

J
(l)
k



 ≤ 2N
∑

x

Gd(x)2.

Hence, if J̄k
(l)

= J
(l)
k − E0[J

(l)
k ],

P0





∑

x∈Db

l2n(x) ≥ nγy



 ≤ P0





N
∑

l=1

2l−1
∑

k=1

J̄k
(l) ≥ nγy − n − 1

2
− n

∑

x∈Zd

G2
d(x)



 .

Thus, we need to prove that there exists a constant c such that P0

[

∑N
l=1

∑2l−1

k=1 J̄
(l)
k ≥ 2Nγy

]

≤
exp(−c2Nζ). Now

P0





N
∑

l=1

2l−1
∑

k=1

J̄
(l)
k ≥ 2Nγy



 ≤
N
∑

l=1

P0





2l−1
∑

k=1

J̄
(l)
k >

2Nγy

N



 . (34)

We wish to use Cramer’s estimates, so that we need the existence of some exponential
moments for the J

(l)
k . For this purpose, we choose {bi, i = 0, . . . , M} a regular subdivision
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of [0, b] of mesh δ > 0 to be chosen later, such that b = 0, bM = Mδ ≥ b > (M − 1)δ. Let
Di =

{

x; 2Nbi ≤ l2N−l(x) < 2Nbi+1
}

. For each l and k, and any u > 0, we have, using Lemma

1.6, and independence between l and l̃,

P0(J
(l) > u) ≤

M−1
∑

i=0

P0

(

∑

Di

l̃2N−l(x) >
u

2Nbi+1M

)

≤
M−1
∑

i=0

E0

[

exp

(

−κd
u

2Nbi+1|Di|2/dM

)]

. (35)

We now use a rough upper bound for Di: 2Nbi |Di| ≤ 2N , to obtain

P0(J
(l) > u) ≤

M−1
∑

i=0

exp
(

− κdu

2NζiM

)

≤ M exp
(

− κdu

2N max(ζi)M

)

, (36)

with ζi = bi+1 + 2
d
(1 − bi) = iδ(1 − 2/d) + 2/d + δ. Thus,

max(ζi) = Mδ(1 − 2/d) + 2/d + δ ≤ (b + δ)(1 − 2/d) + 2/d + δ,

and for any ǫ > 0, we can choose δ such that max(ζi) ≤ b + 2
d
(1 − b) + ǫ

2
. Thus we have a

constant Cǫ such that

P0(J
(l) > u) ≤ Cǫ exp(−ξNu), with ξN =

κd

M
2−N(b+(1−b)2/d+ǫ/2). (37)

Note that this estimate is better than the estimate of [12]

P0(J
(l) > u) ≤ P0(I∞ > u) ≤ exp(−κs

√
u), (38)

only for u > κs/ξ
2
N . However, it permits us to consider exponential moment E[exp(λJk)] for

λ < ξN . We now go back to the standard Cramer’s method. For simplicity of notations, we
drop the indices l and k when unambiguous. Returning now to (34), for any 0 ≤ λ < ξN ,

P0





2l−1
∑

k=1

J̄
(l)
k ≥ 2Nγy

N



 ≤ exp

(

−λ
2Nγy

N

)

E0

[

exp(λJ̄)
]2l−1

. (39)

Now, using the fact that ex ≤ 1 + x + 2x2 for x ≤ 1,

E0[e
λJ̄ ] = E0[e

λJ̄ 1I{J < 1/λ}] + E0[e
λJ̄ 1I{J ≥ 1/λ}] (40)

≤ E0[e
λJ̄ 1I{J < 1/λ}] + E0[e

λJ 1I{J ≥ 1/λ}] (41)

≤ E0

[(

1 + λJ̄ + 2λ2(J̄)2
)

1I{J < 1/λ}
]

+ E0

[

eλJ 1I{J ≥ 1/λ}
]

(42)

≤ 1 + λE0

[

|J̄ | 1I{J ≥ 1/λ}
]

+ 2λ2
E0

[

J̄2
]

+ E0

[

eλJ 1I{J ≥ 1/λ}
]

, (43)

where we have used the fact that E0

[

J̄
]

= 0. Now,

E0

[

|J̄| 1I{J ≥ 1/λ}
]

≤ E0

[

(J̄)2
]1/2

P0 [J ≥ 1/λ]1/2 ≤ λE0

[

J2
]

≤ λE0(I
2
∞) .
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Note that by the results of [12], E0(I
2
∞) < ∞. Hence, for some constant c,

E0[e
λJ̄ ] ≤ 1 + cλ2 + E0

[

eλJ 1I{J ≥ 1/λ}
]

.

We now show that for some constant C, E
[

eλJ 1I{J ≥ 1/λ}
]

≤ Cλ2. We decompose this
last expectation into

E0

[

eλJ 1I{J ≥ 1/λ}
]

= e1
P0(λJ ≥ 1) + I ≤ e1

E0[I
2
∞]λ2 + I,

with

I =

∫ ∞

1/λ

λeλu
P0(J ≥ u)du, and we choose λ =

ξN

2 log(1/ξ3
N)

.

To bound I, we use estimate (37), λ < ξN/2 and N large enough

I ≤
∫ ∞

1/λ

λeλu−ξN udu ≤ 2λ

ξN

∫ ∞

1/λ

(ξN/2)e−(ξN /2)udu

≤ 2λ

ξN
exp(−ξN

2λ
) ≤ ξ3

N

log(1/ξ3
N)

≤ 4ξN log(1/ξ3
N)λ2 ≤ λ2. (44)

Thus, there is a constant C such that

E0[exp(λJ̄)] ≤ 1 + Cλ2 ≤ exp(Cλ2),

which together with (39), yield

P0





N−1
∑

l=1

2l−1
∑

k=1

J̄k ≥ 2Nγy

N



 ≤ N exp

(

−2Nγy

2N

ξN

2 log(1/ξ3
N)

+
Cξ2

N2l

4 log2(1/ξ3
n)

)

(45)

≤ N exp

(

− 2NγyξN

8N log(1/ξ3
N)

)

, (46)

where we used that 2Nγy > 2CNξN2l/ log(1/ξ3
N) for any l ≤ N and N large enough, as soon

as ǫ is chosen so that γ− b− 2
d
(1− b)− ǫ/2 > 0. Now, we can use an extra ǫ/2 to swallow the

denominator N log(1/ξ3
N) in the exponential, and the N factor in front of the exponential in

(45). We obtain then for large enough N ,

P0





N−1
∑

l=1

2l−1
∑

k=1

J̄
(l)
k ≥ 2Nγy



 ≤ exp
(

−C2Nζ
)

, with ζ = γ − b − 2

d
(1 − b) − ǫ . (47)

4 Refined upper bound estimates for SILT.

In this Section, we prove Proposition 1.5. In the first Subsection, we apply Lemmas 3.2
and 3.3 to deal with the case d ≥ 6, then we improve Lemma 3.3 to treat separetely the case
d = 5, which we have added as a Lemma.
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4.1 Proof of 1. of Proposition 1.5

The region
{

x : ln(x) ≤ n1/2−ǫ
}

is split into two regions

D ,
{

x : nb < ln(x) ≤ n1/2−ǫ
}

, and Db ,
{

x : ln(x) ≤ nb
}

,

(b to be chosen later) so that for any y > 1 + 2
∑

x G2
d(x),

P





∑

x:ln(x)≤n1/2−ǫ

l2n(x) ≥ ny



 ≤ P

[

∑

x∈D

l2n(x) ≥ ny1

]

+ P





∑

x∈Db

l2n(x) ≥ ny2



 ,

where y1 > 0, y2 > 1 + 2
∑

x G2
d(x), y1 + y2 ≤ y.

For the first region, we apply Lemma 3.2 with p = 2, γ = 1. Since d ≥ 4, we are in Case
(i) of Lemma 3.2, so that ζ has to verify ζ < d

4+d
. Note that for d ≥ 5, d

4+d
> 1/2, so that

we can choose ζ = 1/2 + η where η > 0 is such that 1/2 + η < d
4+d

. We want now to take
a = 1/2 − ǫ, so that η has also to satisfy

a <
γ(d − 2) − dζ

(d − 2)p − d
⇔ 1/2 − ǫ <

d − 2 − d(1/2 + η)

d − 4
=

1

2
− dη

d − 4
⇔ η <

d − 4

d
ǫ .

Thus for b = 2ζ
d

= 1
d

+ 2η
d

, Lemma 3.2 allows to conclude that

lim sup
n→∞

1√
n

log P0

[

∑

x∈D

l2n(x) ≥ ny1

]

= −∞ . (48)

For the region Db, we use Lemma 3.3, with γ = 1, ζ = 1
2

+ η, b = 1
d

+ 2η
d
, y = y2. We

just have to check that we can find η > 0 such that

ζ < γ − b − 2

d
(1 − b) ⇔ (d2 + 2d − 4)η <

d2

2
− 3d + 2 .

This is possible when d2

2
− 3d + 2 > 0, i.e. when d ≥ 6.

For the case d = 5, we need a special treatment.

Lemma 4.1 Assume d = 5. There exists ǫ > 0 such that for b ≤ 1/d + ǫ, for y > 1 +
2
∑

x G2
d(x),

lim
n→∞

1√
n

log P0





∑

Db

l2n(x) > ny



 = −∞. (49)

Proof: We use the same decomposition as in the proof of Lemma 3.3, up to inequality (35),
where we use the rough estimate for |Di| only for the young generations.

Case l ≥ (2/d2)N . We denote D
(l)
i,k = {x : 2Nbi ≤ l2N−l,k(x) < 2Nbi+1}, where we have

associated l2N−l,k with the k-th variable J
(l)
k appearing in (34). We actually add an index k

17



and l to make precise this correspondence. Hence, the rough bound is |D(l)
i,k|2Nbi ≤ 2N−l, so

that after the appropriate changes, (37) reads: ∀δ > 0, ∃C such that ∀l ≥ (2/d2)N ,

P0(J
(l) > u) ≤ exp(−C2−Nζu), with ζ = b(1 − 2

d
) +

2

d
(1 − 2

d2
) + δ. (50)

By proceeding as in the proof of Lemma 3.3, we obtain that for l ≥ (2/d2)N ,

P0





2l−1
∑

k=1

J̄
(l)
k ≥ 2Ny



 ≤ exp
(

−C2N(1−ζ)
)

, (51)

It is easy to check that one can find δ > 0 such that 1−ζ > 1/2 as soon as b < d−4
2(d−2)

+ 4
d2(d−2)

.

Note that for d = 5, this last quantity is strictly bigger than 1
d
.

Case l < (2/d2)N . The strategy for the old generations is to control the size of Di by a

boostrap-type argument. That is, if Di is large, then
∑

Di
l2n(x) is large and Lemma 3.3 can

be applied to control this term. Thus, for any γi,

{|D(l)
i,k| > 2N(1−γi)} ⊂ {

∑

D
(l)
i,k

l22N−l,k(x) > 2N(1+2bi−γi)}, (52)

and we can invoke Lemma 3.3 to obtain a good γi. Before doing so, we go back to the right
hand side of (34), and for a fixed l, we define

A = {∀k = 1, . . . , 2l−1; ∀i = 1, . . . , M ; |D(l)
i,k| < 2N(1−γi)}

and perform the following partitioning

P0





2l−1
∑

k=1

J̄
(l)
k >

2Nγy

N



 ≤ P0 [Ac] + P0





2l−1
∑

k=1

J̄
(l)
k >

2Nγy

N
, A



 . (53)

Now, for l < 2
d2 N , N − l > N(1 − 2

d2 ), and D
(l)
i,k ⊂

{

x; l2N−l(x) ≤ 2(N−l)bi+1/(1−2/d2)
}

. Hence,

P0 [Ac] ≤
2l−1
∑

k=1

∑

i

P0

[

|D(l)
i,k| ≥ 2N(1−γi)

]

(54)

≤ 2l−1
∑

i

P0

[

∑

x

1I
{l

2N−l (x)≤2
(N−l)

bi+1
1−2/d2 }

l22N−l(x) ≥ 2(N−l)(1+2bi−γi)

]

(55)

We can now apply Lemma 3.3 at time 2N−l, to bound P0 [Ac] by exp(−2(N−l)ζ). To obtain
P0 [Ac] ≪ exp(−C2N/2), we have to take ζ > (1/2)/(1 − 2/d2). We have thus to choose γi

in order to satisfy the following conditions

1 + 2bi − γi > 1 ,
1/2

1 − 2/d2
< 1 + 2bi − γi − (1 − 2

d
)

bi+1

1 − 2/d2
− 2

d
. (56)
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We choose γi = bi(1 + 2/d). In that case, the two conditions in (56) are satisfied for d = 5,
and b < 13/12.

For the second term on the right hand side of (53), we follow the same lines than (35)-

(47), now taking advantage of the fact that the volume of D
(l)
i,k is small. As in (35), for fixed

l and k, we have now

P0

[

J (l) > u; ∀i, |D(l)
i,k| ≤ 2N(1−γi)

]

≤ M exp
(

−κdu

M
2−N max(bi+1+(1−γi)2/d)

)

.

With the previous choice for the γi, this yields

P0

[

J (l) > u; ∀i, |D(l)
i,k| ≤ 2N(1−γi)

]

≤ exp(−C2−Nξu) with ξ = b(1 − 2

d
− 4

d2
) +

2

d
+ δ.

Therefore, ∀λ > 0,

P0





2l−1
∑

k=1

J̄
(l)
k >

2Ny

N
, A



 ≤ exp(−λ2Ny/N)E0

[

exp(λJ (l)); ∀i, |D(l)
i,k| ≤ 2N(1−γi)

]2l−1

.

Following the same lines than (44)-(47), we end up with

P0





2l−1
∑

k=1

J̄
(l)
k >

2Ny

N
, A



 ≤ exp(−C2N(1−ξ)) .

Now 1 − ξ > 1/2 if b < d(d−4)
2(d2−2d−4)

, and for d = 5, 1/d < d(d−4)
2(d2−2d−4)

.

4.2 Proof of 2. of Proposition 1.5

Since

P0





∑

x: ln(x)≥√
n

l2n(x) ≥ ny



 ≤ P0

[

∃x; ln(x) ≥
√

n
]

≤
∑

x∈]−n;n[d

P0

[

ln(x) ≥
√

n
]

≤
∑

x∈]−n;n[d

P0(Hx < ∞)Px(ln(x) ≥
√

n)

≤ cnd
P0(ln(0) ≥

√
n) ≤ cnd exp(−c

√
n) ,

it is enough to prove that for d ≥ 5, for any y > 0 and any ǫ ∈]0, 1/2 − 1/d[, ∃c̃ > 0 such
that

lim sup
n→∞

1√
n

log P0





∑

x:n1/2−ǫ<ln(x)≤√
n

l2n(x) ≥ ny



 ≤ −c̃ . (57)

We write again
{

x : n1/2−ǫ < ln(x) ≤ √
n
}

⊂ ∪M−1
i=0 Di, b0 ≤ 1/2−ǫ, bM = 1/2, but this time,

M will depend on n (actually M ≃ log(log(n)). Let (yi, i = 0 · · ·M −1) be positive numbers
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such that
∑

i yi ≤ 1. Then,

P0





∑

x:n1/2−ǫ<ln(x)≤√
n

l2n(x) ≥ ny





≤
M−1
∑

i=0

P0

[

∑

x∈Di

l2n(x) ≥ nyiy

]

≤
M−1
∑

i=0

P0

[

|Di| ≥ n1−2bi+1yiy
]

≤
M−1
∑

i=0

ndn1−2bi+1yiy exp
(

−κdn
bi−(1−2/d)(1−2bi+1)(yiy)1−2/d

)

,

by Lemma 3.1. Therefore, we need to choose (yi, bi, 0 ≤ i ≤ M − 1) such that for some
β > 0,
{

n1−2bi+1yi log(n) ≪ nbi−(1−2/d)(1−2bi+1)y
1−2/d
i

nbi−(1−2/d)(1−2bi+1)y
1−2/d
i ≥ β

√
n

⇔
{

(n1−2bi+1yi)
2/d log(n) ≪ nbi

βn1/2−bi ≤ n2(1−2/d)(1/2−bi+1)y
1−2/d
i

(58)

For i = M − 1, the second condition in (58) is βn1/2−bM−1 ≤ y
1−2/d
M−1 , so that we have to

take 1/2 − bM−1 = 1/ log(n), and yM−1 = (βe)
d

d−2 . For this choice of bM−1, yM−1, the first
condition in (58) is satisfied.

For the others bi (i ≤ M − 2), we take bi+1 − 1/2 = a(bi − 1/2), with d
2(d−2)

< a < 1.

Hence for i ≤ M − 1, 1
2
− bi = ( 1

a
)M−1−i 1

log(n)
. If we want b0 ≤ 1

2
− ǫ < a, we have now to

take M − 1 = ⌈ log(ǫ log(n))
log(1/a)

⌉. With these choices, the second condition in (58) becomes for

i ≤ M −2, yi ≥ β
d

d−2 exp
(

−2(1/a)M−i−1(a − d
2(d−2)

)
)

, and we take yi to satisfy the equality.

Now, the first condition in (58) is for i ≤ M − 2,

β
2

d−2 exp

(

d

d − 2

(

1

a

)M−i−1
)

≪
√

n

log(n)
⇐ β

2
d−2 exp

(

d

d − 2

(

1

a

)M−1
)

≪
√

n

log(n)
. (59)

Recalling the value of M , this is satisfied as soon as

ǫ

a

(

d

d − 2

)

<
1

2
. (60)

But for ǫ < 1/2 − 1/d, one can find a ∈] d
2(d−2)

, 1[ such that (60) holds.

It remains now to check that we can take β in order to get
∑M−1

i=1 yi ≤ 1. But,

M−1
∑

i=1

yi = β
d

d−2

[

e
d

d−2 +
M−1
∑

i=1

exp

(

−2

(

a − d

2(d − 2)

)(

1

a

)i
)]

≤ β
d

d−2

[

e
d

d−2 +

∞
∑

i=1

exp

(

−2

(

a − d

2(d − 2)

)(

1

a

)i
)]

.

Since the last series is convergent, one can obviously find β such that
∑M−1

i=0 yi ≤ 1.
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5 Upper bounds for the deviations of the RWRS

The aim of this Section is to prove Proposition 1.1. Let Λ denote the log-Laplace transform
of η(0):

∀t ∈ R , Λ(t) = log Eη [exp(tη(0))] .

Since η(0) is centered, there exists a constant C0 such that for |t| ≤ 1, Λ(t) ≤ C0t
2. By

Tauberian Theorem, for η(0) having the tail behavior (4), Λ(t) is of order tα
∗

for large t,
where α∗ is the conjugate exponent of α ( 1

α
+ 1

α∗
= 1). Hence, there exists a constant C∞

such that for t ≥ 1, Λ(t) ≤ C∞tα
∗

.
Let b be any positive real, and let as usual D̄b =

{

x ∈ Z
d; ln(x) ≥ nb

}

and Db =
{

x ∈ Z
d; ln(x) ≤ nb

}

. Then, for all y1, y2 > 0, such that y1 + y2 = y,

P

[

∑

x

η(x)ln(x) ≥ nβy

]

≤ P





∑

x∈D̄b

η(x)ln(x) ≥ nβy1



+P





∑

x∈Db

η(x)ln(x) ≥ nβy2



 . (61)

Let A be the event
{

∑

x∈D̄b
lα

∗

n (x) ≥ nβ−b+α∗b y1

2C∞

}

.

P





∑

x∈D̄b

η(x)ln(x) ≥ nβy1



 ≤ P0 [A] + P



Ac ;
∑

x∈D̄b

η(x)ln(x) ≥ nβy1





≤ P0 [A] + exp(−nβ−by1)E0



 1IAc exp





∑

x∈D̄b

Λ

(

ln(x)

nb

)







 .

Now, on D̄b, ln(x) ≥ nb, so that using the behaviour of Λ near infinity,

P





∑

x∈D̄b

η(x)ln(x) ≥ nβy1



 ≤ P0 [A] + e−nβ−by1E0

[

1IAc exp

(

C∞

∑

x∈D̄b
lα

∗

n (x)

nα∗b

)]

(62)

≤ P0





∑

x∈D̄b

lα
∗

n (x) ≥ nβ−b+α∗b y1

2C∞



+ exp(−nβ−by1/2) .(63)

Exactly in the same way, but using this time the behiavour of Λ near 0,

P





∑

x∈Db

η(x)ln(x) ≥ nβy2



 ≤ P0





∑

x∈Db

l2n(x) ≥ nβ+b y2

2C0



+ exp(−nβ−by2/2) . (64)

Proposition 1.1 is now a consequence of the following two Lemmas.

Lemma 5.1 Let d ≥ 3, b > 0, y > 0, α > 1, and β > 0 be such that β ≤ (1 + α)b,
β < (1 + d

2
)b. Then there exists a constant C such that for large enough n,

P0





∑

x∈D̄b

lα
∗

n (x) ≥ nβ−b+α∗by



 ≤ exp(−Cnβ−b) .
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Lemma 5.2 Assume d ≥ 5. Choose positive b, y, β satisfying β + b ≥ 1,

β < min

(

(1 +
d

2
)b;

b(d2 + d − 2) − d

d − 2

)

; and

{

y > 0 if β + b > 1;
y > 1 + 2

∑

x G2
d(x) if β + b = 1 .

Then, there is a constant C so that for large enough n

P0





∑

x∈Db

l2n(x) ≥ nβ+by



 ≤ exp(−Cnβ−b)

Suppose now that Lemma 5.1 and 5.2 hold.

Region I. Choose b = 1 − β, y1 > 0, y2 > 2(1 + 2
∑

x G2
d(x))C0 in (63) and (64). In order

to apply Lemmas 5.1 and 5.2, β has to verify







β ≤ (1 + α)(1 − β)
β < (1 + d

2
)(1 − β)

β(d − 2) < (1 − β)(d2 + d − 2) − d
⇔











β ≤ α+1
α+2

β < d+2
d+4

β < d2−2
d2+2d−4

.

Note that d2−2
d2+2d−4

≤ d+2
d+4

. Therefore, if β ≤ α+1
α+2

and β < d2−2
d2−2d−4

, Lemmas 5.1 and 5.2, and
equations (61), (63) and (64) lead to, for all y = y1 + y2 > 2MC∞, and large enough n,

P

[

∑

x

η(x)ln(x) ≥ nβy

]

≤ exp(−Cnβ−b) .

This is (6) of Proposition 1.1, since β − b = 2β − 1.

Region II. Choose b = β
α+1

, y1 > 0, y2 > 0 in (63) and (64). In order to apply Lemmas 5.1
and 5.2, β has now to verify















β + b > 1
β ≤ (1 + α)b
β < (1 + d

2
)b

β(d − 2) < b(d2 + d − 2) − d

⇔











β > α+1
α+2

α < d
2

β > d(α+1)
d2−αd+2α

.

Under these conditions, Lemmas 5.1 and 5.2, and equations (61), (63) and (64) lead to, for
all y = y1 + y2 > 0, and large enough n,

P

[

∑

x

η(x)ln(x) ≥ nβy

]

≤ exp(−Cnβ−b) .

This is (7) of Proposition 1.1, since β − b = βα/(α + 1).

Proof of Lemma 5.1: We apply Lemma 3.2 with

p = α∗, γ = β − b + α∗b, ζ = β − b.
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Note that the condition b ≥ 2ζ/d is equivalent to β ≤ (1 + d/2)b.

Case α > d
2
: We have p < (d/2)∗. The condition b > dζ−γ(d−2)

d−(d−2)α∗
is equivalent to β < (1+d/2)b.

It only remains to invoke Lemma 3.2 (ii).

Case α ≤ d
2
: We have p ≥ (d/2)∗. The condition ζ < γd/(2α∗ + d) is equivalent to

β < (1 + d/2)b. Hence, Lemma 3.2 allows to conclude that for all y > 0, for a < (γ(d− 2)−
dζ)/((d − 2)α∗ − d), and n sufficiently large,

P0





∑

x:nb≤ln(x)≤na

lα
∗

n (x) ≥ nβ−b+α∗by



 ≤ exp(−Cnβ−b) .

On the other side, for all y > 0,

P0





∑

x:ln(x)≥nβ−b

lα
∗

n (x) ≥ nβ−b+α∗by



 ≤ P0

[

∃x ∈] − n; n[d; ln(x) ≥ nβ−b
]

≤ exp(−Cnβ−b) .

Hence, we are left with β − b < (γ(d − 2) − dζ)/((d − 2)α∗ − d), which is equivalent to
β < (α + 1)b.

It remains now to treat the case β = (α + 1)b. In that case, β − b = αb, β − b + α∗b =
(α + α∗)b = αα∗b. Lemma 3.2 allows to conclude that for all y > 0, and all ǫ > 0,

P0





∑

x:nb≤ln(x)≤nαb−ǫ

lα
∗

n (x) ≥ nαα∗by



 ≤ exp(−Cnαb) .

Hence, it remains to prove that for all y > 0, all ǫ > 0, and n sufficiently large,

P0





∑

x:nαb−ǫ≤ln(x)≤nαb

lα
∗

n (x) ≥ nαα∗by



 ≤ exp(−Cnαb) .

We are in exactly the same situation than in point 2. of Proposition 1.5. The proof is the
same, and is left to the reader.

Proof of Lemma 5.2. We begin by applying Lemma 3.2 with p = 2, γ = β + b, ζ = β − b,
and a = b. The conditions ζ < (γd)/(2p + d) and a < (γ(d − 2) − dζ)/((d − 2)p − d) are
both equivalent to β < (1 + d

2
)b. Therefore, if β < (1 + d

2
)b, Lemma 3.2 yields that ∀y > 0,

and for n large enough,

P0





∑

x:n2(β−b)/d≤ln(x)≤nb

l2n(x) ≥ nβ+by



 ≤ exp(−Cnβ−b) . (65)

We apply now Lemma 3.3 with γ = β + b, ζ = β − b, and consider only sites where the
local time satisfies ln(x) ≤ n2(β−b)/d. The second condition of (30) in Lemma 3.3 is equivalent
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to β(d − 2) < b(d2 + d − 2) − d. Thus, for β + b ≥ 1, β(d − 2) < b(d2 + d − 2) − d, and all
y > 0 if β + b > 1 or y > M if β + b = 1, we obtain by Lemma 3.3 that for n large enough,

P0





∑

x:ln(x)≤n2(β−b)/d

l2n(x) ≥ nβ+by



 ≤ exp(−Cnβ−b) . (66)

Putting together (65) and (66), we conclude Lemma 5.1.

6 Lower Bounds for the RWRS.

This Section is devoted to the proof of Proposition 1.3. The symmetry assumption simplifies
the proof, thanks to the following Lemma

Lemma 6.1 (Lemma 2.1 of [2]) When {η(x), x ∈ Z
d} are independent and have bell-shaped

densities, then for any Λ finite subset of Z
d, and any y > 0

P

(

∑

x∈Λ

αxη(x) > y

)

≤ P

(

∑

x∈Λ

βxη(x) > y

)

, if 0 ≤ αx ≤ βx for all x ∈ Λ. (67)

Region I. Let us denote by Rn the range of the random walk

Rn = {x; ln(x) ≥ 1} .

Under the symmetry assumption, ∀c > 0,

P

[

∑

x

η(x)ln(x) ≥ nβy

]

≥ P

[

∑

x∈Rn

η(x) ≥ nβy

]

≥ P0(|Rn| ≥ cn)Pη

[

cn
∑

j=1

ηj ≥ nβy

]

.

Now, it is well known, that for d ≥ 3, there is c > 0 such that limn→∞ P0(|Rn| ≥ cn) = 1.
For the other terms, if 1/2 < β < 1, we are in a regime of moderate deviations for a sum of
i.i.d., and there is C > 0 such that

lim inf
n→∞

1

n2β−1
log Pη

[

cn
∑

j=1

ηj ≥ nβy

]

≥ −C.

This gives the result for region I.

Region II. Under the symmetry assumption, ∀c > 0

P

[

∑

x

η(x)ln(x) ≥ nβy

]

≥ P
[

η(0)ln(0) ≥ nβy
]

≥ Pη

[

η(0) ≥ n
β

α+1 y/c
]

P0

[

ln(0) ≥ cn
βα

α+1

]

.

Now, for βα
α+1

≤ 1, the second probability is of order exp(−Cn
βα

α+1 ), which is also the order
of the first one. This leads to the lower bound in region II.
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