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ON THE STABLE EQUIVALENCE OF
OPEN BOOKS IN THREE-MANIFOLDS

EMMANUEL GIROUX AND NOAH GOODMAN

ABSTRACT. We show that two open books in a given closed, oriented three-manifold admit
isotopic stabilizations, where the stabilization is made by successive plumbings with Hopf
bands, if and only if their associated plane fields are homologous. Since this condition is
automatically fulfilled in an integral homology sphere, the theorem implies a conjecture of
J. Harer, namely, that any fibered link in the three-sphere can be obtained from the unknot
by a sequence of plumbings and deplumbings of Hopf bands. The proof presented here
involves contact geometry in an essential way.

Let M be an oriented three-manifold. An open book in M (also called open book decom-
position of M) is a pair (K, ) consisting of:

e a proper one-dimensional submanifold K in M;
e a fibration §: M \ K — S! = R/27Z which, in some neighborhood N = D? x K of
K = {0} x K, is the normal angular coordinate.

The submanifold K is called the binding of the open book while the closures of the fibers
of # are named pages. The binding and the pages are cooriented by #, and hence they are
oriented since M is. On the other hand, any page F' of an open book (K, #) completely
determines K = OF and also (though much less evidently [Cd, LB, Wd]) 6 up to isotopy
relative to F.

Around 1920, as a corollary of his results on branched covers and the braiding of links,
J. Alexander proved the existence of open books in any closed oriented three-manifold M. On
the other hand, given an open book in M, many others can be constructed by the following
plumbing operation. Let F' C M be a compact surface with boundary and C' C F' a proper
simple arc. We say that a compact surface I’ C M is obtained from F by H*-plumbing
along C' — or, more explicitly, by plumbing a positive/negative Hopf band along C' — if
F' = F U A* where A* is an annulus in M with the following properties:

e the intersection A* N F is a tubular neighborhood of C in F;
e the core curve of A* bounds a disk in M \ F and the linking number of the boundary
components of AT is equal to +1.

According to results of J. Stallings [Bf (see Section A), if F' is a page of an open book
(K,0) in M then any surface F’ obtained from F' by H*-plumbing is also a page of an open
book (K’,6") in M. We will say that the open book (K, ') itself is obtained from (K, ) by
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2 EMMANUEL GIROUX AND NOAH GOODMAN

H*-plumbing. A stabilization of an open book (K,6) is an open book (K’,#') that can be
obtained from (K, #) by finitely many successive H*-plumbings.

If M is closed, any open book (K, 6) in M provides a Heegaard spitting of M: given
two antipodal values in S!', the two corresponding pages form a (smooth) closed surface
dividing M into handlebodies. In other words, open books may be regarded as special
Heegaard splittings, namely, those for which the splitting surface contains a graph whose
inclusion in the handlebody on each side is a homotopy equivalence (a regular neighborhood
of this graph is then a page of the open book, as well as the closure of its complement in
the surface). A well-known theorem by K. Reidemeister and J. Singer shows that any two
Heegaard splittings of a given closed oriented three-manifold admit isotopic stabilizations,
where the stabilization here is made by successive attachings of trivially embedded one-
handles. Furthermore, if an open book (K’,0') is a stabilization of another one (K, ), the
associated Heegard splitting is a stabilization of the one associated with (K, 6). It is therefore
natural to ask whether any two open books in a given closed oriented three-manifold have
isotopic stabilizations. To answer this question, we need one more ingredient.

To any open book (K, 6) in M, we can associate an oriented plane field £ on M in the
following way: outside some product neighborhood N = D? x K of K in which 6 is the
normal angular coordinate, £ is just the plane field tangent to the pages, i.e., the kernel
of DO; inside N, using oriented cylindrical coordinates (7,6, z) with z € S*U---US! param-
eterizing K, we define & by the form f(r)dz + r?df where f: [0,1] — [0, 1] is positive near 0
and zero near 1. Clearly, the homotopy class of this oriented plane field does not depend on
the choice of N and r, z, f: this is an invariant of the open book that L. Rudolph considered
as an “enhanced Milnor number” (L. Rudolph was actually interested in the case M = S3
where homotopy classes of plane fields are parameterized by Z through the Hopf invariant:
see the proof of Corollary f]). The main result of this paper is the following:

Theorem 1. Two open books in a closed oriented three-manifold admit isotopic stabilizations
if and only if their associated oriented plane fields are homologous.

An oriented hyperplane field on a closed oriented n-manifold M is a section of the sphere
cotangent bundle ST*M. Two hyperplane fields are homologous if they define equal homol-
ogy classes in H,(ST*M;Z), or equivalently, if the curve in M consisting of points where
they coincide with opposite orientations is nullhomologous (see Section B).

If M is an integral homology three-sphere, any two plane fields on M are homologous.
Moreover, an open book in M is completely determined up to isotopy by its oriented binding
(for this, which again follows from the results of [Cd, LB, Wa], it actually suffices that M
be a rational homology three-sphere). Now recall that a link (namely, a closed oriented one-
dimensional submanifold) in a closed three-manifold M is a fibered link if it is the oriented
binding of some open book in M. Thus, using the same terminology for fibered links as for
open books, we get:

Corollary 2. Any two fibered links in an integral homology three-sphere admit isotopic sta-
bilizations.

In the case of the three-sphere itself, the unknot is a fibered link, and so we get the
following result conjectured by J. Harer [Hd:
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Corollary 3. Any fibered link in the three-sphere can be obtained from the unknot by finitely
many plumbings and “deplumbings” of Hopf links.

These corollaries also admit specific variants for fibered knots, in which the H*-plumbings
leading to the common stabilization can be performed two by two so as to give a fibered
knot at each stage; in other words, the plumbing of Hopf links is replaced by the plumbing
of positive trefoil knots and figure-eight knots (see Section A for definitions):

Corollary 4. Any two fibered knots in an integral homology three-sphere admit isotopic
stabilizations obtained from each knot by finitely many plumbings of positive trefoil knots
and figure-eight knots.

Following W. Neumann and L. Rudolph [NR], we can rephrase the above results concerning
the three-sphere in terms of the Grothendieck groups of fibered links and of fibered knots
(see Section A for the definition):

Corollary 5. The Grothendieck group of fibered links in the three-sphere is the free Abelian
group of rank two generated by the positive and the negative Hopf links, H" and H~. Sim-
ilarly, the Grothendieck group of fibered knots in the sphere is the free Abelian group of
rank two generated by the positive trefoil knot and the figure-eight knot.

Let’s now say a couple of words about the proof of Theorem [Il. The “only if” part is
quite easy: an H*-plumbing yields an open book that coincides with the original one in the
complement of a ball, and so the homology class of the associated plane field does not change.
To prove the “if” part, we use an invariant of open books more subtle than a homotopy class
of plane fields, namely, an isotopy class of contact structures. The main feature of this refined
invariant is that, according to [[Gi], it determines the open book up to positive stabilization,
i.e., stabilization involving only H*-plumbings (see Theorem [[4). To conclude, we combine
this result with a few observations on the effect of H ~-plumbing on our open book invariants
and the classification by Y. Eliashberg [E]] of the so-called overtwisted contact structures.

Acknowledgments. The authors thank the American Institute of Mathematics for its sup-
port during the Fall of 2000. In September 2000, the first author gave a series of lectures at
Stanford University on the correspondence between contact structures and open books. The
second author was attending these lectures, and both independently obtained the results of
this paper a few weeks later.

The first author also thanks the Centre National de la Recherche Scientifique for funding
his research, and he is very grateful to Alexis Marin for his thoughtful comments on Part B
of the text.

A. PLUMBING

Let’s first discuss plumbing more carefully, in slightly greater generality (see [Gall, [Ga3,
Hal, B1] for further information). For j € {1,2}, let F; be a compact oriented surface in a
closed oriented three-manifold M; and let C; C F; be a proper simple arc. We say that
a compact surface F' in the connected sum M = M; # M, is obtained by plumbing Fi
and Fy along ¢ and Cs if FF = F; U Fy and F; N Fy is a square with median segments
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C; and C,. Thus, the H*-plumbing defined in the introduction is nothing but a plumbing
with a positive/negative Hopf band in S* (that is, an embedded annulus whose boundary
components have linking number +1) where the arc used in this band connects the two
boundary components.

To see that a surface obtained by plumbing pages of two open books is still a page of an
open book, we start with a simple observation. Consider in R? the (piece of) open book
(K, 0) whose binding K consists of the lines {x = +1, y = 0} and whose map #: R*\ K — S!
is given by
. 1 ;
0(z,y,2) = arg (w) — arg(1 — % — 4 + 2iy).
1—x—1y
(Each page of this open book is half of a vertical cylinder containing K )

Let B denote the domain {x*+2y?*+ 22 < 2} and S the ellipsoid OB = {x?+2y*+ 2% = 2}.
The map

15: S_)Sa (l’,y,Z)’—>(Z, —y,—llf),
is an orientation-reversing self—diﬂ:eomorphisrp of order four which permutes the four points
of SN K cyclically. Moreover, for (z,y,2) € S, the identity y? + 2% — 1 = 1 — 22 — y? implies
that
00 p(w,y, =) = arg(1 — 2% — y? — 2iy) = arg(a® + y* — 1 — 2iy) = O(z,y, 2) + 7.
Let now (K7, 6;) and (K5, 02) be open books in closed oriented three-manifolds M; and M,,
respectively, and, for j € {1, 2}, let C; be a proper simple arc in the page 9_ (0)UK;. Each C}
has a (big) neighborhood W; with an orientation-preserving dlffeomorphlsm ¢j W; — R3
that takes (K;NWj;,0; | w,) to (K, 6) and C; to the unit segment C' of the z-axis. Hence the
map
p=dy opogi: S =¢;(S) — S =¢;'(5)

is an orientation-reversing diffeomorphism and satisfies 65 o p = 6; + m. Therefore, the
connected sum

M= My# My = (M \Int B) U (M \Int Bo). B, = 5" (B),

is naturally equipped with an open book (K, 9) whose binding is (K \ Int By) U (K> \ Int By)
and whose fibration 6 is equal to 6; + (—1)"*'7/2 on M; \ Int B;, j € {1,2}. Moreover, the
0-page of (K, 0) is easily seen to be obtained by plumbing the —m/2-page of (K7, 6;) and the
7 /2-page of (K, 6y) along the arcs (] and C} defined by

&1 (CY) = {:c +y?=1, y<o, Z—O}
and  ¢»(Ch) ={2*+y*=1, y>0, z=0}.
The open book (K, #) is said to be obtained by plumbing (K7,0;) and (Ks,60,) along C4
and Cs.
In the last section of this paper (see the proof of Lemma [[§), we will call plumbing ball for

an open book (K,#) in M any ball B C M such that there exists a diffecomorphism B — B
which takes (KN B,0|p) to (KN B,0| ).
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Example 6. Consider S? as the unit sphere in C?:
S* = {(rie", rae) | i + 13 =1, 61,0, € R/27Z} .

The (unoriented) Hopf link H = {ryrs = 0} C S? is the binding of two open books given by
the maps

6*: S*\ H — S, (rleiel,rgeiQQ) — 01 £ 0.
These two maps orient H in different ways, and we will denote by H* the Hopf link equipped
with the orientation induced by #* (in particular, the linking number of the components of
H#* is £1). On the other hand, the unknot U = {r; = 0} is the binding of an open book
whose fibration is the map 6;.

Let now (K,6) be an open book in a closed oriented three-manifold M and C' a proper
simple arc in one of its pages. The open book in M # S? = M obtained by plumbing (K, 6)
with (H*,0%) along C and an arc connecting the two components of the Hopf link is what
we called earlier the open book obtained by H*-plumbing along C'. On the other hand,
plumbing (K, 0) with (U,6;) — along any arcs — always yield an open book isotopic to
(K, 0).

By plumbing together (H*,0") and (H¢,6°), ¢ € {+,—}, along arcs joining the two
boundary components, we obtain an open book in S® whose binding is the positive trefoil
knot T'" if ¢ = + and the figure-eight knot E if ¢ = —. The plumbing operations with the
open books so obtained will be called T -plumbing and E-plumbing, respectively, provided
the arc used in the punctured-torus Seifert surface of TF or E is non-separating.

The plumbing operation allows us to define a Grothendieck group for fibered links in the
three-sphere [NR]|. It is the group generated by all (isotopy classes of) fibered links in S? in
which we impose the relation [K] = [K'] + [K"] for any triple of fibered links (K, K, K")
such that K is obtained by plumbing K’ and K” in some way. Clearly, this group is Abelian
— because plumbing is a commutative operation — and its identity element is the unknot
U. The Grothendieck group of fibered knots in the sphere is defined similarly from the set
of all (isotopy classes of) fibered knots in S®.

B. HYPERPLANE FIELDS

Let M be a connected, oriented m-manifold with zero Euler characteristic. We denote
by PF (M) the (non-empty) space of (co)oriented hyperplane fields on M and by PF.(M)
its subspace consisting of hyperplane fields that coincide with a fixed one (arbitrarily cho-
sen) outside of a compact subset of Int M, i.e., near the boundary and at infinity — so
PF.(M) = PF(M) if M is closed. This section is a digression in which we investigate
the structure of the set myPF.(M) of connected components of PF.(M) — or homotopy
classes of hyperplane fields. There is nothing new in our discussion, whose key ideas are
due to H. Hopf and L. Pontryagin, but we include it since what we need is elementary and
apparently not so well known (see however [Du, [Gd, [Tu]).

Let &, mn € PF.(M) be hyperplane fields and let o, 5 denote respective defining one-forms
which coincide near the boundary and at infinity. The first obstruction to the existence of a
path joining £ to n inside PF.(M) is a homology class ¢(&,n) in Hy(M;Z) = H,([0,1]xM; Z),
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namely the class of the zero set of a generic homotopy between « and 3 with compact support
in [0,1] x Int M. Clearly, for any &,n,( € PF.(M), the following cocycle relations hold:

c(§,€) =0, c(§m) +c(n,§) =0,
and  ¢(§,m) +c(n,¢) +¢(¢,§) =0.

On the other hand, if the linear homotopy (1 —t)a+1t/3, t € [0, 1], is generic (i.e., transverse
to the zero section), then the projection to M of its zero set is the curve C(&,n) of points
where ¢ coincides with —n.

The obstruction class ¢(&,n) can also be viewed differently, assuming for instance that M
is closed. As sections of the sphere cotangent bundle ST*M, the hyperplane fields £ and n
determine homology classes [£], [n] € H,(ST*M;Z). Then consider the long homology exact
sequence

. Hyi(BT*M,ST*M;Z) — H,(ST*M;Z) — H,(BT*"M;Z) ...,

where BT*M denotes the ball cotangent bundle. The classes [¢],[n] € H,(ST*M;Z) have
the same image in H,(BT*M;Z), and so the difference [£] — [n] is the image of a class
c¢&m) € Hy (BT M, ST*M;Z) and c(&,n) € Hi(M;Z) is just the intersection of é(&,n)
with the class of the zero section in H,,(BT*M;Z). Thus, c(¢,n) = 0 if and only if [£] = [n].

We now need to distinguish homotopy classes of homologous hyperplane fields. Our
tool here is an action of the group 7,S™! on the set myPF(M). Take a hyperplane field
¢ € PF(M) and an orientation-preserving embedding ¢: D" — M with B = ¢(D™). The
derivative d¢ of ¢ is homotopic to a trivialization d¢: D" x R" — TM |  (covering ¢) in
which the hyperplane field £ | g is the kernel of the one-form d¢,dzx,. Any map g: D" — Sn—1
that is constant equal to (0,...,0,1) near D™ can then be used to construct a new hyper-
plane field n = (g - §)d~¢ on M: set n = £ out of B and, regarding S”~! as the unit sphere of

the dual space (R")*, define 5(p) for p € B to be the kernel of the linear form d¢,g(p).

This construction induces an action of 7,S"~! on both myPF (M) and moPF.(M). First
observe that, since M is connected as well as the implied spaces of embeddings and trivi-
alizations, the homotopy class of the hyperplane field (g - ) dp 1s unsensitive to the choice
of ¢,d~¢ and depends only on the homotopy classes of £ and g. Next, the constant map
g=1(0,...,0,1) acts trivially. Finally, to check the composition rule, denote by d}ﬁi the re-
striction of d¢ to D2 x R" where D% = {(z —1,...,z,) € D" | £z, > 0}. If g: D* — S§"!
and h: D} — S"~1 are maps equal to (0,...,0,1) near the boundary and if gh refers to the
resulting map D" — S"~! — whose homotopy class is the product of the homotopy classes
of g and h —, then

(gh gy = (9 (h- iy ) gy -
This action and the obstruction cocycle determine the homotopy classification of hyperplane
fields on M:

Proposition 7. Let M be a connected, oriented manifold of dimension n > 2 with zero
Euler characteristic. The continuous cocycle

c: PFM) x PF.(M)— Hy(M;Z)
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is surjective and two hyperplane fields &, n verify c¢(&,m) = 0 if and only if their homotopy
classes are in the same orbit of m,S™ 1. Furthermore, the stabilizer in 7,S™ ! of the homo-
topy class of any hyperplane field & is trivial if n > 4 and, for n = 3, is the image of the
homomorphism Hy(M;Z) — 7SOy = m3S? defined by the Euler class of €.

Strictly speaking, as an obstruction class, the Euler class of £ belongs to H?(M, 7;S'), and
so the implied homomorphism is rather given by the m SOs-valued lift of the second Stiefel-
Whitney class of £&. On the other hand, 7SO is identified with 73S? via the Pontryagin
isomorphism (see Example f] below).

The proof of this proposition is actually more instructive than its statement. We first
remind a simple fact: for any finite dimensional vector space E, the tangent space to the
Grassmann manifold Gg(E) at each point 7 (a vector subspace of dimension & in E) can be
canonically identified with 7* = Hom(7, E/7). With this in mind, the key observation is the
following:

Lemma 8. Let M be a connected, oriented manifold of dimension n > 2 with zero Euler
characteristic. Given a hyperplane field ¢ € PF.(M), there is a natural one-to-one corre-
spondence between moPF (M) and the set Q1 (M;E*) of cobordism classes of £*-framed curves
mn M.

A & -framed curve is a pair (C, ) consisting of a closed one-dimensional submanifold C'
in M and a bundle equivalence (i.e., a bundle isomorphism over the identity) v: vC' — &*| ¢,
where vC' denotes the normal bundle of C' and * the bundle Hom(§, 7'M /€) — which can
be identified with the dual bundle £* if £ is given as the kernel of a one-form, or with ¢ itself
if M is equipped with a metric. Two &*-framed curves (C,7) and (C’,') are cobordant if
there exists a compact surface S in [0, 1] x M, with 0S5 = ({0} x C)U ({1} x C”), such that
YUY vS | a5 — £ s extends to a bundle equivalence vS — £*| g, where indeed £* stands
here for its pullback over [0, 1] x M (we will consistently use the same notation for a bundle
over M and its pullback over [0, 1] x M).

Proof. From hyperplane fields to {*-framed curves, the correspondence goes as follows. For
a generic hyperplane field n € PF.(M), the set C(£,n) of points where & coincides with —n
is a ¢*-framed curve. In fact, if we regard & and 7 as sections of the sphere cotangent bundle
ST*M and denote their images by X and Y, respectively, C' = C(&,n) is the projection
to M of the intersection X N (=Y). If X and (—Y) are transverse to each other, C' is a
closed curve. Furthermore, over any point p in M, the tangent space of X determines a
projection from the tangent space of ST*M at &(p) to £*(p), the tangent space of the fiber
STy M. Along the curve C, since transversality holds, the composition of the differential
of —n with this projection provides the required bundle equivalence v: vC' — &* | ¢. Clearly,
the cobordism class of the £*-framed curve (C,~) only depends on the homotopy class of 7.

The correspondence in the opposite direction is a version of the Thom-Pontryagin con-
struction. Given a {*-framed curve (C,7), the considerations above show how 7 defines a
germ 1)y of hyperplane field near C' (actually only the 1-jet of it) that coincides transversally
with —¢ along C'. Then pick one-forms a and [, defining £ and 7, respectively, choose
a function p: M — [0,1] equal to 1 in the e-neighborhood of C' and to 0 out of the 2e-
neighborhood of C, and consider the one-form 5 = (1 — p)a + p3 — 0. For e sufficiently
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small, § is defined everywhere and non-singular, and its kernel 7 is a hyperplane field whose
associated £*-framed curve is (C, ). The parametric version of this construction associates a
homotopy of hyperplane fields to any cobordism between £*-framed curves, so the correspon-
dence between homotopy classes and cobordism classes is well-defined and one-to-one. [

Example 9 (The Pontryagin isomorphism). Let ¢ be a hyperplane field on B = D™.
Choose a positive trivialization of 7B in which ¢ is spanned by the first (n— 1) basis vectors,
and note that £ and &* are then also trivialized. Thus, £*-framed curves in B are just usual
framed curves while elements of PF.(B) are identified with maps B = D" — S"~! that are
constant equal to (0,...,0,1) near 9B. So we get a natural one-to-one correspondence

8" = myPFo(B) — Q(B;€) = wi(B;R"™)

which is indeed independent of £ and of the trivialization since it takes the homotopy class
of any generic g: D™ — S"! to the cobordism class of the framed curve (C,,7,) defined as
follows:

e C, is the fiber g7'(¢) where ¢ = (0,...,0,—1) € S"! is supposed to be a regular

value;

e v vCy — & | ¢, = Cy x T_,S" 1 = Cy; x R""! is given by v,(p, w) = (p, —dg(p) w).
Furthermore, this correspondence induces a group structure on € (B; R"™'): any two framed
curves can be individually isotoped into disjoint balls and the sum of their cobordism classes
is then the cobordism class of the union.

Let now C C Int B be a circle in the z29-plane and let 4': vC — C x R™! be its
standard normal framing — the normal vector in the plane followed by the canonical basis
of the remaining R"2. Any loop u: S! = C' — SO,,_;, considered as an automorphism of
C x R" !, can be composed with v! to give a framing 7* = u - ¥'. The resulting map

7180, 1 — O (B;R"™) = 7,8

is a group homomorphism (for, if copies of (C,~v*) and (C,~") are placed in disjoint balls,
their union is cobordant to (C,~v"")) and is surjective (because any cooriented closed curve
in B is cobordant to C'). By a theorem of L. Pontryagin, this map is indeed an isomorphism,
and the arguments in the proof below will actually show that it is injective.

Proof of Proposition []. Note first that the orientations of £ and M induce an orientation
of £*. Therefore, any &*-framed curve (C)7v) is (co)oreiented by v: vC — &*| o, and
so it determines a 1-cycle whose homology class depends only on the cobordism class of
(C,~). This provides a map ;(M;&*) — Hy(M;Z) whose composition with the bijection
ToPF (M) — Q1 (M; ") sends the homotopy class of a hyperplane field 1 to the obstruction
class ¢(§,n). The cocycle ¢ is then surjective for, in dimension n > 2, any homology class in
H,(M;Z) can be represented by an embedded, oriented, closed curve, and any such curve C'
admits a £*-framing since both vC' and £*| ¢ are trivial bundles.

Consider two hyperplane fields £, € PF.(M). By definition, their homotopy classes lie in
the same ,S™ -orbit if and only if 7 is homotopic to a hyperplane field that coincides with &
out of a ball, and this property clearly implies ¢(&, ) = 0. Conversely, if ¢(£, n) is zero and if £
and 7 are generic, the curve C' = C'(£, n) consisting of points where £ = —7 is nullhomologous.
Hence, C' is cobordant to C' = 9D where D is an embedded disk disjoint from C. Let
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S C [0,1] x M be a connected, oriented, compact surface with 95 = ({0} x C)U ({1} x C’).
Since S retracts onto the union of {0} x C' and a graph, the {*-framing of C' extends over S.
Therefore, by Lemma [, 1 is homotopic to a hyperplane field 7’ such that C'(¢,7) = C’, and
using an affine homotopy away from C’, we can indeed make 1’ equal to & out of a small
neighborhood of ¢ = 9D. Thus, the homotopy classes of £ and 7 are in the same orbit
under 7,S"!.

It remains to compute the stabilizer of the homotopy class of £&. To do this, take a
ball B C M parameterized by D". As explained in Example [J, the cobordism classes
corresponding via Lemma [ to the 7, S"!-orbit of the homotopy class of & are represented
by the &*-framed curves (C,~"), where C'is a fixed circle in B and u a loop in SO,,_;. Our
task is to determine the loop classes [u] € mSO,,_; for which the *-framing " extends over
some connected, oriented, compact surface in [0, 1] x M bounded by {0} x C.

Let S be such a surface and choose a trivialization of the bundle vS — and thereby also a
trivialization of vC'. This choice identifies bundle equivalences v.S — £* | ¢ with trivializations
of £*| g. But any two trivializations of this bundle are homotopic over the boundary because
they differ by a map S — SO,,_1, and the restriction of such a map to 95 = {0} x C' (which
is connected) is nullhomotopic. This shows that, up to homotopy, there exists a unique
&*-framing of C' that extends over the given surface S.

Consider now a disk D C [—1, 0] x M bounded by {0} x C' and whose projection to M is the
affine disk spanned by C' in B. The (unique) *-framing of C' that extends to D is the stan-
dard framing 7' (see Example ). Denote by S C R x M the closed, connected, oriented sur-
face obtained by smoothing SU(—D) in the obvious way. Since T(RxM) = TM@R = (OR?
while T(R x M) |5 =vS ® TS — and T'S @ R = R?, the bundles ¢* | and .S are stably
equivalent. If n > 4 then £* |z and vS are indeed equivalent (because a vector bundle of
rank at least four over a surface has a connected space of non-vanishing sections), and so
the £*-framing of C that extends over D also extends over S. Therefore, ! is the unique
&*-framing of C that is nullcobordant, and so 7,S" ™! = Z/2Z acts freely. If n = 3, however,
the bundle v/S is trivial but £*|5 is not in general: given trivializations of £*| p and £*| g,
the induced trivializations of £* | ¢ differ by a map C' — SO, whose degree is the Euler class
e(€) of € evaluated on [S] € Hy(M;Z). Thus, the £*-framing 4 of C extends over S if and
only if (e(€),[S]) = [u] € mSO,. This completes the proof. O

Let’s now return to our three-dimensional framework. It follows from Proposition [] that
the stabilizer of the homotopy class of a plane field ¢ under the action of m3S? = Z is
|€|Z, where [£| denotes the divisibility of the (torsion-free part of the) Euler class of £. For
any plane field n homologous to &, we will call relative framing of & and 7 the element
d(&,m) €40,...,]¢| —1} which takes the homotopy class of £ to that of n. As an illustration,
we can recover a calculation of W. Neumann and L. Rudolph:

Lemma 10 [NR]. Let ¢ denote the standard contact structure on S* — that is, the plane
field orthogonal to the Hopf fibers — and £~ the plane field associated with the negative Hopf
link H=. Then the relative framing d(§,&7) is equal to 1.

Proof. Since the Hopf flow preserves the open book given by H~ (whose mapping to the circle
is the argument of the Hopf fibration: see Example [j), we can arrange that it preserves £~
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too (just construct ¢~ as indicated in the introduction). On the other hand, £ is the plane
field orthogonal to the Hopf fibers, and is also invariant under the Hopf flow. Therefore,
the ¢*-framed curve (C,~) determined by £~ is also invariant. Clearly, the curve C' (the
set of points where ¢~ coincides with —¢) is the component {ry = 0} of H~, which is
transverse to £. Then, if we identify £* with & using the metric of S3, the bundle equivalence
v: vC — €| ¢ =vC is (homotopic to) the identity.

Let now D be a disk bounded by C' in [0, 1] x S®. The trivialization of ¥C' that extends to
v D differs from the trivialization of £ | ¢ that extends to £ | p by one twist: indeed, £ admits a
global non-vanishing section and the linking number of C' and its push-off along this section
is equal to —1. This proves that the relative framing d(§, ™) is equal to 1. O

C. CONTACT STRUCTURES

We briefly present here some notions and results of three-dimensional contact geometry
that we will invoke to prove Theorem [ A contact form on an oriented three-manifold M
is a one-form « whose exterior product with da is everywhere positive — with respect to
the orientation of M. A contact structure on M is a (co)oriented plane field £ which is the
kernel of some contact form, and a contact manifold is a manifold equipped with a contact
structure. A fundamental property of contact structures, established by J. Gray, is that they
are C'-stable: if &, s € [0,1], is a path of contact structures on a closed manifold M, then
there exists an isotopy ¢s of M such that ¢y = id and ¢s.& = & for all s € [0,1]. ). Thus,
two contact structures on a closed manifold M are isotopic if and only if they are in the
same homotopy class of contact structures (i.e., the same connected component of the space
of contact structures).

The possibility of constructing contact structures on three-manifolds from open books was
discovered by W. Thurston and H. Winkelnkemper [ITW])]. However, the systematic study of
the relations between these two geometric objects is much more recent [[Gi] and is based on
the following:

Definition 11. Let M be a closed oriented three-manifold. We say that a contact structure
& on M is carried by an open book (K, 0) if it is the kernel of a one-form « satisfying the
following conditions:

e « induces a positive non-singular form on K;
e da induces a positive area form on each fiber of 6.

Any such one-form « is said to be adapted to (K, 6).

With this terminology, the main result of [[TW] is that the set of contact structures carried
by a given open book is non-empty. It is easy to check that this set is also open and
contractible in the space of all contact structures on M (see the proof of Lemma [[7). In
particular, according to Gray’s stability theorem, all the contact structures it contains belong
to the same isotopy class. for this reason, we often speak of “the contact structure associated
with the open book”, this contact structure being defined only up to isotopy.

Remark 12. The contact structure associated with an open book (K,0) — in a closed
oriented three-manifold M — belongs to the homotopy class of plane fields associated with
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(K,0). In fact, if g is a one-form defining the plane field associated with (K,#) as in the
introduction (with NV small enough) and if a; is a contact form adapted to (K@), then all
forms (1 — t)ag + taq, t € [0,1], are non-singular, and so their kernels yield the desired
homotopy of plane fields.

Example 13. The standard contact structure ¢ on S* C C? is defined by the one-form
a = 12df; +13df,. This contact form is adapted to the trivial open book (U, 6;) for it induces
on each fiber of §; the one-form r3df,. It is also adapted to the open book (H™,6; + 6s), for
it induces on each fiber of 6; + 6 the one-form (2r? — 1) df; = (2r3 — 1) db.

The above example shows that a given contact structure may be carried by several open
books. Indeed, according to [[G]], any contact structure is carried by many open books but
we have the following stable equivalence theorem:

Theorem 14 [Gi]. On a closed oriented three-manifold, two open books carrying the same
contact structure admit isotopic positive stabilizations.

The last ingredient of contact geometry we will need is the classification of overtwisted
contact structures, due to Y. Eliashberg. A contact structure £ on a three-manifold M is
overtwisted if there exists a simple closed curve L C M with the following properties:

e [ is Legendrian, i.e., is tangent to £ at each point;

e [ is unknotted, i.e., bounds a disk;

e the Thurston-Bennequin number of L — i.e., the linking number of L and its push-off
along the normal vector to & — is non-negative.

Overtwisted contact structures have an extremely simple classification:

Theorem 15 [Ell. On a closed oriented three-manifold, two overtwisted contact structures
are isotopic if and only if they are in the same homotopy class of plane fields.

D. PROOF OF THE STABLE EQUIVALENCE THEOREM

Let (K,0) be an open book in a closed oriented three-manifold M, with associated plane
field &, and let (K*,0%) and (K~,07) denote open books obtained from (K,6) by H™-
plumbing and H ~-plumbing, respectively.

Lemma 16. The plane field £t associated with (K*,0%) is homotopic to & while the plane
field £~ associated with (K~,07) is homologous to & with relative framing d(&,£7) equal to 1.

Proof. Consider the open books in S? given by H* and by the unknot U. After isotoping one
of them, we may assume that they have a common plumbing ball B (see Section A) in which
they coincide as well as their associated plane fields. Now these plane fields are homotopic
to each other (according to Example [J and Remark [[, both are homotopic to the standard
contact structure) and, since S? is simply connected, they are also homotopic relative to B.
Therefore, £* is homotopic to the plane field associated with the open book obtained by
plumbing (K, ) with U. But this open book is isotopic to (K, 8), so {1 is homotopic to &.
On the other hand, £~ and £ are homologous since they coincide out of a ball. Next, arguing
as above, we see that the relative framing d(&,£7) is equal to the relative framing in S* of the
standard contact structure and the plane field associated with the negative Hopf link H~.
Then the result follows from Lemma [0 O
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The next lemma is essentially due to I. Torisu:
Lemma 17 [Id]. The contact structure £~ associated with (K~,07) is overtwisted.

Proof. Let’s say that a one-form  on a compact oriented surface is admissible if it induces a
positive non-singular form on the boundary and if its differential d is a positive area form in
the interior. A contact form adapted to an open book clearly induces an admissible one-form
on each page. The existence and uniqueness — up to isotopy — of contact structures carried
by an open book is mostly due to the contractibility of the space of admissible forms on a
given surface. This contractibility also allows to construct an adapted contact form inducing
a prescribed admissible form on a given page [LW].

Let now '~ = FUA™ be a page of (K—,607), where F'is a page of (K, 0) and A~ a negative
Hopf band. Since the core curve L of A~ is homologically non-zero in F'~, there exists an
admissible form S~ that vanishes at each point of L. Then consider a contact form o= on M
which is adapted to (K~,607) and induces 5~ on F'~. For the contact structure £~ defined
by a~, the curve L is Legendrian and unknotted. Moreover, the normal vector to £~ along L
is the normal vector to A~, so the Thurston-Bennequin number of L is equal to 1. Thus,
the contact structure £~ is overtwisted. O

Proof of Theorem [1. If two open books admit isotopic stabilizations, their associated plane
fields are homologous since the homology class does not change under H=-plumbing. Suppose
now that (K, 0) and (K’,0’) are two open books in M whose associated contact structures &
and & are homologous as plane fields. Let d denote the relative framing d(&, ¢’) and consider
an open book (K", 0") obtained from (K,6) by d successive H -plumbings. According
to Lemma [[d and Lemma [[7, the contact structure £” associated with (K”,0") is in the
same homotopy class of plane fields as & and is overtwisted provided d > 1. Applying
one more H ™ -plumbing to both (K’,0") and (K”,0”) if necessary, we may assume that &’
and £” are both overtwisted. Then it follows from Eliashberg’s Theorem [1§ that £ and £”
are actually isotopic. Hence Theorem [[4 implies that (K’,60") and (K”,6”) admit isotopic
positive stabilizations, so (K, 6) and (K’, ") admit isotopic stabilizations. O

Remark 18. The above proof shows that, while there is no control on the number of
necessary HT-plumbings, the number of necessary H ~-plumbings can be bounded a priori
in terms of the relative framing of £ and &', namely, by 2 + min{d(&, '), d(£, &)}

Corollaries f| and B follow readily from Theorem [[. Corollary [ follows similarly from the
following refined version of Theorem [l:

Theorem 19. In a closed oriented three-manifold, two open books with connected bindings
and homologous associated plane fields admit isotopic stabilizations which can be obtained by
finitely many successive TV -plumbings and E-plumbings.

Proof. Suppose that (K, ) and (K’, 0") are two open books in M whose binding are connected
and whose associated contact structures £ and & are homologous as plane fields. Since E-
plumbing is a composition of an H'- and an H -plumbing, its effect on the homotopy
class and the isotopy type of the associated contact structure is the same as the effect of
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H~-plumbing. Therefore, after performing a number of E-plumbings on our open books
(see the proof of Theorem [[, we may assume that £ and £’ are overtwisted and homotopic
as plane fields, and hence isotopic by Eliashberg’s Theorem [[J. Then we conclude with the
following refined version of Theorem [[4: on a closed oriented three-manifold, two open books
carrying the same contact structure and having connected bindings admit isotopic positive
stabilizations which can be obtained by T*-plumbings. U

Proof of Corollary [J. Corollary [ shows that the Grothendieck group I of fibered links in S3
is generated by the Hopf links H' and H~. To complete the proof, we proceed as W. Neu-
mann and L. Rudolph in [NR]. To each fibered link K in S® we assign two integers, u(K)
and \(K):
e 4 (K) is the Milnor number of K, i.e., the first Betti number of a fiber Seifert surface
(a page of the corresponding open book);
e \(K) is the “enhanced Milnor number”, i.e., relative framing of the plane field asso-
ciated with the unknot (the standard contact structure for instance) and the plane
field associated with K.

The additivity of ;1 and A under plumbing (which follows from our discussion in Sections A
and B — see also the proof of Lemma [[§) implies that the pair (u, A) induces a homomor-
phism from I' to Z?. By Lemma [[[] this homomorphism maps the generators H* and H~
to (1,0) and (1, 1), respectively, and so it is an isomorphism.

The calculation of the Grothendieck group of fibered knots is completely analogous. [
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