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CAUSAL PROPERTIES OF ADS-ISOMETRY GROUPS I:

CAUSAL ACTIONS AND LIMIT SETS

THIERRY BARBOT

Abstract. We study the causality relation of the 3-dimensional anti-de Sitter space
AdS and its conformal boundary Ein2. To any closed achronal subset Λ in Ein2,
we associate the invisible domain E(Λ) from Λ in AdS. We show that if Γ is a
torsion-free discrete group of isometries of AdS preserving Λ, then the action of Γ
on E(Λ) is free, properly discontinuous and strongly causal. We prove that if Λ
is a topological surface, then the quotient space MΛ(Γ) = Γ\E(Λ) is a maximal
globally hyperbolic AdS-spacetime admitting a Cauchy surface S such that the
induced metric on S is complete.

In the forthcoming paper [8], using the results of the present paper, we define
a large family of AdS-spacetimes including all the previously known examples of
BTZ multi-black holes.

1. Introduction

The anti-de Sitter space AdS is the complete Lorentzian manifold with constant sec-
tional curvature −1 (§ 3.1). This is the lorentzian version of the hyperbolic space H

n.
Here, we only consider the 3-dimensional case. In this introduction, Isom(AdS) denotes
the group of isometries of AdS preserving the orientation and the time-orientation (see
definition 2.2).

We intend to reach two goals:

• For every discrete group Γ of isometries on AdS, study Γ-invariant domains of
AdS on which Γ acts properly discontinuously,

• Provide, as a mathematician, a general geometrical framework including the no-
tion of BTZ black-hole and multi-black hole. We don’t pretend in any manner to
give a significant contribution to the challenging question of quantum gravity.

BTZ black-holes were defined in [2, 3], and studied in many papers, serving as toy
models in the attempt to put together the black-hole notion (which arises from general
relativity) and quantum physics. We will discuss these spacetimes with detail in the second
part of this work.

The present paper is devoted to the first problem. We essentially mimic the classical
study of groups of isometry of the hyperbolic space. Let’s recall few basic facts of this
well-known theory: let Γ be a discrete group of isometry of H

n. The action of Γ on the
entire H

n is properly discontinuous, and if Γ is torsion-free, this action is free. Moreover,
the action of Γ on the boundary at infinity ∂H

n ≈ S
n−1 admits a unique minimal invariant

closed subset Λ(Γ), and the action of Γ on ∂H
n is properly discontinuous.

These features do not apply directly in the AdS context, mainly because the action of
the isometry group Isom(AdS) does not act properly on AdS. In this paper, we want to
promote the following point of view: when dealing with this kind of questions, it is per-
tinent to take into account intimately related causality notions, which, in the riemannian
context, remain hidden, since automatically fulfilled. Moreover, this causal aspect lies in
the very foundation of the notion of BTZ black hole.

1.1. Causality notions. A lorentzian manifold - in short, a spacetime - is causal if no
point can be joined to itself by a non-trivial non-spacelike curve, i.e., a C1 curve for which
the tangent vectors have non-positive norm for the ambient lorentzian metric. Observe
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2 THIERRY BARBOT

that this notion remains meaningfull for any pseudo-riemannian metric. In the riemannian
case, this property is always true, since all tangent vectors have positive norms.

This notion extends to isometry groups in the following way: a group Γ of isometries
on a pseudo-riemannian manifold Ω is causal if for every x in M and every γ in Γ, there is
no non-spacelike nontrivial curve joining x to γx. In the riemannian context, any action
is causal.

In § 2 we collect general definitions and facts about causality notions in general space-
times.

1.2. Einstein universe. Actually, we spend a great amount of time to the detailed dis-
cussion of the subtle causality notion in AdS-spacetimes: see § 5.3. One important aspect
is that AdS the causality relation is trivial: every pair of point in AdS is causally related!
To bypass this contrariety, we lift everything in the universal covering of AdS: for exam-
ple achronal subsets (see next §) in AdS in this work are projections in AdS of achronal
subsets of the universal covering (see § 5).

It appears extremly useful for the causal study of AdS to use the conformal embedding
of the AdS spacetime in the universal conformally flat Lorentzian manifold: the Einstein
universe Ein3 (§ 4). The causality notion persists in the conformal framework, and the
understanding of the causality relation in AdS follows easily from the study in Ein3 (§ 5.1).
This ingredient is particularly useful for the study of spacelike surfaces (see § 7) in AdS-
spacetimes: compare our proof of proposition 7.4 with the similar statement (Lemma 7)
in the pioneering paper [30].

Einstein universe plays another important role: the two-dimensional Einstein universe
Ein2 is the natural conformal boundary of AdS (remark 4.7). This feature is completely
similar to the fact that the natural conformal boundary of H

3 is the universal conformally
flat riemannian surface the round sphere S

2 (observe also that H
3 admits a conformal

embedding in S
3). The causality notion extends to the conformal completion AdS∪∂AdS

(§ 5.4), simply by restriction of the causality relation in Ein3.

1.3. Invisible domains. A subset Λ of the conformal boundary Ein2 is achronal if pairs
of points in Λ are not causally related. The invisible domain from Λ, denoted E(Λ), is the
set of points in AdS which are not causally related to any point in Λ (§ 8.6). When Λ is
generic, i.e., not pure lightlike (which is a particularly exceptional case, see definitions 5.7,
5.10), then E(Λ) is a non-empty convex open domain, containing Λ in its closure which
is geodesically convex, i.e., any timelike geodesic segment in AdS joining two points in U
is contained in E(Λ).

We study extensively this notion in § 8 in the ”non-elementary” case, i.e., when Λ is
not contained in one or two lightlike geodesics (§ 8.7). The elementary case will be studied
in [8]. We also consider in detail the case where Λ is a topological circle in Ein2: E(Λ)
is then globally hyperbolic, with regular cosmological time (see definitions 2.21, 2.9, and
Propositions 8.21, 8.23, 8.15).

The main issue of § 8 is Proposition 8.52: in the general case, invisible domains decom-
pose in (non-disjoint) two globally hyperbolic domains, called globally hyperbolic cores,
and closed ends. We will enter with more details this notion of closed end while discussing
BTZ black-holes. We just mention here that they are simply intersections between ADS

and tetraedra in the projective space RP 3. They are also simple pieces of elementary
invisible domains.

1.4. Proper and causal actions. After all this work, we are in a much better situation
to consider isometry groups. Let Γ be a discrete group of isometries of AdS. We say that
Γ is admissible if it preserves a generic non-elementary achronal subset of Ein2. This
definition extends to the elementary cases, but requires then a more detailed discussion
that we reserve for [8]. Actually, it is easy to see that Λ is necessarely non-elementary if
Γ is not abelian.

Anyway, one the main result of this paper is Theorem 10.1, that we reproduce here:

Theorem 1.1. Let Λ be a nonelementary generic achronal subset, preserved by a discrete
group Γ ⊂ Isom(AdS). Then, the action of Γ on E(Λ) is properly discontinuous.
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Theorem 10.1 states also another result: the quotient spacetime MΛ(Γ) is strongly
causal (see § 2.3).

Remark 1.2. As a matter of fact, the theorem above is still true when Γ is a non-cyclic
abelian group: we then obtain as quotient spaces the (AdS)-Torus universes described in
[29, 20]. They correspond, through the AdS-rescaling ([11, 12]) to the flat Torus Universes
described in [7], [20], [10].

Furthermore, we have a description of admissible groups (Theorem 10.7). In the non-
abelian case, the formulation is a follows: Isom(AdS) is isomorphic to the quotient of
SL(2, R)×SL(2, R) by a subgroup of order two (see § 3.3). Under this identification, every
admissible group is the projection of the image of a representation ρ = (ρL, ρR) : Γ →
SL(2, R) × SL(2, R), where ρL,R are fuchsian (i.e., faithfull and discrete) representations
into SL(2, R), one semi-conjugate to the other, i.e., defining the same bounded Euler
cohomology class in H2

b (Γ, Z) (see [26, 27], remark 10.10).

1.5. Limit sets. We still assume that Γ is admissible and non-abelian, there exist an
unique minimal closed generic achronal Γ-invariant subset Λ(Γ), which is contained in ev-
ery closed achronal Γ-invariant subset (Theorem 10.13, corollary 10.14). Hence, following
the classical terminology used for isometry groups of H

n, it is natural to call Λ(Γ) the
limit set of Γ.

This analogy this the riemannian case can be pursued further: consider the Klein model
of H

n as a (convex) ellipsoid in RP n. Let Λ be the limit set of a discrete group of isometries
Γ (a Kleinian group). For any pair (x, y) of points in Λ, let Exy be the unique connected
component of RP n \ (Tx ∪Ty) containing H

n, where Tx, Ty are the projective hyperplanes
tangent to H

n at x, y. Then, the intersection of all the Exy with (x, y) describing Λ × Λ
is a convex domain E(Λ) on which Γ acts properly: this statement is the true equivalent
of Theorem 1.1.

The complement in RP n of the closure of H
n admits a natural SO(1, n)-invariant

lorentzian metric: this is the (Klein model of) the de Sitter space dSn. Then, the action
of Γ on dSn ∩E(Λ) is causal. When Γ is torsion-free, the quotient space is strongly causal
- even more, it is globally hyperbolic. This is a particular case of the content of Scannell
thesis ([31]), where maximal globally hyperbolic dS-spacetimes are classified. For more
details in this direction, we refer to the survey [6].

Remark 1.3. However, there is an important difference between the de Sitter case and
the anti de Sitter one: whereas Scannell proved that the quotient spaces described above
are all globally hyperbolic, the quotient space MΛ(Γ) = Γ\E(Λ) is not globally hyperbolic,
except if Λ is a topological circle.

1.6. Maximal globally hyperbolic AdS-spacetimes. We mention here another re-
sult of the present paper (corollary 11.2): the quotient spacetimes MΛ(Γ), where Λ is an
achronal topological circle, admits Cauchy surfaces such that the ambient AdS-metric re-
stricts as a Cauchy-complete riemannian metric (for the definition of Cauchy surfaces, see
§ 2.4). This theorem is also proved in [12], Proposition 6.4.19. Our proof relies on an gen-
eral construction, interesting by itself, associating to any embedded spacelike surfaces in
AdS a surface embedded in H

2×H
2 (§ 3.6, 7.3). This result completes nicely the classifica-

tion of maximal globally hyperbolic AdS-spacetimes admitting Cauchy-complete Cauchy
surfaces (Proposition 11.1, see also the proposition 6.5.7 in [12]). Thus, the AdS-rescaling
defined in [11, 12] establishes a natural bijection between these maximal globally hyper-
bolic AdS-spacetimes and maximal Cauchy-complete globally hyperbolic flat spacetimes
which have been classified in [4].

The spacetimes MΛ(Γ) defined here, even if Λ is not a topological sphere, are always
causal. In particular, they are never compact. This is an important difference between
our work with usual studies of discrete subgroups of Isom(AdS), where a special focus
is put on the cocompact case. In our framework, the spacetimes enjoying a ”compact”
character are the globally hyperbolic AdS-spacetimes admitting a closed Cauchy surface.

1.7. Admissible groups. The main drawback of our approach is that many discrete
subgroups are not admissible, i.e., do not preserve generic achronal subsets of Ein2 (for
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example, the lattices of Isom(AdS)). In § 10.6 we give a characterization of (non-abelian)
admissible groups: they are the subgroups of SO0(2, 2) preserving some proper convex
domain of RP 3, which, in the terminology of [14], are positively proximal. In some way,
the present paper provides a geometrical illustration of some cases considered in [14].
Actually, we need to be more precise. The claim above is not exactly correct: it is true
that admissible groups are positively proximal, but positively proximal subgroups are not
always admissible. But our claim is not so far to be correct: the Klein model ADS in
RP 3 is one connected component of the complement of a quadric Q. The other connected

component is another copy ADS
′

of AdS (see remark 4.3). Observe that SO0(2, 2) is

also the isometry group of ADS. Then, the correct statement is proposition 10.22: any
positively proximal subgroup of SO0(2, 2) is either admissible, or admissible as considered

as a group of isometry of ADS
′
.

1.8. Higher dimension. Many results in the present paper extend in higher dimensions,
particularly if we restrict ourselves to strongly irreducible subgroups. But the number of
”elementary” cases increases with the dimension, and a systematic treatment requires a
non-elementary case-by-case study of these ”elementary” cases. We prefer to postpone
such a study to another circumstance, and dropping here the elementary case is not
conceivable, since it corresponds to our second main goal: the systematic description of
BTZ multi-black holes, in particular, of single BTZ black holes.

Acknowledgements

I’m glad to thank A. Fathi, who clarified for me some aspects of the problem of exten-
sions of Lipschitz functions (remark 8.10, proof of proposition 8.23). I also benefited from
several conversations with F. Bonsante, K. Melnick.

Additionnal comments. Besides all the references specific to BTZ black-holes them-
selves, this work is based on many ideas present in the unpublished preprint [30]. The
elaboration of this paper has been announced in [6] with the title ”Limit sets of discrete
Lorentzian groups”.

2. General notions

A spacetime M is a manifold equipped with a lorentzian metric - actually, we will
soon restrict to the constant curvature case. In our convention, a lorentzian metric has
signature (−,+, . . . , +); an orthonormal frame is a frame (e1, e2, . . . , en), where e1 has
norm −1, every ei (i ≥ 2) has norm +1, and every scalar product 〈ei | ej〉 (i 6= j) is 0. A
tangent vector is spacelike if its norm is positive; timelike if its norm is negative; lightlike
if its norm is 0. We also define causal vectors as tangent vectors which are timelike or
lightlike. An immersed surface S is spacelike if all vectors tangent to S are spacelike; it is
nontimelike if tangent vectors are all spacelike or lightlike.

A causal (resp. timelike) curve is an immersion c : I ⊂ R → M such that for every
t in I the derivative c′(t) is causal (resp. timelike). This notion extends naturally to
non-differentiable curves (see [9]). Such a curve is extendible if there is another causal
curve ĉ : J → M and a homeomorphism ϕ : I → K ⊂ J such that K 6= J and c coincide
with ĉ ◦ ϕ. The causal curve c is inextendible if it is not extendible.

2.1. Time oriention. We always assume that the lorentzian manifold is oriented. On
spacetimes we have another orientability notion:

Definition 2.1. A spacetime M is time-orientable (or chronologically orientable) if it
admits a a continuous field of timelike vectors.

Definition 2.2. A time-orientation on M is an equivalence class of continuous time-
like vector fields, for the following equivalence class: two timelike vector fields X, Y are
equivalent if for any x in M the scalar product 〈X(x) | Y (x)〉 is negative.

M is time oriented when a time-orientation on M has been selected.
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It is easy to show that any spacetime admits a continuous field of timelike lines. Hence,
every spacetime is doubly covered by a time-orientable lorentzian manifold. We will always
assume that M is time-oriented. Once selected the time-orientation X, the set of causal
tangent vectors splits into the union of two bundles of convex cones: the cone of future-
oriented vectors {v ∈ TxM | 〈v | X(p)〉 < 0}, and the cone of past-oriented vectors
{v ∈ TxM | 〈v | X(p)〉 > 0}.

Time-orientation provides naturally an orientation on every causal curve: a causal
curve is either future-oriented, or past-oriented.

2.2. Causality notions. Two points in M are causally related if there exists a causal
curve joining them; they are strictly causally related if moreover this joining curve can be
chosen timelike.

More generally: let E a subset of M , and U an open neighborhood of E in M . A
subset E of M is said achronal in U if there is no timelike curve contained in U joining
two points of the subset. It is strictly achronal in U if there is no causal curve contained
in U joining two points of E. We say simply that E is (strictly) achronal if it is achronal
in U = M . Finally, we say that E is locally (strictly) achronal if every point x in E admits
a neighborhood U in M such that E ∩ U is achronal in U .

Remark 2.3. Spacelike hypersurfaces are locally strictly achronal; nontimelike hypersur-
faces are locally achronal.

2.3. Past, future.

Definition 2.4. The future of a subset A of M is the set of final points of future oriented
timelike curves, not reduced to one point, starting from a point of A. The causal future of
A is the set of final points of future oriented causal curves, maybe reduced to one point,
starting from a point of S (Hence, A itself belongs to its causal future). The (causal) past
of A is the (causal) future of A when the time-orientation of M is reversed.

Definition 2.5. Let x, y be two points in M , with y in the future of x. The common
past-future region U(x, y) is the intersection between the past of y and the future of x.

The domains U(x, y) form the basis for some topology on M , the so-called Alexandrov
topology (see [9]). Observe that every U(x, y) is open for the manifold topology. The
converse in general is false:

Definition 2.6. If the Alexandrov topology coincide with the manifold topology, M is
strongly causal.

Remark 2.7. If M is strongly causal, every open domain U ⊂ M equipped with the
restriction of the ambient lorentzian metric is strongly causal.

Proposition 2.8 (proposition 3.11 of [9]). The lorentzian manifold M is strongly causal
if and only if it satisfies the following property: for every point x in M , every neighborhood
of x contains an open neighborhood U (for the usual manifold topology) which is causally
convex, i.e., such that any timelike curve in M joining two points in U is actually contained
in U .

2.4. Global hyperbolicity.

Definition 2.9. M is globally hyperbolic if:
– it is strongly causal,
– for any x, y in M , the intersection between the causal future of x and the causal past

of y is compact.

From now, we assume that M is strongly causal.
The notion of global hyperbolicity is closely related to the notion of Cauchy surfaces:

let S be a spacelike surface embedded in M .

Definition 2.10. The past development P (S) (resp. the future development F (S)) is the
set of points x in M such that every inextendible causal path containing x meets S in its
future (resp. in its past). The Cauchy development C(S) is the union P (S) ∪ F (S).
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Definition 2.11. If C(S) is the entire M , S is a Cauchy surface.

Theorem 2.12 ([25]). A strongly causal lorentzian manifold M is globally hyperbolic if
and only if it admits a Cauchy surface.

Theorem 2.13 ([25], Proposition 6.6.8 of [28]). If M is globally hyperbolic, and S a
Cauchy surface of M , there is a diffeomorphism f : M → S × R such that every f−1(S ×
{∗}) is a Cauchy surface in M .

Remark 2.14. There has been some imprecision in the litterature concerning the proof
the smoothness of the splitting of globally hyperbolic spacetimes. See [15, 16, 17] for a
survey on this question, and a complete proof of the smoothness of the splitting M ≈ S×R.

Remark 2.15. All the notions discussed in this section above only depends on the con-
formal class of the metric. Hence, they are well-defined in every conformally lorentzian
manifolds, in particular, in Einn (see §4).

Proposition 2.16. Let M be a globally hyperbolic spacetime, and let Γ be a group of
isometries of M acting freely and properly discontinuously on M , and preserving the
chronological orientation. Assume that Γ preserves a Cauchy surface S in M . Then,
the quotient spacetime Γ\M is globally hyperbolic, and the projection of S in this quotient
is a Cauchy surface.

Sketch of proof Let M ′ be the quotient Γ\M , and S′ be the projection of S in M ′.
Since Γ preserves the chronological orientation, the future (resp. past) of S′ in M ′ is the
projection of the future (resp. past) of S in M . Every inextendible causal curve in M ′

lifts in M as a inextendible causal curve in M . The proposition follows.

2.5. Maximal globally hyperbolic spacetimes. In this §, we assume that M has
constant curvature1.

Definition 2.17. An isometric embedding f : M → N is a Cauchy embedding if the
image by f of any Cauchy surface in M is a Cauchy surface of N .

Definition 2.18. A globally hyperbolic spacetime M is maximal if every Cauchy embed-
ding f : M → N in a spacetime with constant curvature is surjective.

Theorem 2.19 (see Choquet-Bruhat-Geroch [21]). Let M be a globally hyperbolic space-
time with constant curvature. Then, there is a Cauchy embedding f : M → N in a
maximal globally hyperbolic spacetime N with constant curvature. Moreover, this maximal
globally hyperbolic extension is unique up to right composition by an isometry.

2.6. Lorentzian distance. Let M be a time-oriented spacetime.

Definition 2.20. The length-time L(c) of a causal curve c : I → M is the integral over
I of the square root of −〈c′(t) | c′(t)〉.

Observe that it is well-defined, since causal curves are always Lipschitz.

Definition 2.21. The lorentzian distance dlor(x, y) between two points x, y in M is
Sup{L(c)/c ∈ C(x, y)} where C(x, y) is the set of causal curves with extremities x, y. By
convention, if x, y are not causally related, dlor(x, y) = 0.

Theorem 2.22 (Corollary 4.7 and Theorem 6.1 of [9]). If M is globally hyperbolic, then
d : M × M → [0, +∞] is continuous and admits only finite values. Moreover, if y is
in the causal future of x, then there exist a geodesic c with extremities x, y such that
L(c) = d(x, y).

1We could actually only suppose that (M, g) is a solution of the Einstein equation Riccig − R
2

g = Λg.
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2.7. Cosmological time. In any spacetime, we can define the cosmological time (see [1]):

Definition 2.23. For any x in M , the cosmological time τ (x) is the Sup{L(c)/c ∈
R−(x)}, where R−(x) is the set of past-oriented causal curves starting at x,

This function could have in general a bad behavior: for example, in Minkowski space,
the cosmological time is everywhere infinite.

Definition 2.24. M has regular cosmological time if:
– M has finite existence time, i.e., τ (x) < ∞ for every x in M ,
– for every past-oriented inextendible curve c : [0, +∞[→ M , limt→∞ τ (c(t)) = 0.

Theorem 1.2 in [1] expresses many nice properties of spacetimes with regular cosmo-
logical time function. We need only the following statement:

Theorem 2.25. If M has regular cosmological time, then the cosmological time is Lips-
chitz, and M is globally hyperbolic.

Obviously:

Lemma 2.26. On any spacetime M , every level set of the cosmological time is preserved
by the isometry group of M .

Proposition 2.27. If M has regular cosmological time, and if Γ is a group of isometries
acting freely and properly discontinuously on M , then the quotient space Γ\M has regular
cosmological time.

Sketch of proof It follows from the fact that inextendible causal curves in the quotient
are projections of inextendible causal curves in M .

3. Anti-de Sitter and Einstein spaces

3.1. Anti-de Sitter space. Let E denote the vector space R
4 equipped with the qua-

dratic form Q = −u2 − v2 + x2
1 + x2

2. The 3-dimensional anti-de Sitter space AdS3 is
the set {Q = −1}, equipped with the lorentzian metric obtained by restriction of Q. We
will most of the time drop the index 3, since here we only consider the three-dimensional
case. This space has constant negative curvature. Its isometry group is naturally O(2, 2),
acting freely transitively on the bundle of orthonormal frames of AdS. Let SO0(2, 2) the
neutral component of O(2, 2) (the so-called orthochronal component). Fix an orientation
of SO(2) ⊂ SO0(2, 2) (the subgroup preserving the x1, x2-coordinates): it defines a time-
orientation on AdS. The neutral component SO0(2, 2) is precisely the group of isometries
of AdS preserving the orientation and the time orientation.

3.2. Klein models. Let S(E) be the half-projectivization of E, i.e., the space of rays.
It is the double covering of the projective space P (E) ≈ RP 3. We lift to S(E) all the
usual notions in P (E): for example, a projective line in S(E) is the radial projection of a
2-plane in E.

S(E) is homeomorphic to the sphere S
3. Let ADS be the radial projection of AdS in

S(E): we call it the Klein model of AdS. Let ADS be the radial projection of AdS in

P (E). Observe that ADS is still time-oriented.

The boundary of ADS (resp. ADS) in S(E) (resp. P (E)) is the quadric Q (resp. Q),
projection of the zero set of Q. We call it the Klein boundary of AdS.

The main interesting feature of the Klein model is that geodesics there are connected
components of intersections with projective lines. More generally, the totally geodesic
subspaces in ADS are the traces in ADS of projective subspaces. Projective lines avoiding
Q are timelike geodesics, projective lines intersecting transversely Q (resp. tangent to Q)
induce spacelike (resp. lightlike) geodesics.

Remark 3.1. The complement in S(E) of the closure of ADS can be considered as another
copy of anti-de Sitter space: it is the projection of {Q = +1}; this locus, equipped with
the restriction of −Q, is isometric to AdS. Hence, S(E) is the union of two copies of AdS
and of their common boundary.
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3.3. The SL(2, R)-model. Consider the linear space gl(2, R) of 2 by 2 matrices, equipped
with the quadratic form −det. It is obviously isometric to (E,Q). Hence, AdS is canoni-
cally identified with the group SL(2, R) of 2 by 2 matrices with determinant 1. The actions
of SL(2, R) on itself by left and right translations are both isometric actions: we obtain
a morphism SL(2, R) × SL(2, R) → SO0(2, 2). A dimension argument proves easily that
this morphism is surjective. Its kernel is the pair {(id, id), (−id,−id)}.

The Klein model ADS is canonically identified with PSL(2, R). The group of orientation
and time orientation preserving isometries is PSL(2, R) × PSL(2, R), acting by left and
right translations.

This Lie group structure on ADS provides a natural parallelism on the tangent bundle:
if G denotes the Lie algebra of G = PSL(2, R), i.e., the algebra of 2 by 2 matrices with

zero trace, the differential of left translations identify G×G with TG = TADS. Then, the
AdS-norm of a pair (g, Y ) is simply −det(Y ).

3.4. The universal anti-de Sitter space. The anti-de Sitter space AdS is homeomor-

phic to R
2 × S

1: in particular, it is not simply connected. Let p : ÃdS → AdS be the
universal covering. The composition of p with the radial projection AdS → ADS is denoted
by p̄: this is a universal covering of ADS.

Let δ be a generator of the Galois group of p̄, i.e., the group of covering automorphisms:
then, δ2 generates the Galois group of p.

3.5. Affine domains.

Definition 3.2. Let x be an element of AdS. The affine domain A(x) is the subset of AdS
formed by elements y satisfying 〈x | y〉 < 0.

The restrictions of the radial projections of AdS over ADS or ADS to affine domains
are injective. The images of these projections are also called affine domains.

For any point x of ADS, let x∗ be the projection in ADS of the Q-orthogonal hyperplane
in E of the direction defined by x: we call it the (totally geodesic) hypersurface dual to x.
Observe that x∗ has two connected components. Every connected component is a spacelike
totally geodesic disc in ADS, isometric to (the Klein model of) the hyperbolic disc H

2.
The boundary of x∗ in S(E) is the set of tangency between Q and lightlike geodesics
containing ADS. Moreover, x∗ is orthogonal to every timelike geodesic containing x. All
these geodesics also contain −x.

Denote also by A(x) the projection in ADS of the affine domain A(y) in AdS, where x
is the projection of y in ADS. Observe that A(x) is the connected component of ADS \
x∗ containing x. It is also the intersection between ADS and the affine patch V (x) =
S(E) ∩ S({y/〈y | x〉 < 0}). V (x) admits a natural affine structure, and that is is affinely
isomorphic to R

3.

Definition 3.3. Let x̃ be an element of ÃdS. The affine domain A(x̃) is the connected
component of p−1(A(p(x̃))) containing x̃.

Affine domains are simple blocks quite easy to visualize, from which ÃdS can be nicely
figured out:

– every affine domain is naturally identified with the interior in R
3 of the one-sheet

hyperboloid: {(x, y, z)/x2 + y2 < 1 + z2}.
– for any x̃ in ÃdS, let Ai be the affine domain A(δix̃) (recall that δ generates the

Galois group of p̄). Then, the affine domains Ai are disjoint 2 by 2, ÃdS is the union of

the closures Ai, and two such closures Ai, Aj are disjoint, except if j = i ± 1 (keeping

away the trivial case i = j), in which case Aj ∩ Ai is a totally geodesic surface isometric
to a connected component of p(x̃)∗.

In other words, the universal anti-de Sitter space can be obtained by adding up a bi-
infinite sequence of affine domains, every affine domain being attached to the next one
along a copy of the hyperbolic plane.

3.6. The projectivized timelike tangent bundle. We will also consider the projec-
tivized timelike tangent bundle: it is the bundle PT−1AdS over AdS admitting as fibers
over a point x of AdS the set of timelike rays in TxAdS. It can also be defined as the
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Figure 1. Universal anti-de Sitter space as a sum of affine domains.

subset T of AdS × AdS formed by pairs (x, y) such that 〈x | y〉 = 0. Indeed, for such a
pair, the tangent direction at t = 0 of the curve t 7→ cos tx + sin ty for t ≥ 0 defines a
timelike ray in TxAdS, and every timelike ray can be obtained in this manner in an unique
way.

It will be useful to consider T as a quadric in E×E. For convenience, we write explicitly
the definition:

Definition 3.4. The projectivized timelike tangent bundle T is the set of pairs (x, y) in
E × E such that:

– | x |=| y |= −1,
– 〈x | y〉 = 0.

Using the canonical parallelism of the vector space E ×E, we can identify the tangent
space to T over (x, y) with the vector space of vectors (u, v) ∈ E × E such that:

– 〈x | u〉 = 〈y | v〉 = 0,
– 〈x | v〉 + 〈u | y〉 = 0.
Define | (u, v) |2 as the sum 1

4
(Q(u) + Q(v)). It endows T with a pseudo-riemannian

metric.
The diagonal action of O(2, 2) on E ×E preserves T , and the restriction of this action

on T is isometric for the pseudo-riemannian metric we have just defined. We claim that
this metric is lorentzian. Indeed, by transitivity of the O(2, 2)-action, it suffices to check at
the special point (x, y) = ((1, 0, 0, 0), (0, 1, 0, 0)). Tangent vectors at this point correspond
to pairs (u, v), with u = (0, α, η, ν) and v = (−α, 0, η′, ν′). The pseudo-riemannian norm
is therefore − 1

2
α2 + 1

4
(η2 + ν2 + η′2 + ν′2). The claim follows.

Observe that the identification of T with PT−1AdS defined above is O(2, 2)-equivariant,
where the O(2, 2)-action on PT−1AdS to be considered is the action induced by the dif-
ferential of its isometric action on AdS.

The space T admits two connected components: one of them, called T +, corresponds
to future-oriented timelike tangent vectors to AdS, and the other, called T −, corresponds
to past-oriented timelike tangent vectors.

4. Conformal embedding of AdS in the Einstein Universe

Sometimes (for example, when the causality notion is involved, see next §), it is worth
considering the natural embedding of AdS in the so-called Einstein Universe (see [23]).

Let Qn be the quadratic form −u2 − v2 + x2
1 + . . . x2

n on R
n+2 (we only consider here

the cases n = 2 or n = 3). Let Qn be the projection of {Qn = 0} is the sphere S
n+1 of
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half-directions. As we have seen above, Q2 = Q can be naturally thought as the (Klein)
boundary of AdS.

The n-dimensional Einstein universe, denoted by Einn, is the quadric Qn, equipped
with a conformally lorentzian structure as follows: let π : R

n+2 \ {0} → S
n+1 be the

radial projection. For any open domain U in Qn, and any section σ : U → R
n+2, we can

define the norm Qσ(v) of any tangent vector v as the Qn norm of dσ(v). We obtain by
this procedure a lorentzian metric on U . This lorentzian metric depends on the selected
section σ, but if σ′ = fσ is another section, then Qσ′ = f2Qσ. Hence, the conformal
class of Qσ does not depend on σ. Moreover, the choice of a representant (of class Cr)
of this conformal class is equivalent to the choice of a section (of class Cr) of π over U .
Eventually, the group of conformal transformations of Einn is O(2, n).

As a first application of this remark, we obtain that Einn is conformally isomorphic to
S

n−1 × S
1 equipped with the metric ds2 − dt2, where ds2 is the usual metric on the unit

sphere S
n−1, and dt2 the usual metric on S

1 ≈ R/2πZ. This lorentzian metric appears
when we select the global section σ with image contained in the sphere u2 + v2 + x2

1 +

. . . + x2
n = 2 of R

n+2. We will denote by p : Êinn ≈ S
n−1 × R → Einn the cyclic covering

(it is the universal covering when n ≥ 3) (it is coherent with the convention in § 3.4 in

view of the natural embedding ÃdS ⊂ Êin3, see remark 4.8 below). Observe that Einn is
time-orientable.

Throughout this paper, we denote by d the spherical distance on S
n−1. Keeping in

mind the identification Êinn ≈ S
n−1 × R, timelike curves in Êinn correspond to curves

t 7→ (ϕ(t), t) where t describes some segment I ⊂ R and ϕ : I → S
n−1 is a contracting

map (i.e., the spherical distance d(ϕ(t), ϕ(t′)) is strictly less than | t − t′ |). When ϕ is
just 1-lipschitz, the curve t 7→ (ϕ(t), t) is only causal.

It is well-known that the notion of lightlike geodesic is still meaningful in the confor-
mally lorentzian context, but they are not naturally parametrized. More precisely, if we
forget their parametrizations, lightlike geodesics does not depend on the lorentzian metric

in a given conformal class. Under the identification Êinn ≈ S
n−1×R, inextendible lightlike

geodesics are curves t 7→ (ϕ(t), t) where ϕ : R → S
n−1 is a geodesic on the sphere.

Theorem 4.1. ([24]) The Einstein space Êinn is universal in the category of locally
conformally flat lorentzian spaces; i.e. every simply connected lorentzian manifold of di-

mension n which is conformally flat can be conformally immersed in Êinn.

We will not give a proof of this theorem here, but will exhibit the natural embedding
of anti-de Sitter space AdS in Ein3: let v be any spacelike vector in R

5; and v⊥ its Q3-
orthogonal hyperplane in R

5. Let A(v) be the projection in S
4 of the intersection between

{Q3 = 0} and one connected component of the complementary part of v⊥, and let ∂A(v)
be the projection of {Q3 = 0} ∩ v⊥. The notations A and ∂A will be reserved to the
special case v = v0 = (0, . . . , 0, 1). There is a natural section σ over A(v): take σ(x)
such that the Q3-scalar product between σ(x) and v is equal to ±1. A straightforward
computation shows that (A(v), Q̄σ) is isometric to AdS.

Definition 4.2. A anti-de Sitter domain in Ein3 is an open domain A(v) for some
spacelike vector v in R

5.

Remark 4.3. The notation is a little misleading since every v defines actually two do-
mains, since R

5 \ v⊥ has two connected components. We can withdraw this undeter-
minancy by defining more precisely A(v) as the radial projection of {x/〈x|v〉 = −1}.
Anyway, both connected components are conformal copies of AdS, glued along their com-
mon conformal boundary ≈ Ein2. This decomposition is not the decomposition discussed
in the remark 3.1: indeed, Ein3 ≈ S

2 × S
1 is not homeomorphic to S(E) ≈ S

3! See also
remark 5.27.

Remark 4.4. Similar constructions can be performed even when v is not spacelike. When
v is timelike, we obtain an open domain S(v) conformally isometric to de 3-dimensional
de Sitter space. When v is lightlike, this procedure provides a conformal idendification,
called stereographic projection, between every connected component of the complement of
a lightcone with the three dimensional Minkowski space.
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Remark 4.5. In order to get a satisfying understanding of the geometry involved, it is
useful to ”scan” these domains in S

2 × S
1: the standard anti-de Sitter domain A is the

domain in D
2 × S

1 is S
2 × S

1 , where D
2 is the upper hemisphere {x2 > 0}. A typical de

Sitter domain is S
2×]0, π[. A typical affine domain (§ 3.5) of AdS conformally embedded

in Ein3 is D
2×]0, π[: this is the intersection between a anti-de Sitter domain and some de

Sitter domain.
Finally, the conformal embedding of AdS in Ein3 lifts to a conformal embedding of

ÃdS in Êin3: it follows that ÃdS is conformally equivalent to D
2 × R, equipped with the

metric ds2 −dt2, where ds2 is the restriction to the hemisphere D
2 of the spherical metric.

Remark 4.6. Sometimes, we will consider the projection of Einn in RP n+1: we denote
it by Einn. It is still time-orientable. Observe that de Sitter domains in Einn projects
injectively in Einn as complementary parts of spacelike hyperplanes. It follows that de
Sitter domains in Einn correspond to intersections of Einn with affine patches of RPn+1

with spacelike boundaries.

Remark 4.7. When v is spacelike, ∂A(v) is a copy of Ein2: we call it a Einstein flat
subspace. We can also see ∂A(v) as the conformal boundary of A(v). Of course, there
is a natural identification between this conformal boundary and the Klein boundary Q2.
Furthermore, A(v) = A(v) ∪ ∂A(v) is canonically identified with the closure ADS ∪ Q of
ADS in S(E), but this identification is not analytic, even if its restrictions to respectively
A(v), ∂A(v) are individually analytic.

Remark 4.8. The projection of Êinn over Einn is a cyclic covering. Denote by δ a
generator of the group of covering transformations. It is coherent with the convention
in § 3.4 since the restriction of this covering transformation to the image of the natural

embedding ÃdS ⊂ Êin3 is indeed the generator of the Galois group of p̄.

We say that two points in Êinn are opposite if one of them is the image under δ of

the other. It is easy to give another equivalent definition: for every element x of Êinn,
the lightlike geodesics containing x admits many other common intersection points, that
are precisely the iterates of x under δ. Therefore, two points x, y are opposite if every
lightlike geodesic containing one of them contains the other, and if the lightlike segments
joining x to y are all disjoint.

Remark 4.9. The Einstein space Êinn admits of course many different parametrizations
by S

n−1 × R for which the conformal lorentzian structure is represented by ds2 − dt2.
Anyway, in all these parametrizations, pair of opposite points always have coordinates of
the form (x, θ), (−x, θ + π).

Remark 4.10. Accordig to § 3.3, Ein2 is naturally identified with the projection in
P (gl(2, R)) of nonzero non-invertible matrices. For any such matrice A, let K(A) be the

kernel of A, and I(A) the image of A. Then, A 7→ ([I(A)], [K(A)]) identifies Ein2 ≈ Q
with RP 1 × RP 1. Denote by RP 1

L (resp. RP 1
R) the leaf space of the left (resp. right)

foliation GL (resp. GR), i.e., the foliation of RP 1 × RP 1 with leaves {∗} × RP 1 (resp.

RP 1 × {∗}). An usual point of view is to consider every point of Q as the intersection
between a leaf of the left foliation and a leaf of the right foliation. In this spirit, we can
write Q = RP 1

L × RP 1
R.

The extension of the isometric action of G × G (with G = PSL(2, R)) to the Klein

boundary Q corresponds to the diagonal action of G×G on RP 1 ×RP 1, where the action
of G on RP 1 is the usual projective action. Let GL (resp. GR) be the group of left

(resp. right) translations of G on itself: the group of conformal isometries of Q is then
the product GL ×GR. Observe that the leaves of the left and right foliations are lightlike
geodesics.

Ein2 ≈ Q can be considered in a similar way: it is bifoliated by two transverse foliations

GL, GR. Every leaf of the left or right foliation is canonically the double covering R̂P
1

of
RP 1. Every leaf of GL intersects every leaf of GR at two points, one opposite to the other.
Finally, the leaf space of the left (resp. right) foliation is canonically identified to RP 1

L

(resp. RP 1
R).

This description lifts to Êin2: it admits a pair of transverse foliations ĜL, ĜR. The
respective leaf spaces are still projective lines RP 1

L, RP 1
R. The leaves themselves are
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universal coverings of the projective line. Finally, the intersection between a leaf of the
right foliation and a leaf of the left foliation is a δ-orbit.

5. Causality relation

In this section, we discuss the notion of causality in AdS and Einn. A fundamental
observation is that the causality relation in AdS and Einn is trivial: for any pair (x, y) in
AdS or Einn, there is a timelike curve joining x and y! Actually, this notion is interesting

only in the universal covering ÃdS ≈ D
2 ×R, and in the cyclic covering Êinn ≈ S

n−1 ×R.
The main purpose of this § is to show that, even if the achronality notion is not stricto

sensu well defined in AdS or in Einn, projections in these spaces of achronal subspaces of

ÃdS or of Êinn are nicely described.

5.1. Achronality in Êinn. We leave as an exercise to the reader the following lemma
(we just stress out that any causal curve can intersect every S

n−1 × {∗} in at most one
point):

Lemma 5.1. Two points (x1, θ̃1) and (x2, θ̃2) are causally related in Êinn ≈ S
n−1 × R

if and only if the distance in S
n−1 between x1 and x2 is less or equal to |θ2 − θ1|. These

points are strictly causally related if the distance between x1 and x2 is less to |θ2 − θ1|. In
particular, they are necessarily causally related if |θ2 − θ1| is greater than π.

Corollary 5.2. Achronal subsets of Êinn are graphs of 1-lipschitz functions f : E →
R, where E is a subset of S

n−1. Such a subset is strictly achronal if and only if f is
contracting.

Corollary 5.3. The closure of an achronal subset is achronal.

It is easy to prove that:

Corollary 5.4. Êinn is strongly causal.

Furthermore:

Corollary 5.5. Every S
n−1 ×{∗} is a Cauchy hypersurface in Êinn. In particular, Êinn

is globally hyperbolic.

Lemma 5.6. Every closed achronal subset Λ of Êinn is contained in a de Sitter domain,
except if it is contained in the past lightcone and future lightcone of two opposite elements
of itself (see remark 4.8).

Proof Let (x+, θ+), (x−, θ−) be elements of Λ where the θ-coordinate attains respectively
its maximum and mimimum value: if θ+ − θ− is strictly less than π, then the lemma is
proved, since Λ is contained in some de Sitter domain of the form S

n−1×]−θ−− ǫ, θ+ + ǫ[,
with 2ǫ less than π − θ+ + θ−. On the other hand, θ+ − θ− is less than π since π is the
diameter of the hemisphere. Hence, we have only to deal with the case θ+ − θ− = π.
In this case, the distance between x+ and x− on the sphere has to be precisely π, and
(x+, θ+), (x−, θ−) are opposite points (in the meaning of definition 4.8). Moreover, for
any (x, θ) in Λ, x lies on a minimizing geodesic of S

n−1 between x+ and x−. It follows
that θ must be equal to θ+ − d(x, x+) = θ− + d(x, x−). In other words, Λ is contained in
the past lightcone of (x+, θ+) and the future lightcone of (x−, θ−).

The particular case appearing in lemma 5.6 deserves a particular appellation.

Definition 5.7. A subset of Êinn is pure lightlike if it is contained in the past lightcone
and future lightcone of two opposite elements of itself. If not, it is generic.

We point out the obvious fact that a strictly achronal set is generic.

Remark 5.8. The proof of 5.6 actually shows that an achronal subset is pure lightlike as
soon as it contains two opposite points.
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5.2. Achronality in Einn.

Definition 5.9. An achronal (resp. strictly achronal) subset of Einn is the projection of

an achronal (resp. strictly) achronal subset of Êinn.

Our main purpose here is to provide an effective criterion recognizing achronal subsets

of Einn. The way to recognize projections of pure lightlike subsets of Êinn is obvious:

Definition 5.10. A closed subset Λ of Einn is pure lightlike if it is contained in the future
lightcone of some element x and in the past lightcone of another element y, where x and
y are opposite points in Λ. Non pure lightlike closed subsets of Einn are said generic.

We leave apart the pure lightlike case, and consider a generic subset Λ of Einn. Ac-
cording to lemma 5.6, to have any chance to be achronal, Λ has to be contained in some
de Sitter domain S(v0) (with v0 a timelike vector of R

n+2).
Denote by P0 the affine hyperplane {x/〈x | v0〉 = −1}. Then, Λ is the projection in

Qn ⊂ S
n of some subset Λ(v0) of Qn(v0) = P0 ∩ {Qn = 0}.

Definition 5.11. Two elements of Einn are (strictly) causally related relatively to S(v0)
if they are (strictly) causally related in the de Sitter domain S(v0).

Defining a notion of causality relatively to S(v0), we obtain a notion of achronality
relatively to S(v0).

Proposition 5.12. Two points x, y in Qn(v0) project in S(v0) to (strictly) causally
related points relatively to S(v0) if and only the Qn-scalar product 〈x|y〉 is nonnegative
(resp. positive).

Proof Prove by checking in obvious cases and using the transitivity of the action of
the stabilizer of v0 in SO(2, n) on the sets of timelike, lightlike and spacelike segments
contained in P0.

Corollary 5.13. The notions of causal relation and strictly causal relation are indepen-
dant of the choice of v0, i.e., if S(v0) and S(v1) are de Sitter domains containing both x
and y, then x, y are (strictly) causally related relatively to S(v0) if and only if they are
(strictly) causally related relatively to S(v1).

Proof If x, y in {Q = 0} ∩ 〈.|v0〉 = −1 and x′, y′ in {Q = 0} ∩ 〈.|v1〉 = −1 project on the
same points in S(v0) ∩ S(v1), then we have x′ = λx and y′ = µx with λ, µ > 0. Hence,
〈x|y〉 and 〈x′|y′〉 have the same sign.

Proposition 5.14. A generic subset of Einn is (strictly) achronal if and only if it is
contained in some de Sitter domain, and (strictly) achronal relatively to every de Sitter
domain containing it.

Proof Let Λ be a generic subset of Einn contained in some de Sitter domain.
Assume first that Λ is (strictly) achronal, i.e., is the projection of some (strictly)

achronal subset Λ̂ of Êinn. According to lemma 5.6, Λ̂ is contained in some de Sitter

domain U . Since Λ̂ is (strictly) achronal in Êinn, it is a fortiori (strictly) achronal when
considered as a subset of U . It follows that Λ is (strictly) achronal with respect to the
de Sitter domain p(U). This, together with corollary 5.13, implies one implication in
proposition 5.14.

Assume now that Λ is (strictly) achronal relatively to some de Sitter domain S(v0).

Let U be any de Sitter domain in Êinn projecting bijectively to S(v0), and let Λ̂ be the

unique subset of U such that p(Λ̂) = Λ. Assume that some timelike (causal) curve c joins

in Êinn two points p and p′ in Λ̂. Without loss of generality, we can assume that c is

future oriented. First of all, c cannot be contained in U , since Λ̂ is (strictly) achronal as

a subset of U . On the other hand, U is the domain of Êinn between its two boundary
components ∂U±, where ∂U+ is a flat sphere is the future of U , and ∂U− a flat sphere in
the past of U . Hence, starting from p, the curve c must escape from U through ∂U+, and

then cannot reenter in U , i.e., cannot reach p′ (in other words, de Sitter domains in Êinn
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are causally convex). This contradiction shows that Λ̂ is (strictly) achronal, and therefore,
the same is true for Λ.

We now provide a very helpful characterization of achronal subsets in Einn, which can
be proved in the same way than proposition 5.12:

Lemma 5.15. The projections [x], [y] in Einn of two points x, y in Qn(v0) are strictly
causally related in S(v0) if and only if the restriction of Qn to the segment ]x, y[ admits
only positive value. They are joined by a lightlike geodesic if and only if the segment ]x, y[
is contained in {Qn = 0}.

Recall that S(E) is the double covering of RP 3: we thus have a well-defined notion of
convex hull in S(E).

Corollary 5.16. A generic subset of Ein2 is achronal if and only if its convex hull in
S(E) is contained in the closure in S(E) of the Klein model ADS.

Proof Immediate corollary of lemma 5.15.

Remember that extremal points of a closed convex C set are points which do not belong
to segments ]x, y[ with x, y in C:

Lemma 5.17. An achronal subset of Ein2 is strictly achronal precisely when the inter-
section points between its convex hull C and Ein2 are all extremal points of C.

Proof Observe that a non-extremal point of the convex hull belonging to Ein2 is the
projection of a sum

∑
i=1,..,k tiui with ui in some Λ(v0), 0 < ti < 1, k ≥ 2, and ui 6= uj if

i 6= j. Then, 〈∑ tiui|
∑

tiui〉 =
∑

titj〈ui|uj〉 can be zero only if all products 〈ui|uj〉 are
null, which precisely means that every ui is causally related to every uj .

Remark 5.18. Let y, y′ be two non-causally related points in Êinn. Let p, p′ be two
points in R

n+2 such that p(y) = [p], p(y′) = [p′]. Since y and y′ are not causally related,
according to proposition 5.12, the quantity 〈p|p′〉 is negative: we can select p, p′ such
that this quantity is actually −2. Then, there is a basis of R

n+2 for which the quadratic
form Qn still admits the expression −u2 − v2 + x2

1 + x2
2 + . . . + x2

n and for which the
coordinates of p and p′ are respectively (1, 0, 1, 0, 0, . . . , 0) and (1, 0,−1, 0, 0, . . . , 0). For
this choice of coordinates, when we select the section σ : Einn → R

n+2 taking value in
the sphere u2 + v2 + x2

1 + . . . + x2
n = 2, we obtain an identification Einn ≈ S

n−1 × R

where the conformal structure is still represented by ds2−dt2 but now with the additional
requirement that p, p′ have coordinates (x, 0), (−x, 0).

5.3. Achronality in AdS. Keeping in mind the identification of ÃdS with D
2 × R ⊂

S
2 × R ≈ Êin3:

Lemma 5.19. Two points in ÃdS are (strictly) causally related if and only if they are

(strictly) causally related in Êin3.

Proof Let x̃, ỹ be two points in ÃdS. Clearly, if they are (strictly) causally related

in ÃdS, they are (strictly) causally related in Êin3. The inverse follows directly from
Lemma 5.1.

According to Remark 2.7 and Corollary 5.4:

Lemma 5.20. ÃdS is strongly causal.

Corollaries 5.2 and 5.3 imply:

Lemma 5.21. Achronal subsets of ÃdS are graphs of 1-lipschitz functions f : E →
R, where E is a subset of D

2. Such a subset is strictly achronal if and only if f is
contracting.

Lemma 5.22. The intersection between the closure of an achronal subset of ÃdS and

∂ÃdS is an achronal subset of Êin2.



CAUSAL ACTIONS AND LIMIT SETS 15

Define generic subsets of ÃdS as subsets for which the intersection between their closure

and ∂ÃdS is a generic in Êin2. Lemma 5.6 now becomes:

Lemma 5.23. Generic achronal subsets of ÃdS are contained in affine domains.

Define (strictly) achronal domains of AdS as projections of (strictly) achronal domains

of ÃdS. Proposition 5.14 now becomes:

Proposition 5.24. A generic subset of AdS is (strictly) achronal if and only if it is
contained in some affine domain, and (strictly) achronal in every affine domain containing
it.

5.4. Causality relation between AdS and ∂AdS. Since Ein2 is the boundary of
AdS in Ein3, we have the notion that points in AdS can be causally related to points
in Ein2 ≈ ∂AdS. This notion can be easily understood by considering the identification
between AdS and D

2 × S
1: the boundary of AdS is then ∂D

2 × S
1 ≈ Ein2. Then, (x, θ) in

D
2 × S

1 is causally related to (y, θ′) in ∂D
2 ×S

1 if and only if d(x, y) ≤| θ− θ′ |. It follows
easily:

Lemma 5.25. Let E be a strictly achronal subset of AdS. Then, the closure of E in AdS
is strictly achronal. The closure E of E in AdS∪∂AdS is not necessarily strictly achronal,
but if two points in this closure are causally related, then they both belong to ∂AdS. In
particular, no point of E is causally related to a point of E.

The conformal completion A ∪ ∂A of AdS is naturally identified with the Klein com-
pletion ADS ∪ Q (see remark 4.7). It is also useful to understand the causality relation
between points of AdS and points in ∂AdS, but when the last one is considered as the
Klein boundary, not the conformal boundary:

Lemma 5.26. Let x be an element of ADS, and let y be an element of the Klein boundary
Q. Let I =]x, y[ be the shortest segment between x and y (observe that x and y are never
opposite in S(E)). Then, x and y are causally related if and only if I is contained in
ADS. There are strictly causally related if and only if the projective line d containing I is
not lightlike, i.e., is transverse to Q. If d is tangent to Q, then I is a lightlike geodesic:
considered as elements of Ein3, x and y are joined by a lightlike geodesic.

Remark 5.27. In remark 4.3, we have observed that Ein3 is obtained by glueing confor-
mally along their boundaries two copies of AdS. In remark 3.1, we have seen that S(E)
can also be considered as the union of two copies of AdS, glued along their common
Klein boundary. But there is a main difference here: ADS is the projection of {Q = −1}
equipped with the restriction of Q, whereas the complement in S(E) of its closure is the
projection of {Q = 1} equipped with the restriction of −Q. Hence, the identification
between the boundaries of these copies of AdS does not preserve the causality notion: it
sends causal curves to achronal topological circles!

6. Dualities

Let E∗ be the dual of E. The quadratic form Q defines a map ♭ : E → E∗ by
x♭(y) = Q(x, y). The image under ♭ of Q is a quadratic form Q∗ on E∗. Let S(E) = S(E)
and S(E∗) be the associated half-projective spaces. The map ♭ induces a polarity S(E) →
S(E∗) that we still denote by ♭. We denote by ♯ the inverse map of ♭.

We have denoted by Ein2 the projection of the null cone of Q in S(E); the nullcone of
Q∗ is a dual copy Ein∗

2 of Ein2. Elements of Ein∗
2 can be interpreted as lightcones in Ein2;

more precisely, x♭ is the lightcone emitted from x in ADS.
Observe that ♭ and ♯ respect the causality notion. In particular:

Lemma 6.1. The image Λ♭ of a (strictly) achronal subset Λ of Einn by ♭ is (strictly)
achronal.
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We will use another notion of duality, more traditional, completely independant from
the notion discussed above: the duality of convex subsets of S(E). We recall basic facts
(cf. [19]):

A convex cone J of E is a convex subset stable by positive homotheties. It is proper if
it is nonempty and its closure J̄ does not contain a complete affine line. A convex subset
C of S(E) is the projection of a convex cone J(C) of E. It is called proper if J(C) can
be chosen proper.

For any convex cone J , we define its dual by J∗ = {α ∈ E∗/ ∀x ∈ J̄ \ {0} α(x) < 0}.
This provides a construction of dual convex C∗ ⊂ S(E∗) for any convex subset of S(E)
(which could be empty!).

Proposition 6.2. A convex subset C has empty interior if and only if its dual C∗ is not
proper. If C is open and proper, then the same is true for C∗, and C∗∗ = C.

Recall that a support hyperplane to an open convex subset C is a projective hyperplane
meeting the closure of C but not C itself.

Proposition 6.3. Let C be a proper open convex subset of S(E). The support hyperplanes
of C are the projections in S(E) of the boundary points of C∗. More precisely, if [Kerα]
is a support hyperplane of C at [x] ∈ ∂C, then [Kerx∗] is a support hyperplane of C∗ at
[α] ∈ ∂C∗.

7. Spacelike and nontimelike surfaces

The notion of nontimelike hypersurfaces in Einn ≈ S
n−1 × S

1 or AdS ≈ D
2 × R can be

easily extended to the nonsmooth case: define it as closed subsets which are locally the
graphs of 1-Lipschitz maps from S

n−1 into S
1 or from D

2 into S
1. If moreover the Lipschitz

maps are contractant, i.e., are functions f such that the equality |f(x) − f(y)| = d(x, y)
implies x = y, then the nontimelike surface is said spacelike. The same notions apply in

the coverings Êinn and ÃdS.
Observe that since Lipschitz functions are differentiable almost everywhere. For any

C1-curve c : [0, a] → D
2 in the domain of definition of f , let l(c) be the integral over

[0, a] of the square root of the AdS-norm of (c′(t),Dc(t)f(c′(t))). Define then the distance
between (x, f(x)) and (y, f(y)) as the infimum of the l(c). This procedure endows the
spacelike surface S with a distance. Of course, this construction applies more generally to
spacelike hypersurfaces in any lorentzian space. For more details, see [9].

Achronal (resp. strictly achronal) hypersurfaces are nontimelike (resp. spacelike) hy-
persurfaces, but the converse is not true. The main goal of this § is to discuss under which
additionnal hypothesis a nontimelike hypersurface is achronal.

7.1. The redshift phenomenom. Everyone knows the famous ”redshift principle”, may-
be most famous in the form of ”twins paradox” of Langevin. A version of this principle is
the following:

Let M be a lorentzian manifold. For any timelike tangent vector v at a point x of M ,
the orthogonal projection in TxM on the orthogonal hyperplane v⊥ increases the length
of spacelike vectors: this fact is at the origin of the so-called ”redshift phenomenom”. It
implies the well-known ”twins paradox”. There is another powerfull consequence, already
observed in [30].

Assume the existence of one-parameter group Φt of isometries of M such that the orbits
of Φt are the fibers of a fibration π : M → Q. The base space Q can be equipped with a
riemannian metric as follows: for any point x of Q, and any tangent vector v of Q at x,
define the norm of v as the norm in M of any vector orthogonal to the fiber π−1(x) and
projecting on v by the differential dπ. This is well-defined since the Φt are isometries.

Recall that we equipped spacelike surfaces with a distance function:

Lemma 7.1. The composition π ◦ f : S → Q is distance increasing.

Proof When f is C1, the lemma follows from the observation above. The general case is
a limit case. Details are left to the reader.
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When M is the anti-de Sitter space AdS, we can take as one-parameter subgroup
the subgroup SO(2) of SO0(2, 2) acting in E on the (u, v) coordinates and fixing the
coordinates x1, x2 (recall that we actually used this subgroup to define the time-orientation
of AdS). The quotient space of this timelike action equipped as above with a riemannian
metric is isometric to the hyperbolic space : therefore, spacelike hypersurfaces in anti-de
Sitter space correspond to distance increasing maps into H

2.

Proposition 7.2 (Lemma 6 in [30]). Let S be a complete riemannian surface, and let
f : S → AdS be an isometric immersion. Then, f is an embedding, and f(S) is the graph
of some map H

2 → S
1.

Every timelike geodesic in AdS is the fiber of some fibration π as above. It follows that
under the hypothesis of Proposition 7.2, f(S) meets every timelike geodesic in one and
only one point.

7.2. Proper nontimelike surfaces. The conformal coordinates enable to extend the
proposition 7.2 to the non-timelike case. By proper nontimelike surface f : S → AdS,
we mean an immersion such that the immersion f is proper, i.e., that the preimage of a
compact domain is compact.

Proposition 7.3. Let f : S → AdS be a proper nontimelike surface without boundary.
Then, f is an embedding, and f(S) is the graph of some 1-Lipschitz map D

2 → S
1.

Proof The projection π : Ein3 → S
2 induces a projection πa : A → D

2 (cf. remark 4.5).
We claim that πa ◦ f is covering map. We will justify it by proving that it has the path
lifting property. For this purpose, it is enough to prove it for paths in the open hemisphere
D

2 which are segments of geodesics of D
2 ⊂ S

2: let [a, b] be such a geodesic segment, and
such that a = f(π(x)) for some element x of S. Since π ◦ f is open, there is a section σ of
π ◦ f defined over a subinterval [a, c[⊂ [a, b]. The point is that p ◦ f ◦σ : [a, c[⊂ [a, b] → S

1

is then a 1-Lipschitz map (where p is the projection on the first factor). Therefore, it
can be continuously extended over c. The properness of f then implies that σ can be
extended over c. Hence, c = b, and σ can be extended over all [a, b]: f ◦ π has the path
lifting property.

We thus know that f ◦π is a covering map over D
2, hence a homeomorphism. It follows

that f(S) is the graph of a 1-Lipschitz map D
2 → S

1, and that f is an embedding.

From now, we will assume that S fits inside AdS, i.e., that f : S → AdS is an inclusion
map. The additional advantage of our point of view is that the proof of lemma 7 of [30],
which was a delicate matter in this paper, now appears as completely obvious:

Proposition 7.4. A proper nontimelike hypersurface S in AdS extends continuously in
A∪∂A ⊂ Ein3 as a closed topological disk, whose boundary ∂S is a topological nontimelike
circle in ∂A ≈ Ein2.

Proof Any 1-Lipschitz map from D
2 into S

1 extends continuously as a 1-Lipschitz on the
closure of D

2 in S
2.

Consider now the universal covering ÃdS. Select any connected component S̃ of the

preimage of S in ÃdS by the covering map. Clearly, S̃ is the graph of a 1-Lipschitz maps
from D

2 into R. Moreover:

Corollary 7.5. A proper nontimelike surface in ÃdS meets every timelike geodesic in one
and only one point.

Corollary 7.6. Proper nontimelike surfaces in AdS are achronal subsets of AdS.

Pure lightlike nontimelike surfaces in ADS ≈ AdS are easy to describe:

Corollary 7.7. Pure lightlike surfaces in ADS are connected components of intersections
between ADS and projections in S(E) of lightlike hyperplanes of E.
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7.3. Embeddings in H
2 × H

2. Recall the projectivized timelike tangent bundle T (cf.
definition 3.4); more precisely, the connected component T + corresponding to future ori-
ented timelike vectors.

Definition 7.8. The Gauss flow is the flow Gt on T + defined by:

Gt(x, y) = (x cos t + y sin t,−x sin t + y cos t)

This flow commutes with the O0(2, 2)-action. Moreover, it is easy to check that Gt is
isometric. The Killing vector field Z generating Gt is easy to describe (see § 3.6 for the
convention on tangent vectors to T +):

Z(x, y) = (y,−x)

Let QG be the orbit space of Gt, and let πG : T + → QG be the quotient map. We
equip QG with a riemannian metric as discussed in § 7.1: the norm of a tangent vector ζ
to QG is the norm of any tangent w to T + orthogonal to Z and such that dπG(w) = ζ.

Remark 7.9. Let’s be more precise: let w = (u, v) be a tangent vector at (x, y) ∈ T +.
The norm of ζ = dπG(w) is the norm of w+λZ, where λ is the unique real number such that
w + λZ is orthogonal to Z. A straightforward computation shows λ = 〈y | u〉 = −〈x | v〉.
Hence, the norm of ζ is 1

4
(| u |2 + | v |2) + 1

2
〈x | v〉2.

Proposition 7.10. The riemannian orbit space QG is homothetic to the riemannian
product H

2 × H
2 of two copies of the hyperbolic plane.

Proof Identify AdS with G = SL(2, R), and consider the upper-half plane model of H
2.

Let i denote the point
√
−1 in H

2. Let x0 be the identity matrice, and y0 be the matrice
representing the rotation by angle π/2 around i. Observe that under the indentifications
above, (x0, y0) belongs to T + ⊂ SL(2, R) × SL(2, R). Define a G × G-equivariant map
F : T + → H

2 × H
2 as follows: if (x, y) = (gLx0g

−1
R , gLy0g

−1
R ), then F (x, y) = (gLi, gRi).

Observe that it is well-defined: indeed, if (gL, gR) fixes (x0, y0), then gL = gR commutes
with y0: gL = gR preserves i in H

2. Moreover, the preimage of (i, i) is precisely the Gt-
orbit of (x0, y0): it follows that F induces a homeomorphism between QG and H

2 × H
2.

The only remaining point to check is that F is a homothety; since it is equivariant, we
just have to consider the differential of f at (x0, y0). The computation can be performed
as follows: let A be an element of the Lie algebra G:

A =

(
α β
γ −α

)

Using lemma 7.9, we obtain that the norm in T + of the tangent vector to x0 of the

curve t 7→ (exp(tA)x0, exp(tA)y0) is α2

2
+ 1

8
(β + γ)2, whereas the norm in H

2 × H
2 of the

tangent vector at (i, i) of the image curve t 7→ (exp(tA)i, i) is (β + γ)2 + 4α2. It follows
that the restriction of F to every left GL-orbit is an isometry on the image H

2 ×{∗} with

the metric divided by 2
√

2.
A similar calculus holds for curves t 7→ (x0 exp(−tA), y0 exp(−tA)), proving that the

restriction of F to every GR-orbit is an homothety of factor 8−1/2 on {∗} × H
2. The

proposition follows from the fact that in T +, GL-orbits are orthogonal to GR-orbits, and
that every H

2 × {∗} are orthogonal to every {∗} × H
2.

Consider a C1 embedded spacelike surface S ⊂ AdS. For any x in S, let n(x) be
the unique future-oriented unit timelike vector normal to S at x: (x, n(x)) is an element
of PT+

−1AdS ≈ T +. In other words, the embedding of S in AdS lifts to an embedding

n : S → T +.

Definition 7.11. The Gauss map of S is n : S → T +.

Lemma 7.12. The image of the Gauss map is a topological spacelike surface in T +.
Moreover, the restriction of πG to the image of the Gauss map endowed with the induced
metric is an isometry.
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Proof Consider first the case where f is C2. Then, the Gauss map is C1. Let (u, v) be
a tangent vector to the image of n. By definition of the Gauss map, the tangent vector
u to S satisfies: 〈y | u〉 = 0. Hence, 〈x | v〉 = −〈y | u〉 = 0: u and v both belong to the

spaceilke 2-plane x⊥ ∩ y⊥: the sum of their norms is positive. These identities mean also
that (u, v) is orthogonal to the Killing vector field Z(x, y). It follows that the restriction
of πG to the image is an isometry. The C1-case is a limit case: any C1 spacelike surface
can be C1-approximated by a C2 spacelike surface. It follows that even in the C1-case,
the image of the Gauss map is locally achronal. Observe that a locally achronal surface
which is not locally acausal must contain a lightlike geodesic segment: we can apply the
argument above, leading to a contradiction. It follows that the image of the Gauss map is a
topological spacelike surface. Length for the induced metric is computed from integration
along Lipschitz acausal curves of the norms of tangent vectors, which are defined almost
everywhere. This tangent vectors, where they are defined, are orthogonal to Z. It follows
that the length of these acausal curves are equal to the length of their projections in QG.
Details are left to the reader.

Remark 7.13. The Gauss map n : S → T + in general is not isometric! Actually, the
metric along the image of n involves the second fundamental form of S. Observe that n
is isometric if and only if S is totally geodesic, and that n is conformal if and only if S is
totally umbilic.

Remark 7.14. Our choice of terminology is justified by the following observation: if St

is the image of S under the Gauss flow in the usual meaning, then n(St) is the image of
n(S) by the Gauss flow Gt we have defined above.

This observation extends to a much less regular situation: the case where S is maybe
non C1, but convex. This notion is meaningful, due to the local real projective structure
of AdS ≈ ADS:

Definition 7.15. An embedded topological spacelike surface S in AdS is future-convex if
any point x in S admits a geodesically convex neighborhood U in AdS such that for any y
in S ∩ U , the geodesic segment [x, y] is contained in the causal future of S ∩ U relatively
to U .

Remark 7.16. Observe that geodesic segments in U are restrictions of projective lines
of ADS. With the local description of spacelike subsets as graphs of functions, it follows
that S is future-convex if and only if it is convex in ADS ⊂ P (E) in the usual meaning,
and that it is ”curved in the future direction”.

Definition 7.17. Let S be a future-convex spacelike surface in AdS. The Gauss graph of
S is the set of pairs (x, y) ∈ T + such that:

– x belongs to S,
– there is a neighborhood U of x in AdS such that for every for any x′ in U ∩ S the

scalar product 〈x′ | y〉is nonpositive. In other words, the connected component P of y∗

containing x is a support hyperplane of S, such that S∩U is contained in the causal future
of P ∩ U .

Remark 7.18. When S is C1, the Gauss graph is the graph of the Gauss map as defined
in the definition 7.11.

In the sequel, we assume the reader acquainted with the familiar notion of convex
surfaces in P (E).

Proposition 7.19. The Gauss graph of a future-convex spacelike surface is a locally
embedded topological spacelike surface in T +.

Sketch of proof Let (x0, y0) be an element of the Gauss graph N (S) of a future-convex
spacelike surface S. There is a neighborhood U of x0 such that S ∩ U is contained in
the boundary of a proper compact convex subset C of S(E). Then, N (S) is contained in

the set C of pairs (x, y), where x belongs to ∂C, y♭ belongs to the boundary of the dual

convex C∗ ⊂ S(E∗), and y♭ is a support hyperplane to C at x. The set C is notoriously a
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topological surface, and it should be clear to the reader that N (S) contains a neighborhood
of (x0, y0) in C. It follows that N (S) is a topological surface near (x0, y0).

The local achronality of N (S) follows from the local achronality of S, and the fact that
if y is a point near y0 in the future of y0, then 〈x0 | y〉 is positive, which is a contradiction
since 〈y | x〉 should be nonpositive for every x in S.

Hence, the Gauss graph admits a natural distance (recall the definition in the beginning
of this §). Once more, we consider the general case as a ”limit case”of the regular one,
leaving to the reader the proof of the following lemma:

Lemma 7.20. The restriction of πG to N (S) is an isometry.

The distance in N (S) is evaluated by the computation of the ”length” of Lipschitz
curves. We will also need the following fact:

Lemma 7.21. Let c : [0, a] → N (S) be a Lipschitz curve. It is differentiable almost
everywhere. Any tangent vector c′(t) = (u, v) satisfies:

〈u | v〉 ≥ 0

Sketch of proof Once more, we only consider the regular case: we assume that S is
C2, and that the curve (x(t), y(t)) has tangent vectors (u(t), v(t)) = (x′(t), y′(t)). The
derivation of 〈y | x′〉 = 0 implies 〈x′ | y′〉 = −〈y | x′′〉. Since S is future oriented, the
second derivative x′′(t) must point towards the future of S, hence, in the future of the
support hyperplane at x contained in y∗. The negativity of 〈y | x′′〉 follows.

The general case is similar, once observed that convex surfaces are almost everywhere
C2.

8. Cauchy developments

In this §, we study Cauchy development in AdS of achronal subsets of AdS. It turns
out that Cauchy developments can be defined as invisible domains from achronal subsets
of ∂AdS. We start with the most familiar notion of Cauchy development of spacelike
surfaces (domain of dependance in [30]), and then to extend to the most general context.

8.1. Cauchy developments of spacelike surfaces. We consider in this section a proper

spacelike hypersurface S̃ in ÃdS. Actually, all the results apply if S̃ is more generally any
strictly achronal surface.

According to proposition 7.4, the boundary ∂S̃ of S̃ in ∂ÃdS ≈ Êin2 is an achronal
topological circle. We denote by S, ∂S the projections in AdS, Ein2.

Lemma 8.1. The past development P (S̃) is the set of points x in ÃdS such that every

lightlike geodesic containing x meets S̃ in its future.

Of course, the analogous property for F (S̃) is true.

Proof of 8.1 Assume that every lightlike geodesic containing x meets S̃ in its future.
Then, the set of points in S̃ belonging to a lightlike geodesic containing x is a topological
circle in S̃ ≈ D

2 and is therefore the boundary of a closed topological disk B of dimension
2. The union of this disk with the union L of the lightlike segments joining x to S̃ is a
topological sphere to which we can apply Jordan-Schoenflies Theorem: it is the boundary
of a topological disk B′. Any properly embedded causal path starting from x cannot
escape from B′ through L: it must therefore intersect B′ ⊂ S̃.

We pursue our investigation in the Klein model ADS. According to Lemma 5.23, since
it is generic, S̃ is contained in some affine domain. Therefore, it projects injectively in
AdS as a strictly achronal surface S, contained in some affine domain.

Definition 8.2. We define T (S) as the set of points x in ADS such that the affine domain
A(x) contains S.

Lemma 8.3. T (S) is a neighborhood of S.
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Proof By definition, T (S) is the set of elements x of ADS such that 〈x | y〉 is negative for
every y in S. In other words, in the terminology of § 6, T (S) is the intersection between
ADS and the image under ♯ of the dual of the convex hull Conv(S) of S in S(E).

Consider an element x0 of S. It is the projection of some vector v0 in E. Then, S is
the projection of some subset S(v0) in P0 (see § 5.2). Since S is achronal, it follows from
proposition 5.12 that for every x, y in S(v0), the scalar product 〈x | y〉 is negative. It
follows that T (S) contains S.

Moreover, an element x of S(v0) does not project to a point in the interior of T (S)
if and only if there is a sequence of points xn in S(v0) such that 〈x | xn〉 tends to 0.
Up to some subsequence, the projections in xn in ADS converge to some element x̄ of
ADS∪∂ADS. Then, x̄ would be a point in the closure of S in AdS∪∂AdS causally related
to the point x in S. It contradicts lemma 5.25.

Let T0(S) be the interior of T (S). It contains S. Select any element x0 in T0(S). Then,
S is contained in the affine domain A0 = A(x0). Actually, the fact that x0 belongs to
the interior of T (S) means that S is contained in a compact domain of the affine patch

V0 = V (x0). Hence, the closure S in AdS ∪ ∂AdS is a closed topological disc in V (x0),
with boundary ∂S contained in the one-sheet hyperboloid Q ∩ V0.

Proposition 8.4. The restriction of p to the Cauchy development C(S̃) is injective, with
image T0(S).

Proof First observe that T0(S) is contained in every affine domain A = A(x), with x in

S. Let Ã be the affine domain in ÃdS containing S̃ such that p(Ã) = A.

Let x̃ be an element of P (S̃). Consider a conformal parametrization of ÃdS by D
2 ×R

such that x̃ has coordinates (x0, 0), where x0 is the north pole, i.e., is the unique point

of D
2 at distance π/2 of ∂D

2. In these coordinates, S̃ is the graph of some contracting

function f : D
2 → R. Since x̃ is in the past of S̃, we have f(x0) > 0.

Every future oriented lightlike geodesic starting from x̃ intersect S̃: it follows that
there is an open topological disc B in D

2 containing x0, and such that f(x) = d(x0, x) for

every x in ∂B. Since f is contracting, and since any point in D
2

is at distance strictly

less than π/2 of some point in ∂B, it follows that the extension f̄ of f over D
2

takes

value in ]− π/2, π/2[. Since D
2

is compact, f̄ takes actually value in some closed intervall

[−π/2+ǫ, π/2−ǫ]. It follows that p(x̃) belongs to T0(S). In other words, the image p(P (S̃)

is contained in T0(S). Hence, since P (S̃) is connected, and since A contains T0(S), P (S̃)

is contained in Ã.
Applying a similar argument to F (S̃), we obtain that C(S̃) is contained in Ã, and that

p(C(S̃)) ⊂ T0(S).

Assume now that x̃ is an element of Ã such that p(x̃) belongs to T0(S), and select once

more a conformal parametrization of ÃdS by D
2 × R such that x̃ has coordinates (x0, 0),

where x0 is the north pole. The affine domain associated to x̃ is then the open domain
{(y, θ)/ | θ |< π/2}. Hence, since S̃ has to be contained in this affine domain, the map

f : D
2 → R admitting S̃ as graph takes value in ] − π/2, π/2[. More precisely, since p(x̃)

belongs to the interior of T (S), f takes value in some interval [−π/2 + ǫ, π/2 − ǫ].

If f(x0) = 0, x̃ belongs to S̃ ⊂ C(S̃). Assume f(x̃0) > 0, i.e., assume that x̃ is in the

past of S̃. Define g(y) = f(y) − d(y, x0). This function is continuous, positive on x0, and
negative near ∂D

2. Hence, any geodesic ray in D
2 starting from x0 admits some point

where g is 0. It means that any future oriented lightlike geodesic starting form x̃ intersect
S̃: x̃ belongs to P (S̃).

A similar argument proves that in the remaining case, i.e., when x̃ belongs to the future
of S̃, then it belongs to F (S̃). The proposition follows.

Corollary 8.5. T0(S) is globally hyperbolic, with Cauchy surface S.

Corollary 8.6. The Cauchy development C(S̃) is contained in a de Sitter domain.
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8.2. The Cauchy development as the invisible domain from ∂S.

Definition 8.7. For any point x of Ein2 ≈ Q, let Tx be the projective hyperplane in S(E)
containing x and tangent to Q. For any pair of points x, y of Q, let Exy be the open
half-space in S(E) bounded by Tx and Ty and containing the segment ]x, y[ contained in
ADS.

Definition 8.8. Let E(∂S) be the intersection of all Exy when (x, y) describes ∂S × ∂S
minus the diagonal.

Remark 8.9. The presentation above is suitable for getting some geometrical vision
of E(∂S). It is more relevant for the proofs below to consider the following equivalent
definition: recall that ∂S is the projection in ADS of a compact subset ∂S(v0) in {Q =
0} ∩ P (v0), where P (v0) is some affine hyperplane in E. Then, E(∂S) is the projection
of the set of elements v of E satisfying 〈v | x〉 < 0 for every x in ∂S(v0). In other words:

E(∂S) is the dual of the convex hull in P (E∗) of ∂S♭. We write: E(∂S) = Conv(∂S♭)∗.
Alternatively: E(∂S) = (Conv(∂S)∗)♯. Observe that the compactness of ∂S(v0) implies
that E(∂S) is open.

Remark 8.10. Using the conformal model ÃdS ≈ D
2 × R, we obtain another equivalent

definition: let f : ∂D
2 → R be the 1-Lipschitz map admitting as graph the topological

circle ∂S̃. Define f± : D
2 → R by:

- f−(x) is the supremum of f(y) − d(x, y) when y describes S
1,

- f+(x) is the infimum of f(y) + d(x, y) when y describes S
1.

Then, it is easy to check that f± are both 1-Lipschitz extensions of f . Moreover, it
follows easily from the arguments used in the proof of proposition 8.4 that E(∂S) ∩ ADS

is the projection of the domain E(∂S̃) = {(x, θ) ∈ D
2 × R/f−(x) < θ < f+(x)}. The

advantage of our definition 8.8 is to explicit the convex character of E(∂S).

Remark 8.11. The definition in remark 8.10 can be interpreted in the following way
(recall § 5.4): E(∂S) is the set of points of AdS which are not causally related to any
element of ∂S. Hence, it is appropriate to consider E(∂S) as the invisible domain from
∂S.

Remark 8.12. The extensions f± above can be defined in any metric space X for any
1-Lipschitz map f defined over a closed subset Y ⊂ X: they are still 1-Lipschitz, and any
extension F of f satisfy f− ≤ g ≤ f+. In general, f− and f+ can coincide on some closed
subset of X \ Y : the points belonging to some minimizing geodesic joining two points x,
y of Y such that |f(x) − f(y)| = d(x, y). In the case where X is the closed unit disc in
the euclidean plane and Y its boundary, the set f+ = f− is a lamination.

In the particular case we consider here, where X is a hemisphere and Y its boundary,
Y is totally geodesic, and extremities in Y of minimizing geodesics are opposite points
of the boundary sphere. Moreover, minimizing geodesics joining two given points form a
foliation of the hemisphere. We recover easily from this that when f correspond to the
generic topological sphere ∂S, then the associated E(∂S) ∩ ADS is open, i.e., f− < f+.

The definition in remark 8.10 implies easily:

Lemma 8.13. The convex E(∂S) is contained in ADS. The intersection between its
closure and Q is ∂S.

Proof Indeed, since f− = f+ over ∂D
2, the intersection between ∂D

2 ×R and the closure
{(x, θ) ∈ D

2 × R/f−(x) ≤ θ ≤ f+(x)} of E(∂S̃) in D
2 × R is simply the graph of f . The

lemma follows easily, since E(∂S) is convex.

In the same spirit:

Lemma 8.14. Any proper nontimelike topological hypersurface contained in ADS and
containing x, y in its closure is necessarily contained in the closure of Exy.

E(∂S) is thus a convex subset of S(E) containing S: in particular, it is not empty!
Actually, using the definition in remark 8.9, and since ∂S is in the closure of S, it is
straightforward to show the inclusion T0(S) ⊂ E(∂S). The inverse inclusion is true:
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Proposition 8.15. The invisible domain E(∂S) is equal to the Cauchy development
T0(S).

Proof Let x be a point in ∂T0(S)∩E(∂S). Select as usual a conformal parametrization of
the affine domain A(x) by D

2×] − π/2, +π/2[, such that x has coordinates (x0, 0), where
x0 is the North pole. The surface S is the graph of a 1-Lipschitz function f : D

2 → R.
Since x belongs to E(∂S), the restriction of f to ∂D

2 takes value in ] − π/2, +π/2[. On
the other hand, since x belongs to ∂T0(S), the map f takes value in [−π/2, +π/2], but

there is some element y of D
2

such that f(y) = ±π/2; let’s say, +π/2. Observe that y
cannot belong to ∂D

2. Hence, f(x0) ≥ π/2− d(x0, y) > 0: x is in the past of S. Consider
the function g : z 7→ f(z) − d(x0, z): it is negative on ∂D

2, and g(x0) is positive: it
follows, as in the proof of proposition 8.4 that x belongs to the past development P (S).
Similarly, if f(y) = −π/2, we infer that x belongs to the future development of S. This is
a contradiction since T0(S) is the Cauchy development of S.

According to corollary 8.6, T0(S) = E(∂S) is contained in a de Sitter domain. We can
now say more:

Lemma 8.16. If ∂S is not a round circle, then the closure of E(∂S) is contained in a de
Sitter domain.

Proof If ∂S is not a round circle, then the interior of Conv(∂S) is not empty. Thus, the

same is true for Conv(∂S♭). Points in the interior of Conv(∂S♭) correspond to an open

set of flat spheres avoiding Conv(∂S).

8.3. Support hyperplanes.

Lemma 8.17. The boundary of Conv(∂S) (resp. E(∂S)) in S(E) is the set of points
dual to support hyperplanes to the closure of E(∂S) (resp. Conv(∂S)) in S(E).

Proof Corollary of remark 8.9, proposition 6.3, and lemma 8.13.

We can be slightly more precise. When ∂S is not contained in a round circle, the com-
plement of ∂S in the boundary ∂Conv(∂S) is contained in ADS and admits two connected
components.

Definition 8.18. The future (respectively past) convex boundary ∂+C(∂S) (respectively
∂−C(∂S)) is the connected component of ∂Conv(∂S)\∂S such that the interior of Conv(∂S)
is contained in the past (resp. future) of ∂+C(∂S) (resp. ∂−C(∂S)).

Observe that in the flat case, ∂+C(∂S) = ∂−C(∂S)
Similarly, the complement of ∂S in ∂E(∂S) has two connected components:

Definition 8.19. The future (respectively past) boundary ∂+E(∂S) (resp. ∂−E(∂S)) is
the connected component of ∂E(∂S) \ ∂S such that the interior of E(∂S) is contained in
the past (resp. future) of ∂+E(∂S) (resp. ∂−E(∂S)).

Then:

Proposition 8.20. ∂+C(∂S) is the set of points dual to spacelike support hyperplanes to
E(∂S) at a point of ∂−E(∂S).

8.4. Cosmological time.

Proposition 8.21. E(∂S) has regular cosmological time.

Proof A timelike curve in AdS contained in a affine domain has time length less than
π. Since E(∂S) is contained in a affine domain, it follows that E(∂S) has finite existence
time.

Let c : [0, +∞[ be a past-oriented inextendible causal curve. The proposition will be
proved if we show that τ (c(t)) tends to 0 when t tends to +∞.

The flat case: Assume that S̃ is a round circle, i.e., the boundary ∂S̃0 of a totally

geodesic isometric copy of H
2 in ÃdS. Let x̃+

0 be the point dual to S̃0 such that S̃0 is the
past boundary of the affine domain A(x̃0) (see § 3.5). Project everything in ADS. For

every point x in E(S0), there is a real number θ ∈]−π/2, π/2[ and an element y of S0 ⊂ x⊥
0
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such that x is the projection in S(E) of cos(θ)y + sin(θ)x0. Then, it is easy to show that
the cosmological time τ (x) is θ + π/2. In particular, if xn is a sequence converging to a
point of ∂−E(∂S), then τ (xn) tend to 0. It follows that E(∂S) has regular time function.

The proper case: According to lemma 8.16, if ∂S is not a round circle, there is an
affine domain A0 containing the closure of E(∂S). Select a conformal parametrization
A0 ≈ D

2×] − π/2, +π/2[. Then, after reparametrization, c can be expressed in the form
c : [a, b[→ E(∂S) with c(t) = (p(t), a− t), where p : [a, b[→ D

2 is a 1-Lipschitz map. Then,
p admits a limit p(b) near b, and since c is inextendible, (a − b, p(b)) belongs to ∂E(∂S).
By definition of E(∂S), (p(b), a − b) does not belong to ∂S. Thus, c∞ = (p(b), a − b)
belongs to ∂−E(∂S).

Assume by contradiction that τ (c(t)) does not tend to 0 when t 7→ b. Then, there is a
positive number ǫ, a sequence tn → b, and past oriented curves cn : [0, 1] → E(∂S) such
that:

– cn(0) = c(tn),
– L(cn) > ǫ.
Considering inextendible extensions of cn, we obtain past-oriented causal curves c′n :

[0, 2] → A0 such that c′n(0) = c(tn), c′n(2) ∈ ∂−E(∂S) with L(c′n) > ǫ. Then, up to a
subsequence, the sequence c′n(2) admits a limit c′∞ in ∂−E(∂S).

Now, we observe that the affine domain A0 is globally hyperbolic. Hence, according
to Theorem 2.22, we have dlor(c∞, c′∞) ≥ ǫ. We obtain a contradiction, since ∂−E(∂S) is
achronal.

Remark 8.22. The cosmological time is Lipschitz continuous, but it is not C1 in general.
It can be proved that the level time τ = π/2 is contained in ∂+C(∂S) (observe that
∂+C(∂S) may be not contained in E(∂S) if ∂S is not strictly achronal). Moreover, τ is
C1,1 on {τ < π/2}, i.e., the past in E(∂S) of ∂+C(∂S). See [11, 12].

8.5. Generic achronal circles in Ein2. Most considerations above apply when ∂S is
any achronal topological circle in Ein2. Anyway:

Proposition 8.23. Every generic achronal topological circle of Ein2 is the boundary of a
smooth spacelike hypersurface of AdS.

Proof A generic achronal topological circle correspond to the graph Λ of some 1-Lipschitz
map f : S

1 → R. We can define the open set E(Λ) as in remarks 8.9 and 8.10 (the two
definitions still coincide). Following the second definition, it is the open set contained
between the graphs of two 1-Lipschiz maps f−, f+. The proposition is proved as soon as
we prove the existence of the smooth contracting map g : D

2 → R with f− < g < f+.
Indeed, such a g will necessarily coincide with f+ = f− on ∂D

2.
After adding some positive contant, we can assume f+ > 0. Define then, for every

integer n, gn(x) = Sup(f−(x), (1− 1
n
)f+(x)− 1

n
). Then, the sum g(x) =

∑ gn(x)
2n provides

a contracting map g with all the required property, except smoothness. This map can be
approximated with a smooth one, still contracting ([22]).

There is another proof: E(Λ) is strongly causal since Êin3 is strongly causal. It follows
from the definition that if x, y are points in E(Λ), the intersection between the future (in

Êin3) of x and the past (in Êin3) of y is contained in E(Λ): it is compact, and coincide
with the intersection between the future in E(Λ) of x and the past in E(Λ) of y. Hence,
according to Theorem 2.12, E(Λ) is globally hyperbolic. In particular, it admits a Cauchy
surface S. Any inextendible causal curve intersect S; in particular, this is true for the
curves {x}×]f−(x), f+(x)[. It follows that S is the graph of a smooth contracting map
D

2 → R which extends on ∂D
2 as f .

We propose now a third and last proof, more adapted to the equivariant case to be
considered later (see § 10.2): prove as for proposition 8.21 that E(Λ) has regular cosmo-
logical time, and then apply Theorem 2.25.

8.6. Invisible domains from achronal subsets of Êin2. In this §, Λ̃ is a generic

closed achronal subset of Êin2. We assume card(Λ̃) ≥ 2. Then, Λ̃ is the graph of a
1-Lipschitz map f0 : Λ0 → R, where Λ0 is a closed subset of S

1 = ∂D
2. We can define
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as before the set invisible domain from Λ̃ in ÂdS, that we denote by E(Λ̃): it is the set
{(x, θ) ∈ D

2 × R/f−(x) < θ < f+(x)}, where:
- f−(x) = Supy∈Λ0

{f(y) − d(x, y)},
- f+(x) = Infy∈Λ0

{f(y) + d(x, y)}.
Of course, f± are actually defined on the closure D

2 × R. Define Ω(Λ̃) = {(x, t) ∈
∂D

2 × R/f−(x) < t < f+(x)}. It is the invisible domain from Λ̃ in Êin2. Observe that

Ω(Λ̃) is an open subset of Êin2.

Moreover, if we consider Λ̃ as a closed achronal subset of Êin3 containing Êin2 as the

boundary of an anti-de Sitter domain, then E(Λ̃) is the intersection between the anti-de

Sitter domain and the invisible domain from Λ̃ in Êin3.
Let Λ̃± be the graphs of the restriction of f± to ∂D

2. These graphs are achronal

topological circles in Êin2 containing Λ̃.

If we change the parametrization ÃdS ≈ D
2 ×R, we change of course the closed subset

Λ′
0 ⊂ ∂D

2, but there is a diffeomorphism from ∂D
2 into itself mapping Λ0 on Λ′

0. In
particular, if the first coordinates of x, y for the first parametrization are extremities of a
connected component of ∂D

2 \ Λ0, then their projections in Λ′
0 are also extremities of a

connected component of ∂D
2 \ Λ0.

Definition 8.24. A gap pair is a pair (x, y) of points Λ̃ corresponding to points (x0, y0)
in Λ0 which are extremities of a connected component of ∂D

2 \Λ0. An ordered gap pair is
the data of a gap pair with a connected component of ∂D

2 \Λ0 with extremities x0, y0. A

gap pair is achronal if x, y are not causally related in Êin2. An ordered gap pair (x, y, I)

is lightlike if x, y are extremities of a lightlike segment in Êin2 projecting in ∂D
2 on I.

An ordered gap pair (x, y, I) is extreme if x, y are extremities of a lightlike segment in

Êin2 projecting in ∂D
2 on a segment disjoint from I.

Remark 8.25. It is quite clear that for any lightlike gap pair (x, y), Λ̃ and Λ̃ ∪ [x, y]
define the same invisible domain. Hence, by adding all these lightlike segments, and if the

initial Λ̃ did contains at least one pair of non-causally related points, we can reduce the

study to the case where all gap pairs are achronal or extreme. Moreover, if Λ̃ contains at
least three points, every gap pair defines an ordered gap pair. Finally, extreme gap pairs

occurs only in the case where Λ̃ is contained in a lightlike segment.

According to lemma 5.6, the projection of Λ̃ in ADS is injective, and the image Λ is a
compact subset in Q. Moreover, since Λ is contained in a de Sitter domain, we can select
some element x0 of AdS such that Λ is contained in the affine patch V (x0). We have more:

Lemma 8.26. If Λ̃ contains at least two non-causally related points, then E(Λ̃) is con-
tained in a de Sitter domain.

Proof Λ̃ contains two elements which are not causally related, i.e., with coordinates (x, 0),

(−x, 0) (remark 5.18). Then, for any (y, θ) in E(Λ̃) we have:

Sup{−d(x, y),−d(−x, y)} < θ < inf{d(x, y), d(−x, y)}
Hence, −π

2
< θ < π

2
, and the lemma follows.

Thanks to this lemma, we can project everything in AdS. The analogous property to
remark 8.10 is still true: define C(Λ) = (Conv(Λ)∗)♯ = Conv(Λ♭)∗. The projection of

E(Λ̃) in this affine patch is the intersection E(Λ) between ADS and all the half-spaces
Exy where x, y describes Λ × Λ minus the diagonal. It follows that E(Λ) is equal to
C(Λ) ∩ ADS. Ω(Λ) projects in Q to Ω(Λ) = Q ∩ C(Λ).

8.7. Elementary cases. In this section, we assume that Λ̃ is a generic achronal subset,
containing at least two points, and without lightlike gap pair (see remark 8.25).

Definition 8.27. The common future of Λ̃ is the set of points of Êin2 containing the

entire Λ̃ in their past lightcones. We denote it by X+(Λ̃). Similarly, the common past

X−(Λ̃) is the set of points in Êin2 containing Λ̃ in their future lightcones.
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Definition 8.28. When X+(Λ̃) or X−(Λ̃) is not empty, Λ̃ is elementary. If not, Λ̃ is
said nonelementary.

Lemma 8.29. The elementary case admits three subcases:

• the conical case: it is the case where X+(Λ̃) or X−(Λ̃) is reduced to one point x0,

and X(Λ̃) = {x0}. If X+(Λ̃) = {x0}: let L1, L2 be the two past oriented closed

lightlike segments in Êin2 with extremities x0, x1, where x1 is the point opposite to

x0 in the past. Then, Λ̃ is the union of two lightlike segments I1, I2, not reduced
to single points, contained respectively in L1, L2.

The case X−(Λ̃) = {x0} admits a similar description: inverse the time orien-
tation.

• the splitting case: it is the case where X(Λ̃) is a pair of non-causally related

points. Λ̃ is then a pair of non-causally related points.

• the extreme case: it is the case where X+(Λ̃) and X−(Λ̃) are lightlike rays, con-

tained in a lightlike geodesic ∆. Λ̃ is then a lightlike segment inside ∆.

Proof Reversing the time orientation if necessary, we can assume that X+(Λ̃) containes
a point x0. Let −x0 be the point opposite to x0 in the past, and L1, L2 the two lightlike

segments with extremities x0, −x0. Then, Λ̃ is contained in the pure lightlike circle

L1 ∪ L2. Since we assume that Λ̃ is generic, it is not the union L1 ∪ L2. Since we assume

that there is no lightlike gap pair, the intersections Λ̃i = Λ̃ ∩ Li (i = 1, 2) are connected,
i.e., intervals.

Assume that Λ̃ contains at least two non-causally related points. Then, Λ̃1 and Λ̃2

have non-empty interior. If X(Λ̃) = {x0}, we are in the conical case. If X+(Λ̃) contains

another point x′
0, we can define similarly two lightlike segments L′

1, L′
2, and Λ̃i must be

contained in Li ∩ L′
i. Since these intersections are not empty, x0 and x′

0 are not causally
related, and these intersections are both reduced to one point. The lemma follows in this
case: we are in the splitting case.

The last case to consider is the case where all points in Λ̃ are causally related one to

the other. Λ̃ is then equal to Λ̃1 or Λ̃2. We are in the extreme case.

8.8. Description of the splitting case. In [8], we will describe E(Λ̃) for every elemen-

tary Λ̃. For the present paper, we just need to understand the splitting case Λ̃ = {x, y},
where x, y are two non-causally related points in Êin2. Then, {x, y} is a gap pair, and
there are two associated ordered gap pairs, that we denote respectively by (x, y) and (y, x).

Λ̃+ is an union T +
xy ∪ T +

yx of two nontimelike segments with extremities x, y, that we call
upper tents. Such an upper tent is the union of two lightlike segments, one starting from
x, the other from y, and stopping at their first intersection point, that we call the upper
corner.

Similarly, Λ̃− is an union T −
xy ∪ T −

yx of two lower tents admitting a similar description,
but where the lightlike segments starting from x, y are now past oriented (see Figure 2),
and sharing a common extremity: the lower corner.

The invisible domain Ω(Λ̃) from Λ̃ in Êin2 is the union of two diamond-shape regions

∆̃1, ∆̃2. The boundary of ∆̃1 is the union T +
xy ∪T −

xy, and the boundary of ∆̃2 is T +
yx ∪T −

yx.

We project all the picture in some affine region V ≈ R
3 of S(E) such that:

– V ∩ ADS is the interior of the hyperboloid: {x2 + y2 < 1 + z2},
– Λ = {(1, 0, 0), (−1, 0, 0)}.
Then, E(Λ) is region {−1 < x < 1} ∩ ADS. One of the diamond-shape region ∆̃i

projects to ∆1 = {−1 < x < 1, y > 0, x2 +y2 = 1+z2}, the other projects to ∆2 = {−1 <
x < 1, y < 0, x2 + y2 = 1 + z2}. The past of ∆1 in E(Λ) is P1 = {(x, y, z) ∈ E(Λ)/z < y}.
and the future of ∆1 in E(Λ) is F1 = {(x, y, z) ∈ E(Λ)/z > −y}. We have of course a
similar description for the future F2 and the past P2 of ∆2 in E(Λ). Observe:

– the intersections F1∩F2 and P1∩P2 are disjoint. They are tetraedra in S(E): F1∩F2

is the interior of the convex hull of Λ+, and P1 ∩ P2 is the interior of the convex hull of
Λ−. – the intersection F1 ∩ P1 (resp. F2 ∩ P2) is the intersection between ADS and the
interior of a tetraedron in S(E): the convex hull of ∆1 (resp. ∆2).
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Txy
−

Txy+

∆1x y

Figure 2. Upper and lower tents

Definition 8.30. E+(Λ) = F1∩F2 is the future globally hyperbolic convex core; E−(Λ) =
P1 ∩ P2 is the past globally convex core.

This terminology is justified by the following (easy) fact: F1 ∩F2 (resp. P1 ∩P2) is the
invisible domain E(Λ+) (resp. E(Λ−)). Hence, they are indeed globally hyperbolic.

The intersection between the closure of E(Λ) in S(E) and the boundary Q of ADS is
the union of the closures of the diamond-shape regions. Hence, ∆1,2 can be thought as
the conformal boundaries at infinity of E(Λ). Starting from any point in E(Λ), to ∆i we
have to enter in Fi ∩ Pi, hence we can adopt the following definition:

Definition 8.31. F1 ∩ P1 is an end of E(Λ).

Finally:

Definition 8.32. The future horizon is the past boundary of F1 ∩ F2; the past horizon is
the future boundary of P1 ∩ P2.

Proposition 8.33. E(Λ) is the disjoint union of the future and past globally hyperbolic
cores E±(Λ), of the two ends, and of the past and future horizons.

Remark 8.34. In the conventions of [2, 3, 18], the globally hyperbolic convex cores F1∩F2

and P1 ∩ P2 are regions of type II, also called intermediate regions. The ends F1 ∩ P1 and
F2 ∩ P2 are outer regions, or regions of type I.

8.9. The nonelementary case. From now, we assume that Λ̃ is generic and nonele-

mentary. Then, it contains at least two non-causally related points: it follows that Λ̃±

are generic. Moreover, every gap pair defines uniquely an ordered gap pair, that we can
assume to be achronal (remark 8.25).

Definition 8.35. Λ̃ is proper if it is nonelementary and not contained in a flat sphere.

Proposition 8.36. The closure of E(Λ) in S(E) is contained in a affine patch if and
only if Λ is proper.

Remark 8.37. We have chosen the terminology so that Λ is proper if and only if the
convex E(Λ) is proper in the meaning of § 6.

Proof of 8.36 E(Λ) is the intersection between (Conv(Λ)∗)♯ and ADS. It follows from
Proposition 6.2 that its closure is contained in a affine patch, except if Conv(Λ) has empty
interior, i.e., is contained in a projective hyperplane P . But then P must be spacelike
since it contains the nonelementary set Λ. Hence, P ∩Q is a flat sphere containing Λ.
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Txy+

Txy
−

+T yx

−Tyx

F 1 . P1F2 P2.

F 1 . F2

P1 . P2

x

y

Figure 3. The splitting case. The domain E(Λ) is between the hyper-

planes x⊥ and y⊥. These hyperplanes, tangent to the hyperboloid, are
not drawn, except their intersections with the hyperboloid, which are the
upper and lower tents T ±

xy, T ±
yx.

Inversely, if Λ is contained in a flat sphere S(v⊥
0 ∩ {Q = 0}), then v0 and −v0 belong

to the closure of E(Λ).

Remark 8.38. Observe that if Λ is nonelementary but non-proper, the flat sphere con-
taining it is unique.

8.10. The decomposition in ends and globally hyperbolic cores. We still assume

that Λ̃ is nonelementary. It is easy to see that Λ̃+ (resp. Λ̃−) is obtained from Λ̃ by adding
for any lightlike gap pair (x, y) the lightlike segment [x, y], and for any achronal gap pair
(x, y) the upper (resp. lower) tent T +

xy (resp. T −
xy).

Figure 4. Filling the gaps.
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The connected components of Ω(Λ) are precisely the diamonds ∆xy. The convex hull
in S(E) of ∆xy is a tetraedron (see § 8.7), the intersection of this tetraedron with ADS

has been described above.

Definition 8.39. For any gap pair (x, y), the closed end Exy is the intersection between
ADS and the convex hull in S(E) of ∆xy.

Lemma 8.40. Every closed end Exy is contained in E(Λ).

Proof Since E(Λ) is convex, and since ∆xy is contained in the closure of E(Λ), Exy is
contained in the closure of E(Λ). Let z+ (resp. z−) be the upper (resp. lower) corner of

∆xy. Let p = ax + by + cz+ + dz− (a, b, c, d ≥ 0) be a point in Exy. Observe that the
norm of p is 2ab〈x | y〉 + 2cd〈z− | z+〉. It has to be negative; since 〈z− | z+〉 is positive,
we have ab > 0.

If p belongs to the boundary of E(Λ) in ADS, then there is an element z of Λ such that
〈z | p〉 = 0. But the scalar products of z with x, y, z+ and z− are all nonnegative. Hence,
a〈z | x〉 and b〈z | y〉 are both 0. Since a and b are positive, it follows that z is causally
related to x and y. But z± are the only points in the affine patch in consideration which
are causally related to x and y, and they don’t belong to Λ. We obtain a contradiction:
Exy does not intersect the boundary of E(Λ). The lemma follows.

Definition 8.41. The end Exy is the interior in ADS of Exy.

Definition 8.42. The future globally hyperbolic core is E(Λ+), the past globally hyperbolic
core is E(Λ−).

Definition 8.43. The past boundary in ADS of E(Λ+) is the past horizon. The future
boundary in ADS of E(Λ−) is the future horizon.

Future and past horizons are achronal proper hypersurfaces.
Finally, another important feature is the convex hull Conv(Λ).

Lemma 8.44. The finite part Conv(Λ) \ Λ of the convex hull in S(E) is contained in
E+(Λ) ∩ E−(Λ).

Proof The convex hull Conv(Λ) is contained in the closures of E+(Λ) and of E−(Λ). It
follows, by lemma 8.13, that the intersection between Conv(Λ) and Q is Λ = Λ+ ∩ Λ−.
Let p =

∑
i=1,...,k aipi be a point in Conv(Λ)∩ ADS, with ai > 0, and pi ∈ Λ. Assume by

contradiction that p belongs to ∂E+(Λ): there is an element q of Λ+ such that 〈p | q〉 = 0.
Since all 〈pi | q〉 are nonpositive, it follows that they are all zero. In other words, all the
pi’s belong to the lightlike cone of q. But since p belongs to ADS, at least one of the
〈pi | pj〉 is negative: it follows, since Λ is nonelementary, that q is the corner of a lower or
upper tent of a gap pair (pi, pj), and that p belongs to the closed end Epipj

. The lemma
follows from lemma 8.40.

Definition 8.45. A gap segment is a segment ]x, y[ where (x, y) is a gap pair.

Since we assume that gap pairs are achronal, gap segments are contained in ADS. Of
course, they are all contained in ∂Conv(Λ).

Definition 8.46. The edge part ∂edConv(Λ) of ∂Conv(Λ) is the union of all gap segments.

Lemma 8.47. The edge part ∂edConv(Λ) is the set of points of ∂Conv(Λ)∩ADS admitting
lightlike support hyperplane.

Proof Observe that every gap segment admits two lightlike hyperplanes: the dual planes
to the middle points of associated upper and lower tents.

The proof of the reverse inclusion is similar to the proof of Lemma 8.44: the point q
such that q⊥ is the support hyperplane to a point p =

∑
i=1,...,k aipi in ∂Conv(Λ) is not a

priori in E(Λ+) or E(Λ−), but since q⊥ is a support hyperplane, q belongs to Ω(Λ): the
〈pi | q〉 are still nonpositive. That’s enough for proving that p belongs to an edge gap.
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Corollary 8.48. ∂Conv(Λ) \ ∂edConv(Λ) is spacelike.

In the proper case, i.e., when Conv(Λ) has non-empty interior, ∂Conv(Λ) \ (Λ ∪
∂edConv(Λ)) is the union of two (non-proper) spacelike topological discs. One of them -
C+(Λ) - is in the future of the other, that we call C−(Λ). In the non-proper case, i.e, when
Conv(Λ) is contained in a flat sphere, the relative boundary of ∂Conv(Λ) = Conv(Λ) is
∂edConv(Λ) ∪ Λ. We then define C+(Λ) = C−(Λ) = Conv(Λ) \ (∂edConv(Λ) ∪ Λ).

Lemma 8.49. Every timelike geodesic intersecting C−(Λ) intersects C+(Λ).

Proof Let c be a timelike geodesic intersecting C−(Λ). Since C−(Λ) is nontimelike, c
must enter in Conv(Λ). The only possible exit for c is then through C+(Λ).

Corollary 8.50. Let W be the projection of C−(Λ) ⊂ ADS ≈ D
2 × S

1 on the first factor
D

2. Then, it is also the projection of C+(Λ) on the first factor. Every connected component
of ∂W is a curve c in D

2 joining two elements x, y in Λ0 ⊂ ∂D
2 such that:

– ]x, y[ is a gap of Λ0,
– the curve c disconnect W from the gap segment ]x, y[⊂ ∂D

2.

Proof The first statement follows immediatly from Lemma 8.49. Then, C±(Λ) are graphs
of functions g± : W → R. The proofs of the topological description of W , which follows
from the concave-convex properties of C±(Λ), are left to the reader.

Remark 8.51. Be careful! W is not in general the convex hull in D
2 of Λ0! Observe that

W ⊂ D
2 depends on the selected conformal parametrization ADS ≈ D

2 × S
1.

Proposition 8.52. E(Λ) is the union of the past and future globally hyperbolic cores with
the closed ends associated to gap pairs.

Proof One of the inclusion follows from Lemmas 8.40, 8.44, and the obvious inclusion
E(Λ+) ∪ E(Λ−) ⊂ E(Λ).

For the reverse inclusion: first observe that if Λ is a topological circle, it has no ends, and
E(Λ) = E(Λ+) = E(Λ−): there is nothing to prove. Hence, we assume that Λ admits at
least one (achronal) gap. Recall that, in a suitable conformal domain ≈ D

2 × [−π/2, π/2],
the invisibility domain E(Λ) is the domain in D

2 × [−π/2, π/2] between the graphs of f±.
Define:

- F−(x) = Supy∈∂D2{f+(y) − d(x, y)},
- F+(x) = Infy∈∂D2{f−(y) + d(x, y)}.
Then, E(Λ+) is the domain between the graphs of F−, f+, and E(Λ−) is the domain

between the graphs of f−, F+.
The discs C± are the graphs of two functions g± : W →] − π/2, π/2[ described in

corollary 8.50.
Claim: for every x in W , F+(x) > F−(x).
According to Lemma 8.44, we have:

∀x ∈ W, f−(x) ≤ F−(x) ≤ g−(x) ≤ g+(x) ≤ F+(x) ≤ f+(x)

In the proper case, we actually have g+(x) > g−(x) for x in W : the claim follows. In
the non-proper case, we can select the de Sitter domain so that f(y) = 0 for every y in Λ0.
Then, for every x in W , we have g+(x) = g−(x) = 0. It follows that if F+(x0) = F−(x0)
for some x0 in W , then this common value is 0. By definition of F±, 0 is the supremum of
f+(y) − d(x0, y), and this supremum is attained at some y0. Then, f−(y0) = −f+(y0) =
−d(x0, y0). It means that (y0, d(x0, y0)) is the upper corner of a upper tent associated to
some gap (x, y), and (y0,−d(x0, y0)) is the lower corner of the associated lower tent. It
implies that (x0, 0) belongs to the gap segment ]x, y[. Contradiction.

The claim is proved. Let now (x, θ) be a point in E(Λ): we have f−(x) < θ < f+(x).
If x belongs to W , then since F−(x) < F+(x), we have either f−(x) < θ < F+(x), or

F−(x) < θ < f+(x). In the former case, (x, θ) belongs to E−(Λ), and in the later case,
(x, θ) belongs to E+(Λ).

According to Lemma 8.40, the same conclusion holds if x belongs to W .
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Assume now x ∈ D
2 \W . W is a topological disc in D

2, with boundary components the
projection of gap segments. Hence, x belongs to the connected component of D

2 \ l which
does not contain W , where l is the projection of a gap segment ]y, z[. It follows that (x, θ)

belongs to the closed end Eyz: indeed, if z+ is the upper corner of the upper tent T +
yz, and

z− the lower corner of the lower tent T −
yz , since (x, θ) cannot be related to any point in

]x, y[, it must belong to the intersection between the past of z+ and the future of z−, i.e.,
to the closed end Eyz.

Remark 8.53. Furthermore, it follows quite easily from the proof above that the inter-
section E+(Λ)∩E−(Λ) is not empty: actually, it can be proved that, in the notation used
in the proof of 8.52, F+ > F− on W , F+ = F− on ∂W , and F+ < F− on D

2 \ W .

Remark 8.54. There are many other ways to characterize E(Λ). For example, it is the
union of every proper spacelike surfaces containing Λ in their natural extensions in ∂AdS.

9. Synchronized isometries of AdS

We use the identification ADS ≈ G = PSL(2, R) (cf. § 3.3). Then, ÃdS can be identified

with the universal covering G̃ = S̃L(2, R). Denote by p̄ : G̃ → G the covering map, and Z

the kernel of p̄: Z is cyclic, it is the center of G̃. Let δ be a generator of Z: we select it
in the future of the neutral element id.

G̃×G̃ acts by left and right translations on G̃. This action is not faithfull: the elements
acting trivially are precisely the elements in Z, the image of Z by the diagonal embedding.

The isometry group ŜO0(2, 2) is then identified with (G̃ × G̃)/Z .

Let G be the Lie algebra sl(2, R) of G: the Lie algebra of (G̃ × G̃)/Z is G × G. We
assume the reader familiar with the notion of elliptic, parabolic, hyperbolic elements
of PSL(2, R). Observe that hyperbolic (resp. parabolic) elements of PSL(2, R) are the
exponentials exp(A) of hyperbolic (resp. parabolic, elliptic) elements of G = sl(2, R), i.e.,
such that det(A) < 0 (resp. det(A) = 0, det(A) > 0).

Definition 9.1. An element of G̃ is hyperbolic (resp. parabolic, elliptic) if it is the
exponential of a hyperbolic (resp. parabolic, elliptic) element of G.

Remark 9.2. There is another possible definition through the identification G̃ ≈ ÃdS:
hyperbolic (resp. parabolic) elements of G are spacelike (resp. lightlike) tangent vectors

to ÃdS at the neutral element id. Hyperbolic elements of ÃdS are the elements which

are not causally related to id of G̃. Parabolic elements are points in the lightcone of id.

Hence, their union is the set of points in ÃdS which are not strictly causally related to id.
In particular, they belong to the affine domain associated to id.

Remark 9.3. Elements of G̃ which are not hyperbolic, parabolic or elliptic have the form

δkγ′, where δk is a non-trivial element of the center of G̃, and γ′ a hyperbolic or parabolic

element of G̃.

Remark 9.4. Every element of (G̃ × G̃)/Z can be represented by a pair (γL, γR) such
that:

– γL is the exponential of an element of G,
– γR = γ′

Rδk, where γ′
R is the exponential of an element of G, and δk an element of Z.

Definition 9.5. An element γ = (γL, γR) of G̃×G̃ is synchronised if, up to a permutation
of left and right components, it has one of the following form:

• (hyperbolic translation): γL is trivial and γR is hyperbolic,
• (parabolic translation): γL is trivial and γR is parabolic,
• (hyperbolic - hyperbolic) γL and γR are both non-trivial and hyperbolic,
• (parabolic - hyperbolic) γL is parabolic and γR is hyperbolic,
• (parabolic-parabolic) γL and γR are both non-trivial and parabolic,

• (elliptic) γL and γR are elliptic elements conjugate in G̃.

An element γ of (G̃×G̃)/Z is synchronized if it is represented by a synchronized element

of G̃ × G̃.
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We will see that synchronized isometries are precisely those preserving some generic
achronal subset. This statement essentially follows from the lemma:

Lemma 9.6. An isometry γ is synchronized if and only if there is an affine domain U in

ÃdS such that γn(U) ∩ U 6= ∅ for every n in Z.

Proof Assume that γ is synchronized. Consider first the case where γL or γR is a non-
trivial elliptic element. Then, after conjugacy, we can assume γL = γR. Then, γ preserves
the affine domain A(id).

Consider now the case where γR and γR are not elliptic. After conjugacy in G̃× G̃, we
can assume that γL and γR are exponentials of matrices of the form:

(
a b
0 −a

)

In particular, γLγ−1
R is the exponential of a matrix X of the form above.

Consider the affine domain A(id). Then, for every integer n, (γn
R, γn

R)A(id) = A(id),
and (γn

Lγ−n
R , id)A(id) = A(γn

Lγ−n
R ) = A(exp(nX)). Since exp(nX) belongs to A(id), we

obtain that γA(id) ∩ A(id) 6= ∅.
Assume now that γ is not synchronized, but that there exists a affine domain A such

that all the γnA (n ∈ Z) intersect A. There is an integer q such that δqA intersect A(id).
Then, every γnδqA intersects δqA. It implies that all the γnδqA are contained in the past
of δ3A(id) and the future of δ−3A(id). It follows that all the γnA(id) are contained in the
past of δ6A(id) and in the future of δ−6A(id).

Select a representant (γL, γR) of γ as in remark 9.4. According to remark 9.3, we have
three cases to consider:

(1) γL and γ′
R are parabolic or hyperbolic, but δk is not trivial,

(2) γL is elliptic and γR is the exponential of an element of G, but not conjugate to
γL,

(3) γL is parabolic or hyperbolic, but γR = γ′
R is elliptic.

In the first case, γ′ = (γL, γ′
R) is synchronized: hence, for every integer n, γ′

nA(id) ∩
A(id) 6= ∅. The affine domain γnA(id) = δknγ′

nA(id) intersect δknA(id). Since k 6= 0 -
let’s say, k > 0 - if n is sufficiently big, affine domains intersecting δknA(id) cannot be
contained in the past of δ6A(id). Contradiction.

Consider now the second case. The first subcase is the case where γR is elliptic too.
Moreover, after conjugacy, we can assume that γL and γR commute. Then, γ′ = (γR, γR)
is synchronized, and γ is the composition of γ′ with the left translation by the nontrivial

elliptic element γLγ−1
R . We can identify ÃdS with D

2 ×R such that the left translation by

γLγ−1
R is a non-trivial translation along the R-factor. It follows that for n sufficiently big

γnA(id) is not contained in the past of δ6A(id) and the past of δ−6A(id). Contradiction.
Assume now that we are still in the second case, but with γR nonelliptic: γ′ = (id, γR)

is synchronized, and γ is the composition of γ′ with the left translation by γL. We obtain
a contradiction as above.

The third case reduce to the second one after composing with the involution g 7→ g−1,
which permutes γR with γL.

10. Invariant achronal subsets

Let Γ be a subgroup of ŜO0(2, 2) preserving a generic closed achronal subset Λ̃ of Êin2.

We assume that Λ̃ is non-elementary, and without lightlike pairs (we recall once more
remark 8.25).

We now consider any discrete subgroup Γ of ŜO0(2, 2). According to Lemma 5.6 and
lemma 9.6, every element of Γ is synchronized. We assume moreover that Γ is torsion free:
it follows that Γ does not contain synchronized elements (γL, γR), where γL and γR are

elliptic elements of G̃ conjugate in G̃. Indeed, the torsion free hypothesis prevents γL, γR

to have rationnal rotation angle, and if this rotation angle was irrationnal, Γ would not
be discrete.

The action of Γ on ÃdS and Êin2 preserves the invisible domains Ω(Λ̃) and E(Λ̃).
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Theorem 10.1. Let Λ̃ be a nonelementary generic achronal subset, preserved by a tor-

sionfree discrete group Γ ⊂ SO0(2, 2). Then, the action of Γ on Ω(Λ̃) and E(Λ̃) are free,
properly discontinuous, and the quotient spacetime MΛ̃(Γ) is strongly causal.

10.1. The hyperbolic-hyperbolic case. We first consider a special case, which is truely
speaking an elementary one, the proof of which is postponed to [8] (Lemma 4.1), but which
is necessery to consider for the general case:

Lemma 10.2. Assume that Γ is cyclic, generated by some γ = (γL, γR), and that:
– γR = id or,
– γL = id or,
– x (resp. y) is an attractive (resp. repulsive) fixed point of γ.
Then, the quotient space Mxy(Γ) = Γ\E(x, y) is strongly causal. Moreover, the pro-

jections in Mxy(Γ) of the open ends Pi ∩ Fi, and of the globally hyperbolic convex cores
P1 ∩ P2, F1 ∩ F2, are all causally convex domains.

10.2. The globally hyperbolic case. According to proposition 8.21, E(Λ̃) is globally
hyperbolic. We prove here :

Proposition 10.3. If Λ̃ is a topological circle, then the action of Γ on E(Λ̃) is free and

properly discontinuous, and the quotient space Γ\E(Λ̃) is globally hyperbolic, with regular
cosmological time.

Proof. We first prove the properness of the action:

The flat case: This is the case where S̃ is a round circle, i.e., the boundary ∂S̃0 of a

totally geodesic isometric copy of H
2 in ÃdS. Then, Γ preserves x̃+

0 , the point dual to S̃0

such that S̃0 is the past boundary of the affine domain A(x̃0) (see § 3.5). Project everything
in ADS. Select a basis on E so that x0 = p(x̃0) has coordinates (1, 0, ..., 0). Then, the
stabilizer of x0 is SO0(1, 2), and Γ is a torsion-free discrete subgroup of SO0(1, 2). Hence,

the action of Γ on S0 = p(S̃0) is free and properly discontinuous. Our claim then follows
from the decomposition x = cos(θ)y + sin(θ)x0 valid for any element x of E(S0).

The non flat case: When Λ̃ is not a round circle, it is proper (see definition 8.35). We

observe, as in the proof of Proposition 8.36 that E(Λ) = p(E(Λ̃)) is (Conv(Λ)∗)♯, which
is a proper convex domains in S(E): the Hilbert metric on it is a well-defined metric (see
[19]). It follows that the action of Γ on it is properly discontinuous. Observe that the
action is free since Γ has no torsion.

Hence, in any case, the quotient MΛ̃(Γ) is a well-defined locally AdS spacetime. The
proposition then follows immediatly from Propositions 8.21, 2.27, and Theorem 2.25.

10.3. The general case. Even when Λ̃ is not a topological circle, we can prove as in the

section 10.2 that if Λ̃ is non proper, Γ acts freely and properly discontinuously on E(Λ̃),

by considering the Hilbert metric on the proper convex domains (Conv(Λ)∗)♯, since E(Λ̃)
is the intersection between this proper convex domain and ADS. We leave to the reader
the proof of the properness of the action in the flat case.

According to Proposition 2.8, MΛ̃(Γ) is strongly causal if and only if any point x0 in
MΛ̃(Γ) admits a causally convex neighborhood. If x0 belongs to the projection of the
future or the past globally hyperbolic core, this projection is the required causally convex
neighborhood. If not, x0 belongs to the projection of a closed end Exy (cf. proposi-
tion 8.52).

Observe that Γ permutes the gaps, hence γExy∩Exy 6= ∅ implies γExy = Exy. Moreover,
in this situation, γ preserves the gap segment [x, y]: since the action on this segment must
be free and proper, the stabilizer Γ0 of Exy is a trivial or cyclic group. In the last case,

since it admits two non-causally related fixed points in Êin2, elements in Γ0 have the form
(γL, γR) where γL, γR are both hyperbolic (one maybe trivial).

We can be slightly more precise: the projection of Exy is closed. Indeed, let xn be a

sequence in Exy , and γn a sequence in Γ such that γnxn converge to some point x̄ in E(Λ̃).

Then, x̄ belongs to some closed end Ex′y′ since the complement of the union of closed
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ends is open (it is the union of the globally hyperbolic convex cores). If x̄ is in the interior

of Ex′y′ , then Ex′y′ = γnExy for every sufficiently great n. The claim follows. If x̄ is on

the boundary of Ex′y′ , then it is in the lightcone of some corner point z′ of a upper or
lower tent. In other words, x̄ = ax′ + by′ + cz′ with a, b > 0, c ≥ 0. But every xn can be
written: xn = anx + bny + cnz+ + dnz−. Hence, 〈z | γnxn〉 is the sum of the nonpositive
terms an〈γnx | z′〉, bn〈γny | z′〉, cn〈γnz+ | z′〉 and dn〈γnz− | z′〉. All these terms have to

tend to 0: it follows that γ−1
n z′ tends to z+ or z−. But corner points are isolated in Λ̃±.

Hence, Ex′y′ = γnExy for every sufficiently great n, and the claim follows in this case too.

Hence, we can associate to every closed end Exy an open neighborhood Wxy in E(Λ̃)
such that γWxy ∩ Wxy 6= ∅ implies γWxy = Wxy.

Now, Ω(Λ̃) is contained in Ω(x, y) = ∆1 ∪ ∆2, where we can consider that ∆1 is the

conformal boundary of the end Exy. Since (x, y) is a gap pair, Λ̃ is a Γ0-invariant closed

achronal subset contained in the closure of ∆2. Moreover, since it is nonelementary, Λ̃
has a non-trivial intersection with ∆1. Since it is achronal, it follows that the hypothesis
of lemma 10.2 are fulfilled: either Γ0 is a subgroup of GL or GR, or x, y are attractive or
repulsive fixed points of every element of Γ0.

Finally, there is a neighborhood W ′
xy of Exy in E(x, y) such that Wxy contains the

intersection W ′
xy∩E(Λ̃). According to lemma 10.2, the neighborhood W ′

xy can be selected
so that its projection in Γ0\E(x, y) is a causally convex domain. Then, the projection of

W ′
xy ∩ E(Λ̃) in MΛ̃(Γ) is a causally convex neighborhood of x0.

Remark 10.4. (The case with torsion ) The results above can be extended to the case
with torsion: the action of a discrete group Γ on the invisibility domain of a nonelementary

achronal subset Λ̃ is properly discontinuous and strongly causal in the following meaning:

Definition 10.5. The action of a group Γ ⊂ ŜO0(2, 2) on an open subset E of ÃdS is
strongly causal if every element x of E admits an open neighborhood U such that, for every
element γ of Γ0, either ADS is a fixed point of γ, or no element of U is causally related
to an element γ(U).

The quotient Γ\E(Λ̃) is a AdS-spacetimes with singularities, the singularities (”par-
ticles”) being timelike lines. Observe that when Γ is finitely generated this quotient is
finitely covered by a AdS spacetime without singularity, since according to Selberg lemma
the discrete group Γ contains then a finite index torsion-free subgroup.

10.4. Existence of invariant achronal subsets. We have proved that in most cases, if

a discrete group Γ ⊂ ŜO0(2, 2) preserves a generic closed achronal subset Λ̃ containing at

least two points, then the action of Γ on E(Λ̃) is proper and strongly causal. We now try

to answer to the question: given a torsion-free discrete subgroup Γ of ŜO0(2, 2), is there a

Γ-invariant generic closed achronal subset of Êin2? According to lemmas 5.6 and 9.6, in
order to preserve such an achronal subset, every element of Γ must be synchronized, and
Γ projects injectively in G × G, with G = PSL(2, R). Moreover, this projection must be
faithfull, with discrete image. Hence, Γ has to be the image of some faithfull morphism
ρ : Γ → G × G.

We then reformulate the question above in the following way:

Definition 10.6. Let ρL : Γ → G and ρR : Γ → G two morphisms. The representation
ρ = (ρL, ρR) is admissible if and only if it is faithfull, has discrete image, and lifts to some

representation ρ̃ : Γ → (G̃ × G̃)/Z preserving a generic closed achronal subset of Êin2

containing at least two points.
A ρ-admissible closed subset for an admissible representation ρ is the projection in Ein2

of ρ̃-invariant generic closed achronal subset of Êin2 containing at least two points.

Problem: characterize admissible representations.

Theorem 10.7. Let Γ be a torsionfree group, and ρ : Γ → G×G a faithfull representation.
Then, ρ is admissible if and only if one the following occurs:

(1) The abelian case: ρ(Γ) is a discrete subgroup of Ahyp, Aext or Apar where:
– Ahyp = {(exp(λ∆), exp(µ∆))/λ, µ ∈ R},
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– Aext = {(exp(λ∆), exp(ηH))/λ, η ∈ R},
– Apar = {(exp(λH), exp(λH))/λ ∈ R}.

(2) The non-abelian case: The left and right morphisms ρL, ρR are faithfull with
discrete image, and the marked surfaces ρL(Γ)\H

2, ρR(Γ)\H
2 are homeomorphic,

i.e., there is a Γ-equivariant homeomorphism f : H
2 → H

2 satisfying:

∀γ ∈ Γ, f ◦ ρL(γ) = ρR(γ) ◦ f

Observe that the restriction of an admissible representation to any non-trivial subgroup
of Γ is still admissible.

The abelian case needs a study of the elementary case: hence we postpone its proof to
[8], and assume from now that Γ is not abelian. The main step in the proof of Theorem 10.7
is to prove:

Proposition 10.8. If ρ is admissible, then the representations ρL, ρR are faithfull.

Proof Assume by contradiction that the kernel ΓL of ρL is not trivial, and that ρ is

admissible. Let Λ̃ be a generic achronal ρ̃(Γ)-invariant closed subset of Êin2. Let Λ̃± be

the up and low completions of Λ̃. Recall the description of the left and right foliations

ĜL, ĜR in remark 4.10. Then, every ρ̃(γ), for every γ in ΓL preserves individually every

leaf of ĜL. Hence, for every such a leaf, the intersection Λ̃± ∩ l, if non-empty, is a ρ̃(Γ)-

invariant closed interval (this intersection is connected since Λ̃± is a topological circle).
The extremities of this interval - maybe reduced to one point - project in RP 1

R as fixed
points for every element of ρR(ΓL). Hence, the fixed point set FR of ρR(ΓL) in RP 1

R is not
empty. On the other hand, an element of G with three fixed point in RP 1 is trivial, and
the restriction of ρR to ΓL is faithfull, since ρ is faithfull: F contains at most two points.
The action of ρR(Γ) on ρR(ΓL) permutes these two points, and an instant of reflexion is
enough to realize that, since ρ̃(Γ) preserves the chronological orientation, every element
of ρR(Γ) must preserves every element of FR.

Assume that if FR is reduced to one point. Let r0 be the corresponding leaf of the

right foliation ĜR. The argument above implies that for every leaf l of ĜL, l∩ Λ̃± is either
empty, either a point in l ∩ r0, or a closed interval projecting on the entire RP 1

R. If the

last case occurs, then Λ̃± is pure lightlike: it means that Λ̃ is elementary, more precisely,
that it is conical or extreme. Actually, the conical case would imply that FR contains two

points (the non-causally related extremities). Hence, Λ̃ is a lightlike segment contained
in r0. The projections in RP 1

L of the two extremities of this lightlike segment are distinct
ρL(Γ)-fixed points. It follows that ρ(Γ) is contained in a conjugate of Aext. It is absurd
since Γ is not abelian.

Therefore, FR contains two points. After conjugacy, ρR(Γ) is contained in the 1-
parameter group {exp(λ∆)/λ ∈ R}. Since Γ is not abelian, it means that ρR is not
injective too! Apply once more all the arguments above: it follows that ρL(Γ) admits two
distinct fixed points in RP 1

L. In other words, ρ(Γ) is contained in the abelian group Ahyp.
Contradiction.

Corollary 10.9. If ρ is admissible, ρL and ρR have discrete image in G.

Proof Since ρ is admissible, ρL(Γ) has no elliptic element. Hence, if ρL(Γ) is not discrete,
the neutral component of its closure is a the stabilizer of one or two points in RP 1

L. These
fixed points are permuted, and actually preserved, by every ρL(γ). Since ρL is faithfull and
Γ is not abelian, it means that there is only one fixed point, i.e., ρL(Γ) is contained in a
solvable group conjugate to Aff. It follows that ρR(Γ) is solvable too, hence contained also
up to conjugacy in Aff. The elements of the commutator subgroup ρ([Γ, Γ]), which is not
trivial since Γ is not abelian, are parabolic elements. The representation ρ : [Γ, Γ] → G×G
is then an admissible representation of an abelian group, case which is studied in [8]. It
follows that up to conjugacy ρ([Γ, Γ]) is contained in Apar. Since ρ has discrete image,
ρL([Γ, Γ]) ≈ ρR([Γ, Γ]) is a cyclic group, preserving a copy of the affine line R in RP 1

L,R,
and acting on this line as translations. But the action by conjugacy of Γ on [Γ, Γ] induces
an action by homotheties on this dicrete goup of translations; hence either Γ is contained
in Apar, or [Γ, Γ] is trivial. In the later case, Γ is abelian: contradiction. In the former
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case, we can apply the arguments above: ρL(Γ) = ρR(Γ) are cyclic groups of translations.

Observe that if ρ is admissible, then the future extension Λ̃+ (for example) of a ρ̃(Γ)-
invariant closed generic achronal subset is a topological circle which defined a monotone
map f : RP 1

L → RP 1
R which is equivariant:

∀γ ∈ Γ, f ◦ ρL(γ) = ρR(γ) ◦ f

Here, by monotone map, we mean a relation which can send a single point in RP 1
L on a

closed segment of RP 1
R, and such that every f−1(x) is a point or a closed segment of RP 1

L.

Equivalently, a monotone map is the quotient of a monotone relation f̃ : R̃P 1
L → R̃P 1

R

which commutes with the Galois groups:

f̃ ◦ δL = δR ◦ f̃

The projective line RP 1
L, RP 1

R has to be considered as the conformal boundary of the
hyperbolic plane H

2 on which are acting respectively ρL(Γ), ρR(Γ). Theorem 10.7 follows
from the well-known fact that the existence of a homeomorphism between the marked
surfaces ΣL = ρL(Γ)\H

2, ΣR = ρR(Γ)\H
2 is equivalent to the existence of an equivariant

monotone map as above.

Remark 10.10. In the non-abelian case, there is a much more elegant and concise for-
mulation of Theorem 10.7, using the notion of bounded Euler cohomology class, which is
exactly the obstruction for the existence of a equivariant monotone map semi-conjugating
two actions of a given group on the circle (see [26, 27]):

Theorem 10.11. Let Γ a non-abelian group without torsion, and ρ : Γ → G×G a faithfull
representation. Then, ρ is admissible if and only if the left and right representations ρL, ρR

are faithfull discrete representations with the same Euler bounded cohomology class.

10.5. Minimal invariant achronal subsets. In almost all this section, Γ is a non-
abelian group, and ρ : Γ → G × G an admissible representation.

Definition 10.12. Λ(ρ) is the closure of the set of attractive fixed points in P (E).

Observe that attractive fixed points in P (E) of elements of G belong to Q. Hence,

Λ(ρ) is contained in Ein2.

Theorem 10.13. Let Γ be a non-abelian torsion-free group, and ρ : Γ → G × G. Then,
every ρ(Γ)-invariant closed subset of P (E) contains Λ(ρ).

Corollary 10.14. Let (Γ, ρ) be pair satisfying the hypothesis of Theorem 10.13. Then,

Λ(ρ) is a ρ(Γ)-invariant generic nonelementary achronal subset of Ein2. Furthermore,
for every ρ(Γ)-invariant closed achronal subset Λ in Ein2, the invisibility domain E(Λ)

projects injectively in ADS inside E(Λ(ρ)).

The essential step for the proof of Theorem 10.13 is:

Lemma 10.15. If ρ(Γ) is admissible, and does not preserve a point in ADS, then ρ(Γ) is
strongly irreducible, i.e., for every finite index subgroup Γ′ ⊂ Γ, there is not ρ(Γ′)-invariant
proper projective subspace in S(E).

Proof Assume by contradiction that ρ is admissible, and that some finite index subgroup
Γ′ ⊂ Γ preserves a projective subspace S(F ) ⊂ S(F ), where F 6= E is a non-trivial linear

subspace of E. Observe that F⊥ is also preserved by ρ(Γ′).
If F and F⊥ does not contain Q-isotropic vectors, then Γ′ is contained in O(2)×O(2).

It is impossible since elements of Γ are non-elliptic synchronized.
Hence, S(F )∩Q or S(F⊥)∩Q is not empty. Such an intersection is either a ρ(Γ′)-fixed

point in Ein2 ≈ RP 1
L×RP 1

R, a lightlike geodesic, or an invariant round circle ∂x∗
0. The last

case is impossible, since x0 would be a ρ(Γ) fixed point, situation that we have excluded
by hypothesis. In the two other remaining cases, after switching if necessary the left and
right factors, we obtain that ρL(Γ′) admits a global fixed point in RP 1

L. It is impossible
since ρL(Γ) is a non-abelian discrete subgroup of G.
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Proof of 10.13 We first observe that, according to Theorem 10.7, and since any non
abelian discrete subgroup of G admits at least one hyperbolic element, ρ(Γ) is proximal,

i.e., Λ(ρ) is non-empty. Then, Theorem 10.13 is an immediate corollary of lemma 10.15
and Lemma 2.5 − (2) of [14]. .

10.6. Convexity and causality. In this §, we consider a representation ρ : Γ → G ×G,
where Γ is not abelian.

Definition 10.16. An element of GL(E) is proximal if its action on P (E) admits an
attractive fixed point. It is positively proximal if its action on S(E) has two attractive
fixed points (one opposite to the other).

A faithfull representation ρ : Γ → GL(E) is positively proximal if ρ(Γ) contains at least
a proximal element, and that every proximal element of ρ(Γ) is positively proximal.

The main result of [14] (Propositions 1.1, 1.2) is:

Theorem 10.17. A strongly irreducible representation is positively proximal if and only
if it preserves a proper convex domains in P (E).

It follows that in our case, if ρ is admissible, then it is positively proximal (observe that
this statement is true, even if ρ is not strongly irreducible, i.e., preserves a point in AdS).
We wonder here about the inverse statement: is any positively proximal ρ admissible?

In the following, we are using results in [14] which are established for strongly irreducible
representations, but these results are easily checked when ρ(Γ) ⊂ SO0(2, 2) admits a fixed
point in AdS.

Let F(E) be the flag variety, i.e., the space of pairs ([u], [u∗]) in P (E) × P (E∗) such
that u∗(u) = 0. Here, we can of course define F(E) as the space of pairs of Q-orthogonal
elements of P (E): F(E) = {([u], [v]) ∈ P (E) × P (E)/〈u | v〉 = 0}. The group SO0(2, 2)
acts naturally on it, by the diagonal action. The closure in F(E) of the set of attractive
fixed points of elements of ρ(Γ) is: ΛF = {([u], [u]) ∈ F(E)/[u] ∈ ΛP}.
Proposition 10.18 (Lemma 2.5−(3) of [14]). Any ρ(Γ)-invariant subset of F(E) contains
ΛF .

Moreover, the statement (3) − d expresses here:

Proposition 10.19. ΛP × ΛP contains a dense subset Y , which is transverse, i.e., for
every ([u], [v]) in Y , the scalar product 〈u | v〉 is nonzero.

Observe that in the statement above, we cannot define the sign of 〈u | v〉, since [u], [v]
are only elements of P (E). But there is a sign if we lift all the picture in S(E). Define
ΛS as the preimage in S(E) of P (E). It can also be defined as the closure of the set of
attractive fixed points of elements of ρ(Γ).

Lemma 10.20 (Proposition 3.15 in [14]). A strongly irreducible representation ρ is pos-
itively proximal if and only if the action of ρ(Γ) on ΛS is not minimal. If it is the case,
ΛS is the union of two disjoint minimal closed invariant subset ΛS

1 and ΛS
2 = −ΛS

1 .

Lemma 10.21. The closed minimal subset ΛS
1 is positive, i.e., we have the following

alternative:

(1) for every element ([u], [v]) in ΛS
1 × ΛS

1 , we have 〈u | v〉 ≤ 0, or
(2) for every element ([u], [v]) in ΛS

1 × ΛS
1 , we have 〈u | v〉 ≥ 0.

Proof It follows from the proof of Proposition 3.11 in [14].

In the first case of the alternative of lemma 10.21, ΛS
1 is an achronal closed subset of

Ein2. According to Proposition 10.19, it contains at least a pair of non-causally related
points: ΛS

1 is generic. It follows that ρ is admissible.
But, in the second case, ρ is not admissible! Every pair of points in ΛS

1 is causally
related, and most of these pairs are strictly causally related. The situation can be entirely
understood in the light of remarks 3.1, 4.3: we have to consider Q not as the Klein
boundary of ADS, but as the Klein boundary of the complementary AdS copy, which
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is the projection of {Q = +1} equipped with the restriction of −Q. We obtain the
notion of −-admissible representations ρ : Γ → SO0(2, 2): the representations conjugate
to admissible representations in the previous meaning by an anti-isometry of E permuting
{Q > 0} and {Q < 0}.
Proposition 10.22. Let Γ be a torsionfree nonabelian group, and ρ : Γ → SO0(2, 2) a
faithfull representation with discrete image. Then, ρ is positively proximal if and only if
it is admissible or −-admissible.

11. Cauchy complete globally hyperbolic AdS spacetimes

Let M be a 3-dimensional manifold equipped with a lorentzian metric of constant

curvature −1, i.e. locally modeled on AdS. Let p : M̃ → M be the universal covering,
and Γ the fundamental group of M , considered as the group of desk transformations of p.
We recall some basic facts of (G, X)-structure’s theory, applied in our context:

- There is a developing map D : M̃ → ÃdS, which is a local homeomorphism;

- There is a holonomy morphism ρ̃ : Γ → ŜO(2, 2) for which D is equivariant (here,

ŜO(2, 2) is the isometry group of ÃdS). More precisely, for every γ in Γ, ρ(γ) ◦D = D◦γ.
Assume that M is globally hyperbolic, and Cauchy complete, i.e., admits a Cauchy

surface S such that the restriction of the ambient lorentzian metric on S is a complete

riemannian metric. Then, the preimage S̃ in M̃ is a Cauchy surface for M̃ . According to

Proposition 7.2, the restriction to S̃ of the developping map D is an embedding, and the

image D(S̃) is the graph of a contracting map from D
2 into R. Since S̃ is a Cauchy surface

of M̃ , the image of D must be contained in the Cauchy development T (D(S̃)) = C(D(S̃)).
Since local homeomorphisms between subintervals of R are always injective, the restriction
of D to any timelike geodesic is injective: it follows that D is injective.

Now, observe that the holonomy group ρ̃ preserves D(S̃) and E(∂D(S̃)). Hence, ac-
cording to Theorem 10.1 and Proposition 10.3:

Proposition 11.1. Any globally hyperbolic AdS spacetime M ,with complete Cauchy sur-

face S, embeds isometrically in the spacetime M∂S̃(ρ̃(Γ)), where ρ̃ : Γ → ŜO(2, 2) is the

holonomy morphism, and S̃ the image by the developping map of a Cauchy surface in

M̃ .

Recall the notion of maximal global hyperbolicity (definition 2.18).

Corollary 11.2. The maximal Cauchy complete globally hyperbolic spacetimes are the

quotient spacetimes MΛ̃(Γ), where Λ̃ is a generic achronal topological circle in Êin2, and

Γ a discrete torsion-free subgroup of ŜO(2, 2) preserving Λ̃.

Proof In the light of Propositions 10.3 and 11.1, the only remaining point to check is the
fact that every spacetime MΛ̃(Γ) is indeed Cauchy complete.

Let N (Λ) be the subset of T + formed by pairs (x, y) such that y belongs to the future
connected component C+(Λ) of ∂Conv(Λ) \ Λ. Then, x must belong the past connected
component ∂−E(Λ) of ∂E(Λ) \ Λ (see Proposition 8.20). Moreover, y must belong to the
spacelike part C+

spa(Λ) of C+(Λ).

Equivalently, N (Λ) is the Gauss graph of C+
spa(Λ) (see Definition 7.17; the surface

C+
spa(Λ) is actually past-convex, i.e., the roles of x, y has been permuted, but without

incidence on the the results of § 7.3).
Consider now the cosmological time τ on E(Λ); more precisely, the level set Σ =

τ−1(π/4). For any p in Σ, the surface formed by points x in the past of p and at AdS-
distance π/4 is concave. Since ∂−E(Λ) is convex, it follows that there is one and only
one point x(p) in ∂−E(Λ) at distance π/4 from p. Let y(p) be the first intersection in the
future of p of the future oriented geodesic (p, x(p)) with ∂Conv(Λ). Then, y(p) belongs to
C+

spa(Λ), and (x(p), y(p) belongs to N (Λ). Hence, p is equal to 1
2
(x(p) + y(p)). Inversely,

for every (x, y) in N (Λ), 1
2
(x + y) belongs to Σ.

We have thus defined a homeomorphism (x, y) : Σ → N (S), differentiable almost
everywhere2 such that p = 1

2
(x(p) + y(p)). The norm in AdS of a tangent vector 1

2
(u + v)

2This map is actually C1. See [12].



CAUSAL ACTIONS AND LIMIT SETS 39

of Σ is 1
4
(| u |2 + | v |2) + 1

2
〈u | v〉, whereas the norm of the image of this tangent vector

by the differential of (x, y) is 1
4
(| u |2 + | v |2). We therefore obtain as a corollary3 of

Lemma 7.21 the following key point:
The map (x, y) : Σ → N (S) decreases the distance.
Consider a Cauchy sequence pn in Σ. Denote (xn, yn) = (x(pn), y(pn)). Then, accord-

ing to the key point we have just established, (xn, yn) is a Cauchy sequence in N (S).
According to lemma 7.20, the πG-projection of (xn, yn) is also a Cauchy sequence in QG.
But, according to Proposition 7.10, QG is complete. Hence, if ∆n denotes the timelike
geodesic containing xn and yn, the ∆n converges to a timelike geodesic ∆∞. This geodesic
intersects ∂−E(Λ) at an unique point x∞, and intersects C+(Λ) at an unique point y∞.
Then, the xn converge to x∞, and the yn converge to y∞. It follows that the pn converge
to p∞ = 1

2
(x∞ + y∞). This point p∞ belongs to Σ.

Therefore, the spacelike surface Σ is Cauchy complete. Since it is Γ-invariant, its pro-
jection in MΛ(Γ) is a spacelike Cauchy complete surface. According to Proposition 8.21,
Σ is also a Cauchy surface in MΛ(Γ). The proposition is proved.

Remark 11.3. An interesting - and difficult - problem is to find a smooth Cauchy com-
plete Cauchy surface in MΛ(Γ).
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