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Abstract

The spin-fermion model describes a two level quantum system S (spin 1/2) coupled to finitely many free
Fermi gas reservoirsRj which are in thermal equilibrium at inverse temperatures βj . We consider non-equilibrium
initial conditions where not all βj are the same. It is known that, at small coupling, the combined system
S +

P

j
Rj has a unique non-equilibrium steady state (NESS) characterized by strictly positive entropy pro-

duction. In this paper we study linear response in this NESS and prove the Green-Kubo formula and the Onsager
reciprocity relations for heat fluxes generated by temperature differentials.
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1 Introduction
This is the third in a series of papers dealing with linear response theory in quantum statistical mechanics. In
the first two papers in the series [JOP1, JOP2] we have given an abstract axiomatic derivation of the Green-Kubo
formula for the heat fluxes generated by temperature differentials. In this paper we verify that this axiomatic
derivation is applicable to the spin-fermion model (abbreviated SFM).

The Green-Kubo formula is one of the pillars of non-equilibrium statistical mechanics and is discussed in many
places in physics literature (see e.g. [KTH]). A mathematical justification of this formula is one of the outstanding
open problems in mathematical physics [Si]. In the literature, most existing results concern currents induced
by mechanical driving forces such as time-dependent electric or magnetic fields (see [NVW, GVV, BGKS] for
references and additional information). In contrast, there are very few results dealing with fluxes generated by
thermodynamical driving forces such as temperature differentials. The central difficulty is that a mathematically
rigorous study of linear response to thermodynamical perturbations requires as input a detailed understanding
of structural and ergodic properties of non-equilibrium steady states (NESS). In the papers [JOP1, JOP2] we
have bypassed this difficulty by assuming the necessary regularity properties as axioms. The general axiomatic
derivation of the Green-Kubo formula in [JOP1, JOP2] has led to some new insights concerning the mathematical
structure of non-equilibrium quantum statistical mechanics. Concerning applications to concrete models, it reduced
the proof of the Green-Kubo formula to the study of regularity properties of NESS.

In most cases, the study of NESS of physically relevant models is beyond existing mathematical techniques.
The information necessary to study linear response theory has been obtained only recently and only for a handful
of models [JP2, JP3, AH, AP, FMU]. To the best of our knowledge the SFM and its obvious generalizations are
the first class of non-trivial models in quantum statistical mechanics for which the Green-Kubo formula and the
Onsager reciprocity relations have been proven. We would also like to mention related works [AJPP1, AJPP2]
where the Green-Kubo formula was established for some exactly solvable quasi-free models. Linear response
theory for the quantum Markovian semigroup describing the dynamics of the SFM in the van Hove weak coupling
limit was studied by Lebowitz and Spohn in [LeSp] and this work has motivated our program. The Green-Kubo
formula for a class of open systems in classical non-equilibrium statistical mechanics has been established in
[RBT].

Acknowledgment. The research of the first author was partly supported by NSERC. A part of this work has been
done during the visit of the first author to CPT-CNRS. Y.O. is supported by the Japan Society for the Promotion of
Science. This work has been done during the stay of Y.O. to CPT-CNRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 The model and the results
The spin-fermion model describes a two level quantum system S (spin 1/2) coupled to finitely many, say M , free
Fermi gas reservoirs Rj . This model—a paradigm of open quantum system—has been much studied and we shall
be brief in its description. The reader not familiar with the model or with the algebraic formalism of quantum
statistical mechanics may consult [JP2] or any of the references [Da, BR1, BR2, LeSp, JP3, FMU, AJPP1] for
additional information.

The system S is described by the Hilbert space C2 and the Hamiltonian HS = σz (σx, σy, σz denote the usual
Pauli matrices). Its algebra of observables is the matrix algebra OS = M(C2) and its dynamics is

τ t
S(A) = eitHSAe−itHS .

A convenient reference state of the system S is

ωS(A) =
1

2
Tr(A),

but none of our results depends on this choice.
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The reservoir Rj is a free Fermi gas in thermal equilibrium at inverse temperature βj described by the quantum
dynamical system (Oj , τj , ωj), where the algebra of observables Oj = CAR(hj) is the CAR algebra over a single
fermion Hilbert space hj , the C∗-dynamics τ t

j is the group of Bogoliubov ∗-automorphisms generated by a single
particle Hamiltonian hj , and ωj is the unique (τj , βj)-KMS state on Oj . We denote by δj the generator of τj . The
complete reservoir system R =

∑

j Rj is described by the quantum dynamical system (OR, τR, ωR) where

OR = ⊗M
j=1Oj , τR = ⊗M

j=1τj , ωR = ⊗M
j=1ωj .

Since we are interested in the non-equilibrium statistical mechanics of the SFM, we assume that M ≥ 2.

Notation. In the sequel, whenever the meaning is clear within the context, we will write A for the operators A⊗ I ,
I ⊗ A.

In absence of interaction the joint system S + R is described by the quantum dynamical system (O, τ0, ω),
where

O = OS ⊗OR, τ0 = τS ⊗ τR, ω = ωS ⊗ ωR.

We denote by

δ0 = i[HS , · ] +
M
∑

j=1

δj ,

the generator of τ0.
The interaction of S with Rj is described by

Vj = σx ⊗ ϕj(αj), (1.1)

where αj ∈ hj is a given vector (sometimes called "form-factor"), and

ϕj(αj) =
1√
2
(aj(αj) + a∗

j (αj)) ∈ Oj ,

is the field operator associated to αj . The complete interaction between S and R is given by V =
∑M

j=1 Vj . Let
λ ∈ R be a coupling constant and τλ the C∗-dynamics on O generated by

δλ = δ0 + iλ[V, · ].

The interacting joint system S + R is described by the C∗-dynamical system (O, τλ) and the reference state ω.
Time-reversal invariance plays an important role in linear response theory. We remark that due to its simple

form, the spin-fermion system is automatically time-reversal invariant. Indeed, for all j there exists a complex
conjugation cj on hj which commutes with hj and satisfies cjαj = αj . The map Θj(a(fj)) = a(cjfj) uniquely
extends to an involutive anti-linear ∗-automorphism of Oj such that Θj ◦ τ t

j = τ−t
j ◦ Θj . Let ΘS be the standard

complex conjugation on OS . Obviously, ΘS(σz) = σz, ΘS(σx) = σx, and in particular ΘS ◦ τ t
S = τ−t

S ◦ΘS . Let
Θ = ΘS ⊗ Θ1 ⊗ · · ·ΘM . Then Θ(Vj) = Vj for all j, and Θ ◦ τ t

λ = τ−t
λ ◦ Θ for all λ ∈ R.

Let βeq > 0 be a given reference (equilibrium) inverse temperature. Since we are interested in linear response
theory, without loss of generality we may restrict the inverse temperatures βj of the reservoirs to an interval
(βeq − ε, βeq + ε), where 0 < ε < βeq is a small number. For our purposes the size of ε is not relevant. We
introduce the thermodynamical forces

Xj = βeq − βj ,

and set X = (X1, · · · , XM ). The vector X uniquely describes the initial state of the system (note that the
value X = 0 corresponds to the equilibrium case where all βj are the same and equal to βeq). The restriction
βj ∈ (βeq − ε, βeq + ε) is equivalent to |X |+ < ε, where |X |+ = max |Xj |. We set Iε = {X ∈ RM | |X |+ < ε},
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Dε = {X ∈ CM | |X |+ < ε}. We shall explicitly indicate the dependence of the reference states on X by denoting
ωXj

= ωj , ωRX = ωX1
⊗ · · · ⊗ ωXM

and

ω
(0)
X = ωS ⊗ ωRX .

We denote by NX the set of all ω
(0)
X -normal states on O.

We will need several results concerning non-equilibrium thermodynamics of S + R established in [JP2]. We
first list technical conditions needed for these results.

(A1) hj = L2(R+, ds ; Hj) for some auxiliary Hilbert space Hj and hj is the operator of multiplication by s ∈ R+.

Let I(δ) = {z ∈ C | |Im z| < δ} and let H2
j (δ) be the usual Hardy class of analytic functions f : I(δ) → Hj .

(A2) For some δ > 0, a > βeq, and all j, e−asαj(|s|) ∈ H2
j (δ).

(A3) For all j, ‖αj(2)‖Hj
> 0.

(A1) and (A2) are regularity assumptions needed for the spectral theory of NESS developed in [JP2]. As-
sumption (A3) is the "Fermi Golden Rule" condition which ensures that S is effectively coupled to each reservoir
Rj .

The following result was proven in [JP2].

Theorem 1.1 Assume that (A1)-(A3) hold. Then, there exist Λ > 0, ε > 0 and states ωλX+ on O such that for
0 < |λ| < Λ, X ∈ Iε, η ∈ NX , and A ∈ O,

lim
t→+∞

η(τ t
λ(A)) = ωλX+(A). (1.2)

The states ωλX+ are the NESS of the joint system S + R and are the central objects of the non-equilibrium
statistical mechanics of this system. We remark that ωλ0+ is the unique (τλ, βeq)-KMS state on O and in this case
Relation (1.2) is the statement of the zeroth law of thermodynamics. We denote ωλeq = ωλ0+.

If the thermodynamical forces Xj are not all the same, then one expects that the NESS ωλX+ is thermodynam-
ically non-trivial and has strictly positive entropy production. This result was also established in [JP2] (see also
[JP3]). The observable describing the heat flux out of Rj is

Φj = λδj(Vj) = λσx ⊗ ϕj(ihjαj).

The entropy production of the NESS ωλX+ is defined by

Ep(ωλX+) =
M
∑

j=1

XjωλX+(Φj).

If (A1)-(A3) hold and the Xj’s are not all the same, then for λ non-zero and small enough, Ep(ωλX+) > 0, see
[JP2]. In particular, the NESS ωλX+ carries non-vanishing heat fluxes. We will return to this topic in Subsection
1.2.

In this paper we study the linear response of ωλX+ to thermodynamical forces Xj . Our first result is:

Theorem 1.2 Assume that (A1)-(A3) hold. Then there are Λ > 0 and ε > 0 such that for 0 < |λ| < Λ the maps

Iε 3 X 7→ ωλX+(Φj),

extend to analytic functions on Dε.



The Green-Kubo formula for the spin-fermion system 5

The kinetic transport coefficients are defined by

Lλji = ∂Xi
ωλX+(Φj)

∣

∣

X=0
. (1.3)

Our main result is:

Theorem 1.3 Assume that (A1)-(A3) hold. Then there is Λ > 0 such that for 0 < |λ| < Λ the following holds:
(1)

Lλji =
1

2

∫ ∞

−∞

ωλeq(Φjτ
t
λ(Φi))dt. (1.4)

(2)
Lλji = Lλij . (1.5)

Remark 1. The relations (1.4) are the Green-Kubo formulas for heat fluxes. The relations (1.5) are the Onsager
reciprocity relations.
Remark 2. The Onsager reciprocity relations are an immediate consequence of (1.4). Indeed, Theorem 1.1 yields
that for A, B ∈ O,

lim
|t|→∞

ωλeq(Aτ t
λ(B)) = ωλeq(A)ωλeq(B).

This fact implies that

lim
T→∞

∫ T

−T

ωλeq([Φj , τ
t
λ(Φi)])dt = 0,

see Theorem 5.14.12 in [BR2]. Since ωλeq is obviously τλ-invariant, (1.4) implies (1.5).
Remark 3. In general, in the Green-Kubo formula

∫∞

−∞ is interpreted as limT→∞

∫ T

−T . However, since ωλeq(Φj) =
0 for all j, by the result of [JP2]

∣

∣ωλeq(Φjτ
t
λ(Φi))

∣

∣ = O(e−A|t|),

for some A > 0, and the integral in (1.4) is absolutely convergent.

Our final result is:

Theorem 1.4 Assume that (A1)-(A3) hold. Then there is Λ > 0 such that the functions λ 7→ Lλji are analytic for
|λ| < Λ and have power expansions

Lλji =
∞
∑

k=2

λkL
(k)
ji . (1.6)

Moreover, for j 6= i,

L
(2)
ji = − π

(coshβeq)2

‖αi(2)‖2
Hi
‖αj(2)‖2

Hj
∑

k ‖αk(2)‖2
Hk

, (1.7)

and L
(2)
ii = −∑j 6=i L

(2)
ji .

Remark. Starting with formula (1.4), this theorem can be proven by an explicit computation based on the spectral
theory of the standard Liouvillean [JP2]. Our proof in Section 4 is somewhat indirect and emphasizes the important
connection between L

(2)
ji and the weak coupling Green-Kubo formula established in [LeSp]. This connection is

discussed in more detail in Subsection 1.3
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1.2 Thermodynamics of the SFM revisited
Some technical results established in this paper could be used to improve existing results concerning the thermo-
dynamics of the SFM. In this subsection we do not assume that ε is small and βeq does not play any particular
role. For this reason, in this subsection we replace the subscripts X by ~β = (β1, · · · , βM ). Hence, ωβj

= ωj is
the initial state of the reservoir Rj , ωR~β = ωβ1

⊗ · · · ⊗ ωβM
, ω~β = ωS ⊗ ωR~β is the reference state of the joint

system, N~β is the set of all ω~β -normal states on O, etc. For 0 < γ1 < γ2 we denote Iγ1γ2
= [γ1, γ2]

M ⊂ RM . In
this subsection we will always assume the constant a in Assumption (A2) satisfies a > γ2.

The following results hold:

Theorem 1.5 Let 0 < γ1 < γ2 be given and assume that (A1)-(A3) hold. Then there exist Λ > 0 and states ωλ~β+
on O such that:
(1) For all 0 < |λ| < Λ, ~β ∈ Iγ1γ2

, η ∈ N~β , and A ∈ O,

lim
t→+∞

η(τ t
λ(A)) = ωλ~β+(A). (1.8)

(2) The limit (1.8) is exponentially fast in the following sense: There exist ρλ~β > 0, a norm dense set of states
N0~β ⊂ N~β , and a norm-dense ∗-subalgebra O0 ⊂ O such that for η ∈ N0~β , A ∈ O0, and t > 0,

|η(τ t
λ(A)) − ωλ~β+(A)| ≤ CA,η,λe−ρ

λ~β
t. (1.9)

Moreover, ω~β ∈ N0~β , Φj ∈ O0, and

ρλ~β =
π

2





∑

j

‖αj(2)‖2
Hj



λ2 + O(λ4), (1.10)

where the reminder is uniform in ~β ∈ Iγ1γ2
.

(3) There exists a neighborhood Oγ1γ2
of Iγ1γ2

in CM such that for all A ∈ O0 the functions

(λ, ~β) 7→ ωλ~β+(A), (1.11)

extend to analytic functions on {λ | |λ| < Λ} × Oγ1γ2
.

Remark. Parts (1) and (2) are proven in [JP2] and are stated here for reference purposes. The new result is (3)—in
[JP2] the analyticity of the functions (1.11) was discussed only w.r.t. λ.

We denote by Îγ1γ2
the "off-diagonal" part of Iγ1γ2

, i.e.,

Îγ1γ2
= Iγ1γ2

\ {~β |β1 = · · · = βM}.
Theorem 1.6 Let 0 < γ1 < γ2 be given and assume that (A1)-(A3) hold. Then there exists Λ > 0 such that for
0 < |λ| < Λ and ~β ∈ Îγ1γ2

the following holds:
(1) Ep(ωλ~β+) > 0.
(2) There are no τλ-invariant states in N~β .

Remark 1. Statements (1) and (2) are equivalent. Indeed, the exponentially fast approach to NESS (Part (2)
of Theorem 1.5) and Theorem 1.1 in [JP2] yield that (2) implies (1). On the other hand, if η is a normal τλ-
invariant state in N~β , then, by Part (1) of Theorem 1.5, η = ωλ~β+. This fact and Theorem 1.3 in [JP5] yield that
Ep(ωλ~β+) = 0, and so (2) implies (1).
Remark 2. Theorem 1.6 was proven in [JP2] under the additional assumption that for some δ > 0,

∑

i,j

|βi − βj | > δ.

The constant Λ was dependent on δ.
Remark 3. A result related to Part (2) of Theorem 1.6 was recently established in [MMS].

The proofs of Theorems 1.5 and 1.6 are given in Section 5.
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1.3 Some generalizations
All our results easily extend to more general models where S is a N -level atom described by the Hilbert space CN

and the Hamiltonian HS . Each Vj is a finite sum of terms of the form

Qj,k ⊗ ϕj(αj,k,1) · · ·ϕj(αj,k,nj,k
) + h.c.,

where nj,k ≥ 1, Qj,k ∈ OS = M(CN ) and αj,k,n ∈ hj satisfy:

(A0) If k 6= l or n 6= m, then (αj,k,n, eithjαj,l,m) = 0 for all t ∈ R.

We shall call this model the general spin-fermion model (abbreviated GSFM). The GSFM may not be time-
reversal invariant. Assume that (A1) holds. Let cj be a distinguished complex conjugation on hj and

α̃j,k,n(s) =

{

αj,k,n(s) if s ≥ 0,

(cjαj,k,n)(|s|) if s < 0.

Assumption (A2) is replaced with

(A4) For some δ > 0, a > βeq, and all j, k, n, e−asα̃j,k,n(s) ∈ H2
j (δ).

The general "Fermi Golden Rule" non-degeneracy condition is formulated as follows. Assumptions (A0), (A1)
and (A4) ensure that for all X there exists a linear map KX : OS → OS such that for all A, B ∈ OS ,

lim
t→+∞

ω
(0)
X (A τ

−t/λ2

0 ◦ τ
t/λ2

λ (B)) =
1

N
Tr(AetKX (B)). (1.12)

As usual, we write K0 = Keq. This relation (the quantum Markovian semigroup approximation of the dynamics
of an open quantum system in the van Hove weak coupling limit) is a celebrated result of Davies [Da] who has
proven it under very general technical conditions (see also [De, JP2, JP3]). The result of Davies was the starting
point of numerous studies of thermodynamics of open quantum systems in weak coupling limit (see [LeSp, AJPP1]
for references and additional information). We will return to this point at the end of this subsection.

We recall that he generator KX has the form

KX =

M
∑

j=1

KXj
,

where KXj
is the generator obtained by considering the weak coupling limit of the system S + Rj w.r.t. the

initial state ωS ⊗ ωXj
. By construction, the spectrum of KXj

is contained in {z |Re z ≤ 0} and 0 ∈ σ(KXj
).

Assumption (A3) is replaced with

(A5) For all j and |Xj | < ε, σ(KXj
) ∩ iR = {0} and 0 is a simple eigenvalue of KXj

.

In the literature one can find various algebraic characterizations of (A5) (see [Sp, De] for references and additional
information).

If Assumptions (A1), (A4) and (A5) hold, then Theorem 1.1 holds for the GSFM. The heat fluxes are again
defined by Φj = λδj(Vj), and if not all Xj’s are the same, the entropy production of ωλX+ is strictly positive for
small λ (see [JP2, JP3]).

Our next assumption concerns time-reversal invariance.

(A6) The complex conjugations cj commute with hj and satisfy cjαj,k,n = αj,k,n for all j, k, n. Moreover, the
matrices HS and Qj,k are real w.r.t. the usual complex conjugation on M(CN).
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This assumption ensures that there exists an involutive, anti-linear ∗-automorphism (time-reversal) Θ of O such
that for all j, Θ(Vj) = Vj , Θ ◦ τ t

j = τ−t
j ◦Θ, and Θ ◦ τ t

S = τ−t
S ◦Θ. In particular, Θ ◦ τ t

λ = τ−t
λ ◦Θ for all λ ∈ R.

Our main result concerning the GSFM is:

Theorem 1.7 Assume that (A0), (A1), (A4) and (A5) hold. Then there are Λ > 0 and ε > 0 such that for
0 < |λ| < Λ the following holds.
(1) The maps

Iε 3 X 7→ ωλX+(Φj),

extend to analytic functions on Dε.
(2) Let Lλji be given by (1.3). Then for all j, i,

Lλji =
1

βeq

∫ ∞

0

dt

∫ βeq

0

du ωλeq(τ
t
λ(Φj)τ

iu
λ (Φi)). (1.13)

(3) Assume in addition that (A6) holds. Then for all j, i,

Lλji =
1

2

∫ ∞

−∞

ωλeq(Φjτ
t
λ(Φi))dt, (1.14)

and
Lλji = Lλij .

Remark. The relation (1.13) is the Green-Kubo formula without time reversal assumption. For additional discus-
sion of this point we refer the reader to [JOP2].

Before discussing the generalization of Theorem 1.4 we recall a few basic definitions and results of the weak
coupling (sometimes also called Fermi Golden Rule or FGR) thermodynamics of open quantum systems. Assump-
tion (A5) ensures that there exists a density matrix ωSX+ on HS such that for any initial density matrix ρ on HS

and A ∈ OS ,
lim

t→+∞
Tr(ρ etKX (A)) = Tr(ωSX+A) ≡ ωSX+(A).

The density matrix ωSX+ is the weak coupling NESS of the open quantum system S +
∑

j Rj . Clearly,

ωS0+ = e−βeqHS/Tr(e−βeqHS ),

and we will write ωS0+ = ωSeq. Weak coupling heat flux observables are defined by ΦjX = KXj
(HS) and we

denote Φjeq = Φj0. The weak coupling entropy production is

Ep =
M
∑

j=1

XjωSX+(ΦjX ).

One always has Ep ≥ 0. Lebowitz and Spohn [LeSp] have shown that if (A4) holds then Ep > 0 whenever Xj

are not all equal. In the same paper they have also proven the Green-Kubo formula for weak coupling heat fluxes:
If (A5) holds, then the functions X 7→ ωSX+(ΦjX ) are differentiable at X = 0 and

Lji ≡ ∂Xi
ωSX+(ΦjX )

∣

∣

X=0
=

∫ ∞

0

ωSeq(e
tKeq(Φjeq)Φieq)dt.

These results are very robust and can be derived under very mild technical conditions. If in addition (A6) holds,
then Lji = Lij , that is, the weak coupling Onsager reciprocity relations hold.
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One naturally expects that the weak coupling thermodynamics is the first non-trivial contribution (in λ) to
the microscopic thermodynamics. Indeed, it was proven in [JP2, JP3] that if (A0), (A4) and (A5) hold, then for
A ∈ OS and λ small enough,

ωλX+(A) = ωSX+(A) + O(λ),

ωλX+(Φj) = λ2ωSX+(ΦjX ) + O(λ3),

Ep(ωλX+) = λ2Ep + O(λ3).

(1.15)

In the next theorem we relate Lλji and Lji and complete the link between the microscopic and the weak coupling
thermodynamics for this class of models.

Theorem 1.8 Assume that (A0), (A1), (A4) and (A5) hold. Then there is Λ > 0 such that the functions λ 7→ Lλji

are analytic for |λ| < Λ and have power expansions

Lλji =

∞
∑

k=2

λkL
(k)
ji .

Moreover,
L

(2)
ji = Lji. (1.16)

Remark 1. Relation (1.16) yields

lim
λ→0

λ−2 1

βeq

∫ ∞

0

dt

∫ βeq

0

du ωλeq(τ
t
λ(Φj)τ

iu
λ (Φi))dt =

∫ ∞

0

ωSeq(e
tKeq(Φjeq)Φieq)dt,

and if in addition (A6) holds

lim
λ→0

λ−2

∫ ∞

−∞

ωλeq(τ
t
λ(Φj)Φi)dt =

∫ ∞

0

ωSeq(e
tKeq(Φjeq)Φieq)dt,

i.e. the rescaled microscopic flux-flux correlation functions converge to the corresponding weak coupling correla-
tion functions.
Remark 2. The relation between the microscopic and the weak coupling thermodynamics is discussed in detail in
the lecture notes [AJPP1] in the context of an exactly solvable quasi-free model.

The proofs of Theorems 1.7 and 1.8 are only notationally different from the proofs of Theorems 1.3 and 1.4
and the details can be found in the forthcoming review article [JP4].

Theorems 1.5 and 1.6 also hold for the GSFM under the Assumptions (A0), (A1), (A4) with a > γ2, and (A5)
for all ~β ∈ Iγ1γ2

. The only parts that need to be modified are Relations (1.9) and (1.10). In general, the constant
CA,η,λ is replaced by a polynomial in t. The leading term in the expansion (1.10) is equal to the absolute value of
the real part of the non-zero eigenvalue of K~β closest to iR and in general depends on ~β. For additional discussion
of these points we refer the reader to [JP4].

2 Strategy of the proof
The proofs of Theorems 1.2 and 1.3 are based on two ingredients: the abstract derivation of the Green-Kubo
formula in [JOP1, JOP2] and the detailed information about the NESS of the SFM obtained in [JP2]. In this
section we outline how to combine these ingredients and extract a specific technical result needed to complete the
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proofs. This technical result will be established in the next section. Throughout this subsection we assume that
(A1)-(A3) hold.

Consider the C∗-dynamics σ
(0)
X on O generated by

δ
(0)
X =

∑

j

(1 − Xj/βeq)δj .

The state ω
(0)
X is the unique (σ

(0)
X , βeq)-KMS state on O. Let σλX be the C∗-dynamics on O generated by

δλX = δ
(0)
X + i[HS + λV, · ] = δλ −

∑

j

Xj

βeq
δj .

The Araki perturbation theory [Ar, BR2, DJP] yields that there exists a unique (σλX , βeq)-KMS state on O. We
denote this state by ωλX . The states ω

(0)
X and ωλX are mutually normal and in particular ωλX ∈ NX .

Lemmas 3.5 in [JOP1] and 4.6 in [JOP2] yield that for all λ and t the function

X 7→ ωλX (τ t
λ(Φj)),

is differentiable at X = 0. Theorem 2.3 in [JOP1] specialized to the SFM yields:

Theorem 2.1 Let Λ be as in Theorem 1.1 and let 0 < |λ| < Λ be given. Suppose also that:
(a) The function X 7→ ωλX+(Φj) is differentiable at X = 0.
(b) The limit and the derivative in the expression

lim
t→+∞

∂Xi
ωλX (τ t

λ(Φj))
∣

∣

X=0
,

can be interchanged.
Then,

∂Xi
ωλX+(Φj) =

1

2

∫ ∞

−∞

ωλeq(Φjτ
t
λ(Φi))dt.

By this result, the proof of Theorem 1.3 reduces to the verification of (a) and (b) in Theorem 2.1. We remark that
(a) and (b) have been assumed as axioms in the abstract derivation of [JOP1, JOP2]. In study of concrete models
they are the central technical points that need to be verified. This brings us to the second point of the proof, namely
the dynamical properties of the SFM established in [JP2]. Using the results of [JP2], in the next section we will
prove:

Theorem 2.2 There exist Λ > 0 and ε > 0 such that for 0 < |λ| < Λ and t ≥ 0 the functions X 7→ ωλX (τ t
λ(Φj))

have an analytic extension to Dε. Moreover,

sup
X∈Dε,t≥0

∣

∣ωλX(τ t
λ(Φj))

∣

∣ < ∞.

This theorem is our key technical result. Theorems 1.1 and 2.2 yield:

Theorem 2.3 Let Λ and ε be as in Theorem 2.2. Then for all X ∈ Dε and 0 < |λ| < Λ the limits

hλj(X) = lim
t→+∞

ωλX(τ t
λ(Φj)),

exist. The limiting functions X 7→ hλj(X) are analytic on Dε. Moreover, as t → +∞, all derivatives of the
functions X 7→ ωλX (τ t

λ(Φj)) converge uniformly on compact subsets of Dε to the corresponding derivatives of
hλj(X).
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Proof. This result follows from the multivariable Vitali theorem. We sketch the proof for the reader convenience.
Set ht(X) = ωλX(τ t

λ(Φj)). For 0 < ρ < ε we denote

Tρ = {X ∈ C
M | |Xj | = ρ for all j }.

The Cauchy integral formula for polydisk yields that for X ∈ Dρ,

ht(X) =
1

(2πi)M

∫

Tρ

ht(ξ1, · · · , ξM )

(ξ1 − X1) · · · (ξM − XM )
dξ1 · · ·dξM . (2.17)

It follows that the family of functions {ht}t≥0 is equicontinuous on Dρ′ for any ρ′ < ρ. Hence, by the Arzela-
Ascoli theorem, for any ρ′ < ρ the set {ht}t≥0 is precompact in the Banach space C(Dρ′) of all continuous
functions on Dρ′ equipped with the sup norm. The Cauchy integral formula (2.17), where now X ∈ Dρ′ and the
integral is over Tρ′ , yields that any limit in C(Dρ′) of the net {ht} as t → ∞ is an analytic function in Dρ′ . By
Theorem 1.1, any two limit functions coincide for X real, and hence they are identical. This yields the first part of
the theorem. The convergence of partial derivatives of ht(X) is an immediate consequence of the Cauchy integral
formula. 2

Theorem 2.3 yields Theorem 1.2—the functions hλj(X) are the analytic extensions of ωλX+(Φj) to Dε. In
particular, assumption (a) of Theorem 2.1 holds. Similarly, the second part of Theorem 2.3 implies that assumption
(b) of Theorem 2.1 holds and Theorem 1.3 follows. Hence, to complete the proofs of Theorems 1.2 and 1.3 it
remains to establish Theorem 2.2.

3 Proof of Theorem 2.2
The proof of Theorem 2.2 is based on techniques and estimates of [JP1, JP2]. We recall the ingredients we need.
Throughout this section we assume that (A1)-(A3) hold. B(H) denotes the C∗-algebra of all bounded operators on
the Hilbert space H.

The GNS-representation of the algebraO associated to the product state ω
(0)
X can be explicitly computed [AW].

We will describe it in the glued form of [JP2]. Denote by e± the eigenvectors of σz associated to the eigenvalues
±1. Set HS = C2 ⊗ C2 and define a unit vector in HS by

ΩS =
1√
2
(e− ⊗ e− + e+ ⊗ e+).

Let πS : OS → B(HS) be given by
πS(A) = A ⊗ I.

The triple (HS , πS , ΩS) is the GNS representation of OS associated to ωS . We set

LS = HS ⊗ I − I ⊗ HS .

Let Fj be the anti-symmetric Fock space over h̃j = L2(R, ds; Hj) and Ωj the vacuum vector in Fj . We denote
by ãj , ã∗

j the annihilation and creation operators and by Nj the number operator on Fj . Let Lj = dΓ(s) be the
second quantization of the operator of multiplication by s on h̃j . To any fj ∈ hj we associate f̃j ∈ h̃j by

f̃j(s) =

{

fj(s) if s ≥ 0,

(cjfj)(|s|) if s < 0.

For X ∈ RM we set

f̃jX (s) =
(

e(Xj−βeq)s + 1
)−1/2

f̃j(s).
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Finally, we define a map πjX : Oj → B(Fj) by

πjX (ϕj(fj)) = ϕ̃j(f̃jX ) =
1√
2

(

ãj(f̃jX ) + ã∗
j (f̃jX )

)

.

The map πjX uniquely extends to a representation of Oj on the Hilbert space Fj .
We set

HR = ⊗M
j=1Fj , πRX = ⊗M

j=1πjX , ΩR = ⊗M
j=1Ωj .

The triple (HR, πRX , ΩR) is the GNS representation of the algebra OR associated to the state ωRX . Let

H = HS ⊗HR, πX = πS ⊗ πRX , Ω = ΩS ⊗ ΩR.

The triple (H, πX , Ω) is the GNS-representation of the algebra O associated to the state ω
(0)
X . Note that H and Ω

do not depend on X .
The spectral theory of NESS is based on a particular non-selfadjoint operator acting on H, the adjoint of the

so-called C-Liouvillean. This operator is defined as follows. Let LR =
∑

j Lj and

L0 = LS + LR.

Let
VjX = πX (Vj) = σx ⊗ I ⊗ ϕ̃j(α̃jX ),

WjX = I ⊗ σx ⊗ 1√
2
(−I)Nj

(

ã∗
j (e

(Xj−βeq)sα̃jX ) − ãj(α̃jX )
)

,

and
VX =

∑

j

VjX , WX =
∑

j

WjX .

The adjoint of the C-Liouvillean associated to the triple (O, τλ, ω
(0)
X ) is

LλX = L0 + λ(VX + WX ).

This operator is closed on Dom (L0) and generates a quasi-bounded strongly continuous group eitLλX on H. The
operator LλX is characterized by the following two properties:

(i) For any A ∈ O and any t ∈ R, πX(τ t
λ(A)) = eitLλX πX (A)e−itLλX .

(ii) L∗
λXΩ = 0.

Thus, for A, B ∈ O we have

ω
(0)
X (τ t

λ(A)B) = (πX(A∗)Ω, e−itLλX πX (B)Ω), (3.18)

and hence the function

z 7→
∫ ∞

0

ω
(0)
X (τ t

λ(A)B) eitzdt = i(πX (A∗)Ω, (z −LλX )−1πX(B)Ω),

is analytic in the upper half-plane. The basic strategy of [JP2] is to show that for appropriate A, B this function
has a meromorphic continuation to a larger half-plane and that the behavior of t 7→ ω

(0)
X (τ t

λ(A)B) as t → ∞ is
controlled by the poles of this continuation (the resonances) via the inverse Laplace transform.

Let pj = i∂s be the generator of the group of translations on h̃j , Pj = dΓ(pj) its second quantization. Let
Uj(θ) = e−iθPj = Γ(e−iθpj ), θ ∈ R, be the second quantization of this group and

VX (θ) =
∑

j

Uj(θ)VjXUj(−θ) =
∑

j

σx ⊗ I ⊗ ϕ̃j(e
−iθpj α̃jX ),

WX (θ) =
∑

j

Uj(θ)WjXUj(−θ) =
∑

j

I ⊗ σx ⊗ 1√
2
(−I)Nj

(

ã∗
j (e

−iθpj α̃jX ) − ãj(e
−iθpj (e(Xj−βeq)sα̃jX ))

)

.
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Lemma 3.1 There exist ε > 0 and δ′ > 0 such that the maps

(X, θ) 7→ VX (θ), (X, θ) 7→ WX (θ),

extend to analytic operator-valued functions on Dε × I(δ′) satisfying

sup
X∈Dε,θ∈I(δ′)

(‖VX(θ)‖ + ‖WX(θ)‖) < ∞. (3.19)

In particular, one has
sup

X∈Dε,|t|≤1

∥

∥eitLλX
∥

∥ < ∞. (3.20)

Proof. The proof of the first part of this result is the same as the proof of Lemma 4.1 and Proposition 4.4 (iii) in
[JP1]. The only additional fact needed is that for some ε > 0 and µ > 0 the function

R × R 3 (x, s) 7→ w(x, s) = (e−xs + 1)−1/2,

has an analytic continuation to the region O = {z : |z − βeq| < ε} × I(µ) such that

sup
(z,θ)∈O

|w(z, θ)| < ∞.

Since L0 is self-adjoint, the bound (3.20) is a simple consequence of (3.19). 2

Let N =
∑

j Nj . For X ∈ Dε and θ ∈ I(δ′) we set

L0(θ) = L0 + θN,

LλX(θ) = L0(θ) + λ(VX (θ) + WX (θ)).

The family of operators LλX (θ), X ∈ Dε, θ ∈ I(δ′), is a complex deformation of the family of operators LλX ,
X ∈ Iε. Note that L0X (θ) = L0(θ) is a normal operator which does not depend on X . The spectrum of L0(θ)
consists of two simple eigenvalues ±2, a doubly degenerate eigenvalue 0 and a sequence of lines {x+inIm θ |x ∈
R, n ≥ 1}. The next lemma is a consequence of Lemma 3.1 and regular perturbation theory and is deduced in the
same way as the corresponding results in [JP1, JP2].

Proposition 3.2 There exist Λ > 0, ε > 0 and 0 < µ < δ′ such that for |λ| < Λ, −µ < Im θ < −3µ/4 and
X ∈ Dε, the spectrum of LλX (θ) is contained in the set

{z | Im z > −µ/8} ∪ {z | Im z < −µ/2}.
The spectrum inside the half-plane {z | Im z > −µ/8} is discrete and, for λ 6= 0, consists of four simple eigenval-
ues EjλX which do not depend on θ and are bounded analytic functions of (λ, X) ∈ {λ | |λ| < Λ}×Dε. Moreover,
E0λX = 0 and Im EjλX < 0 for j = 1, 2, 3, X ∈ Dε, and 0 < |λ| < Λ. The corresponding eigenprojections
PjλX (θ) are bounded analytic functions of the variables (λ, X, θ).

With regard to the results of [JP1, JP2], the only part of Proposition 3.2 that requires a comment are the relations
E0λX = 0 and Im EjλX < 0 for j = 1, 2, 3, which hold for X ∈ Dε and 0 < |λ| < Λ. Regular perturbation theory
and an explicit Fermi Golden Rule computation yield that the eigenvalues EjλX , j = 2, 3, which are respectively
near ±2, satisfy

E2λX = −2 +
λ2

2

∑

j

(

−iπ‖αj(2)‖2
Hj

− PV

∫

R

‖α̃j(s)‖2
Hj

s − 2
ds

)

+ λ4R2(λ, X),

E3λX = 2 +
λ2

2

∑

j

(

−iπ‖αj(2)‖2
Hj

+ PV

∫

R

‖α̃j(s)‖2
Hj

s − 2
ds

)

+ λ4R3(λ, X),
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where PV stands for Cauchy’s principal value and the functions Rj(λ, X), j = 2, 3, are bounded and analytic for
X ∈ Dε and |λ| < Λ. Clearly, by choosing Λ small enough, we have that Im EjλX < 0 for j = 2, 3, X ∈ Dε,
and 0 < |λ| < Λ. The eigenvalues EjλX , j = 0, 1, which are near 0, are the eigenvalues of a 2 × 2-matrix ΣλX

which has the form
ΣλX = λ2Σ2(X) + λ4R(λ, X),

where the matrix-valued function R(λ, X) is analytic and bounded for X ∈ Dε and |λ| < Λ and

Σ2(X) = −iπ
∑

j

‖αj(2)‖2
Hj

1

2 coshβj

[

eβj −e−βj

−eβj e−βj

]

, βj = βeq − Xj . (3.21)

The eigenvalues of Σ2(X) are 0 and −iπ
∑

j ‖αj(2)‖2
Hj

, and we conclude that for Λ small enough the eigenvalues
E0λX and E1λX are analytic functions, that E0λX 6= E1λX for λ 6= 0, and that Im E1λX < 0 for X ∈ Dε,
0 < |λ| < Λ. By construction of the C-Liouvillean, E0λX = 0 for X real. Hence, by analyticity, E0λX = 0 for
X ∈ Dε and |λ| < Λ.

The next technical result we need is:

Proposition 3.3 There exist Λ > 0, ε > 0, and µ > 0 such that for all |λ| < Λ, all θ in the strip −µ < Im θ <
−3µ/4 and all Ψ ∈ H, the functions defined by

F+(z) = sup
X∈Dε

‖(z −LλX(θ))−1Ψ‖, F−(z) = sup
X∈Dε

‖(z −LλX(θ)∗)−1Ψ‖,

satisfy
∫

R

|F±(x ± iµ)|2dx ≤ 16π

µ
‖Ψ‖2, (3.22)

and
lim

|x|→∞
F±(x + iη) = 0. (3.23)

for all |η| ≤ µ/4.

Proof. We only deal with F+(z), the other case is similar. We start with Λ, ε, and µ as in Proposition 3.2 and set

Qµ = (R + iµ/4) ∪ (R − iµ/4) ∪ {z ∈ C | |Re z| ≥ 2 + µ/4, |Im z| ≤ µ/4}.

Since L0(θ) is normal and dist(Qµ, σ(L0(θ))) ≥ µ/4 for Im θ ≤ −3µ/4, the spectral theorem yields that

sup
z∈Qµ,Im θ≤−3µ/4

‖(z −L0(θ))
−1‖ ≤ 4

µ
. (3.24)

The estimate
∫

R

‖(x ± iµ/4−L0(θ))
−1Ψ‖2dx ≤ 4π‖Ψ‖2

µ
, (3.25)

holds for all Ψ ∈ H, and the dominated convergence theorem yields

lim
|z|→∞,z∈Qµ

‖(z −L0(θ))
−1Ψ‖ = 0. (3.26)

We further impose that Λ and µ satisfy

sup
X∈Dε,−µ<Im θ<0

‖VX (θ) + WX(θ)‖ ≤ µ

8Λ
.
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The resolvent identity yields

(z −LλX (θ))−1 = G(z, λ, X, θ)(z −L0(θ))
−1,

where
G = G(z, λ, X, θ) =

(

I − λ(z −L0(θ))
−1(VX(θ) + WX(θ))

)−1
.

The estimate (3.24) yields
sup ‖G‖ ≤ 2,

where the supremum is taken over z ∈ Qµ, |λ| < Λ, X ∈ Dε, and θ in the strip −µ < Im θ < −3µ/4. Hence, for
z ∈ Qµ,

sup
X∈Dε

‖(z −LλX (θ))−1Ψ‖ ≤ 2 ‖(z −L0(θ))
−1Ψ‖,

and (3.25), (3.26) yield (3.22), (3.23). 2

Assumption (A2) ensures that there is ε > 0 such that the operators

V (X, u) =

M
∑

j=1

σx ⊗ I ⊗ 1√
2

(

ã∗
j (e

−u(1−Xj/βeq)sα̃jX ) + ãj(e
u(1−Xj/βeq)sα̃jX )

)

,

acting on H are well-defined continuous functions of (X, u) ∈ Iε × [0, βeq] satisfying

sup
(X,u)∈Iε×[0,βeq]

‖V (x, u)‖ < ∞.

If we set

GλX = 1l +
∑

n≥1

(−βeq)
n

∫

0≤tn≤···≤t1≤1

(λV (X, βeqtn) + πX (HS)) · · · (λV (X, βeqt1) + πX (HS))dt1 · · · dtn,

then the Araki perturbation theory [Ar, BR2, DJP] yields that the reference state ωλX can be written as

ωλX(A) =
(Ω, πX(A)GλXΩ)

(Ω,GλXΩ)
. (3.27)

Consider the unitary group
U(θ) = e−iθ

P

j Pj ,

on H.

Proposition 3.4 There exist ε > 0 and µ > 0 such that:
(1) The function

Iε × R 3 (X, θ) 7→ U(θ)GλXΩ ∈ H,

extends to a bounded analytic H-valued function in the region Dε × I(µ) for all λ ∈ R. We denote this analytic
extension by ΩλXθ.
(2) The functions

Iε × R 3 (X, θ) 7→ U(θ)πX (Φj)Ω ∈ H,

extend to bounded analytic H-valued functions in the region Dε × I(µ). We denote this analytic extensions by
ΨjXθ.
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Proof. We sketch the proof of (1). The proof of (2) is similar and simpler.
For (X, u, θ) ∈ Iε × [0, βeq] × R we set

Vθ(X, u) = U(θ)V (X, u)U(θ)∗

=
M
∑

j=1

σx ⊗ I ⊗ 1√
2

(

ã∗
j (e

−iθpj e−u(1−Xj/βeq)sα̃jX ) + ãj(e
−iθpj eu(1−Xj/βeq)sα̃jX )

)

.

Since U(θ)Ω = Ω, we can write U(θ)GλXΩ = GλXθΩ where GλXθ is obtained by replacing V (X, u) by Vθ(X, u)
in the definition of GλX . It is easy to see for any ε > 0, µ > 0 and ρ > 0 the entire analytic function g(u, z, s) =
eu(1−z/βeq)s satisfies

sup
|u|<(1+ρ)βeq,|z|<ε,|Ims|<µ

∣

∣

∣

∣

g(u, z, s)

cosh(ls)

∣

∣

∣

∣

< ∞,

where l = (1 + ρ)(ε + βeq). Let a > βeq be as in Assumption (A2). Choose ρ and ε such that l < a. Since by
(A2) one has cosh(as)α̃jX ∈ H2

j (δ), it follows that Vθ(X, u) has a bounded analytic extension to the set

{(X, u, θ) |X ∈ Dε, u ∈ C, |u| < (1 + ρ)βeq, |Im θ| < µ}.

This yields the statement. 2

Proof of Theorem 2.2. We choose Λ > 0, ε > 0, and µ > 0 sufficiently small so that the statements in Propositions
3.2, 3.3 and 3.4 hold. Combining (3.18) and (3.27) we can write

ωλX(τ t
λ(Φj)) =

(πX (Φj)Ω, e−itLλXGλXΩ)

(Ω,GλXΩ)
. (3.28)

Since for X ∈ Iε

(Ω,GλXΩ) = ‖e−βeq(
P

j(1−Xj/βeq)Lj+πX(λV +HS))/2Ω‖2 > 0,

by Proposition 3.4 (and by possibly taking ε smaller), the function X 7→ (Ω,GλXΩ) extends to an analytic function
in the region Dε such that

inf
X∈Dε

|(Ω,GλXΩ)| > 0.

Thus, it suffices to consider the numerator in (3.28). For Im z > 0 we set

DX(z) = i(πX (Φj)Ω, (z −LλX )−1GλXΩ).

For |λ| < Λ, X ∈ Iε and −µ < Im θ < −3µ/4 one has

DX(z) = i(ΨjXθ , (z −LλX (θ))−1ΩλXθ),

which, by Proposition 3.2, has a meromorphic extension to the half-plane {Im z > −µ/2}. For α > 0 denote by
Γα the boundary of the rectangle with vertices ±α ± iµ/4. For large enough α one has

IX (t) =

∮

Γα

e−itzDX(z)
dz

2πi
= i

3
∑

j=0

(ΨjXθ, PjλX (θ)ΩλXθ)e
−itEjλX .

Denote by Sα the part of the above contour integral corresponding to the two vertical sides of Γα. It follows
from the dominated convergence theorem and Proposition 3.3 that limα→∞ Sα = 0. Since by Proposition 3.3 the
function x 7→ DX(x + iµ/4) is in L2(R, dx) it follows from the Plancherel theorem that there exists a sequence
αn such that

lim
n

∫ αn

−αn

e−it(x+iµ/4)DX(x + iµ/4)
dx

2π
= (πX (Φj)Ω, e−itLλXGλXΩ),
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for Lebesgue almost all t > 0. Integration by parts and (3.23) yield that for t > 0

lim
n

∫ αn

−αn

e−it(x−iµ/4)DX(x − iµ/4)
dx

2π
=

∫ ∞

−∞

e−it(x−iµ/4)D′
X(x − iµ/4)

dx

2πit
,

where D′
X(z) denotes the derivative of DX(z) with respect to z. Combining these facts we obtain the identity

(πX(Φj)Ω, e−itLλXGλXΩ) =
3
∑

j=0

(ΨjXθ, PjλX (θ)ΩλXθ)e
−itEjλX

− e−µt/4

2πt

∫ ∞

−∞

e−itx(ΨjXθ, (x − iµ/4−LλX (θ))−2ΩλXθ)dx,

(3.29)

which holds for Lebesgue for almost all t > 0. By Proposition 3.3 the integrand on the right hand side of (3.29)
is in L1(R, dx). Hence, both side of this identity are continuous functions of t and (3.29) holds for all t > 0. By
Propositions 3.2 and 3.4 both terms on the right hand side of (3.29) have analytic extensions to X ∈ Dε which are
bounded uniformly in X and t ≥ 1. The bound (3.20) and Proposition 3.4 yield that

sup
X∈Dε,t∈[0,1]

∣

∣(ΨjX0, e
−itLλX ΩλX0)

∣

∣ < ∞,

and the result follows. 2

4 Proof of Theorem 1.4
In Theorem 1.2 we have established that for given λ, X 7→ ωλX+(Φj) is analytic near zero. In fact, a stronger
result holds.

Theorem 4.1 Assume that (A1)-(A3) hold. Then there is Λ > 0 and ε > 0 such that the maps

(λ, X) 7→ ωλX+(Φj),

extend to analytic functions on {λ | |λ| < Λ} × Dε.

Proof. By the construction of the NESS ωλX+,

ωλX+(Φj) = (Ω, P0λX (θ)U(θ)πX (Φj)Ω),

where −µ < Im θ < −3µ/4 and P0λX (θ) and µ are as in Proposition 3.2. The analyticity of P0λX (θ) and Part
(2) of Proposition 3.4 yield the statement. 2

Theorem 4.1 yields that the function λ 7→ Lλji is analytic near zero. To compute the leading term in its power
expansion we argue as follows.

By the relation (1.15) established in [JP2, JP3],

ωλX+(Φj) = λ2ωSX+(ΦjX ) + O(λ3),

where the remainder is uniform in X . Hence, (1.6) holds and

L
(2)
ji = ∂Xi

ωSX+(ΦjX )
∣

∣

X=0
.
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Let D ⊂ OS be the set of observables which are diagonal in the eigenbasis {e+, e−} of HS . The generators KX

and KXj
preserveD. The vector space D is naturally identified with C2. After this identification, KX = iΣ2(X)∗,

where Σ2(X) is given by (3.21), and

KXj
= −

π‖αj(2)‖2
Hj

2 coshβj

[

eβj −eβj

−e−βj e−βj

]

, βj = βeq − Xj .

These relations between the generators KX , KXj
and the Fermi Golden Rule for the resonances of the C-

Liouvillean are quite general—for the proofs and additional information we refer the reader to [DJ]. Hence,

ΦjX = KXj

[

1
−1

]

= −
π‖αj(2)‖2

Hj

coshβj

[

eβj

−e−βj

]

.

The density matrix describing ωSX+ (which we denote by the same letter) is also diagonal in the basis {e+, e−} and
the vector in C

2 associated to its diagonal elements is the eigenvector of Σ2(X) corresponding to the eigenvalue
0. Hence,

ωSX+ =





∑

j

‖αj(2)‖2
Hj





−1













∑

j

‖αj(2)‖2
Hj

e−βj

2 coshβj

∑

j

‖αj(2)‖2
Hj

eβj

2 coshβj













,

and we get

ωSX+(ΦjX ) = π

(

∑

k

‖αk(2)‖2
Hk

)−1 ‖αj(2)‖2
Hj

coshβj

∑

k

‖αk(2)‖2
Hk

sinh(βk − βj)

coshβk
. (4.30)

It follows that for i 6= j,

L
(2)
ji = ∂Xi

ωSX+(ΦjX )
∣

∣

X=0
= − π

(coshβeq)2

‖αi(2)‖2
Hi
‖αj(2)‖2

Hj
∑

k ‖αk(2)‖2
Hk

.

Since
∑

j ωSX+(ΦjX ) = 0 we can conclude that L
(2)
ii = −∑j 6=i L

(2)
ji .

Finally, we remark that the formula (4.30) yields that

Ep =
π

2

(

∑

k

‖αk(2)‖2
Hk

)−1
∑

i,j

‖αi(2)‖2
Hi
‖αj(2)‖2

Hj

coshβi coshβj
(βi − βj) sinh(βi − βj). (4.31)

Clearly, Ep > 0 whenever βj’s are not all equal.

5 Proofs of Theorems 1.5 and 1.6.
In this section we use the notational conventions of Subsection 1.2.
Proof of Theorem 1.5. The only part that requires a proof is (3). We only sketch the argument. Let ~β0 =
(β10, · · · , βM0) be a given point and Oε = {~β ∈ CM | |~β − ~β0| < ε}. Arguing as in the proof of Lemma 3.1 one
shows that there exists ε > 0 and δ′ > 0 such that such that the maps

(~β, θ) 7→ V~β(θ), (~β, θ) 7→ W~β(θ),
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extend to analytic operator-valued functions on Oε × I(δ′) satisfying

sup
~β∈Oε,θ∈I(δ′)

(

‖V~β(θ)‖ + ‖W~β(θ)‖
)

< ∞.

This implies that Proposition 3.2 holds with Dε replaced with Oε (of course, the index X is also replaced by
~β). Note that Λ depends on the ε. Complementing the construction in [JP2] with arguments used in the proof of
Proposition 3.4 one easily shows that there exists a norm-dense ∗-algebra O0 of O such that:
(a) O0 does not depend on the choice of ~β0;
(b) Φj ∈ O0;
(c) for all A ∈ O0 the functions

(~β, θ) 7→ U(θ)π~β(A)Ω ∈ H,

extend to bounded analytic H-valued functions in the region Oε × I(µ). The representation

ωλ~β+(A) = (Ω, P0λ~β(θ)U(θ)π~β(A)Ω),

where −µ < Im θ < −3µ/4 and P0λ~β(θ) and µ are as in the analog of Proposition 3.2, yields the following

statement: For any given ~β0 ∈ Iγ1γ2
there exists Λ and ε such that the function

(λ, ~β) 7→ ωλ~β+(A),

extends to an analytic functions on {λ | |λ| < Λ} × Oε for all A ∈ O0. This fact and the compactness of Iγ1γ2

yield the statement. 2

Proof of Theorem 1.6. By Remark 1 after Theorem 1.6, it suffices to establish Part (1). By Remark 2, it suffices
to show that there exists δ > 0 and Λ > 0 such that for 0 < |λ| < Λ

Ep(ωλ~β+) > 0,

for ~β ∈ Iγ1γ2
satisfying 0 <

∑

i,j |βi − βj | < δ.

Let ~β0 = (β0, · · · , β0) be a given point on the diagonal of Iγ1γ2
. We set

Oδ = {~β ∈ C
M |

∑

j

|βj − β0| < δ},

and Iδ = Oδ ∩ R
M . One can choose Λ and δ such that (λ, ~β) 7→ Ep(ωλ~β+) is an analytic function on {|λ| <

Λ} × Oδ. We set
Y~β = (β2 − β1, · · · , βM − β1).

Setting β1 = βeq one deduces from the formula (4.31) and the Taylor series for Ep(ωλ~β+) (use that Ep(ωλ~β+)

and ∂βi
Ep(ωλ~β+) vanish when all βj are equal) that there exists (M −1)×(M−1)-matrix valued functions A(~β)

and B(λ, ~β) such that:
(a) A(~β) is analytic for ~β ∈ Oδ and strictly positive for ~β real;
(b) B(λ, ~β) is analytic and bounded on {|λ| < Λ} × Oε;
(c)

Ep(ωλ~β+) = λ2(Y~β , A(~β)Y~β) + λ3(Y~β , B(λ, ~β)Y~β).

By choosing Λ small enough we can ensure that for all ~β ∈ Iδ and |λ| < Λ,

(Y~β , A(~β)Y~β) > |λ(Y~β , B(λ, ~β))Y~β)|.

This yields that Ep(ωλ~β+) > 0 for 0 < |λ| < Λ and ~β ∈ Iδ satisfying Y~β 6= 0. This local result combined with an
obvious compactness argument yields the statement. 2
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[De] Dereziński, J.: Fermi Golden Rule and open quantum systems. In Open Quantum Systems III. Lecture Notes of the
Summer School on Open Quantum Systems held in Grenoble, June 16–July 4, 2003. To be published in Lecture
Notes in Mathematics, Springer, New York.
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[JP5] Jakšić, V., Pillet, C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175 (2003).

[KTH] Kubo, R., Toda, M., Hashitsune, N.: Statistical Physics II. Second edition, Springer-Verlag, Berlin (1991).

[LeSp] Lebowitz, J., Spohn, H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs.
Adv. Chem. Phys. 39, 109 (1978).



The Green-Kubo formula for the spin-fermion system 21

[MMS] Merkli, M., Mueck, M., Sigal, I.M.: Instability of equilibrium states for coupled heat reservoirs at different temper-
atures. Preprint.

[NVW] Naudts, J., Verbeure, A., Weder, R.: Linear response theory and the KMS condition. Commun. Math. Phys. 44, 87
(1975).

[RBT] Rey-Bellet, L., Thomas, L.E.: Fluctuations of the entropy production in anharmonic chains. Ann. Henri Poinc. 3,
483 (2002).

[Si] Simon, B.: Fifteen problems in mathematical physics. Perspectives in mathematics, Birkhäuser, Basel, 423 (1984).

[Sp] Spohn, H.: An algebraic condition for the approach to equilibrium of an open N -level system, Lett. Math. Phys. 2,
33 (1977).


