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Abstract

This note is a continuation of our recent paper [JOP1] wheréave proven the Green-Kubo formula and the
Onsager reciprocity relations for heat fluxes in thermatiyah quantum open systems. In this note we extend
the derivation of the Green-Kubo formula to heat and chargeefl and discuss some other generalizations of the
model and results of [JOP1].
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1 Introduction

This paper is the second in a series dedicated to linearmespbeory for non equilibrium steady states (NESS)
of quantum open systems. The development of linear resgbasey is a part of a much wider research program
initiated in [Rul, Ru2, Ru3, JP1, JP2, JP3]. This prograntsdeih mathematical foundations of non-equilibrium
thermodynamics in the framework of algebraic quantumstiatil mechanics. Motivated by the developments in
classical non-equilibrium statistical mechanics (seeréivéew [Ru4]), the program addresses the central issue of
NESS in two independent steps.

(A) The existence and analytic properties of NESS are assumalsasom On the basis of this axiom one
develops the mathematical theory of non-equilibrium quarstatistical mechanics in an abstract setting. This step
is primarily concerned with the mathematical structurehef theory and its relation to the fundamental physical
aspects of non-equilibrium (see [DGM, KTH]).

(B) The second step concerns study of specific physically retewadels. Relaxation to a NESS and analytical
properties of this NESS are detailed dynamical problemgkvban be answered only in the context of concrete
models. Once these fundamental problems are solved, thradldgnamics and the transport theory of the model
are derived from the general structural results estaldiginéA).

So far, the main focus of the program has been the second l#iveshodynamics (positivity of the entropy
production). In this case the part (A) has been settled ir2[RR1, JP4], where the entropy production has been
defined in the abstract framework of algebraic quantumssizai mechanics. In these works various structural
properties of the entropy production have been establighedin particular it was shown that the entropy pro-
duction of any NESS is non-negative. The strict positivityhe entropy production is a problem which belongs
to the category (B). At the moment there are two classes oftricial models whose NESS are well-understood
and which have strictly positive entropy production. Thetfalass of models describes aArlevel quantum sys-
tem coupled to finitely many independent free Fermi gas ve@sr[Da, LeSp, JP2]. The second class describes
finitely many free Fermi gas reservoirs coupled by localretéons [BM, AM, FMU]. Some exactly solvable spin
or fermion models with strictly positive entropy productibave been studied in [AH, AP, AJPP1, AJPP2].

The natural next step in this program is the developmennegli response theory and in particular the deriva-
tion of the Green-Kubo formulas (abbreviated GKF). A typjglaysical situation we consider concerns the steady
states of a quantum device, a confined sysfewith a finite number of degrees of freedom, coupledfaeser-
VOiIrsRy,..., R, see Figure 1 (a generalization of this setup is discuss&dation 5). More specifically, we
are interested in situations where the syst€ris driven out of equilibrium by thermodynamic forces, i.by,
discrepancies in the intensive thermodynamic parametéhg seservoirs around some common equilibrium val-
ues. Suppose that each reser®iris in a thermal equilibrium state characterized by somerseéemperature
B; = 0 — X; and chemical potentigl; = u + Y;/3. If some of the forces\;, Y; do not vanish, then under
normal conditions they induce energy and mass/chargerdsraeross the syste Linear response theory is
concerned with the calculation of these currents to firsepnd the forces. In [JOP1] we have derived the GKF
for heat fluxes (the cage = Y; = 0) in the axiomatic framework of algebraic quantum statétimechanics. In
this note we discuss a derivation which applies to both hedicharge fluxes and complete the step (A) of the
program. Concerning (B), the examples to which our delvatiirectly applies include all models for which the
strict positivity of the entropy production has been essilgld. These applications are discussed in the forthcoming
papers [JOP2, JOP3, JOPP].

In classical mechanics there is a number of different waytegrribe an open system out of thermal equilib-
rium. Some of these descriptions involve various kinds efitiostating devices which lead to non-Hamiltonian
effective equations of motion (see [EM, RB]). Due to theimgic Hamiltonian nature of quantum dynamics, the
situation is different for quantum open systems. Excepbmes special limiting cases (e.g., in the weak coupling
limit, see [LeSp]) one is forced to consider the joint dynesrof the systens and its environment.

To describe the joint systei+ R1 + - - - + Ras We suppose that it is initially prepared in a state where each
reservoirk; is characterized by intensive thermodynamic parametgesidy.;. Due to the interactions between
the systemS and the reservoirs this state is not stationary. We shalimsdhat, ag — +o0, the joint system
relaxes to a steady state. Since confined quantum systemslisavete spectrum and almost periodic dynamics, a
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Figure 1: An open system with/ reservoirs.

non-trivial steady state may exist only if the reservoirs iafinitely extended. Moreover, in order for this steady
state to be a NESS (i.e., to avoid the joint system to relaxntecuilibrium state), the reservoirs must be "ideal"
in the following sense. A reservoir serves two purposesherohe hand it is a source feeding energy/particles to
the deviceS in a statistically controlled way. On the other hand it alsarks as a sink or dissipator, transporting
to spatial infinity energy/particles coming out®f In an “ideal" reservoir the source and the sink are independ
as much as quantum dynamics allows. The fact that incomidgratgoing fluxes do not interact ensures that the
intensive thermodynamic parameters describing the rstae of an "ideal" reservoir still apply to the outgoing
flux in a steady state. Thus, “ideal" reservoirs are able totaia fluxes across the syste$rover the infinite time
interval needed to reach a steady state.

Linear response theory of NESS is a delicate interplay batvleree limits which must be taken in a definite
order. First, one must perform the thermodynamic (or irdinttlume) limit of the reservoirs. Thenjta— 4o
limit is necessary to reach a NESS. Fidg], Y; — 0 limits are needed to extract the linear response proper.

For interacting quantum systems the first limit is alreadyifficdIt problem which can only be treated in a
limited number of models (see e.g. Chapter 6 in [BR2]). Hoevefor the ideal reservoirs we are dealing with,
this problem is well understood (see e.g. Section 5.2 in [RR$h infinitely extended quantum dynamical system
at non-vanishing density can be described in the univesateptual framework of algebraic quantum statistical
mechanics. It is therefore possible to decouple the theymamic limit from the two remaining ones. In this
paper we derive the GKF under the assumption that the thesdimits exist and can be interchanged. The
justification of this fact is a delicate dynamical problemiethbelongs to the category (B) and will be treated in
the aforementioned companion papers.

This note is organized as follows. For notational purpoiseSection 2 we quickly review a few basic notions
of algebraic quantum statistical mechanics. In Section $veduce the model and review basic concepts of non-
equilibrium statistical mechanics (the reader may compleinthis section with reviews [JP3, AJPP1]). Linear
response theory is discussed in Section 4. Our main ressiaied in Subsection 4.2. Its proof follows closely
the arguments in [JOP1] and is outlined in Subsection 4.3ioMa generalizations of our model and results are
discussed in Section 5.

Acknowledgment. The research of V.J. was partly supported by NSERC. A pattisftork has been done during
the visit of V.J. to CPT-CNRS. Y.0. is supported by the Japaci€y for the Promotion of Science. This work has
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been done during the stay of Y.O. to CPT-CNRS, partly suggldry the Canon Foundation in Europe and JSPS.

2 Basic notions

Let O be aC*-algebra with identityl and+?, ¢ € R, a strongly continuous group efautomorphisms of). The
groupr and the paifO, 7) are often called”*-dynamics and>*-dynamical system. A state on O is calledr-

invariantifw o 7 = w for all ¢ € R. An anti-linear involutivex-automorphisn® : O — O is calledtime-reversal
of (O,7)if ®@ort =77 0O forallt € R. A statew on O is called time-reversal invariantif(©(A)) = w(A*)

forall A € O.

We call quantum dynamical system a trigl®, 7, w) wherew is a given state o¥. The statev describes
the initial (or reference) thermodynamical state of theesysand is not necessarityinvariant (for a discussion
of this point we refer the reader to Section 2 of [AJPP1]). &ndgormal conditions, i.e., under natural ergodicity
assumptions, alb-normal states are thermodynamically equivalent refexestates in the sense that they lead to
the same NESS.

We denote byEnt(n:|n2) the Araki relative entropy of two states andrn.. We use the sign and ordering con-
vention of [BR2, Don, DJP] (henc&nt(n:|n2) € [—o0,0]). The Araki relative entropy has played an important
role in recent developments in non-equilibrium quanturtistteal mechanics.

Let > 0. A statew is called &7, 5)-KMS state if forall4, B € O there exists a functiofi4, 5 (=), analyticin
the stripSs = {z € C|0 < Im z < 8}, bounded and continuous on its closure, and satisfying t&#oundary
condition

Fa p(t) = w(AT(B)), Fap(t+iB) = w(r'(B)A).

As usual, we writeo(A7*(B)) = Fa p(z) for z € Sz even when?(B) is not well-defined. A7, 3)-KMS states
describes a physical system in thermal equilibrium at iseéemperaturg. For all practical purposes these states
can be considered as thermodynamic limits of Gibbs canbaitsembles.

The general theory of chemical potential in quantum stasisimechanics is discussed in Section 5.4.3 of
[BR2]. In our study of linear response theory we will only eader the chemical potential associated to the usual
U (1) gauge invariance of quantum mechanics. We will call chargetfie current associated to the corresponding
conserved charge. The extension of our results to more gleg@uge groups is straightforward. Since we only
need a fraction of the mathematical structures commonlgcést®d to the chemical potential we shall be brief.
Let¥¥ be aC*-dynamics or0Q such thatt o 9¥ = 9¥ o 7t for all ¢, ¢ € R. ¥ is the gauge-group and its elements
J¥ are gauge transformations. Physical observables aredanvamder gauge transformations and are therefore
elements of

Oy ={AecO|9?°(A) = Aforall p € R}. (2.1)

Note thatOy is ar-invariantC*-subalgebra oD and so(Oy, 7) is aC*-dynamical system. Lat € R and
ot = 7t o gTHE,

Clearlyr* and«! coincide onO,. We say that a state on O is a (7,9, 3, u)-KMS state if it is an(«, 3)-KMS
state. Although this last terminology is not common, it isneenient for our purposes. £, 9, 8, u)-KMS state
describes a physical system in equilibrium at inverse teatpee5 and chemical potential. Note that ifw is a
(1,9, 8, n)-KMS state on?, then its restriction to the gauge-invariant subalge®yas a(, 5)-KMS state or0y
which describes a thermodynamic limit of grand canonicakembles associated to the parameteys

3 The model and the framework
3.1 The model

Our starting point are tw@*-dynamical systems$Oy,, 7,) and (Og, ) With gauge-group#, anddg. For
convenience we shall call them the Idft,and the rightR, system. We denote the generatorsigfrg, 91, andig



Linear response theory for thermally driven quantum opatesys 5

by 01, dr, &1, andég. For many applications the left system can be thought of agposed of a first reservoir and
a confined systeni, = S + R, while the right system is just a second resenRif R-. The generalizations of
this setup are discussed in Section 5.

The C*-algebra of the joint syster + R is O = O, ® Or and its decoupled (non-interacting) dynamics is
To = 7L ® Tr. The generator ofy is 6y = o, ® I + I ® dr. In the sequel, whenever the meaning is clear within
the context, we shall writ&, for §;, ® I, ér for I ® OR, etc.

The gauge-group of the joint systemiis= 91, ® ¥ and its generator i§ = &, + £g. We denote by)y the
corresponding gauge-invariant subalgebré&of

LetV € Oy be a self-adjoint element describing the interactioh ahdR. The interacting”*-dynamicsr is
generated by = §; +i[V, -] and commutes with the gauge-gratipThe coupled (interacting) joint systeim+ R
is described by thé'*-dynamical systeniO, 7).

3.2 The reference states

We setl.(z) = (x — €,z + €) and writel, = I.(0).
Let 5.q > 0 andueq € R be given reference (equilibrium) values of the inverse terajure and the chemical
potential. We make the following assumptions concerniegititial states ol. andR.

(A1) wy, is the uniQUET,, V1, Beq, teq)-KMS state or0;,. The reference states Bfare parametrized
by 8 € I, (Beq) andp € Ic,(fteq) @andwr g, is the unique(g, Ir, 5, 1)-KMS state onOgr. We
shall denotevr g, ., DY WR-

Throughout the paper we shall assume that (A1) holds. Thezerte states of our model arg ® wr g,
B € I, (Beq), 1 € I, (1eq). FOr our purposes it is convenient to introduce the paraméteermodynamical
forces)
Xzﬂeqfﬂa Y:Kgﬂ*ﬂeqUeqa

and to parametrize the reference statebgndY’, i.e., we write
WXY,0 = WL ® WR,3,u-

Since we are interested in linear response theory, wittosst df generality we may restrict the values¥afy” to
I, wheree > 0 is a small positive number. Note thag ¢ o is the uniqug, ¥, Beq, tteq)-KMS state onO.

As we have already mentioned, under normal conditions.ali- o-normal states are thermodynamically equiv-
alent reference states bf+ R. We now describe a particulary yo-normal reference state which will play an
important role in our discussion of linear response theory.

Set

aizTﬁoﬂ;“eqt, aﬁ_’#:ﬁt{oﬂg“t.
Assumption (A1) implies thaty, is the uniquéar,, 5.q)-KMS state orOy, and thatug s, is the uniquéag ., 5)-

KMS state onOg. Set

t _ ot Bt/Beq
ayyo=aL®ag, -

Thenwx y,o is the uniqu€ax y,o, Beq)-KMS state orD. Letdx y,o be the generator aix y,o and
Ooxy =0xyv,o+ilV, -]

The subalgebr®om (41,) N Dom (£1,) N Dom (dr ) N Dom (£r) is a core fo x y o anddx,y. On this subalgebra
dx,vy,0 acts as

X Y

0x,v,0 = 00 — fteq€ — 5_5R, - 5—511- (3.2)
eq eq

Let ax,y be theC*-dynamics generated by y. Araki’'s perturbation theory yields that there exists aquii
(ax,y, Beq)-KMS statewyx y on O.
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The statesvx,y,0 andwx,y are mutually normal. The reference staiesy will play a central role in our
study of linear response theory. Note thal, is the uniquer, ¥, Beq, teq)-KMS state onD. We denote this state
by weq. The next assumption concerns e, )-KMS state induced by., on the gauge invariant subalgebra
Opy.

(A2) Forall A, B € Oy,
lim weq(Tt(A)B) = Weq(A)weq(B).

[t|—o0

A well-known consequence of the KMS condition and Assump(i#?) is the relation

¢
lim Weq([T%(A), B])ds = 0, (3.3)

t——4o0 ¢
which holds for allA, B € Oy (see Theorem 5.4.12 in [BR2]). This relation plays a key ioltne derivation of
the Onsager reciprocity relations.

3.3 Non-equilibrium steady states

We postulate relaxation to a NESS as follows:
(A3) Forall X, Y € I, there exists a statex y + on Oy such that for alld € Oy,

lim wa(Tt (A)) = wX,y7+(A).

t——+o0

Assumptions (A2) and (A3) are strong ergodic hypotheseshwaie difficult to verify in concrete models. We
remark that in typical physical situations one expects maaenely that

lim 7(r*(A)) = wxv.+(4),

t——+oo

for all wx y o-normal stateg andA € Oy. Indeed, such strong form of approach to NESS has beenishiatbin
all examples we consider in [JOP2, JOP3, JOPP]. However,ilveatneed such an assumption in our axiomatic
study of linear response theory.

3.4 Time-reversal invariance

Our next assumption concerns time-reversal.
(A4) There exists a time-reversalof (O, 1) such tha® (V) = V and
Qorf =100, Qoth=13'06,
Oo¥f =0.¥00, OoVf =0R7 00,
forall ¢, € R.

Clearly,® is a time-reversal ofO, ¥) and(O, ax y,0). In particular it leave®), invariant. It is not difficult to
show that© is also a time-reversal ¢©, 7) and(O, ax y ), and that the statesx y o andwx y are time-reversal
invariant. The proofs of these facts are the same as the pfaaimma 3.1 in [JOP1].
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3.5 Fluxes
To define the flux observables we need:
(A5) V € Dom (6r) N Dom (¢R).

If (A5) holds, we set
The observabl@® describes the heat flux out of the systBmThe observablg/ describes the charge flux out of
R. SinceV € Oy andrg, 9g commute withd we haved, 7 € Oy. If the time-reversal assumption (A4) holds,
then

3.6 Entropy balance equation

In the recent literature the entropy balance equation hexs dlevays discussed with respect to the product reference
statewx,y,o [Ru2, Ru3, JP1, JP3, JP4]. The finite time entropy balancatequw.r.t. the reference statey y
has the following form.

Theorem 3.1 Assume thalt’ € Dom (dy,) N Dom (£1,) N Dom (dg ) N Dom (£g). Then

Ent(waoT|wa ——X/ wx,y (T ds—Y/ wx,y (T ds. (3.4)

Proof. The assumptions of the theorem imply théatE Dom (dx y). SinceV € Oy implies{(V') = 0, we have
BeqOx,y (V) = Beqd(V) — X -Y J. (3.5)
The entropy balance equation of [JP1, JP4] yields

t
Ent(way @) 7‘t|wX7y7()) = Ent(wX_’y|wX7y_’0) + ﬂeq/ WX,Y(TS (5XY(V))>dS
0

= Ent(wx,y|wx7y,o) + ﬁeqw)gy(Tt(V)) — ﬁequy(V) (3.6)

t
fX/ wx y(T5(®))ds - Y / wx,y(T°(J))ds.
0
The fundamental formula of Araki [Arl, Ar2] (see also [BR2pm DJP]) yields that

Ent(w)gy o Tt|wX,y) = Ent(wx,y o Tt|wX7y,0) — ﬁequ7y(Tt(V)) + C,
(3.7)
Ent(wx,y|wx,v,0) = Beqwx,y (V) = C,

where(' is a constant expressible in terms of the modular structueedp not need its explicit form here). The
relations (3.6) and (3.7) yield the statement.

The entropy production of the NESS v - is defined by

Ent(wx,y o T wx.y)

EP(WX’Y’+) - tl}gloo t
Theorem 3.1 yields
Ep(wx,v+) = Xwx,y+(®) + Ywx y,+(J) 20, (3.8)

and this relation is the second law of thermodynamics forroadel. Of course, if X,Y") # (0,0), then under
normal conditions one expects tib(wx,y,+) > 0, i.e., that the fluxes are non-vanishing. The strict pagjtiof
entropy production is a detailed dynamical question what e answered only in the context of specific models.
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3.7 Centered observables

An observabled € O is calledcenteredf wy y (A) = 0 forall X,Y € I.. We denote by the set of all centered
observables. Obviously; is a norm-closed vector subspace®@f Our derivation of the Green-Kubo formula
applies only to centered observables.

If Assumption (A4) holds, then any self-adjoint observahlgatisfyingd(A) = — A is centered. Indeed, since
wx,y is time-reversal invariant,

wx,y(4) = wx,y(0(4)) = —wx,y (4),

and savx,y (A) = 0. In particular, if (A4) holds, then the flux observabiesind.7 are centered.

Itis an important fact that the flux observables are centerespectively of the time-reversal assumption. This
fact will play a central role in our discussion of the Greeunbld formula for systems which are not time-reversal
invariant.

Proposition 3.2 Under Assumption (A5)
wxy(®) =wxy(J)=0,
holds forall X, Y € I..
Proof. Assume first that
V € Dom (61,) N Dom (&1,) N Dom (dg) N Dom (£R). (3.9)

Note thatC*-dynamicsxx y is well-defined for allX, Y € R. The following generalization of the entropy balance
equation (3.4) holds: foralk,Y € I. andZ, U € R,

t
Ent(wx,y o atZ,U|wx,y) =— (X - Z)/ wx,y(aszﬂ((l)))ds
0 (3.10)

=) [ wxrlago s

The proof of this relation is essentially the same as thefob(8.4). The only difference is that the relation (3.5)
is now replaced with
Beadx,y (V) = Beqdzv (V) — (X — 2)® — (Y —U)JT. (3.11)

The entropy balance equation of [JP1, JP4] yields

t
Ent(wx,y o o ylwx,v,o) = Ent(wx y|wx,v,0) + ﬁeq/ wx,y (e (0x,y(V)))ds,
0

and the rest of the argument follows line by line the proof bédrem 3.1.
The equation (3.10) yields

Ent wx,y © ot WX,y
lim ( . zuloxy) _ —(X = D)wxy(®) — (Y —Uwx .y (T),
andsoforallX,Y € I. andZ,U € R,

(X — Z)wx,y(q)) + (Y — U)wX,y(j) > 0.

This relation yields the statement.
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To prove the general case, léte Dom (6g) N Dom (g ) and

V; = %/R e I 698 (V)deds,  j=1,2,....

The observableB; satisfy (3.9). Letvx,y,; and®;, J; be the reference state and the flux observables associated
to V;. We have established that for &l Y € I,

wx,v,;(®;) = wx y,;(J;) = 0. (3.12)

By the properties of analytic approximations (see [BRM)x v,; —wx,y|| — 0, ||®;, —®|| = 0, ||J; = J|| — 0
asj — oo, and the statement follows from (3.12).

Note that we did not use the gauge invarianc& oh the above proof.

3.8 Regular observables

As mentioned in the introduction, our derivation of GKF eslion the assumption that the~ +oc limit can be
interchanged with differentiation w.r&, Y. We note that if the states;,, wr g, are ergodic fo3, 11 sufficiently
close tofeq, teq then it is not difficult to show that the states; y are mutually singular for distinct values of
X,Y. Therefore the differentiability of the functiofX,Y) — wx y(7/(A)) is an extremely delicate question,
already forfinite t. However, as we shall see in Subsection 4.2, one can prowvghthdunction is differentiable at
X =Y = 0 under very mild regularity assumptions dn providedA is centered (this is the content of our main
technical result, Theorem 4.2).

The following definition encapsulates our assumption orirtterchange of limits.

Definition 3.3 Assume that (A3) holds. Ldte Oy be an observable such that the function
(X,Y) = wx,y(7'(A)),
is differentiable a{0, 0) for all . We call such an observable regular if the function
(X,Y) = wx,y,+(4),
is also differentiable a0, 0) and

A Oxwx,y (7' (A)| x_y o = Oxwx,v+(A) y_y o
(3.13)
lim anX.,Y(Tt (A)>|X:y:0 = anX=Yv+(A)|X:Y:0'

t——4o0

4 Linear response theory

4.1 Overview
Suppose that Assumptions (A3) and (A5) hold and that thetioms

(X7 Y) = wX,Yd—((I))a (Xv Y) = wX,Y,-ﬁ-(j)a
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are differentiable a0, 0). The kinetic transport coefficients are defined by

Lin = Oxwx,y,4(®)] v _y_o»

Ly = aYWX,Y.,Jr(q))‘X:Y:O’
(4.14)
Len = Oxwx, v+ (T)| x_y _o;

Lee = Ovwx,y 1 (JI)| x_y_o»

where indicedi/c stand for heat/charge. Linear response theory is concevitiedhese coefficients. An elemen-
tary consequence of the second law (Relation (3.8)) is treatrtatrix

| Lnh  Lne
L= |:Lch Lcc:| ’

is positive definite on the real vector spa&#((this of course does not imply that,. = L.!).
The Green-Kubo formulas are at the center of linear respitesey. ForA, B € Oy we set

L(A,B) = lim %/t Weq(AT*(B))ds.

t——4o0 ¢

The GKF assert that if the system is time-reversal invayifuen

th = E(q)v (I))a
Lhc = E(q)v j)a
(4.15)
Lch = E(j, (I))a
Lcc = E(j, j)

These formulas are mathematical expressions of the flietudissipation mechanism in statistical mechanics—

they link linear response to a thermodynamical force to tinglibrium correlations w.r.t. the corresponding flux
observable.

The coefficientd . and L.y, are of particular physical importance. In words, the chetpotential difference
may cause a heat flow out & even if L andR are at the same temperature. Fosmall, this flow is equal to
Y Ly + o(Y). Similarly, the temperature difference may cause a chapgedlit of R even ifL. andR have equal
chemical potentials. FaK small this flow is equal toX L., + o(X). An immediate consequence of the second
and third relation in (4.15) and the formula (3.3) are the &yes reciprocity relations

Lye = Ly (4.16)
ForA, B € Oy andt € R we set

1 t *Boq i
£(A,B,t) = ﬁ_/o ds/o du weq(7°(A)T(B)),
eq

and
£(A,B) = . lir+n £(A4, B,t),

whenever the limit exists. We remark that by the KMS conditioe function

(5,2) = weq(T°(A)77(B)),
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is bounded and continuous on the Bt Sz . The central step in our derivation of (4.15) are the follogvi
formulas

Lyn = £(9, ),
Lye = £(®,J), (4.17)
Len = £(J, ®),
Lec = £(T, ).

It is an important point that these formulas haldhout the time-reversal assumptienthey are the Green-Kubo
formulas for systems which are not time-reversal invariditie Green-Kubo formulas (4.15) are an immediate
consequence of (4.17) and the following result establigm@iOP1].

Proposition 4.1 Suppose that Assumptions (Al), (A2), and (A4) hold andlJ& € Oy be two self-adjoint
observables which are both even or odd un@efThen

L(A, B) = £(A, B).

Proof. The argument follows line by line the proof of Theorem 2.31®P1]. For reader convenience we outline
the main steps of the argument.
We need to prove that

lim —— /0 o [ /0 tweq(TS(A)TiU(B))ds] Qi lim [ we(Ar(B)ds.

t— o0 ﬁeq t—too J_,
The time-reversal invariance and the KMS-condition yidldtffors € R andu € [0, 3],

Weq(T*(A)T(B)) = weq (17 (A)772 71 (B)),

5; /O a [ /0 t weq(Ts(A)Ti“(B))ds] du = 2;eq /0 - [ /_ tt weq(ATSHU(B))dS] du.

Since the integral of the function — w.q(A7*(B)) over the boundary of the rectangle with vertices ¢, ¢ +
iu, —t + iu is zero, we have

and so

1 [Pea t . " 1 t . 1 Beq
ﬂeq/o UO Wea(T*(A)7 (B))ds} du =3 /_ | wealAT*(B))ds + 55 /O R(t,u)du,  (4.18)

where

R(t,u) = i/ou [weq(ATt+iy(B)) — weq(AT_tHy(B))} dy.

Assumption (A2) implies that '
lim weq(ATﬂJ“y(B)) = Weq(A)weq(B),

t——+o0

and the dominated convergence theorem yields

lim sup |R(¢,u)| =0.
=t 0<usp

This fact and the formula (4.18) yield the statemeént.
In the next subsection we state our main results concerhin@Gteen-Kubo formulas.
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4.2 The Green-Kubo formulas

As already mentioned, our main technical result conceragdifferentiability, at(0,0) and for finitet of the
function (X,Y) — wx y(7%(A)). The resultingfinite time linear response formula the content of the next
Theorem. We set

Oy.r = Oy NDom (6r) N Dom (ér),
Oy rec=09rNC.
Theorem 4.2 Suppose that Assumptions (A1) and (A5) hold andletOy r .. Then for allt € R the function
(X,Y) = wx,y(7'(4)),
is differentiable a{0, 0) and

Oxwx,y (T"(A))] y_y_y = L(A, @, 1),

aYWX,Y(Tt(A))|X:Y:0 = £(A, J,t).

We will prove Theorem 4.2 in Subsection 4.3. The next two teews are consequence of Theorem 4.2,
definition of the regular observable, and Proposition 4.1.

Theorem 4.3 Suppose that Assumptions (A1), (A3) and (A5) hold.
(1) Let A € Oy i, be aregular observable. Then

anX-,Y7+(A) |X:y:0 = E(Aa q))v

awa7y7+(A)|X:Y:0 == E(A, j)

(2) If in addition (A2) and (A4) hold andl € Oy R is a regular self-adjoint observable such thafA) = — A,
then

aXWX,YA*(A)‘X:yZO = E(Av (I))a

8YWX7Y=+(A)}X:Y:O = E(A, j)

Theorem 4.4 Suppose that Assumptions (Al), (A3) and (A5) hold and ¢hat are regular observables in
Dom (6g) N Dom (¢g). Then the formulas (4.17) hold. If in addition (A2) and (A4)d) then the formulas
(4.15) and (4.16) hold.

Theorem 4.2 was proven in [JOP1] in the cagg = 0, Y = 0. The technical extensions of the proofs in
[JOP1] needed to accommodate charge fluxes are relativalyrrand are discussed in the next section.

4.3 Proof of Theorem 4.2

We will freely use the notation introduced in Subsection 3.1
Lemma 4.5 (a) The groupg o preservedom (dg ) NDom (£g) and forA € Dom (dg ) NDom (g ) the functions

R 3t dr(afo(A)), R >t — &r(afo(4)),
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are norm continuous.
(b)Forall t e Rand A € Dom (ég) N Dom (gR),

X Y

ol y (A) = af o(A) = o ax ¢y (Or(ag,0(A)))ds — ﬁ_eq/ ol v (€r(ag o(A)))ds.

(c)Forall t € RandA € O,
(X-,Y%El(o.,o) lodk, v (4) = a0 (Al = 0.
(d)Forall A c O,

li A) = A).
(nyigl(oyo)wx,Y( ) = Weq(A)

Proof. To simplify notation let us sety = g 0,0 anda = ap o. We shall use the identity
a'(A) = rag (AT,

wherel'; € O is a family of unitary elements defined by

Iy = Il—i—Z(iﬁ)"/ ap (V) ag? (V)dsy - - - dsy,
0

n>1 <sp<es1<1

see Proposition 5.4.1 in [BR2]. Sindé € Dom (ér) N Dom (¢g), one easily shows thdt; € Dom (6g) N
Dom (£r) and that

6R<Ft>=Z<it>"/o<w<...,<1Za“" a6 (B (V)) -+l (V)dsy -+ ds,
ER(Ft)=Z(it)”/O< S Za“n g (Er(V)) - ol (V)dsy - - - dsy.

These two formulas yield that the functions
tHaR(Ft)v t’_)gﬁ(rt)v
are norm continuous. Finally, the identities

0r (" (A)) = 0r(Tr)ag (AT} + Tea (0r (A))T] + Tea(A)or(I7),

€r(a’(A)) = Er(T)ag (AT} + Teag (€r(A))TT + Trag(A)Er(TT),

yield Part (a).
If A € Dom (61,) N Dom (dg) N Dom (£1,) N Dom (¢g), then

G0y 20" (4) = S5 Gn(e! (4) + 0y (o’ (4)

and (b) follows. The casd € Dom (dg) N Dom () is handled by approximating with the sequence
A= l/ e_j(t2+82)7'ﬁ o ¥ (A)dtds,
]RZ
see the proof of Lemma 3.3 in [JOP1].

SinceDom (6r) NDom (g ) is dense irO, (b) implies (c). The proof of (d) is the same as the proof ahbea
3.4in [JOP1].0
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Lemma 4.6 Let A € Oy r. Thenfor allt € R the function
(X,Y) = wx y(7'(4)),

is differentiable a{0,0), and

Ixwx,y (T"(A)| x_y_o = ﬂieq/o weq(dr (7°(4)))ds,

Dy wxy (P (A)] oy = ﬁi / wea (€ (7 (A)))ds.

Proof. SinceA is a centered observable ang y is ax y-invariant, we have tha‘bX,y(atX,Y(A)) =0 forall¢.
Sinceag,o = 7 on Oy, we have thabx,y (af ((4)) = wx,y (7 (A)) andwo o (7 (A4)) = weq(7(A4)) = 0 for all
t. These observations and Part (b) of Lemma 4.5 imply

X [t Yy [*

Wny((SR(TS (A)))ds + ﬁ_ wX_ry(fR(Ts (A)))ds

wx,y(Tt(A))*wO,o(Tt(A)):ﬁ—eq | /.

This relation, Lemma 4.5, and dominated convergence yadtatementd

Lemma 4.7 Assume thatl € Oy r. Then

Beq ,
weq (R (4)) = / e (AT (®))ds,

Beq _
weq(Er(4)) = / e (AT*(7))ds.

Proof. This lemma is the central and technically most demanding astéhe argument. Fortunately, its proof is
identical to the proof of Lemma 3.6 in [JOP1]. This followsiin the fact thatd, V, ®, 7 € Oy and thatueq [ Oy
is a(r, feq)-KMS state.O

Theorem 4.2 is an immediate consequence of Lemmas 4.6 and 4.7

5 Some generalizations

Although we have restricted ourselves in this note to twopbed quantum dynamical systems, the model, the
framework and all our results have a straightforward extenso the case of\/ systems. Let3., and pieq

be the reference (equilibrium) values of the inverse tertpee and chemical potential. For= 1,..., M let
(O4,7j,wjs,.,) be quantum dynamical systems with gauge grabipeherew; is a(7;, 9, 5;, i1;)-KMS state.
We denote by; and¢; the generators of; andvd;. Assumption (A1) is replaced with

(G1) The reference states of thieh system are parametrized By € I.(8.q) andp; € Ic(peq) and
wj,g,u; 1S the unique;, 95, B, 1;)-KMS state on0;.
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LetO =010y, 70 =71 Q- Q7a, ¥ = 91 ®--- ® Iy The algebrady is again defined by
(2.1). The pai(O, 7p) describes the uncoupled joint system. Lee Oy be a self-adjoint perturbation andthe
perturbed”*-dynamics. The coupled joint system is described®yr). The thermodynamical forces are

Xj = Beq — B, Y; = Bjn; — Beqtleq-

WesetX = (X1,...,Xum), Y = (Y1,...,Yn). Thereference statedsx v,o = wi,8,u1 @ -+ - WM, Barjins - WX,Y,0
is the unique&d.q-KMS state for theC*-dynamics

aXYO _ [ B1t/Beq 19 ﬂlﬁlt/ﬁuq] Q- ® [TJ@NIt/ﬁcq o 0];[#MﬁMt/ﬁcq]_

Let 0x,y,0 be the generator afx y,c anddxy = dx,v,o +i[V, -]. Letaxy be theC*-dynamics generated
by dx,y and letwx y be the(ax,y, Beq)-KMS state obtained fromvy y,o by Araki’'s perturbation theory. This
completes the setup of the model. Note that the state= wy o is the unique(r, ¥, Boq, teq)-KMS state on
O. Assumptions (G2) has the same formulation as Assumpti@) &d Assumptions (A3), (A4) and (A5) are
replaced with:

(G3)For all X, Y € IM there exists a statex y + on Oy such that for ald € Oy,

Jim wxy (7(4)) = wx 1 (4).

(G4) There exists a time-reversalof (O, 7p) such tha® (V) = V and
@OT;ZT;tO@, 90195-:19]-40@,
for all 5.
(G5)V € Dom (6;) N Dom (¢;) for all 5.
The observables associated to the heat and charge flux dwe Bt system are
o =0;(V),  Ti=¢g(V).
It immediately follows that

M

ZWXYJr )=0 and ZWXYJr Jj) =

J=1

which are respectively the first law of thermodynamics (eowation of energy) and charge conservation. The
entropy balance equation reads

Ent(wxy o Twxy) = ZX/WXY ds—ZY/ wx,v(7°(J;))ds

and in particular the second law holds:

M
p(wx,v,+) ZX wxy+(®5) + ) Yjwxy+(J;) = 0. (5.19)

j=1
The definition of the centered observable is the same as igestibn 3.7. We set

Oy = (N}, Dom (6;)) N (N}, Dom (&;)) N Oy,

@ﬁ_]c = @19 NnC.
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If Ve Oy, then®;, J; € (’5197C for all ; (after obvious notational changes, Proposition 3.2 apmlieectly to the
model consider in this section).
Theorem 4.2 is replaced with:

Theorem 5.1 Suppose that Assumptions (G1) and (G5) hold anellet@qg,c. Then for allt € R the function
(X,Y) = wx,y(7'(4)),
is differentiable a{0, 0) and

anwX_’y(Tt(A)) ’X:Y:O = E(A, @j, t),

8}/ij7y(Tt(A)) |X:Y:0 == E(A, %, t).

The definition of the regular observable is the same as hedoewe have:

Theorem 5.2 Suppose that Assumptions (G1), (G3) and (G5) hold.
(1) Let A € Oy . be aregular observable. Then

Ox,wx,v,+(A)] y_y_o = £(4, ®y),

(9)/].(4))(7Y7+(A)’X:Y:0 = E(A, %)
(2) If in addition (G2) and (G4) hold and € Oy is a regular self-adjoint observable such tiafA) = — A, then

Ox,wx, v+ (A)| y_y_o = L(A, ©;),

8YJ'WX7Y=+(A)‘X:Y:O = ﬁ(A, ‘7])

Theorem 5.3 Suppose that (G1), (G3) and (G5) hold and tigt .7; are regular observables iom (4;) N
Dom (&;). Then:
(1) The kinetic transport coefficients

kj
Ly} = Ox,wx,v,+(Pr) |X v’
Ly =9 D)

ne = Ov;wx, v+ (Pn)| y_y_g»
LY = 0x,wx.y+(Tk)| y_y—o-

LY = oy, WX,Y,+(jk)‘X:Y:07
satisfy
Lﬁ‘fl = E((I)kv (I)j)v

Lk]i (q)kﬂyj)
]g}]l = (jkv )7

L8 = (i, Jy).
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Assume in addition that (G2) and (G4) hold. Then
(2) The Green-Kubo formulas hold:

Ly = L(®y, ®;),
L}lii = £(¢k’~7j)a
L'lcc}jl = E(jk’ q)j)a

LE = L(Jh Ty).

(3) The Onsager reciprocity relations hold:

kj _ rjk
th - th’
kj _ 17k
Lcc - Lcc’
kj _ 1ik
Lhc - Lch'

The remark after Theorem 4.4 applies to Theorems 5.2 and 5.3.

In the literature one often considers a special case, destim the introduction, where one of the quantum
dynamical systems, sayD:, 71, w1 g, ., ), IS finite dimensional and plays a role of a "small* quantursieynS
coupled to reservoirs described (9;, 75, w; 5,,.,), j > 2. Such systems are one of the basic paradigms of non-
equilibrium quantum statistical mechanics and have playeiinportant role in the historical development of the
subject. With regard to the algebraic approach describddsmote, the only additional feature of these models is
vanishing of heat and charge fluxes out of the small systemy 1 (P1) = wx,y,+(J1) = 0.

Many other generalizations are possible and it appearsulifto have a unified framework which covers all
cases of physical interest. The Electronic Black Box Modlglied in [AJPP1, AJPP2, JOPP] are examples
of open quantum systems which do not fit directly into theslasmodels described here (the non-interacting
coupled system is not a tensor product of the individual gsilesns). However, the changes needed to apply our
results to these models are elementary. One may also congitlelynamical systems instead 6f-dynamical
systems and unbounded interactions which are only affilitaethe algebra of observables. The models where
such generalization is necessary involve free bosonicveiss (a well-known example is the spin-boson model).
One may also consider time-dependent interactions (sek B, JP4, ASF]). Another possible generalization
involves more general gauge groups. The important poirttas dlthough all such generalizations may require
some adjustment of technique and presentation, they bdtigng conceptually new.
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