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1 Introduction

In these lectures we shall study an "atorff;,described by finitely many energy lev-
els, coupled to a "radiation fieldR, described by another set (typically continuum)
of energy levels. More precisely, assume t§aand’R are described, respectively,
by the Hilbert spacebs, hz and the Hamiltoniangs, h. Leth = hs @ hr and
ho = hs @ hg. If v is a self-adjoint operator o describing the coupling between
S andR, then the Hamiltonian we shall studyis = hg + Av, wherel € Ris a
coupling constant.

For reasons of space we shall restrict ourselves here toae whereS is a
single energy level,e., we shall assume thgg = C and thaths = w is the operator
of multiplication by a real numbep. The multilevel case will be considered in the
continuation of these lecture notes [JP3]. We will kégpandhr general and we
will assume that the interaction has the form= w + w*, wherew : C — b is a
linear map.

With a slight abuse of notation, in the sequel we will deppvhenever the mean-
ing is clear within the context. Hence, we will writefor o @ 0, g for 0 & g, etc.If
w(l) = f,thenw = (1]-)f andv = (1]-) f + (f] - )1.

In physics literature, a Hamiltonian of the form

hx=ho +A((1[-)f + (f]-)1), (1)

with A € R is sometimes calletVigner-Weisskopf atorfabbreviated WWA) and
we will adopt that name. Operators of the type (1) are alsenofalledFriedrichs

Hamiltonians[Fr]. The WWA is a toy model invented to illuminate various asfs

of quantum physics; see [AJPP1, AM, Ar, BR2, CDG, Dal, Da4, BK FGP, He,
Maa, Mes, PSS].

Our study of the WWA naturally splits into several parts. Nmrturbative and
perturbative spectral analysis are discussed respeciivebections 2 and 3. The
fermionic second quantization of WWA is discussed in Sestiband 5.

In Section 2 we place no restrictions bp and we obtain qualitative information
on the spectrum oh, which is valid either for all or for Lebesgue a.&.€ R.
Our analysis is based on the spectral theory of rank onerpatians [Ja, Sil]. The
theory discussed in this section naturally applies to trsesavhereR describes a
quasi-periodic or a random structure, or the coupling @ntstis large.

Quantitative information about the WWA can be obtained onlhe perturbative
regime and under suitable regularity assumptions. In &e&i2 we assume that the
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spectrum ofi; is purely absolutely continuous, and we study spectralgntgs of

hy for small, non-zero\. The main subject of Section 3.2 is the perturbation theory
of embedded eigenvalues and related topics (complex resesaradiative life-time,
spectral deformations, weak coupling limit). Although tiaterial covered in this
section is very well known, our exposition is not traditibead we hope that the
reader will learn something new. The reader may benefit bgimgathis section in
parallel with Complemen®;; in [CDG].

The second quantizations of the WWA lead to the simplest neiatexamples
of open systems in quantum statistical mechanics. We shllthe fermionic sec-
ond quantization of the WWA th8imple Electronic Black BofSEBB) model. The
SEBB model in the perturbative regime has been studied inettent lecture notes
[AJPP1]. In Sections 4 and 5 we extend the analysis and sesti[AJPP1] to the
non-perturbative regime. For additional information aftbe Electronic Black Box
models we refer the reader to [AJPP2].

Assume thathr is areal Hilbert space and consider the WWA (1) over the
real Hilbert spac® & hr. The bosonic second quantization of the wave equation
921y + hathy = 0 (see Section 6.3 in [BSZ] and the lectures [DeB, Der1] in vois
ume) leads to the so call&C (fully coupled) quantum oscillator moddlhis model
has been extensively discussed in the literature. The kimelivn references in the
mathematics literature are [Ar, Dal, FKM]. For referenaeshie physics literature
the reader may consult [Br, LW]. One may use the results ofthesture notes to
completely describe spectral theory, scattering theorg, statistical mechanics of
the FC quantum oscillator model. For reasons of space wersitaliscuss this topic
here (see [JP3]).

These lecture notes are on a somewhat higher technicaltharethe recent lec-
ture notes of the first and the third author [AJPP1, Ja, Pig fiflst two sections can
be read as a continuation (i.e. the final section) of the fectwtes [Ja]. In these
two sections we have assumed that the reader is familiareléthentary aspects of
spectral theory and harmonic analysis discussed in [J&griAdtively, all the prereq-
uisites can be found in [Ka, Koo, RS1, RS2, RS3, RS4, Ru]. kti&e 2 we have
assumed that the reader is familiar with basic results ofréiné one perturbation
theory [Ja, Sil]. In Sections 4 and 5 we have assumed thag#der is familiar with
basic notions of quantum statistical mechanics [BR1, BR2ZBHa]. The reader
with no previous exposure to open quantum systems wouldfibéryereading the
last two sections in parallel with [AJPP1].

The notation used in these notes is standard except thatvetedihe spectrum of
a self-adjoint operatad by sp(A). The set of eigenvalues, the absolutely continuous,
the pure point and the singular continuous spectrum afe denoted respectively by
sPp(A), 8Pac(A), 8Py, (A), andspg. (A). The singular spectrum of is sp;,,, (A) =
sPpp(A) U spy.(A). The spectral subspaces associated to the absolutelyicons,
the pure point, and the singular continuous spectrud afre denoted b¥)..(A),
hop(4), andhs.(A). The projections on these spectral subspaces are denoted by
1..(A4), 1,5(A), andly(A).

Acknowledgment. These notes are based on the lectures the first author gawe in t
Summer School "Large Coulomb Systems—QED", held in Nordiid, August
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11—18 2003. V.J. is grateful to Jan Denegki and Heinz Siedentop for the invita-
tion to speak and for their hospitality. The research of Wds partly supported by
NSERC. The research of E.K. was supported by an FCAR scihgtaid/e are grate-
ful to S. De Bevre and J. Dereaski for enlightening remarks on an earlier version
of these lecture notes.

2 Non-perturbative theory

Let» be a positive Borel measure & We denote by, v,p, andys. the absolutely
continuous, the pure point and the singular continuousqgdfartw.r.t. the Lebesgue
measure. The singular part ofis vsing = vpp + vsc. We adopt the definition of a
complex Borel measure given in [Ja, Ru]. In particular, anmplex Borel measure
onR is finite.

Let v be a complex Borel measure or a positive measure such that

/ dv(t)
< 00.
r 1+ [

The Borel transform of is the analytic function

Fy(z)_/RdV(t) z€ C\R.

t—z’

Let v be a complex Borel measure or a positive measure such that

du(t)
/R T < 00. 2)

The Poisson transform ofis the harmonic function

du(t) )
P, YY) = T N2, 90 + eC ’
(I y) y/]R (.’E—t)2+y2 T 1y +

whereCy = {z € C| £Imz > 0}.
The Borel transform of a positive Borel measure is a Herdlotetion, i.e,, an
analytic function oriC. with positive imaginary part. In this case

Py(z,y) =Im F,(z + iy),

is a positive harmonic function. Th&-function ofv is defined by

_ [ dv@®) . P(zy)
G”(x):/R(x—t)? _lyl?()lT’ z €R.

We remark thatG, is an everywhere defined function &with values in[0, co].
Note also that it7, (z) < oo, thenlim, o Im F,,(z + iy) = 0.
If h(z) is analytic in the half-plan€ ., we set
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h(x 4i0) = lim h(z + iy),
yl0

whenever the limit exist. In these lecture notes we will ussumber of standard
results concerning the boundary valuész + i0). The proofs of these results can
be found in [Ja] or in any book on harmonic analysis. We notparticular that
F,(x +10) exist and is finite for Lebesgue a®.c R. If v is real-valued and non-
vanishing, then for any € C the set§z € R| F, (x +i0) = a} have zero Lebesgue

measure.
Letv be a positive Borel measure. For later reference, we dessdime elemen-

tary properties of its Borel transform. First, the CauclgynBartz inequality yields

that fory > 0
v(R)Im F, (z + iy) > y |F, (= + iy)[*. 3)

The dominated convergence theorem yields

lim yIm F,(iy) = lim y|F (iy)] = v(R). 4)

y—00
Assume in addition that(R) = 1. The monotone convergence theorem yields

Jim y? (yTm F (iy) — o7 |F (1))

li y4/ LI 2 dw(t) dv(s)
= 11mm — — 2 14
250 2 Jam \ B 42 22 (t—1y)(s +1y) ’

1 y2 y2 9
=lim o [ Tt (t—s)?d(t)d
yfoloz/ka 2 1 42 82+y2( s)dv(t) dv(s)

1

= §~/]R><]R(t_ s)°dw(t) dv(s).

If v has finite second momenf, t?dv(t) < oo, then

: /]R (= sPavaut) - /R 2dv(t) - ( /R tdu(t))g. 5)

If [t?°dv(t) = oo, then itis easy to see that the both sides in (5) are alsoftiafini
Combining this with Equ. (4) we obtain

where the right hand side is defined todkewhenever(, t*dv(t) = cc.
In the sequelB| denotes the Lebesgue measure of a BorelBeind 4, the

delta-measure at € R.
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2.1 Basic facts

Let hr,s C hr be the cyclic space generated by and f. We recall thaty ; is
the closure of the linear span of the set of vecfdisz — 2) ! f | z € C\ R}. Since
(C @ hr )"+ is invariant undeh,, for all A and

hA'(CGBhR‘f)J‘ = hR'(C@hR‘f)L ’

in this section without loss of generality we may assume g} = hr, namely
that f is a cyclic vector forhr . We denote by:r the spectral measure fér; and
f. By the spectral theorem, w.l.0.g. we may assume that

h'R = L2(R7 d,LLR),

thathr = z is the operator of multiplication by the variablg and thatf (z) = 1
for all 2 € R. We will write F'r for F, ., etc.

As we shall see, in the non-perturbative theory of the WWA itdsy natural to
consider the Hamiltonian (1) as an operator-valued funatiotwo real parameters
A andw. Hence, in this section we will write

hraw=ho+ w=wdx+A((f])1+1])f).
We start with some basic formulas. The relation
ATl B T =AYB - A)BY,
yields that
(hrw —2) 71 = (w=2)""1 = AMw = 2)"Hhaw — 2) 7' f,
(haw —2)7Hf = (hg = 2) 71 f = Mfl(hr — 2) 7 f) (haw — 2) 711

It follows that the cyclic subspace generatediyy,, and the vectors, f, is inde-
pendent ofA and equal td), and that for\ # 0, 1 is a cyclic vector forh, . We
denote by the spectral measure féx, ., and1. The measurg™“ contains full
spectral information about, ., for A # 0. We also denote by ,, andG) ., the
Borel transform and th&'-function of u»«. The formulas (7) yield

)

1

F = .
new(?) w—2z—NFg(2)

®)

SincefF) ,, = F_,, the operatord, ., andh_j, . are unitarily equivalent.
According to the decompositioh = hs © hr we can write the resolvent
Taw(2) = (haw — 2)~1 in matrix form

SS
) o (2) T35 (2)
r z) =
A TRS(Z) TRR(Z)
Aw A,w
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A simple calculation leads to the following formulas for it&trix elements

Tfi(z) = F)\,W(Z)v

Mg(2) = =AFxw(2)1(fl(hr —2) 71 +), ©)
r{o(2) = —AFxw(2)(hr — 2) 71 f(1] ),

X5 (2) = (hr — 2) 71 + N Fyu(2)(hr — 2) T f (fl(hr — 2) 71 ).

Note that for\ # 0,

B Py, (Z)
Fro(z) = 1++F/\0(2)

This formula should not come as a surprise. For fixed 0,
h)\yw = h)\’o + w(1| . )1,

and sincel is a cyclic vector forh, ., we are in the usual framework of the rank
one perturbation theory witla as the perturbation parameter! This observation will
allow us to naturally embed the spectral theoryhqf,, into the spectral theory of
rank one perturbations.

By taking the imaginary part of Relation (8) we can relate@@inctions ofur
andp M as
_ 1+ )\2GR(1’)
Cw—2 — AN2FR(z +i0)[2’

whenever the boundary valué; (x + i0) exists and the numerator and denominator
of the right hand side are not both infinite.

Itis important to note that, subject to a natural restrittevery rank one spectral
problem can be put into the forfy, ., for a fixed A # 0.

Garw(z) (10)

Proposition 1. Let v be a Borel probability measure oR and A # 0. Then the
following statements are equivalent:

1. There exists a Borel probability measyrg on R such that the corresponding
pM0 is equal tov.
2. [ptdu(t) = 0and [, *dv(t) = A2

Proof. (1) = (2) Assume thair exists. Therhy o1 = Af and hence

/tdu(t) — (1, haol) =0,
R

and
/thu(t) = thlHZ = )\2
R

(2) = (1) We need to find a probability measuyrg such that

Fr(z) =72 (—z - Ful(z)) , (11)
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forall z € C,. Set

H,(2)=—-2z- (o)

Equ. (3) yields thaC, > z — A~2Im H,(z) is a non-negative harmonic function.

Hence, by well-known results in harmonic analysis (see[8ay.Koo]), there exists
a Borel measurgr which satisfies (2) and a constarit> 0 such that

A2ImH,(x +iy) = Pr(z,y) + Cy, (12)
for all x 4+ iy € C,.. The dominated convergence theorem and (2) yield that
iy 2200 _ [ Al
R

y—00 Y y—00 t2 + y2 B
Note that I F, (iy) 2| B, (i)
. ylmr,(1y) —y v\1Y
yIm H,(iy) = - ) (13)
() 17 ()P
and so Equ. (6) yields
lim 7ImH”(ly) =0.
Yy—00 y
Hence, (12) yields thaf' = 0 and that
Fr(z) = \"2H,(2) + C, (14)

where( is a real constant. From Equ. (4), (13) and (6) we get
pr(R) = lim yIm Fr(iy)

=\2 ylirgoylmHy(iy)

=17 </R t2dv(t) — (/R tdy(t)>2> =1,

and sour, is probability measure. Since
Re F, (iy)
R Gy’
Equ. (14), (4) and the dominated convergence theorem yheld t
A0 = —ylLrI;o Re H, (iy)

Re H,(iy) =

= — lim y*Re F,(iy)
y—o00
2
= — lim Ldu(t)

y—oo Jp t2 + 12

= —/tdu(t) =0.
R
Hence,C; = 0 and Equ. (11) hold<]
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2.2 Aronszajn-Donoghue theorem
For A # 0 define

Thow ={z € R|Gr(z) <00, z —w + N Fr(x +i0) = 0},

Syw ={r € R|Gr(x) =00, © —w+ N Fr(z +i0) = 0}, (15)

L = {z € R|Im Fg(x +i0) > 0}.

Since the analytic functiof®, > z — 2z — w + A2Fx(z) is non-constant and has
a positive imaginary part, by a well known result in harmoamalysis|T) .| =
|Sx .| = 0. Equ. (8) implies that, fow # 0, z —w+ A2 Fr (z+i0) = 0 is equivalent
to F o(z +10) = —w™!. Moreover, if one of these conditions is satisfied, then Equ.

(10) yields
w2G)\70(x) =1+ AQGR(LC)

Therefore, ifw # 0, then
Tyw ={z € R|Gyro(z) <00, Fro(z +i0) = —w 1},
Syw =1{x €R|Gyro(z) =00, Fro(z +i0) = —w™ 1}

The well-known Aronszajn-Donoghue theorem in spectrabthef rank one
perturbations (see [Ja, Sil]) translates to the followawut concerning the WWA.

Theorem 1. 1.7, , isthe set of eigenvalues bf ,,. Moreover,

1
Aw - - 5
Fpp Z 1+ 22Gg(2) Oq (16)

€T o
If w # 0, then also
1
Aw
= —_ .
Fpp Z w2 G olz)

1ETA1“,
2. w is not an eigenvalue df) , for all A # 0.
3. ud* is concentrated of$), .
4. For all A\, w, the setl is an essential support of the absolutely continuous spec-
trum of iy ,. Moreoversp, . (hx ) = sp,.(hr) and

1
dp® (x) = = Im Fy , (2 +i0) da.
™
5. For a givenw, {uji;‘l"g | A > 0} is a family of mutually singular measures.
6. For a given\ # 0, {;ﬁ"" |w # 0} is a family of mutually singular measures.

sing
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2.3 The spectral theorem

In this subsection # 0 andw are given real numbers. By the spectral theorem, there
exists a unique unitary operator

UM o — L*(R,dpt), (17)

such thatU*«h, ,,(U**)~! is the operator of multiplication by on the Hilbert
spacel?(R, dp*) andUM1 = 1, wherel(z) = 1 for all € R. Moreover,

Aw _ 7AW A,w A,w
UM = UM @ UM & U,

SC ?

where
U : Bac(haw) — L*(R,dpj),

UM bop(haw) — L2(R, dpde),
U+ bse(haw) — L2(R, dpuge®),

are unitary. In this subsection we will describe these wypitgperators. We shall
make repeated use of the following fact. LLebe a positive Borel measure @&
For any complex Borel measureon R denote byr = v,. + ving the Lebesgue
decomposition of into absolutely continuous and singular parts w.r.iThe Radon-
Nikodym derivative ofv,. w.r.t. i1 is given by

Pu(x?y) _ dyac
ylo P,(z,y)  dp

(),

for y-almost everye (see [Ja]). In particular, ifi is Lebesgue measure, then

dVac

lim P S 1
lim V(x,y) =7 I (), (18)

for Lebesgue a.e:. By Equ. (8),
Im Fy ,(z 4 i0) = A? | Fy o, (z 4 i0)|? Im Fr (z + i0), (19)

and so (18) yields that

A,w
dpge

R a
2 = WPy (e +0) TR

dx
In particular, since, , (x +10) # 0 for Lebesgue a.ex, g oc andu . are equiv-
alent measures.

Letp =a @ ¢ € hand

M(z) = % (1(hrw — 2)710) — (1(haw —2) " 0)|,  2z€Cy.

The formulas (7) and (9) yield that
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WU(hre — 2)76) = Fru(2) (a A(fl(hr Z)lso)), (20)

and so

M) = Fyofo) (@ = A lm )1 )
=B (5l = 2 47)70))
— tn 3.0 2) (o= MG~ 2) 7))
CARLG)Y /R WduR(t).

t—x)?+y?
This relation and (18) yield that fQrz ,.-a.e.x,

M(z +1i0) = ImFA’w(x—i—iO)(oz - AMfl(hg —x — io)_l‘P>>

—AF (- iO)%gp(m) T d/g;ac (x) 21)

=Im F) , (z + i0) (a - AMfl(hg —x — iO)lcp))

— AP o(z —10) f(z)e(x) Im Fr(z 4 i0).

On the other hand, computing (z) in the spectral representation (17) we get

A,w
M(Z):Z//R((U ¢)(t) duk,w(t).

t—x)? +y?

This relation and (18) yield that for).w-a.e.z,
: Aw d/v‘ééw A,w .
M(x +10) = (U26) () 7 2 (@) = (U2 9) () Im Fy o ( + 0).

Sinceur .. andp:“ are equivalent measures, comparison with the expressign (2
and use of Equ. (8) yield

Proposition 2. Let¢p = a @ ¢ € h. Then

,w _ N\ —1 m@@)
(U;\c ¢)(7) = a— A(f|(hr —z —i0) @)—m~

We now turn to the pure point pdr?lg‘};“. Recall thatl’y ,, is the set of eigenvalues
of hy .. Using the spectral representation (17), it is easy to ptioatforx € T ,

 (U(haw —z—iy) o) . Floneg)ue (@ +iy) A
: : =1 — (UM¢)(z). (22
o0 ((haw —2 —iy) 1) 0 Fro(e+iy) (U= o) ). (22)
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The relations (20) and (22) yield that fore T ,, the limit

Hy(z +10) = lim (f|(hr — 2 —1y)'¢), (23)

exists and thatU* ¢)(z) = o — AH,(x + i0). Hence, we have:
Proposition 3. Let¢ = a® ¢ € h. Then forx € Ty,
(UI;\I;W )(z) = a — AH,(z +10).

The assumption: € T) ,, makes the proof of (22) easy. However, this formula
holds in a much stronger form. It is a deep result of Polt&iafBo] (see also [Ja,
JL]) that

Ay — 7 — iy) ')
S e =2 —1y) 1)

= (UM ¢)(x) for ﬂ:‘iﬁg —a.e. . (24)

Hence, the limit (23) exists and is finite fpg\i’g’g—a.e.x. Thus, we have:
Proposition 4. Letp = a & ¢ € . Then,

(UL2 ) (x) = a — NH (x4 10),

sing

Aw _ 77A, A,
whereUg;: = Uy @ Ug®.

sing

2.4 Scattering theory

Recall thathr is the operator of multiplication by the variable on the space
L3(R,dug). UM hy ,(UM) =L is the operator of multiplication by on the space
L2(R,du™v). Set

hRac = hrlp,e(hn) hxwac = hawlboc(ha.)-
Sinceba.(hr) = L2(R, dir ac),
haC(hA,w) = (U;\éw)ilLQ(Rvdﬂ;\éw)v

and the measuresr .. andu):“ are equivalent, the operatdig .. andhy ., .. are
unitarily equivalent. Using (18) and the chain rule onelgadiecks that the operator

w ] dug\&w w _[Im Fy ,(z +i0) w
(WA ¢)($) - d,ufR,aC (LL’) (U:;\c )(ZE) - Im FR(I’ + 10) (Ua)u\c >($>7

is an explicit unitary which takes,.(h ., ) ontoh,.(hz) and satisfies

A, _ A,
w wh)\,w,ac - hR,acW Y.



Mathematical Theory of the Wigner-Weisskopf Atom 13

There are however many unitari€s: hac(hy o) — hac(hr) with the intertwin-
ing property
Uh)\,w,ac = hR,acU' (25)

Indeed, lety € hoc(hr) be a normalized cyclic vector fdrz »c. Then there is a
unique unitaryU such that (25) holds and

Ulae(hrw)l = cp,

wherec = ||1.c(hx )1] is @ normalization constant. On the other hand, any unitary
with the property (25) is uniquely specified by its action ba vectorl,.(hy .,)1.

Note that
Im F) ., (z +10)
A,w — Aw
(W5 Lac(ha)1)(z) \/ T Pr(z +10) -

In this subsection we describe a particular pair of unisgrealled wave operators,
which satisfy (25).

Theorem 2. 1. The strong limits

U/\i’w =s—lim eith**‘“efith“1ac(ho)7 (26)

t—+oo

exist andRan U | = bac(hy o).
2. The strong limits

wa =5 —jltim elthog=itha v Lic(hrw), (27)
’ t—+oo '
exist andRan in = Bac(ho).

3. The mapg])\iw : bac(ho) - bac(h)\,w) and in : hac(h)\,w) - hac(ho) are
unitary. Uy, 25, = Lac(hrw) and 25 Uy, = Lac(ho). Moreover, 2y,
satisfies the intertwining relation (25).

4. TheS-matrix S = QIWU;M iS unitary onb,.(ho) and commutes withg ,.

This theorem is a basic result in scattering theory. Theilddtaroof can be
found in [Ka, RS3].
The wave operators and tif¥ematrix can be described as follows.

Proposition 5. Let¢p = a @ ¢ € h. Then
(23,9) (@) = p(x) = Af(2) Fao(z £10)(a = A(f|(hg — 2 F10)"'¢)). (28)
Moreover, for any € bh,.(ho) one hag Svy)(x) = S(z)y(x) with

S(z) =1+ 27Ti)\2F,\7w(I + 10)|f(x)|2%(:17) (29)
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Remark. The assumption that is a cyclic vector forh is not needed in Theorem
2 and Proposition 5.
Proof. We deal only with(z;’w The case of?y , is completely similar. The formula
for UjE follows from theformulafor()jE by duality (use Theorem 2). Given these
formulas it is easy to compute tbématrlx

Lety) € Hac(ho) = hac(hr). We start with the identity

t
(pleoe e ) = (]g) — ix /0 (ple*™ f)(Ale™" = g) ds.  (30)
Note that(1]¢) = ([, (1]e" f) = (¥le'*"= f), and that

: itho ,—ithx,w — 1 ithx,w ,—itho
Jim (le™0e ¢) = [lim (™1 ee™0[g)

= (U3 ¥lo)
= (V|92 ,0).
Hence, by the Abel theorem,
(1025 ,0) = (Vlp) — lim IAL(y), (31)
where -
L(y) — / eiys(’(ﬂei‘ghof)(l|67i8h’\’“(;5) ds
0
Now,
D= [ el e g s
- / Vi@ {/ (1|els(w+ly i, w)¢)ds dur, ac()
o (32)
/ ¢ 1| h/\ w T ly) ¢) dﬂR,dc(l‘)
/1/)7 dﬂ’R 1c( )
where

gy(@) = (U(hrw — 2 —iy) "' 9).
Recall that for Lebesgue a-e,
gy(7) — g(x) = (1(hy o — v —1i0)"'9), (33)

asy | 0. By the Egoroff theorem (see e.g. Problem 16 in Chapter 3 of,[& any
book on measure theory), for any> 0 there exists a measurable $&f C R such
that|R \ R, | < 1/n andg, — g uniformly onR,,. The set

(v € L’(R,dum ac) | supp ¢ C Ry},
n>0
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is clearly dense iy, (hr ). For anyy in this set the uniform convergengg — ¢
onsupp ¢ implies that there exists a constary such that

[0f(gy — 9)l < Cylvf] € L' (R, dpim ac)-

This estimate and the dominated convergence theorem Yiald t

llm/¢f d/’LRdC_O

yl0
On the other hand, Equ. (31) and (32) yield that the limit
ti [ 7 fg,de,
yl0 Jr
exists, and so the relation
(0128.0) = (010) =X [ D@ @100 =7 =10)716) i o),
holds for a dense set of vectaps Hence,

(23,0)(2) = p(x) = Af(2)(A](hrw — 2 —10)"'9),
and the formula (20) completes the proaf.

2.5 Spectral averaging

We will freely use the standard measurability results camiog the measure-valued
function(\, w) — p**. The reader not familiar with these facts may consult [CFKS,
CL, Ja].

Let A £ 0 and

=

MB) = / p™(B) dw,
R
whereB C R is a Borel set. Obviously;” is a Borel measure oR. The following

(somewhat surprising) result is often callguectral averaging

Proposition 6. The measurg” is equal to the Lebesgue measure and forgalt

LY(R, dz),
[otors= [ [ / g(x)dmm] .

The proof of this proposition is elementary and can be four{da, Si1].
One can also average with respect to both parameters didefrom Proposition
6 that the averaged measure

_ 1 [ p™(B)
B) = — dXd
AB) /RQ 1+ A2 “
is also equal to the Lebesgue measure.
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2.6 Simon-Wolff theorems

Recall thatr + A\2Fr(z + i0) and F o(z + i0) are finite and non-vanishing for
Lebesgue a.e:. For A #£ 0, Equ. (10) gives that for Lebesgue a.e

. 1+ /\2GR($)
|z + A2 (2 +10)]

G,\)O(.ﬁ) 7 = ‘FA’Q($+10)|2(1+)\2GR(CIT)).

These observations yield:

Lemmal.Let B C R be a Borel set and # 0. ThenGr(z) < oo for Lebesgue
a.e.x € Biff Gy o(z) < oo for Lebesgue a.e: € B.

This lemma and the Simon-Wolff theorems in rank one pertishaheory (see
[Ja, Si1, SW]) yield:

Theorem 3.LetB C R be a Borel set. Then the following statements are equivalent

1. Gr(z) < oo for Lebesgue a.e: € B.
2. Forall A # 0, %, (B) = 0 for Lebesgue a.e: € R. In particular, u):, (B) =

cont

0 for Lebesgue a.€), w) € R2.

Theorem 4.Let B C R be a Borel set. Then the following statements are equivalent

1.Im Fr(x +1i0) = 0 andGz(x) = oo for Lebesgue a.e: € B.
2. Forall A # 0, g (B) + pp’ (B) = 0 for Lebesgue a.ev € R. In particular,
pa (B) + p(B) = 0 for Lebesgue a.€\,w) € R?.

Theorem 5.Let B C R be a Borel set. Then the following statements are equivalent

1.Im Fr(x +1i0) > 0 for Lebesgue a.e: € B.
2. Forall\ # 0, ply% (B) = 0 for Lebesgue a.e: € R. In particular, 1y (B) =

0 for Lebesgue a.€\,w) € R2.

Note that while the Simon-Wolff theorems hold for a fixe@énd for a.ew, we
cannot claim that they hold for a fixedand for a.e A—from Fubini’'s theorem we
can deduce only that for a.the results hold for a.e\. This is somewhat annoying
since in many applications for physical reasons it is natorfix w and vary\. The
next subsection deals with this issue.

2.7 Fixingw

The results discussed in this subsection are not an imneedatsequence of the
standard results of rank one perturbation theory and ferrfason we will provide
complete proofs.

In this subsectiow is a fixed real number. Let

7(B) = /R 1 (B,
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whereB C R is a Borel set. Obviously;“ is a positive Borel measure dand for
all Borel measurable > 0,

[owam0 = [ | [ swmr=o] o

where both sides are allowed to be infinite.
We will study the measure® by examining the boundary behavior of its Poisson
transformP,, (x,y) asy | 0. In this subsection we set

h(z) = (w— 2)Fr(2).
Lemma2.For z € Cg4,

_ T |h(2)| + Reh(z)
V2 |7 (2)] '

Proof. We start with

= Im/ Fy o(z +1iy) dA.
R
Equ. (8) and a simple residue calculation yield
[ Bt tmar=—"—,
* Fr2)\ 725

where the branch of the square root is chosen to fig inAn elementary calculation
shows that .

17T
Vh(x + iy) ’

where the branch of the square root is chosen to have post@v@art, explicitly

\/EE% (\/|w|+Rew+isign(Imw) \/|w\7Rew>. (34)

This yields the statemerii]

P,(z,y) =Im

Theorem 6. The measurg® is absolutely continuous with respect to Lebesgue mea-
sure and

di®

_ /|h(z +10)| + Re h(x +i0)
dz - ’

(@) V2|h(z +i0)|

(35)
The set
E={z|ImFr(z+1i0) > 0} U{z|(w — z)Fr(z +10) > 0},

is an essential support fgr* and * is concentrated o# for all A # 0.
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Proof. By Theorem 1w is not an eigenvalue of*« for A\ # 0. This implies that
7 ({w}) = 0. By the theorem of de la Va@k Poussin (for detailed proof see e.g.
[Ja]), s, is concentrated on the set

{z|z # wand hﬁ}Pw(a: +1iy) = oo}.
y

By Lemma 2, this set is contained in

S ={z| lim Fr(z +1iy) = 0}.
yl0

SinceS N Sy, C {w}, Theorem 1 implies that;* (S) = 0 for all A # 0. Since

sing

|S| = 0, u)(S) = 0 for all \. We conclude that*~ (S) = 0 for all A # 0, and so

() = [ is)in=o

Hence fig,,, = 0. From Theorem 1 we now get

1
dp®(z) =dpe(z) = - Im F,(z +10) dz,

and (35) follows from Lemma 2. The remaining statements bvgoois.[]

We are now ready to state and prove the Simon-Wolff theoremfided w.

Theorem 7.Let B C R be a Borel set. Consider the following statements:

1. Gr(z) < oo for Lebesgue a.e: € B.
2. u) (B) = 0 for Lebesgue a.e\ € R.

Then(1l) = (2). If B C &, then also(2) = (1).

Proof. Let A= {z € B|Gr(z) =0} NE.

(1)=-(2) By assumption,A has zero Lebesgue measure. Theorem 6 vyields that
n¥(A) = 0. SinceGr(z) < oo for Lebesgue a.ex € B, Im Fr(x +1i0) = 0

for Lebesgue a.ex € B. Hence, for all\, Im F) ,(x + i0) = 0 for Lebesgue a.e.

x € B. By Theorem 1 (B) = 0 and the measurg):*’| 5 is concentrated on the
setA for all A # 0. Then,

[wemar= [ pewans [pema-pw-o
R R R
Hence,u:* (B) = 0 for Lebesgue a.&.

(2)=-(1) Assume that the sed has positive Lebesgue measure. By Theorem 1,
e (A) = 0 forall A # 0, and

/ Prooms (A) dX = / M (A)dN = ¥ (4) > 0.
R R

Hence, for a set of’s of positive Lebesgue measuy€,~; (B) > 0. ]

nt
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Theorem 8.Let B C R be a Borel set. Consider the following statements:

1.Im Fr(x +1i0) = 0 andGr(x) = oo for Lebesgue a.e: € B.
2. 1@ (B) + p(B) = 0 for Lebesgue a.e\ € R.

Then(1) = (2). If B C &, then also(2) = (1).

Proof. LetA = {z € B|Gr(x) < o0} NE.

(1)=(2) Sincelm Fr (x +i0) = 0 for Lebesgue a.e: € B, Theorem 1 implies that
pax(B) = 0 for all \. By Theorems 1 and 6, fox # 0, u3: | is concentrated on
the setA. SinceA has Lebesgue measure zero,

[ g ar <) o

and sou) (B) = 0 for Lebesgue a.e\.

(2)=(1) If Im Fr (z+10) > 0for a set ofr € B of positive Lebesgue measure, then,
by Theorem 1, (B) > 0 for all \. Assume thalm F (x +i0) = 0 for Lebesgue
a.e.z € B and thatd has positive Lebesgue measure. By Theorep(t, (4) = 0

for all A\ # 0 and sinced C &, Theorem 6 implies

/Mgg“(A) d\ = / M (A)dX\ =¥ (A) > 0.
R R

Thus, we must have that«(B) > 0 for a set of\'s of positive Lebesgue measure.
U

Theorem 9.Let B C R be a Borel set. Consider the following statements:

1.Im Fr(x +1i0) > 0 for Lebesgue a.e: € B.

2. pgs (B) = 0 for Lebesgue a.e\ € R.

Then(1l) = (2). If B C &, then also(2) = (1).
Proof. (1)=-(2) By Theorem 1, forx # 0 the measur@;’r:,;m is concentrated on

the setd = {# € B|Im Fg(z + i0) = 0} N £. By assumptionA has Lebesgue
measure zero and

[ra@ans [ e a—pe -o
R R

Hence, for Lebesgue a.&.€ R, ;.. (B) = 0.
(2)=-(1) Assume thaB C £ and that the set

A={z € B|Im Fg(x +1i0) = 0},
has positive Lebesgue measure. By Theorep#;(A) = 0 for all A, and

[ ar= [ eaan =z > o

Hence, for a set ok’s of positive Lebesgue measuyg\;n‘;;(B) > 0.0
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2.8 Examples

b],dur) andhy is the operator of

In all examples in this subsectidp; = L3([a, b],
[0,1]. In Examples 1 and 2 we do not

multiplication byx. In Examples 1-9a,b] =
assume thaf is a cyclic vector forhx.

Example 11n this example we deal with the spectrum outdiald . Let

1 T 2 1 T 2
s | I@P 4, -/ I@F .
0 x 0 x—1
Obviously, 4y €]0,00] andA; € [—o0,0[. If A2 > w/Ay, thenh, ., has a unique
eigenvaluee < 0 which satisfies

w_€_>\2 1|f(x)‘2d

0 xr—e

pw () = 0. (36)
If \> < w/Ag, thenh, ., has no eigenvalue ih— oo, 0]. 0 is an eigenvalue of, .,
iff A% = w/4o and [, | f(z)[?z2dux (x) < co. Similarly, if
(w—1)/A1 < X%,
thenh, ., has a unique eigenvalue> 1 which satisfies (36), and if
(w—1)/41 > 22,
thenh, ., has no eigenvalue ifi, co[. 1 is an eigenvalue af, ,, iff
(w—1)/4 = X2,
and [, |£(@)|?(z — 1)"2dun (z) < oo.
Example 2Let dur (7) = dxljp,1}, let f be a continuous function go, 1], and let
S = {x €]0,1[| f(z) # 0}

The setS is open inj0, 1], and the cyclic space generatediyy and f is L2(S, dz).
The spectrum of
hawlcor?(s,dz)) s
is purely absolutely continuous and equaol]\S. Since forr € S, lim, | Im Fr (z+
iy) = 7|f(z)|?> > 0, the spectrum of, ., in S is purely absolutely continuous for
all A # 0. Hence, if
S= LJ](;L,L7 bnl,

is the decomposition af into connected components, then the singular spectrum of
hy. inside|0, 1] is concentrated on the set,{a,, b, }. In particular,hy ., has no
singular continuous spectrum. A point U, {a,, b, } is an eigenvalue af, ,, iff
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/1 |F()l? dzr < o0 and w—e—Az/IWdﬁCZQ (37)
o 0

(z —e)? x—e

Givenw, for eache for which the first condition holds there are precisely thie
such that is an eigenvalue ok, ,,. Hence, giverw, the set of\’s for which k)
has eigenvalues i, 1[ is countable. Similarly, given, the set ofv’s for which i,
has eigenvalues i, 1] is countable.

Let

Z ={x € [0,1]| f(z) = 0},

andg = sup,, Gr(x). By (16), the number of eigenvaluesiof ., is bounded by
1 + M\?g. Hence, ifg < oo, thenh, ., can have at most finitely many eigenvalues. If,
for example,f is §-Holder continuousi.e.,

[f(z) = f(y)] < Cle —y|°,
forall z,y € [0,1] and som& > 1/2, then

9=Sur>/0 /O dt:sup/o 1) — f@)°

wez Jo (t—1x)° veZ (t—x)?

1
< sup/ 7C dt < oo
T aez)o (t—x)2070 ’
andh, ., has at most finitely many eigenvalues. On the other handngivg 0, w,
and a finite sequenc® = {ey,...,e,} €]0, 1], one can construct@> function f
with bounded derivatives such thatis precisely the set of eigenvalues/of ., in
10,1].

More generally, letE = {e,} C]0,1] be a discrete set. (By discrete we mean
that for alln, inf; ., |e, — €;| > 0 — the accumulation points df are not inE).
Let A # 0 andw be given and assume thais not an accumulation point &. Then
there is aC>° function f such thatE' is precisely the set of eigenvalues/of ., in
10, 1[. Of course, in this cas¢ (x) cannot be bounded. The construction of a sfich
is somewhat lengthy and can be found in [Kr].

In the remaining examples we talfe= 1. The next two examples are based on
[How].

Example 3Let uxr be a pure point measure with atoms (z,,) = a,,. Then

Oxl) =3 G

If ", Van < oo, thenGr(z) < oo for Lebesgue a.e: € [0,1] (see Theorem 3.1
in [How]). Hence, by Simon-Wolff theorems 3 and 7, for a fixegt 0 and Lebesgue
a.e.w, and for a fixedv and Lebesgue a.@, h, ., has only a pure point spectrum.
On the other hand, for a fixed # 0, there is a dens€@'s set ofw € R such that the
spectrum ot , 0n]0, 1] is purely singular continuous [Gor, DMS].
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Example 4 (continuationAssume that,, = z,,(w) are independent random vari-
ables uniformly distributed oft, 1]. We keep the:,,’s deterministic and assume that
Y- +Va, = co. Then, for a.ew, Gz .,(z) = oo for Lebesgue a.ex € [0, 1] (see
Theorem 3.2 in [How]). Hence, by Simon-Wolff theorems 4 antbBa fixed\ # 0
and Lebesgue a.e, and for a fixedv and Lebesgue a.g, the spectrum ok ,, (w)

on [0, 1] is singular continuous with probability.

Example 5Let v be an arbitrary probability measure fin1]. Let

dpr(z) = % (dx\[oﬂ + dl/(x)) .

Since for allz €]0, 1],

™
lim inf Im F- iy) > =
iminf Im r(z+1y) 2 3,

the operatoih, ., has purely absolutely continuous spectrum|@r] for all A #

0. In particular, the singular spectrum ofdisappears under the influence of the
perturbation for all\ # 0.

Example 6This example is due to Simon-Wolff [SW]. Let

on

p =27" Z dja-n,
j=1

andug =Y, anpn, Wherea, > 0,3 a, =1and)_, 2"a, = oco. The spectrum
of hg ., is pure point and equal {0, 1] U {w}. For anyx € [0, 1] there isj,, such that
l7z/2™ — x| < 27™. Hence, for all,

/ dpn(t) > on.

R (E—2) ~

andGr(z) = oo for all z € [0, 1]. We conclude that for alA # 0 and allw the
spectrum ot , on [0, 1] is purely singular continuous.

Example 7Let uc be the standard Cantor measure (see [RS1]). Set
Vin(A) = po(A+j277),

and
gn

oo
KR = €X[o,1] Z n=? Z Vi,
n=1 j=1

wherec is the normalization constant. Th&#z (z) = oo for all x € [0, 1] (see
Example 5 in Section 1.5 of [Si2]), and the spectrum/gf,, on [0,1] is purely
singular continuous for al\, w.
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Example 8.The following example is due to del Rio and Simon [DS] (se® als
Example 7 in Section I.5 of [Si2]). Le{r,} be the set of rationals if0, 1],
a, = min(37"" Y r,, 1 —r,), andS = U, (r, — an, 7, + a,). The setS is dense
in [0,1] and|S| < 1/3. Letdugr = |S|'xsdz. The spectrum ofiz is purely
absolutely continuous and equal[tg 1]. The setS is the essential support of this
absolutely continuous spectrum. Clearly, forgllv, sp,.(hx ) = [0,1]. By Theo-
rem 5, for any fixed\ # 0, h ., will have some singular spectrumi, 1] \ S for a
set ofw’s of positive Lebesgue measure. It is not difficult to shoattiz (r) < oo
for Lebesgue a.ex € [0,1] \ S. Hence, for a fixed\, h, ,, will have no singular
continuous spectrum for Lebesgue a:éaut it has some point spectrum[iy 1] \ S
for a set ofw’s of positive Lebesgue measure.

For a givenw, hy ,, has no singular continuous spectrum for Lebesguelagince
the setS is symmetric with respect to the poihf2, we have that for alk € C.,
Re Fr(z) = —Re Fr(—z + 1/2). Hence,

Re Fr(z) = —Re Fr(—z + 1/2), (38)
and if|w| > 1, then the set
{z € [0,1]\ S| (w - 2)Fr(z) > 0}, (39)

has positive Lebesgue measure. Theorem 9 yields that forem gi ]0,1[, hx .

will have some point spectrum i, 1] \ S for a set of\’s of positive Lebesgue
measure. Ifv €]0, 1], the situation is more complex and depends on the choice of
enumeration of the rationals. The enumeration can be alalagsen in such a way
that for all0 < e < 1, |S N [0,€]| < e. In this case for any givew the set (39) has
positive Lebesgue measure afag,, will have some singular continuous spectrum
in [0,1] \ S for a set of\’s of positive Lebesgue measure.

Example 9This example is also due to del Rio and Simon [DS] (see alsonpia
8 in Section I1.5 of [Si2]). Let
2" 1

J 1 J 1
Sn = U }2”  4p22n’ on + 4n22n |’
=1

andS = U, S,. The setS is dense i0, 1] and|S| < 1. Letdugr = |S| !xs dx.
Then the absolutely continuous spectrunhqf,, is equal to[0, 1] for all A, w. One
easily shows thafz () = oo on|0, 1]. Hence, for a fixed, hy ., will have no point
spectrum on0, 1] for Lebesgue a.ev but it has some singular continuous spectrum
in [0,1] \ S for a set ofw’s of positive Lebesgue measure.

For a givenw, hy ., will have no point spectrum inside, 1] for Lebesgue a.e\.
The setS' is symmetric with respect tb/2 and (38) holds. Since for ary< € < 1,
|S N[0, €]| < ¢, for any givenw the set

{z € [0,1J\ S| (w—x)Fr(x) > 0},
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has positive Lebesgue measure. Hence, Theorem 9 yieldfothatgivenw, hy .,
will have some singular continuous spectrundnl] \ .S for a set of\’s of positive
Lebesgue measure.

Example 10Proposition 1 and a theorem of del Rio and Simon [DS] yield there
exist a bounded intervad, b], a Borel probability measurer on [a,b] andg > 0
such that:

1. spy(haw) = [a,b] forall A, w.

2. for a set otuv’s of positive Lebesgue measure, », has embedded point spec-
trum in [a, b].

3. for a set ofw’s of positive Lebesgue measurk,, ,, has embedded singular
continuous spectrum ifa, b].

Example 11Proposition 1 and a theorem of del Rio-Fuentes-Poltoidi3kP] yield
that there exist a bounded interyal b], a Borel probability measurer on|a, b] and
Ao > 0 such that:

1. sp,e(haw) = [a,b] for all A, w.
2. forallw € [0, 1], the spectrum of, ,, is purely absolutely continuous.
3. forallw & [0,1], [a,b] C spgng(huw r,)-

2.9 Digression: the semi-circle law

In the proof of Proposition 1 we have solved the equation {éd ).z . In this sub-
section we will find the fixed point of the equation (11). Moregisely, we will find
a finite Borel measure whose Borel transform satisfies the functional equation

1
H(z) = —2—MH(z)’
or, equivalently
NH(2)?+2H(2) +1=0. (40)
The unique analytic solution of this equation is
V22 —4)2 — 2
H(z) = o2

a two-valued function which can be made single valued byrauthe complex plane
along the line segmerjt-2|A|,2|\|]. Only one branch has the Herglotz property
H(C,) c C4. This branch is explicitly given by

C1e-1 Y
HE = S5z

where the branch of the square root is determineR&y > 0 (the so-called princi-
pal branch). In particula#f (z+iy) ~ iy~! asy — +oo, and by a well known result
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in harmonic analysis (see e.g. [Ja]) there exists a uniquel Boobability measure
such thatf, (z) = H(z) for z € C4. Forallz € R,

limIm F, (z + iy) = hx(x),
yl0

where
402 — 2
ha(z) = 2\2
0 if || > 2|\
We deduce that the measurés absolutely continuous w.r.t. Lebesgue measure and
that

if || < 2\,

dv(z) = 77 hy(x)d.

Of course is the celebrated Wigner semi-circle law which naturaliges in the
study of the eigenvalue distribution of certain random ine#, see e.g. [Meh]. The
result of this computation will be used in several placehi@remaining part of our
lectures.

3 The perturbative theory

3.1 The Radiating Wigner-Weisskopf atom

In this section we consider a specific class of WWA models whatfsfy the follow-
ing set of assumptions.

Assumption (A1) hr = L?(X,dz; R), whereX = (e_,e;) C R is an open (pos-
sibly infinite) interval andR is a separable Hilbert space. The Hamiltonten = =
is the operator of multiplication by.

Note that the spectrum af, is purely absolutely continuous and equalioFor
notational simplicity in this section we do not assume thista cyclic vector fori .
This assumption is irrelevant for our purposes: since tlicgpaceh; generated
by hy and1 is independent of for \ # 0, soish; C hr andhA|b1i = hR‘hf has
purely absolutely continuous spectrum.

Assumption (A2) The function
o) = [ @),
X
isin LY(R, dt).

~ This assumption implies that— || f(z)||« is a bounded continuous function on
X. Note also that foim z > 0,
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FR(Z): Hf(‘r)”ﬁ dle/oooelZég(S)dS

X Tr—Zz

Hence,F (z) is bounded and continuous on the closed half-p@neln particular,
the functionF'z (z + i0) is bounded and continuous @ If in additiont"g(t) €
L(R,dt) for some positive integen, then|| f(x)||% and Fr(z + i0) aren-times
continuously differentiable with bounded derivatives.

Assumption (A3)w € X and||f(w)|g > 0.

This assumption implies that the eigenvaluef i, is embedded in its absolutely
continuous spectrum.

Until the end of this section we will assume that Assumptifhk)-(A3) hold.
We will call the WWA which satisfies (A1)-(A3) the Radiating @vier-Weisskopf
Atom (abbreviated RWWA).

In contrast to the previous section, until the end of the pagewill keepw fixed
and consideonly \ as the perturbation parameter. In the sequel we drop thespibs
w and writeFy for F ,,, etc.

Since || f(z)||s is a continuous function of, the argument of Example 2 in
Subsection 2.8 yields that, has no singular continuous spectrum foralHowever,
h, may have eigenvalues (and,Xf # R, it will certainly have them for\ large
enough). Fon\ small, however, the spectrum bf is purely absolutely continuous.

Proposition 7. There exists! > 0 such that, fol0 < [A| < A, the spectrum ok, is
purely absolutely continuous and equalXo

Proof. By Theorem 1, the singular spectrum/of is concentrated on the set
S ={r eR|w—2z— NFgr(z +i0) = 0}.
Sincelm Fr (w +i0) = 7|| f(w)[|% > 0, there ise > 0 such that
Im Fr (z +i0) > 0,

for |z — w| < e. Letm = max,cg |Fr(z + i0)] andA = (e/m)'/2. Then, for
|A| < Aandz €]w —€,w + €[, one hasw — z| > \?|Fr(z+i0)|. Hence,S is empty
for 0 < |A] < 4, and the spectrum df, |y, is purely absolutely continuousl

We finish this subsection with two examples.
Example 1Assume thahr = L2(R?, d%x) and lethr = — A, whereA is the usual
Laplacian inR¢. The Fourier transform
S(k) = —— / ¢ T o(2) da
80 - (27T)d/2 Rd 80 )

maps unitarilyL?(R¢, d?z) onto L?(R¢,d%k) and the Hamiltoniarhr becomes
multiplication by |k|?. By passing to polar coordinates with=|k| we identify
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L2(R%,d%) with L2(R,, 74~ 1dr; R), wheref = L?(S97!,do), S?~! is the unit
sphere iR?, anddo is its surface measure. The operdigrbecomes multiplication
by r2. Finally, the map

d—2 _
p#(z) = 271227 (V)
mapsL?(R?, dx) unitarily onto L2 (X, dz; &) with X = (0, c0), and
(hr)™ (x) = 2™ (x).

This representation dfz andhr (sometimes called thepectralor theenergyrep-
resentation) clearly satisfies (Al).

The function f# satisfies (A2) iff the functiong(t) = (fle~!*"=f) is in
L'(R,dt). If f € L*(R%, d%) is compactly supported, therit) = O(t~%/?), and
so if d > 3, then (A2) holds for all compactly supportgd If d = 1,2, then (A2)
holds if f is in the domain ofx|? and its Fourier transform vanishes in a neighbor-
hood of the origin. The proofs of these facts are simple amdbeafound in [BR2],
Example 5.4.9.

Example 2Lethr = (?(Z, ), whereZ, = {1,2,---}, and let
1
hr = 5 Z ((6n| : )6n+1 + (6n+1| : )5n>a
neZy

whered,, is the Kronecker delta function ate Z . . hx is the usual discrete Lapla-
cian on/?(Z., ) with Dirichlet boundary condition. The Fourier-sine tréorsn
Lo ]2 .
(k) =1/~ 3 e(n)sin(kn),
nely

maps(?(Z..) unitarily onto L?([0, 7], dk) and the Hamiltoniarhr becomes multi-
plication bycos k. Finally, the map

o* () = (1 — 2%~V p(arccos 2),
maps(?(Z.) unitarily onto L2 (X, dz), whereX = (—1,1) and
(hrp)? (x) =z (2).
If # has bounded support i, , then| f#(z)|? = (1 —22)Y/2P;(x), whereP;(z) is

a polynomial inz. A simple stationary phase argument yields gta} = O(|t|=3/2)
and Assumption (A2) holds.

3.2 Perturbation theory of embedded eigenvalue

Until the end of this sectiodl is the constant in Proposition 7.
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Note that the operatdry, = w ® x has the eigenvalue embedded in the abso-
lutely continuous spectrum af. On the other hand, fdr < |\| < A the operatoth
has no eigenvalue—the embedded eigenvalue has "dissolvéiok mbsolutely con-
tinuous spectrum under the influence of the perturbatiothifisubsection we will
analyze this phenomenon. At its heart are the conceptsohancendlife-time of
an embedded eigenvalue which are of profound physical itapoe.

We setD(w,r) = {z € C| |z — w| < r}. In addition to (A1)-(A3) we will need
the following assumption.

Assumption (A4) There existp > 0 such that the function
Ci 3z — Fr(2),

has an analytic continuation across the intefuat p,w + p[ to the regionC U
D(w, p). We denote the extended function B (z).

It is important to note that folm z < 0, F§ (2) is differentfrom Fr(z). This is
obvious from the fact that

Im Fr(z +i0) — Im Fr(z — i0) = 27 f(2)[z > 0,

nearw. In particular, if (A4) holds, thep must be such thdty — p,w + p[C X.
Until the end of this subsection we will assume that Assuami{A1)-(A4) hold.

Theorem 10. 1. The functionF)(z) = (1|(hx — z)~*1) has a meromorphic con-
tinuation fromC . to the regionC, U D(w, p). We denote this continuation by
2. Let0 < p' < p be given. Then there id’ > 0 such that for|\| < A’ the
only singularity of i (z) in D(w, p’) is a simple pole ats(\). The function
A — w() is analytic for|\| < A" and

W) = w4 asA\? + O\,
wherea; = —Fg(w +i0). In particular, Im as = —7|| f(w)|% < 0.

Proof. Part (1) is simple—Assumption A4 and Equ. (8) yield that

1
w—z—NF}(z)

Fyi(2) =

is the mermorphic continuation &, > z — F)\(z) to C U D(w, p).
For a giveny’, choosed’ > 0 such that
o> AP sup |Fg (2)]-
z|=p’

By Rouctle’s theorem, there is an> 0 such that fof\| < A’ the functionw — z —
A F% (2) has a unique simple zetg()\) inside D(w, p’ + ¢€) such thafw(\) — w| <
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p’ — e. This yields thatF}" (z) is analytic inC;. U D(w, p’ + €) except for a simple
pole atw()\). The function

[e.¢] F+ n
|w—z|=p’ "0 |w—z|=p’ w—z w—z

is analytic for|A| < A’. Similarly, the function

o= Frem=y o (B = @

n=0 |w—z|=p’

is analytic and non-zero fgA| < A’. Since

_ P
“N =20y

we see thab()\) is analytic for|A\| < A with the power series expansion

w(A) = i A"ag,.

n=0
Obviously,ay = w and
@2 27 jl{w—Z—p’ Z—w i R(w) R(W_H )

The same formula can be obtained by implicit differentiatid
w=w(A) = NXFf(w()) =0,
atA =0.0

Theorem 10 explains the mechanism of "dissolving” of the eduted eigenvalue
w. The embedded eigenvaluehas moved from the real axis to a pointA) on
the second (improperly called “unphysical”) Riemann stidehe functionF (z).
There it remains the singularity of the analytically cootd resolvent matrix ele-
ment(1|(hy — z)~11), see Figure 1.

We now turn to the physically important concept of the lifee¢ of the embedded
eigenvalue.

Theorem 11.There existsl” > 0 such that fojA| < A” and allt > 0
(1‘€_ith>‘1> — e—itw()\) + O()\2>

Proof. By Theorem 7 the spectrum af, is purely absolutely continuous for <
|A\] < A. Hence, by Theorem 1,

1 1
dp(z) = dp.(z) = - Im F)\(x +1i0)dz = - Im Fy (z) d.
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physi cal Ri emann sheet

Fig. 1. The resonance pole()).

Let A’ andp’ be the constants in Theorem 1] = min(A’, A), and suppose that
0 < |A] < A”. We split the integral representation

(e 1) = [ e o), 42)

w—p! wtp’ et
e w—p’ w+p’

into three parts as

Equ. (8) yields
Im F% ()
lw =z = N2Fg (2) >
and so the first and the third term can be estimate@(@¢). The second term can
be written as

Im Fyf (z) = A2

1 aid —itx
I(t) = %/ e it (F;r(x) — Fj(x)) dx.
w—p’

The functionz +— Fy' (%) is meromorphic in an open set containiffw, p) with

only singularity atu(\). We thus have

I(t) = —R(\) e it 4 / e it (F;(z) - Fj(z)) dz,

Y

where the half-circley = {z | |z — w| = p/,Im z < 0} is positively oriented and
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R(A) = Res,_ (0 Fy (2).
By Equ. (41),R(\) = Q(\)/2xi is analytic for|A\| < A” and
R()\) = —1+0(\?).
Equ. (8) yields that for €

FY(z) = i + 002,

Sincew is real, this estimate yields

FY(2) = Ff (z) = O(\%).
Combining the estimates we derive the stateniant.

If a quantum mechanical system, described by the Hilbedespand the Hamil-
tonianhy, is initially in a pure state described by the vectothen

P(t) = (1™ 1),

is the probability that the system will be in the same statéimaé ¢. Since the
spectrum ofh is purely absolutely continuous, by the Riemann-Lebesguaria
lim;_,, P(t) = 0. On physical grounds one often expects more, namely an &ppro
imate relation

P(t) ~ e TN, (43)

whereI'()\) is the so-called radiative life-time of the stdteThe strict exponential
decayP(t) = O(e~ ') is possible only ifX = R. Since in a typical physical sit-
uation X # R, the relation (43) is expected to hold on an intermediate thrale
(for times which are not "too long” or "too short”). Theorer Is a mathematically
rigorous version of these heuristic claims &{d) = —2Imw(\). The computation
of the radiative life-time is of paramount importance in guen mechanics and the
reader may consult standard references [CDG, He, Mes] fiitiadal information.

3.3 Complex deformations

In this subsection we will discuss Assumption (A4) and thaybation theory of
the embedded eigenvalue in some specific situations.

Example 11n this example we consider the cake=]0, oo|.

Let0 < 6 < m/2andA(§) = {z € C|Rez > 0,|Arg z| < 0}. We denote by
HZ2(6) the class of all functiong : X — & which have an analytic continuation to
the sectotd(d) such that

1712 = sup / 1 (e92)|2dz < oo.
0]<s J X

The classH3(9) is a Hilbert space. The functions iH3(5) are sometimes called
dilation analytic
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Proposition 8. Assume thaf € H3(4). Then AssumptioA4) holds in the follow-
ing stronger form:

1. The functionF’z (z) has an analytic continuation to the regidh, U A(J). We
denote the extended function By ()
2. For0 < ¢’ < 6 ande > 0 one has

sup |F% (2)] < oo
|z|>e,z€A(S")

Proof. The proposition follows from the representation

oo = [ WM g, _ o [ U S e e g, gy

x T—2Z elfy — 2

which holds forlm z > 0 and—§ < 6 < 0. This representation can be proven as
follows.
Lety(6) be the half-linex' IR, . We wish to prove that fokm z > 0

IF@I ., _ / (@I )s .
v(0) w=z
To justify the interchange of the line of integration, it icés to show that

/0 |(f(rne ™) |f (rne'))sl 4
0

i el — 2|

n—oo

¢ =0,

along some sequeneg — oo. This fact follows from the estimate

O2|(fe )| f(e¥x
/XUe (£ . WHEEDal 4o 4z < o f12.

ey — z|

O

Until the end of this example we assume tifat H3(5) and that Assumption
(A2) holds (this is the case, for example, fif € H2(§) and f(0) = 0). Then,
Theorems 10 and 11 hold in the following stronger forms.

Theorem 12. 1. The function
Fx(2) = (1] (ha — 2)7'1),

has a meromorphic continuation frof, to the regionC, U A(J). We denote
this continuation by’ (2).

2. Let0 < ¢’ < 0 be given. Then there id’ > 0 such that for|A| < A’ the only
singularity of F () in LA(¢') is a simple pole at(\). The functiom\ — w(\)
is analytic for|A\| < A’ and

W) = w4+ Nay + O\,

wherea; = —Fg(w + i0). In particular, Im as = —|| f(w)||% < 0.
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Theorem 13.There existsl” > 0 such that fofA| < A” and allt > 0,
(1|e_ithA 1) — e—itw()\) + O()\Qt_l).

The proof of Theorem 13 starts with the identity
(1) =3 [ e o) B (@)
X
Given0 < ¢’ < ¢ one can findl” such that folA| < A”

(1]e7i"1) =e‘i”(”+k2/ e (f(@)| f(w))s FY (@) Fy (w) dw, (45)

07i5IR+

and the integral on the right is easily estimated®y ). We leave the details of
the proof as an exercise for the reader.

Example 2We will use the structure of the previous example to illustithe com-
plex deformation method in study of resonances. In this @@mwe assume that
f e Hi(9).

We define a grougu(6) | @ € R} of unitaries or) by

w(®) : a® f(z) — ade?2f(z).

Note thathz (0) = u(—0)hru(f) is the operator of multiplication by—%z. Set
ho(0) = w & hr (0), fo(z) = u(=0)f()u(0) = f(e~’x), and

ha(0) = ho(8) + A ((1]-)fo + (fol -)1) -

Clearly,hy(0) = u(—6)hyu(6).
We setS(d) = {#||Im z| < ¢} and note that the operatbg(¢) and the function
fo are defined for alf € S(¢6). We defineh, (0) for A € C andf € S(J) by
ha(0) = ho(6) + A ((1] ) fo + (fgl )1) -
The operatorsiy () are called dilated Hamiltonians. The basic properties f th
family of operators are:

1. Dom (hy(#)) is independent ok andd and equal tdom (hy).

2. For all¢ € Dom (hg) the functionC x S(6) 3 (A, 0) — hx(0)¢ is analytic in
each variable separately.
A family of operators which satisfy (1) and (2) is called amalytic family of
type Ain each variable separately.

3. If Imé = Im @, then the operatork, (¢) andh(0’) are unitarily equivalent,
namely

ho(0") = u(—(0" — 6))ho(0)u(0’ — 0).

4. sp.(ho(0)) = e R, andspy;..(ho(0)) = {w}, see Figure 2.
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0 w

SPess (hx(6))

Fig. 2. The spectrum of the dilated Hamiltonian (9).

The important aspect of (4) is that whileis an embedded eigenvalue iof, it
is an isolated eigenvalue af(#) as soon a$m# < 0. Hence, iflm# < 0, then
the regular perturbation theory can be applied to the iedlatgenvalue.. Clearly,
for all A, sp..(ha(0)) = sp(ho(#)) and one easily shows that farsmall enough
SPaisc (PA)(0) = {@(X\)} (see Figure 2). Moreover, if < p < min{w,w tan 6},
then for sufficiently smalk,

f{ EEUORSRIE
B(A) = Lezwl=s .
§ e -2

The reader should not be surprised that the eigenvalug is precisely the pole
w(A) of Fif (2) discussed in Theorem 10 (in particulat,)\) is independent of). To
clarify this connection, note that(¢)1 = 1. Thus, for reab andIm z > 0,

F(2) = (1](hx = 2)7'1) = (1](ha(0) — 2)7"1).

On the other hand, the functidd > 6 — (1|hx(f) — z)~*1) has an analytic con-
tinuation to the strip-d < Imé < Im z. This analytic continuation is a constant
function, and so
Fyf(2) = (1](ha(6) = 2)7'D),

for -0 < Im@ < 0andz € C; U A([Im#|). This yields thatv()\) = @(A).

The above set of ideas plays a very important role in mathieadathysics. For
additional information and historical perspective we refee reader to [AC, BC,
CFKS, Der2, Si2, RS4].

Example 3In this example we consider the cake= R.

Letd > 0. We denote by72(4) the class of all functiong : X — & which have
an analytic continuation to the stri(4d) such that

wﬁzmm/nﬂmuw@M<m.
0|<é J X
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The classH?(9) is a Hilbert space. The functions iH?(§) are sometimes called
translation analytic

Proposition 9. Assume thaf € HZ2(d). Then the functior’z (z) has an analytic
continuation to the half-plan¢z € C|Im z > —¢}.

The proposition follows from the relation

Foie) = [ Mg, [ GOty g

x T—2z x+if — z

which holds forlm z > 0 and—¢§ < 6 < 0. The proof of (46) is similar to the proof
of (44).

Until the end of this example we will assume thfae HZ(5). A change of the
line of integration yields that the function

o) = [ @) o
satisfies the estimatg(t)| < e~I*l|| f||2, and so Assumption (A2) holds. Moreover,
Theorems 10 and 11 hold in the following stronger forms.
Theorem 14. 1. The function
Fa(2) = (1|(hy = 2)711),
has a meromorphic continuation fro@, to the half-plane
{z€ C|Imz > —4§}.

We denote this continuation @y (z).

2. Let0 < ¢’ < 0 be given. Then there i¢’ > 0 such that for|A| < A’ the only
singularity of ;7 (2) in {z € C|Imz > —4'} is a simple pole ab(\). w()) is
analytic for|\| < A" and

w(A) = w + Mag + O\,
wherea; = —Fg(w + i0). In particular, Im as = —|| f(w)||% < 0.

Theorem 15.Let 0 < ¢’ < & be given. Then there exists’ > 0 such that for
[\ < A”and allt >0

(1|e—ith>\ 1) — e—itw()\) + O()\Qe—é/t).

In this example the survival probability has strict expdierdecay.

We would like to mention two well-known models in mathematiphysics for
which analogs of Theorems 14 and 15 holds. The first modeleisStiark Hamil-
tonian which describes charged quantum particle movingeutite influence of a
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constant electric field [Her]. The second model is the spgiseln system at positive
temperature [JP1, JP2].

In the translation analytic case, one can repeat the digcus$ the previous
example with the analytic family of operators

ha(0) =w @ (x+0) + A ((A])fo + (fgl 1),
wherefy(z) = f(x + 0) (see Figure 3). Note that in this case

SPess (1A (0)) = SPess (ho(0)) = R 4 1Im 6.

y—Imé

SPess (h)\ (9))

Fig. 3. The spectrum of the translated Hamiltonian(¢).

Example 4.Let us consider the model described in Example 2 of Subse&ib
wheref € ¢(*(Z,) has bounded support. In this ca§e=] — 1, 1] and

/ ”;::2 (z) dz, (47)

where Ps(x) is a polynomial inz. Since the integrand is analytic in the cut plane
C\ {z € R||z| > 1}, we can deform the path of integration to any cunjeining

—1 to 1 and lying entirely in the lower half-plane (see Figure 4)isTéhows that
the functionF’z (z) has an analytic continuation frofi; to the entire cut plane
C\ {z € R||z| > 1}. Assumption (A4) holds in this case.
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-1 1

Fig. 4. Deforming the integration contour in Equ. (47).

3.4 Weak coupling limit

The first computation of the radiative life-time in quanturechanics goes back to
the seminal papers of Dirac [Di] and Wigner and Weisskopf [W\@nsider the
survival probabilityP(¢) and assume tha®(t) ~ e~ 7" whereT'(\) = \2T'y +
O(A3) for X small. To compute the first non-trivial coefficiefi$, Dirac devised a
computational scheme called time-dependent perturb#tieory. Dirac’s formula
for I'; was calledGolden Rulén Fermi’s lectures [Fer], and since then this formula
is known agrermi’s Golden Rule

One possible mathematically rigorous approach to timesdédent perturbation
theory is the so-called weak coupling (or Van Hove) limit.eTidea is to study
P(t/\?) as\ — 0. Under very general conditions one can prove that

Ii 2 — —tly
/\LmOP(t/)\) e "2,

and thafl"; is given by Dirac’s formula (see [Da2, Da3])).
In this section we will discuss the weak coupling limit foetRWWA. We will
prove:

Theorem 16.Suppose that Assumptioffsl)-(A3) hold. Then

lim (1|e—ith>\/>\21) - e—itw/AQQitFR(w+i0) =0,
A—0

for anyt > 0. In particular,

lim |(1]e "2 /X"1)|2 = e~ 27lF @I,
A—0

Remark. If in addition Assumption (A4) holds, then Theorem 16 is ammadiate
consequence of Theorem 11. The point is that the leadingibation to the life-time
can be rigorously derived under much weaker regularityrapsions.

Lemma 3. Suppose that Assumptio(s1)-(A3) hold. Letu be a bounded continu-
ous function onX. Then
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lim )\2/ efita;/)?u(x”F)\(m + 10)|2 do — u(w) efit(w/)\QfFR(eriO)) =0,
Aol Jx I1f (@)%
foranyt > 0.

Proof. We seth,,(z) = |w — 2 — \2Fr (w +i0)|~2 and
I\(t) = A2 / efitm/)‘Qu(xﬂF)\(x + iO)|2 dz.
X

We writeu(z)|F)(z +10)|? as
u(w)he (@) + (u(z) = u(w))he(z) +u(z) (|Fx(z +i0)[* — hy(z))
and decomposé, (¢) into three corresponding piecés(t). The first piece is

: 2
e—ltm/)\

et
12
Lialt) = Aulw) /e_ (@7 — N*Re Pr(w +10) + (\2Im Fr(w +10))2 %

The change of variable

2 —w+ MNRe Fr(w+1i0)
NIm Fr(w +10)

and the relatiodm Fr (w +i0) = 7| f(w)||% yield that

L) = e—it(w/)\2—Re Fr (w+i0))

1 e+ (N) o—itIm Fr (w+i0)y
u(w) / e dy,

IF@)E ™ Je y?+1

where
g €1 —Ww Re Fr(w +10)

e V%) AT F0

— Fo0,
as\ | 0. From the formula

—itIm i
l /oo it Fr(w+i0)y dy _ e—ﬂm Fr (w-+i0)
T)ow Y1 ’

we obtain that

() = e IR (o), (@8)

as\ | 0.
Using the boundedness and continuity propertiegs ahdh,,,, one easily shows
that the second and the third piece can be estimated as

[Io ()] < A2 ‘u(ﬂc) - u(w)’hw(x) dz,
X

T ()] < A2 /X (@) || Fa (& + 10)[2 — ho(z)| da.
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Hence, they vanish as | 0, and the result follows from Equ. (48}l

Proof of Theorem 16.Let A be as in Proposition 7. Recall that fox |A| < A the
spectrum ofw, is purely absolutely continuous. Hence, fosmall,

. f 1 [ ..
(L[ itha/A 1) = 7/ e/ I Fy (2 + i0)dz
T JX

1 .
= 7/ e_‘m//\2\F>\(x+i0)\2ImFR(m+iO)dx
b

s

=X /X e | £(@)[|% [Fa(x +10)2da,

where we used Equ. (19). This formula and Lemma 3 yield Thedré.[]

The next result we wish to discuss concerns the weak coulptimicfor the form
of the emitted wave. Letr be the orthogonal projection on the subsp@geof b.

Theorem 17.For anyg € Cy(R),

lim(pre" " 1g(hr)pre " /'1) = g() (1-e2rli@lie) - (a9)

Proof. Using the decomposition

prI(hr)PR = (PrY(AR)PR — 9(ho)) + (9(ho) — g(hr)) + g(har)
= —g(w)(A] )1+ (g(ho) — g(hx)) + g(hxr),

we can rewrite{pre "2 /3*1|g(hg )pre /X 1) as a sum of three pieces. The
first piece is equal to

fg(w)|(1‘efithx/z\21)|2 — 7g(w)€*2ﬂ\|f(w)l\it. (50)
Since) — h, is continuous in the norm resolvent sense, we have
;li% lg(hx) — g(ho)| =0,
and the second piece can be estimated
(721 (g(ho) — g(hn))e™ "/ ¥'1) = o(1), (51)
as\ | 0. The third piece satisfies
(e /X" 1| g(hy)e it /A1) = (1]g(ha)1)
= (lg(ho)1) + (1[(g(hr) — g(ho))1)  (32)
= g(w) +o(1),
as) | 0. Equ. (50), (51) and (52) yield the statemérnit.

Needless to say, Theorems 16 and 17 can be also derived feogetieral theory
of weak coupling limit developed in [Da2, Da3]. For additmnformation about
the weak coupling limit we refer the reader to [Da2, Da3, D&GP, Haa, VH].
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3.5 Examples
In this subsection we describe the meromorphic continoaifo
Fa(2) = (1] (hx = 2)7'1),

acrosssp,.(hy) in some specific examples which allow for explicit computas.
SinceF\(z) = F_x(z), we need to consider only > 0.

Example 1Let X =|0, co] and
fl@) = 7T71/2(2I)1/4(1 + 1’2)71/2.

Note thatf € H3(d) for 0 < § < 7/2 and sof is dilation analytic. In this specific
example, however, one can evalu#tg(z) directly and describe the full Riemann
surface ofFy (z), thus going far beyond the results of Theorem 12.

Forz € C\ [0, 00) we setw = +/—z, where the branch is chosen so thatw >
0. Theniw € C, and the integral

1“ﬂtw_ﬂ/mﬂ dt
7T — 00

TJo 1+82t—z 1+t4 2 +w?’

Fr(z) =

is easily evaluated by closing the integration path in theeughalf-plane and using
the residue method. We get

1

Fr(z)= ————.
®(2) w2 + 2w+ 1

Thus Fr is a meromorphic function af with two simple poles aty = e®37/4 |t
follows that F’z (z) is meromorphic on the two-sheeted Riemann surfacget.
On the first (physical) sheet, whelRe w > 0, it is of course analytic. On the second
sheet, wher&e w < 0, it has two simple poles at= +i.

In term of the uniformizing variable), we have

w? + 2w+ 1
(w? + w)(w? 4+ V2w + 1) — A2’

For A > 0, this meromorphic function has 4 poles. These poles argtimainctions

of \ except at the collision points. Forsmall, the poles form two conjugate pairs,
one near+iy/w, the other neae®3"/4, Both pairs are on the second sheet. For
A large, a pair of conjugated poles goes to infinity along themmtote Rew =
—+/2/4. A pair of real poles goes téroo. In particular, one of them enters the first
sheet at\ = \/w andh, has one negative eigenvalue for- \/w. Since

1> V2
7)o 1+t2(t—x)2

F)\(Z) =

Gr(r) =

is finite for z < 0 and infinite forx > 0, 0 is not an eigenvalue df, for A = \/w,
but a zero energy resonance. Note that the image of the asigijptw = —/2/4
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on the second sheet is the parabpla= z + iy | * = 2y* — 1/8}. Thus, as\ — oo,
the poles ofF,(z) move away from the spectrum. This means that there are no
resonances in the large coupling limit.
The qualitative trajectories of the poles (as functions &ér fixed values ofv)
are plotted in Figure 5.

‘ O<w<1/2 w=1/2
I
s i/w
e31‘7r/4 z\/c_u \/_
- > >
—3in /4 i S
G N
1
!

1/2<w<1 \ w>1
N\ e

N

Fig. 5. Trajectories of the poles df\ (z) in w-space for various values af in Example 1.
Notice the simultaneous collision of the two pairs of conjugate poles when\ = 1/2. The
second Riemann sheet is shaded.

Example 2Let X = R and
f(x) =21 4 22)" /2

Sincef € HZ(8) for 0 < ¢ < 1, the functionf is translation analytic. Here again
we can compute explicitlf’z (). Forz € C,, a simple residue calculation leads to
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1 />~ 1 dt 1
Fr(z) = — _
= (2) W/_ml+t2th z+1

Hence,
z+1i

A2 — (z+1)(z —w)’
has a meromorphic continuation across the real axis to ttiee @omplex plane. It
has two poles given by the two branches of

Fi(2) =

w—1i+/(w+1)?+4X2

w(A) = 2 )

which are analytic except at the collision paint= 0, A = 1/2. For small), one of
these poles is near and the other is neari. Since

w(\) = —% + (% + A) +O(1/N),

as\ — oo, hy has no large coupling resonances. The resonance ©(ijes plotted
in Figure 6.
Clearly,sp(hy) = R for all w and\. Note that for alke € R, G (x) = oo and

)\2
(x —w)?2+ (N2 —z(z —w))?

Hence, the operatdr, has purely absolutely continuous spectrum for.aind all
A # 0.

Im F)\(x +1i0) =

SPac (h)

R —

Fig. 6. The poles ofF (z) for Example 2.

Example 3Let X =] — 1, 1[ and

2
fl@) =)= (1 -
™
(Recall Example 2 in Subsection 3.1 and Example 4 in SulmsestB —-h andhr
are/?(Z. ) and the discrete Laplacian in the energy representatiorfaacﬁf) In
Subsection 2.9 we have shown that foe C \ [-1, 1],
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2 Mt Vi—¢ -1
FR(Z):f dt=2§ 5
T™)_, t—z E+1

(53)

where
z—1

&= 241

The principal branch of the square rdd¢ ¢ > 0 corresponds to the first (physical)

Fig. 7. Mapping the cut plan€ \ [—1, 1] to the exterior of the unit disk

sheet of the Riemann surfa¢eof Fir (z). The branciRe ¢ < 0 corresponds to the
second sheet aR. In particular,

Fr(z +10) = 2(—z +iv1 — 22).

For an obvious reason we will call this particular RWWA the seircle model.
To discuss the analytic structure of the Borel transfdrgiz), it is convenient to
introduce the uniformizing variable

2 1+¢
Fr(z) 1-¢
which maps the Riemann surfaé¢gto C \ {0}. Note that the first sheet ok is

mapped on the exterior of the unit disk and that the seconet shenapped on the
punctured disKz € C |0 < |z| < 1} (see Figure 7). The inverse of this map is

IR

w =
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Forz € C\ [-1, 1] the functionF}(z) is given by

—2w
w? — 2ww + 1 —4X\2’

F)\(Z) =

and thus has a meromorphic continuation to the entire RieraarfaceR. The res-
onance poles in the-plane are computed by solving

w? —2ww+1—4X% =0,
and are given by the two-valued analytic function
w=w+ V42 +w? - 1.

We will describe the motion of the poles in the case> 0 (the casev < 0 is
completely symmetric). Fob < A < +/1 —w?/2 there are two conjugate poles
on the second sheet which, in theplane, move towards the poiaton a vertical
line. After their collision atA = /1 — w?/2, they turn into a pair of real poles
moving towardstoo (see Figure 8). The pole moving to the right reaches 1 at

A = /(1 —w)/2 and enters the first sheet Bf We conclude that, has a positive
eigenvalue

1 1
w+()\)_2<w+ 4)\2+w2—1+w+ 4)\2—&—@02—1)’

for A > /(1 —w)/2. The pole moving to the left reaches= 0 at A = 1/2. This
means that this pole reaches= oo on the second sheet @&. For A > 1/2, the
pole continues its route towards = —1, i.e, it comes back fromx = oo towards
z = —1, still on the second sheet &. At A = /(1 + w)/2, it reachesy = —1 and
enters the first sheet. We conclude thgthas a negative eigenvalue

1 1
w()\):2<w— 4/\2+w2—1+w_m),

for A > /(14 w)/2. The trajectory of these poles in thecut-plane is shown on
Figure 9. For clarity, only one pole of the conjugate pairigpthyed.

Example 4.In all the previous examples, there were no resonances imatge
coupling regimej.e., the second sheet poles 6%, kept away from the continu-
ous spectrum a& — oo. This fact can be understood as follows. If a resonance
w(X) approaches the real axis as — oo, then it follows from Equ. (8) that
Im Fr(w()\)) = o(A~2). Since under Assumptions (A1) and (A is continu-
ous onC, we conclude that ifimy ., w()\) = © € R, thenlm Fr (© + i0) = 0.
Since||f(z)|« is also continuous o, if @ € X, then we must havg(w) = 0.
Thus the only possible locations of large coupling resoaarare the zeros gf in

X. We finish this subsection with an example where such largplsw resonances
exist.
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Fig. 9. The trajectories of the poles &, in thez-plane. Dashed lines are on the second sheet.

Let againX =] — 1,1[ and set

flz) = \/Za“(l — )14,

11 2?1 —a?
FR(Z):;/ludx,

The Borel transform
xr—Zz
is easily evaluated by a residue calculation and the chaiwgiable
= (ut+ut)/2.

Using the same uniformizing variable as in Example 3, we get

Fr(z) = —i (1 + ;2) % (54)

and
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— 43

2wt — dwwd + (2 — A2)w?2 — N2’

We shall again restrict ourselves to the case w < 1. At A = 0 the denominator of
(55) has a double zero at= 0 and a pair of conjugated zeros.at-iv/1 — w?. As\
increases, the double zerolegplits into a pair of real zeros going toco. The right

zero reaches and enters the first sheet at= /2(1 —w). At A = /2(1 + w),

the left zero reaches1 and also enters the first sheet. The pair of conjugated zeros
move from their original positions towards (of course, they remain within the unit
disk). For large\, they behave like

F)\(Z) =

(55)

w:ii+27w_2w(2:|:51w)

2 i + O\,

Thus, in thez plane,F), has two real poles emerging fro#ro on the second sheet
and traveling towards-1. The right pole reachesat A = /2(1 — w) and becomes
an eigenvalue af, which returns tot-oco as further increases. The left pole reaches
—1atA = 4/2(1 + w), becomes an eigenvalue if, and further proceeds towards
—oo. On the other hand, the eigenvaluef iy turns into a pair of conjugated poles
on the second sheet which, &s— oo, tend toward$) as

2w 4w(l £ 2iw _
w(A) = SVl % +0(%),
see Figure 9. We conclude thiat has a large coupling resonance approachiag

A — 00.

Fig. 10. The trajectories of the poles d@\ in the z-plane. Dashed lines are on the second
sheet.

4 Fermionic quantization

4.1 Basic notions of fermionic quantization

This subsection is a telegraphic review of the fermionicrgization. For additional
information and references the reader may consult Sectiof/aIPP1].

Let h be a Hilbert space. We denote Byf) the fermionic (antisymmetric) Fock
space oveb, and byI',, () then-particle sector ith. &y, denotes the vacuum In(h)
anda(f),a*(f) the annihilation and creation operators associatefl ¢oh. In the
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sequeh? (f) represents either( f) ora*(f). Recall that|a™ (f)|| = || f||. The CAR
algebra oveh, CAR(h), is theC*-algebra of bounded operators Bf)) generated
by {a® (f) | f € b}.

Letu be a unitary operator oin Its second quantization

L(u)lr, @ =u® - @u=u",

defines a unitary operator dih) which satisfies

D(w)a®(f) = a® (uf)L(u).

Let h be a self-adjoint operator dn The second quantization &t” is a strongly
continuous group of unitary operatorsBf). The generator of this group is denoted
by dT'(h),

F(eith) _ eitdF(h).

dI'(h) is essentially self-adjoint ofi(Dom h), whereDom h is equipped with the
graph norm, and one has

dF(h)lrn(Domh)zzzzl IR - QISR ---RI.
k-1 n—k

The maps
Tt(a#(f)) = eitdr(h)a#(f)e—itdl“(h) _ a#(eithf)7

uniquely extend to a group of x-automorphisms o€AR(h). 7 is often called the
group of Bogoliubov automorphisms induced/yThe groupr is norm continuous
and the paifCAR(h), ) is aC*-dynamical system. We will call ita CAR dynamical
system. We will also call the paftCAR(h), 7) the fermionic quantization dff, /).

If two pairs (hy, h1) and (b2, h) are unitarily equivalent, that is, if there exists
a unitaryu : h; — by such thatuh;u=! = hy, then the fermionic quantizations
(CAR(h1),71) and(CAR(b2), 72) are isomorphic—the map(a™ (f)) = a* (uf)
extends uniquely to a&isomorphism such thato 7{ = 7{ o 0.

4.2 Fermionic quantization of the WWA

Lethy be aWWA on) = Cdhr. Its fermionic quantization is the paiCAR(h), 7x),
where . | |
Ti(a#(@) _ eltdF(hA)a#((b)e—ltdf‘(}u) _ a#(e“"’“qb),

We will refer to (CAR(h), 7») as theSimple Electronic Black BoXSEBB) model.
This model has been discussed in the recent lecture not€®[§JThe SEBB model
is the simplest non-trivial example of the Electronic Bl&tk model introduced and
studied in [AJPP2].

The SEBB model is also the simplest non-trivial example obpan quantum
system. Set
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t5(a* () = a¥(™a),  Th(a¥(9)) = a¥ ("Ry).

The CAR dynamical systen{§€ AR(C), 7s) and(CAR(hr), 7= ) are naturally iden-
tified with sub-systems of the non-interacting SEBBAR(h), 79). The system
(CAR(C), 7s) is a two-level quantum dot without internal structure. Tlystem
(CAR(hr), =) is a free Fermi gas reservoir. Hen¢€,AR(h,), 7 ) describes the
interaction of a two-level quantum system with a free Ferad geservoir.

In the sequel we denof, = dT'(h)), Hs = d['(w), Hr = dI'(hg), and

V =dl(v) = a* (fa(l) + a* (Da(f).

Clearly,
H,\ = H(] + AV.

4.3 Spectral theory

The vacuum of’(h) is always an eigenvector @f, with eigenvalue zero. The rest
of the spectrum offf, is completely determined by the spectrum/gf and one
may use the results of Sections 2 and 3.2 to characterizeptram of H,. We
mention several obvious facts. If the spectrunk fis purely absolutely continuous,
then the spectrum off is also purely absolutely continuous except for a simple
eigenvalue at zerdd, has no singular continuous spectrum/iff has no singular
continuous spectrum. Ldtk; };c; be the eigenvalues df,, repeated according to
their multiplicities. The eigenvalues &f, are given by

spp(Hy) = {Z nie;

icl

n; € {0, 1},27% < oo} U {0}.

icl

Until the end of this subsection we will discuss the fermioaiantization of the
Radiating Wigner-Weisskopf Atom introduced in Section. 3.Be point spectrum of
H, consists of two simple eigenvaluég, w}. The corresponding normalized eigen-
functions are

U, = a(l)" Py, n=0,1.

Apart from these simple eigenvalues, the spectrumi{@fs purely absolutely con-
tinuous andp,.(Hp) is equal to the closure of the set

{G+in|xi€X,eE{O,w},nzl}.

i=1

Let A be as in Theorem 7. Then for < |A\| < A the spectrum offf, is purely
absolutely continuous except for a simple eigenvélue
Note that

(#1]e™0) = (a(1)Pyle™" " a(1)Py)

= (a(1)®yla(e™*")Py) = (1]e™"1).
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Similarly,

(01|(Hx = 2)7'0) = (1|(hy — 2)7'1).
Hence, one may use directly the results (and examples) difo8exto describe the
asymptotic of(¥; [e~1*/>¥;) and the meromorphic continuation of

Cy 3z (U|(Hy — 2)"1wy). (56)

4.4 Scattering theory
Lethy be a WWA onh = C & h. The relation

7o (a#(9) = ¥ (e 0e i g),
yields that forg € b,.(hy) the limit

lim Tgt OT,t\(a#(@) = a#(9;¢)7

t—oo

exists in the norm topology dfAR(h). Denote

Thac = TAICAR(hac(hy)) TR,ac = TR|CAR(bae (hr))-

By the intertwining property (25) of the wave operaf@y, the map

o (a#(9)) = a® (125 ¢),

satisfiessy o 7 . = Tk .. © 0 - Henceoy is ax-isomorphism between the CAR
dynamical system$CAR(hac(hr)), Taac) @Nd (CAR(hac(hr)), TR ac). This iso-
morphism is the algebraic analog of the wave operator indtilspace scattering
theory and is often called the Mgller isomorphism.

5 Quantum statistical mechanics of the SEBB model

5.1 Quasi-free states

This subsection is a direct continuation of Subsection et ) be a given Hilbert
space andCAR(h) the CAR algebra ovef. A positive linear functional; :
CAR(h) — Cis called astateif n(I) = 1. A physical systen is described by
the CAR dynamical systettCAR(h), 7) if its physical observables can be identi-
fied with elements o€ AR(h) and if their time evolution is specified by the gronp
The physical states @? are specified by states GMAR(h). If P is initially in a state
described by; and A € CAR(h) is a given observable, then the expectation value
of A attimet isn(rt(A)). This is the usual framework of the algebraic quantum sta-
tistical mechanics in the Heisenberg picture. In the 8dimger picture one evolves
the states and keeps the observables fiked,f n is an initial state, then the state
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at timet is i o 7%. A staten is calledr-invariant (or stationary state, steady state) if
nort=nforallt.
Let T be a self-adjoint operator dnsuch that) < 7' < I. The map

nr(a*(fn)---a*(fi)a(gr) - - algm)) = dnmdet{(g:|T f;)} (57)

uniquely extends to a statg- on CAR(h). This state is usually called the quasi-free
gauge-invariant state generated’ByThe state;r is completely determined by its
two point function

nr(a*(f)alg)) = (g9ITf).
Note thatifA =3, f;(g;|-) is afinite rank operator ofy, then

dI'(A) = Za*(fj)a(gj),

and
nr(dD(A)) = Tr (TA) =Y (g;|Tf)). (58)

J

Let (CAR(h), ) be the fermionic quantization dh, »). The quasi-free state
nr is T-invariant iff T = Te't" for all t € R. In particular, the quasi-free state
generated by = o(h), wheregp is a positive bounded function on the spectrum of
h, is T-invariant. The functiorp is the energy density of this quasi-free state. Let
8 > 0 andu € R. Of particular importance in quantum statistical mechsugcthe
quasi-free state associated with= o3,,(h), where the energy densiby,, is given
by the Fermi-Dirac distribution

1

08u(€)
We denote this state bys,. The pair(CAR(h), 7) and the stateys,, describe free
Fermi gas in thermal equilibrium at inverse temperafgiend chemical potential.

5.2 Non-equilibrium stationary states

In this and the next subsection we assume dhatas a purely absolutely continuous
spectrum. We make this assumption in order to ensure thatystem will evolve
towards a stationary state. This assumption will be p#ytiglaxed in Subsection
5.4, where we discuss the effect of the eigenvalues,ofWe do not make any as-
sumptions on the spectrum bf;.

Let nr be a quasi-free state dHAR(C @ hr) generated byI' = a @ Tx.
We denote by, the quasi-free state ddAR(hr) generated by’z. We assume
thatnr, is Tr-invariant and denote by’z .. the restriction ofl’; to the subspace
hac(hR)-

Letgy, -+, ¢, € hand

A=a®(¢1)--a®(gn). (60)
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Sincenr is rp-invariant,

nr(13(A))) = nr(15 " 0 7X(A))
— nT(a#(e_ithoeith* ¢1) . -a#(e_ithoeit}”¢n)).

Hence
i nr(1x(A)) = nr(a® (925 ¢1) - - a® (925 ¢n)).-

Since the set of observables of the form (60) is dengg e conclude that for all
A € CAR(h) the limit

iy (A) = lim nr(r(A)),

exists and defines a stat§ on CAR(h). Note thatn;r is the quasi-free state gener-
ated byTy” = (02, )*T'(2; . SinceRan 2, = bac(ho) = hac(hr), We have

T; = (Q;)*TR,aCQ;7 (61)

and so
Jr

N = T ae © 03
wheres is the Mgller isomorphism introduced in Subsection 4.4.i@bsly, ;" is
independent of the choice efand of the restriction oI’z t0 hging (A% ). Since

HINTR T — (27) e R Tig e TR QY = T

ny is Ty-invariant.

The state);” is called thenon-equilibrium stationary statéNESS) of the CAR
dynamical systemiCAR(), 7) associated to the initial statg-. Note that ifA =
> #;(;]-), then, according to Equ. (58),

i (AT (A)) = Tr (TR AR2L7) =D (2505|725 6,). (62)

J

By passing to the GNS representation associateg tone can prove the follow-
ing more general result. L& be the set of states @AR(h) which are normal with
respect ta)r (the set\V' does not depend on the choicedf Then for anyp € N
andA € CAR(h),

Jim n(73(A4)) =1y (A).

If TR = o(hg) for some bounded functiop on the spectrum ok, then the
intertwining property of the wave operator implies tl/iéjf = o(hy) and hence
ny = No(hy)- IN particular, if the reservoir is initially in thermal etjbrium at
inverse temperaturé > 0 and chemical potentigl € R, then nj is the quasi-
free state associated e’("»~#) 4 1)~1, which is the thermal equilibrium state of
(CAR(h), 7)) at the inverse temperatureand chemical potentigl. This type of
phenomenon, often called return to equilibrium, is an ingar part of the zeroth
law of thermodynamics and plays a fundamental role in fotinda of statistical
mechanics.
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5.3 Non-equilibrium thermodynamics

In this subsection we again assume thathas purely absolutely continuous spec-
trum. Concerning the reservoRR, we assume thatz is multiplication byz on

hr = L?(X,du; R), wheref is a separable Hilbert space. The internal structure
of R is further specified by an orthogonal decomposition= & | ;. We set
br, = L*(X,du; f) and denote byiz, the operator of multiplication by: on
hr,. Thus, we can write

M M
br = Pbr,.  hr =P hr,. (63)
k=1 k=1

We interpret (63) as a decomposition of the reser®imto M independent
subreservoir®y, ..., Ru.
According to (63), we writef = @ | f, and we split the interaction asv =
S oL vk, where
vp = (1) fe + (ful 1.
In the sequel we assume thfae Dom h. The projection onto the subspdagg, is
denoted byl g, . Set

d . .

fk: = _& elth)\the—lth)\ |t:O
= —ilhx, hr, ] = =ilhs + X2, (hr; + Avj) , hr,] (64)
= /\i[th,’Uk]
= M ((1)hwry fre — (hry, fe| )1)

and

;. — d ith>\1 —ithy

ke = —&e Ry © |t:0
= —i[h)\, le} = —i[hs + Zj (hR,- + )\Uj) , I’Rk} (65)

= >\1[le s ’Uk]

= A )fr = (ful 1)
The observables describing the heat and particle fluxesfahed:-th subreservoir
are

Sk = dL(fx) = Ai(a” (hwr,, fr)a(l) — a*(1)a(hr, fr))
Ik = dl(jx) = Ai(a™(fx)a(l) — a™(L)a(fr))-

We assume that the initial state of the coupled sysfem R is the quasi-free
state associated B = o & T, where
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M M
Tr = @ Tr, = P ox(hr,),
k=1 k=1

andgy, is a bounded positive measurable function’on

Letny be the NESS of CAR(h), 7, ) associated to the initial state . According

to Equ. (61) and (58), the steady state heat current out afitbeeservoifR ;, is

0y (Fk) = Tr (T5 fx) = Tr (Tr 25 f1(£25)%)
M

= > Tr(gj(hr,)lr, 25 fe(25) 1R,).

j=1
Using Equ. (64) we can rewrite this expression as

M

U;\F(Sk) = 2)\ZIm (173]‘ Q;hﬁkfkwj(hnj)lﬁj Q)Tl)'
j=1

Equ. (28) yields the relations

(0j(hr; )1, 25 1)(x) = =Ag;(x) Fa(z —i0) f; (),

(173_7. Q;thfk)(l‘) = (5kj T+ )\2F)\(ZE + 10) Hk(x + 10)) m,

where we have set @2
X A
Hk(z)z/ Mdu(x).
X xr—z

SinceRan 2, = ba.(hr), it follows that (1z, 2} hr, frloj(hr,)1r, 25 1) is

equal to
)\/ (OrjaFx(x 410) — N[ Fx(z +i0)[* Hy (z +10)) || £;(2)[1%, 0j(2) dptac(2).
X
From Equ. (18) we deduce that

. d ac
m H, (& +10) = ma (@) [}, 2 (),

for Lebesgue a.e: € X. Equ. (19) yields

. . d ac
Im Fy(z +10) :7r)\2|F,\(:v—|—10)|2Hf(x)||2ﬁ (’l;x (z).

It follows thatIm (1, 2} hr, frloj(hwr,)1r,2) 1) is equal to

27 [ @I = IR, 1 1P o+ 0 oy (o) (o) )

Finally, using the fact thatf («) % = ¥, |1, ()3, we obtain

53
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M
CCEEDY | #ta@) - @)D )5 (66)
where
2
D) = =N @I ) PG+ 02 (2) . 67

Proceeding in a completely similar way we obtain the follogviformula for the
steady particle current

Z/ k() — 05(2)) Dy ()5~ (69

There are several ways to interpret the quaniity; in Equ. (67). In spectral
theoretic terms, we can invoke Equ. (18) and (19) to write

2)\2 d/J’ac dMRk ac dH’R ,ac

Dy
AR ac  dz de

wheredu, denotes the spectral measurewaf, for f. It is also possible to relate
Dy; to the S-matrix associated tei)f. According to the decomposition (63), this
S-matrix can be written as

(1, SY)(x ZSkg (Ir, ) (x) = (g, ¥)(z) + Ztkj (1r,)(x).

Equ. (29) yields that the-matrix defined by this relation can be expressed as

by () = 27X R (1) B (04 0) () (f ()] )
and we derive that
Dyj(x) = Tr g, (tkj(x)*tkj(x)>' (69)

Equ. (66), (68) together with (69) are the well-knowiitiker-Landauer formulas
for the steady currents.
It immediately follows from Equ. (66) that

M
Z 77A+ (gk) =0,
k=1

which is the first law of thermodynamics (conservation ofrgge Similarly, particle

number conservation u
Z 77;1_ (3]6) = 07
k=1



Mathematical Theory of the Wigner-Weisskopf Atom 55

follows from Equ. (68).

To describe the entropy production of the system, assunétiha-th subreser-
voir is initially in thermal equilibrium at inverse tempéuwae 5, > 0 and chemical
potentialy, € R. This means that

or(x) = F(Zy(x)),

whereF'(t) = (et + 1)t andZy(x) = Bk (z — ux). The entropy production observ-

able is then given by
M

o=- zgk(Sk — 1EJk)-

k=1

The entropy production rate of the NESS is

dx

1 M
Ep(ny) =1y (0) = 3 > / (Zj = Z)(E(Zy) = F(Zj))Drj5 . (70)
kj=1"X g

Since the functiorF” is monotone decreasingp(n;") is clearly non-negative. This
is the second law of thermodynamics (increase of entropgde khat in the case of
two subreservoirs withy; = ps the positivity of entropy production implies that the
heat flows from the hot to the cold reservoir. Fof j let

Frj ={z € X || fr(@)[l, N f;(x)]ly, > 0}.

The subreservoirk,, andR; areeffectively coupledf f..(F%;) > 0. The SEBB
model is thermodynamically trivial unless some of the saéreoirs are effectively
coupled. IfR;, andR; are effectively coupled, thelp(n,") > 0 unlesss; = 3; and
wr = pj, thatis, unless the reservoiRs, andR; are in the same thermodynamical
state.

5.4 The effect of eigenvalues

In our study of NESS and thermodynamics in Subsections 5158 we have made
the assumption thdt, has purely absolutely continuous spectrumXlf£ R, then
this assumption does not hold fadarge. For example, iX =]0, co[, w > 0, and

2o [Cir@l: x—ldum)_l |

thenh,, will have an eigenvalue ih— oo, 0[. In particular, if

i T @) 2 () = oo,
0

thenh, will have a negative eigenvalue for all # 0. Hence, the assumption that
hy has empty point spectrum is very restrictive, and it is inatr to understand
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the NESS and thermodynamics of the SEBB model in the caseavtilielnas some
eigenvalues. Of course, we are concerned only with poirttepp@a of ), restricted
to the cyclic subspace generated by the vettor

Assume thah is such thatp,, (hx) # 0 andsp,.(hx) = (). We make no assump-
tion on the structure afp,,, (%, ); in particular this point spectrum may be dense in
some interval. We also make no assumptions on the spectrém.of

For notational simplicity, in this subsection we writg. for h..(hy), 1. for
1..(hy), etc.

Let T andnr be as in Subsection 5.2 and iety) € h = C & hx. Then,

nr(Ti(a*(9)a(w))) = (" P[Te ™ g) = 3 - Nj(e™ v, e ¢),

Jj=1

where we have set

Ni(¥,9) = (Lact|T1act),
Na(¢, ¢) = 2Re (155¢9|T1acd),
N3(¢,¢) = (1ppt[T1pp¢).
Sincee~*ho T = Te~itho we have
Nl (eitluw7 eithA ¢) _ (e*ithoeithx 1acw‘TefithgeithA 1ac¢)a

and so ) .
Jim Ny (g, € g) = (25 ¢|T 25 ¢).

Sincel is separable, there exists a sequeRg®f finite rank projections commuting
with hy such that — lim P, = 1,,. The Riemann-Lebesgue lemma yields that for
alln

Jim | P, T 1,.0| = 0.

The relation

NQ(eithAwleithA ¢) — (eith* ]-ppw'PnTeithA 1ac¢)
+ (eithA (I _ Pn)lpp¢|Teit}LA1ac¢)7

yields that _ .
Jim Ny(ep, €2 ¢) = 0.

Since N3 (el q), eith> ¢) is either a periodic or a quasi-periodic functiontof
the limit

Jim (0" (9)a(v)))

does not exist in general. The resolution of this difficuiyniell known—to extract
the steady part of a time evolution in the presence of a (gyp&siodic component
one needs to average over time. Indeed, one easily shows that
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t
im * Ns(e*™ e g)ds = Y (Pet|TPep),

t—oo t 0
cespy(h)

where P. denotes the spectral projection bf associated with the eigenvalue
Hence,

lim = [ gr(ria*(@a@))ds = S (Pap|TP.6) + (25 YIT25 ).

t—oo t 0
c€spy(ha)

In a similar way one concludes that for any observable of dinen f

A=a*(¢n)---a(d1)a(¥r) - a(thm), (71)

the limit
t

1 I , .
lim — [ (r(A))ds = G m lim = [ det{(e!" ;| Tel™™ ¢ )}ds,
— 00 0

t—oo t 0

exists and is equal to the limit

1 [t ) .
lim - / det { ("3 15,00 |Te* " 15,6;) + (25 Lacti|T 925 Lacgy) } ds, (72)
0

see [Kat] Section V1.5 for basic results about quasi-pécifichction onR. Since the
linear span of the set of observables of the form (71) is dengewe conclude that
forall A € CAR(h) the limit

N B L
ny(A) = lim — [ nr(r5(A4))ds,

t—oo t 0

exists and defines a statg on CAR(h). By the construction, this state is-
invariant.ny is the NESS of CAR(h), ) associated to the initial statg-. Note
that this definition reduces to the previous if the point spea of 1), is empty.

To further elucidate the structure gf we will make use of the decomposition

b = bac S hpp~ (73)

The subspacel,. andb,, are invariant undeh, and we denote the restrictions
of 7 t0 CAR(hac) andCAR(bpp) bY 7y ac @andTy ,p- We also denote by, and

A,ac

13 pp the restrictions ofy” to CAR(h.c) andCAR(h,p). 715, is the quasi-free state
generated by = (£2,)*T ;. If Ais of the form (71) and;, v; € by, then

1 [t . _
W;pp(A) =0nm tlim E/ det{(emh/\wi|Telsh/\¢j)}d8'

Clearly,nj,aC iS T ac iNvariant andyipp iS T pp iNvariant. Expanding the determi-
nant in (72) one can easily see thgt,. andny  uniquely determing; .
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While the stateﬁ,pp obviously depends on the choice®@find onTx |y, . (nz)
inT = o ® Tk, the state)”__ does not. In fact, if) is any initial state normal w.r.t.

A,ac

nr, then forA € CAR(h..),

lim 7(73(4)) = 0y ,.(A4).

t—o0o

For a finite rank operatod = >, ¢;(1;|-) one has
i (AD(A) = D nf (a*(é5)al¥y)),
J

and so

ni(dF<A>>=Z( > (PewlePe@)+(9;wj|m;¢j>>.

J e€sp, (hx)

The conclusion is that in the presence of eigenvalues orgsreeadd the term

2{: ji: (}1ﬂbj|jn}%i¢j)a

J e€spy(ha)

to Equ. (62);.e., we obtain the following formula generalizing Equ. (62),

ny (AT (A)) = Tr {T ( > PAP.+ Q;AQ;*) } . (74)

e€spy(ha)

Note that if for some operatar, A = i[hy,g| in the sense of quadratic forms on
Dom h,, thenP, AP, = 0 and eigenvalues do not contributerto(dI'(A)). This is
the case of the current observabtd3(f;) anddI'(j,) of Subsection 5.3. We con-
clude that the formulas (66) and (68), which we have preWodsrived under the
assumptionpg;,,, (hx) = 0, remain valid as long ag,.(h) = 0, i.e, they are not
affected by the presence of eigenvalues.

5.5 Thermodynamics in the non-perturbative regime

The results of the previous subsection can be summarizedlaws.

If sp,.(hx) = 0 andsp,,(hx) # 0 then, on the qualitative level, the thermo-
dynamics of the SEBB model is similar to the cagg,,,(hx) = 0. To construct
NESS one takes the ergodic averages of the states ;. The NESS is unique. The
formulas for steady currents and entropy production areaffetted by the point
spectra and are given by (66), (68), (70) and (67) or (69) lona# 0. In partic-
ular, the NESS and thermodynamics are well defined foAg# 0 and allw. One
can proceed further along the lines of [AJPP1] and studyitteaf response theory
of the SEBB model (Onsager relations, Kubo formulas, et¢hénon-perturbative
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regime. Given the results of the previous subsection, tnenaents and the formulas
are exactly the same as in [AJPP1] and we will not reproduesn there.

The study of NESS and thermodynamics is more delicate intésepce of sin-
gular continuous spectrum and we will not pursue it here. \igh 1o point, however,
that unlike the point spectrum, the singular continuousspen can be excluded in
"generic” physical situations. Assume th&tis an open set and that the absolutely
continuous spectrum dfx is "well-behaved” in the sense thih Fiz (z +i0) > 0
for Lebesgue a.ex € X. Then, by the Simon-Wolff theorem %,, has no singu-
lar continuous spectrum for Lebesgue a.ez R. If f is a continuous function and
dur = dx, thenhy has no singular continuous spectrum for)all

5.6 Properties of the fluxes

In this subsection we consider an SEBB model without singedentinuous spec-
trum, i.e, we assume thab,.(h,) = 0 for all A andw. We will study the properties
of the steady currents as functions(of w). For this reason, we will again indicate
explicitly the dependence an

More precisely, in this subsection we will study the projesrof the function

\w) — 7,;w(3), (75)

whereg is one of the observablgs; or 3, for a givenk. For simplicity of exposition,
besides Assumption (A1) we assume that the functions

g;(t) = /X et £ ()13, dz,

are inL*(R, dt) and that|| f(x)| & is non-vanishing onY. We also assume that the
energy densitieg; (x) of the subreservoirs are bounded continuous function¥ on
and that the functiongl + |z|)p;(z) are integrable oX. According to Equ. (66),
(68) and (67), one has

M
0L (8) =2mX ) /X 1 fe @) 15 15 @)1, 1 Fa (@ +10) P2 (on () — 05(2)) da,
j=1

wheren =0if §F = Jr andn = 11if § = §. o o
Obviously, the function (75) is real-analytic & R\ X and for a givenw ¢ X,

Mo (§) = O, (76)

asA — 0. The function (75) is also real-analytic &\ {0} x R. Forw € X, Lemma
3 shows that

3 108 ﬂzufk H;ﬁknﬁ LY
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Comparing (76) and (77) we see that in the weak coupling hmeitcan distin-
guish two regimes: the "conducting” regime € X and the "insulating” regime
w ¢ X. Clearly, the conducting regime coincides with the "reswed regime for
hx. and, colloquially speaking, the currents are carried byréds®nance pole. In
the insulating regime there is no resonance for sthahd the corresponding heat
flux is infinitesimal compared to the heat flux in the "condngtiregime.

Forx € X one has

/\4
(w—a — A2Re Fr(z +10))2 + XN72| f(2) |4

M| Fy\(x +i0)]* =

Hence,
-2

;u§/X|fx<x~+lo = 7T§{:HJ} olE | (78)
€

and so )
M| fr @)1, 1 5 (@) 1%, | Fa(z +10)? < -

This estimate and the dominated convergence theorem Yiglddr allw € R,

| IA@IZ @I,
Jim ot —2}3/ e 0~ a(@)de. (79

Thus, the steady currents are independent @i the strong coupling limit. In the
same way one shows that
lim ny T.@® =0, (80)

|w|—o0
for all A
The cross-over between the weak coupling regime (77) antatge coupling
regime (79) is delicate and its study requires detailedrinédion about the model.
We will discuss this topic further in the next subsection.
We finish this subsection with one simple but physically imiant remark. As-
sume that the functions

Cj(@) = 27| fr(@) 1%, 15 (@) 1%, 2" (ex (@) — 05(2)),

are sharply peaked around the poimis This happens, for example, if all the reser-
voirs are at thermal equilibrium at low temperatures. Thiea flux (75) is well ap-
proximated by the formula

M
HLWEZV%@WAme
j=1

and since the supremum in (78) is achieved at = + A2Re F)(z + i0), the flux
(75) will be peaked along the parabolic resonance curves

w=7;+ )\QRGF)\(fj +10).
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5.7 Examples

We finish these lecture notes with several examples of theBSmBdel which we
will study using numerical calculations. For simplicityewvill only consider the
case of two subreservoitise., in this subsectiol® = C? = C @ C. We also take

o= siresin= 5 (47) e 5 8,

7@, = 152 = S17@IE = 3o,

so that

Example 1We consider the fermionic quantization of Example 1 in Sabtise 3.5,
i.e.,hr = L*(]0, 00[,dz; C?) and

fO(x) — 7T_1/2(2£L')1/4(1 +1’2)_1/2.
We put the two subreservoirs at thermal equilibrium

1

0j(z) = 14 b))’

where we set the inverse temperaturegto= (3, = 50 (low temperature) and the
chemical potentials tp; = 0.3, u2 = 0.2. We shall only consider the particle flux
(n = 0) in this example. The behavior of the heat flux is similar. Tinection

Cale) = 2l @), 121, (o) — oate) = L= 2()

plotted in Figure 11, is peaked @t~ 0.25. In accordance with our discussion in the
previous subsection, the particle current, representétyure 12, is sharply peaked
around the parabola = 7 + 2\%(1 — z) /(1 + z?) (dark line). The convergence to
anw-independent limit a3 — oo and convergence tbasw — oo are also clearly
illustrated.

Example 2.We consider now the heat flux in the SEBB model corresponding t
Example 2 of Subsection 3.5. Heyg = L2(] — 1,1[,dz; C?),

folw) =/ 2 (1=,
s
and we choose the high temperature regime by sefting 5> = 0.1, 41 = 0.3 and
1o = 0.2. Convergence of the rescaled heat flux to the weak couplni (77) is
illustrated in Figure 13. In this case the functioh is given by

Cala) = 201~ ) (01(2) ~ 02(a),
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0.2F

0.1

0 0.25 0.5 0.75 1
X

Fig. 11.The functionC2(z) in Example 1.

0.015

0.01

0.005

Particle current

20

Fig. 12. The patrticle flux in Example 1.
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0.5

0
-1 0 A

w
Fig. 13.The rescaled heat flux (weak coupling regime) in Example 2.

x10~°

-1 0 1
X

Fig. 14.The functionC2(z) in Example 2.
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w=05—>

Heat current

0 5

Fig. 15.The heat flux in Example 2.

and is completely delocalized as shown in Figure 14.

Even in this simple example the cross-over between the wedkitee strong
coupling regime is difficult to analyze. This cross-over @ririvial, as can be seen
in Figure 15. Note in particular that the function— UIW(S) is not necessarily
monotone and may have several local minima/maxima bef@ehieg its limiting
value (79) as shown by the section= 0.5 in Figure 15.

Example 3In this example we will discuss the large coupling limit. Bébat in the
case of two subreservoirs Equ. (79) can be written as

lin f,(3) = 5= [ 0@ (01(0) - @) dn,  (@D)
A —oo Y 2m Jx
wheref(z) = Arg(Fr(x + i0)). Therefore, large currents can be obtained if one
of the reservoir, safk, has an energy distribution concentrated in a region where
Im Fr(x+10) > Re Fr(z+10) while the energy distribution d® is concentrated
in a region wherdm Fg (z + i0) < Re Fr(z + i0).

As an illustration, we consider the SEBB model correspogtinExample 3 of
Subsection 3.5,e., hr = L*(] — 1,1[,dx;C?) and

fo@) =y = a1 = a2/,

™

From Equ. (54) we obtain that
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1
Fr(z+10) = —x (mz - 2) +iz2/1 — 22.

Hence,
sin? 0(x) = 42%(1 — %),
reaches its maximal valueat energyr = +1/+/2.
We use the following initial states: the first subreservas b quasi-monochromatic
energy distribution
01(z) = 36—1000(:5—9)2’

at energyf? € [—1,1]. The second subreservoir is at thermal equilibrium at low
temperatured = 10 and chemical potential, = —0.9. Thus, g, is well localized
near the lower band edge= —1 wheresin 6 vanishes. Figure 16 shows the limiting

0.03

heat flux —

~ particle flux

-1 -0.7 0 0.7 1
Q

Fig. 16.The limiting particle and heat fluxes in Example 3.

currents (81) as functions @, with extrema neat-1/1/2 ~ +0.7 as expected.

Another feature of Figure 16 is worth a comment. As discussé&kample 3 of
Subsection 3.5, this model has a resonance approaghsy — oo and\*|Fy (0 +
i0)|? — |Fr (0 +i0)|> = oo. However, since

1£5(0)[1%, = Im Pr (0 +i0) /27 =0,

we have Im Fr (2 4 10)

. . mrgr(x+1

sin#(0) = lim ———————~ =0, 82

n 6(0) = lim, |Fr(z +10)] (82)
and the large coupling resonance near zero does not lead dtcaable flux en-
hancement. This can be seen in Figure 16 by noticing thatukedlat the resonant
energy(? = 0 are the same as at the band ed@es- +1. It is a simple exercise
to show that (82) is related to the fact that the resonance @il approache$

tangentially to the real axis (see Figure 10).
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In fact, the following argument shows that this behaviowjsical. Assume that
Fr(z) has a meromorphic continuation from the upper half-plarresscX with
a zero atw € X (we argued in our discussion of Example 3 in Subsection 3.5
that this is a necessary condition forto be a large coupling resonance). Since
Im Fr(x+1iy) > 0fory > 0, itis easy to show, using the power series expansion of
Fr aroundw, that(9, Fr)(w) > 0. Combining this fact with the Cauchy-Riemann
equations we derive

0.Re Fr(x 4 i0)|z=z > 0, 0Im Fr (2 4+ i0)| =z = 0,

and so
sinf(w) = 0.

Thus, in contrast with the weak coupling resonances, toagtcoupling resonances
do not induce large currents.
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