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Abstract

On-line optimisation provides a means for maintaining a process around its optimum
operating range. An important component of optimisation relies in data reconcilia-
tion which is used for obtaining consistent data. On a mathematical point of view,
the formulation is generally based on the assumption that the measurement errors
have Gaussian probability density function (pdf) with zero mean. Unfortunately,
in the presence of gross errors, all of the adjustments are greatly affected by such
biases and would not be considered as reliable indicators of the state of the process.
This paper proposes a data reconciliation strategy that deals with the presence of
such gross errors. Instead of constructing the objective function to be minimized on
the basis of random errors only, the proposed method takes into account both con-
tributions from random and gross errors using a so-called contaminated Gaussian
distribution. It is shown that this approach introduces less bias in the estimation due
to its natural property to reject gross errors. An academic application to flowrate
and concentration data in mineral processing illustrates the efficiency of the pro-
posed method.
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1 Introduction

The problem of obtaining reliable estimates of the state of a process is a fun-
damental objective in process control and supervision, these estimates being
used to understand the process behaviour. For that purpose, a wide variety
of techniques has been developed to perform what is currently known as data
reconciliation (Mah, Stanley, Downing, 1976), (Maquin, Bloch, Ragot, 1991).
Data reconciliation, which is sometimes referred too as mass and energy bal-
ance equilibration, is the adjustment of a set of data so the quantities derived
from the data obey physical laws such as material and energy conservation.
Since the pionner works devoted to the so-called data rectification (Himmel-
blau, 1978), the scope of research has expanded to cover other fields such
as data redundancy analysis, system observability, optimal sensor position-
ning, sensor reliability, error characterization, measurement variance estima-
tion. Many applications are related in scientific papers involving various fields
in process engineering (Dhurjati, Cauvin, 1999), (Heyen, 1999), (Singh, Mit-
tal, Sen, 2001), (Yi, Kim, Han, 2002).

Unfortunately, the measurement collected on the process may be unknowingly
corrupted by gross errors. As a result, the data reconciliation procedure can
give rise to absurd results and, in particular, the estimated variables are most
often corrupted by these biased data. Several schemes have been suggested
to cope with the corruption of normal assumption of the errors, for static
systems (Narasimhan, Mah, 1989), (Kim, Kang, Park, Edgar, 1997), (Arora,
Biegler, 2001) and also for dynamic systems (Abu-el-zeet, Roberts, Becerra,
2001). Methods for including bounds in process variables to improve gross
error detection have also been developed. One major disadvantage of these
methods is that they give rise to situations that it may impossible to estimate
all the variable by using only a subset of the remaining gross errors free mea-
surements. Alternative approach using constraints both on the estimates and
the balance residual equations has been developed for linear system (Ragot,
Maquin, Adrot, 1999), (Maquin, Ragot, 2003). There is also an important
class of robust estimators whose influence function are bounded allowing to
reject outliers (Huber, 1981), (Hampel, Ronchetti, Rousseeuw, Stohel, 1986).
Another approach is to take into account the non ideality of the measurement
error distribution by using an objective function constructed on contaminated
error distribution (Tjoa, Biegler, 1991), (Ozyurt, Pike, 2004). In the following,
we adopt and develop this idea for the data reconciliation problem.

The next section is devoted to recall the background of data reconciliation. Ro-
bust data reconciliation based on the use of a contaminated error distribution
is firstly developed in section 3, for the linear case, and extended to the bilinear



case in the following section. Section 5 shows the adaptation of the method to
the frequently encountered case of partial measurements. Finally, the proposed
method is implemented on a fictitious but realistic mineral processing plant.
Performances of the proposed approach are analyzed and compared with those
of a more classical method.

2 Data reconciliation background

The classical general data reconciliation problem (Mah, Stanley, Downing,
1976), (Hodouin, Flament, 1989), (Crowe, 1996), deals with a weighted least
squares minimisation of the measurement adjustments subject to the model
constraints. In order to simplify the presentation, let us first consider a linear
steady state process model:

Az =0, AcR"™, zcRR (1)

where x is the state of the process and A describes the static constraints with
rank(A) = n. The measurement devices give the information:

T=x+¢e e~ N(0,V) (2)

where € € IR" is a vector of random errors characterised by a normal prob-
ability density function (pdf) with a diagonal variance matrix V. For each
component z; of x, the following pdf is defined:

p(Z; | i, 00) = \/Q_%Qexp (_% <xz;i‘@)2> (3)

where o? are the diagonal elements of V. From (3) one derives the likelihood
function of the observation with the hypothesis of independent realizations.
The maximisation of the likelihood function of the observation Z, with regard
to x, and subject to the model constraints (1) leads to the well-known estimate
(Maquin, Bloch, Ragot, 1991):

&= (-VA'(AVAT) ' A)x (4)

In fact, the estimates obtained by this method are not always exploitable, the
main drawback being the contamination of all estimated values by the outliers
which corrupt the measurements. For that reason, robust estimators could be
preferred, robustness being the ability to ignore the contribution of extreme
data such as gross errors. Two different approaches can be implemented to
deal with outliers. The first one consists to sequentially detect, localize and
suppress the data which are contaminated and after to reconcile the remaining
data. The second approach is a global one and reconcile the data without a



preliminary classification; in fact, weights in the reconciliation procedure are
automatically adjusted in order to minimise the influence of the abnormal
data. The method presented in this paper is only focused on this last strategy.

3 Robust data validation. The linear case.
3.1 Robust estimation

If the measurements contain random outliers, then a single pdf described as
in (3) cannot account for the high variance of the outliers. To overcome this
problem let us assume that measurement noise is sampled from two pdf, the
normal one having a small variance representing regular noise and the abnor-
mal one other having a large variance representing outliers (Wang, Romagnoli,
2002),(Ghosh-Dastider, Schafer, 2003). In a first approach, each measurement
Z; 1s assumed to have the same normal o; and abnormal o, standard devia-
tions; this hypothesis will be released later on. Thus, for each observation z;,
we define the two following pdf (j = 1,2) :

- 1 1 T; — i‘z 2
;i@ | @i, 05) = Vg, P (_5 < o ) ) (5)
J J

The so-called contaminated pdf is then obtained using a combination of these
two pdf:

p(Zi | ;,0) = wpr; + (1 —w)pay, 0<w<l1 (6)

where the vector 6 collects the standard deviations o; and o5. The quantity
(1 — w) can be seen as an a priori probability of the occurrence of outliers.
Assuming the independence of the measurements, the log-likelihood function
of the measurement set is then written as:

v

¢ =In]]p(@ | z:,0) (7)

=1

As previously said, the best estimate Z (in the maximum likelihood sense) of
the state vector z is obtained by maximizing the log-likelihood function with
respect to x subject to the model constraints:

& = argmaxIn [ p(Ei | 2:,6) (8a)
i=1

subject to Az =0 (8b)



The corresponding Lagrange function associated to this optimization problem
is written as follows:

L= Inp(3 | z;,0)+ \ Az 9)
i=1

The partial derivatives of this Lagrange function with regard to the unknown
variables x and A must therefore be evaluated. It is easy to establish that :

1

Olnp(Z; | 2;,0) %pl,i + ;gwpzz‘
al'i wpu —f- (]_ — w)pgﬂ-

(zi — ) (10)

Therefore, the estimate Z is the solution of the following system:

9| =W (@ -7)+ATA=0
vt (11)
L _Aa
x| = Az =0
with:
w A 1—w A

. . 2D+ Tz D2

W' = diag | —2 — (12a)

i=L.o \ wp1; + (1 —w)pa;

) 1 1 (& — i\ (12b)
Ps V270 P12 0

The notation diag,_, ,(a;) stands for the operator that convert a v-dimensional
vector a, which entries are a;, into a diagonal matrix. Notice that the weighting
matrix W; plays a similar role than the variance matrix V' when measurement
errors are sampled from a unique (normal) pdf. However, in this last case,
the weights are constant as in the proposed approach, the weights depend
themselves on the magnitude of the variation & — . Therefore, it is clear that
system (11) is nonlinear with respect to Z. However, following the classical
approach previously mentioned (see eq. (4)), the solution Z is expressed using
the following implicit formulation:

&= - W;AT (AW AT L A)z (13)



The following direct iterative scheme is proposed for solving this nonlinear
system (13):

k=0, W =3 (14a)

~(k i )
= exp|—=|—— 14b
b V2mo; P12 ( 9j ) (140)

w ~(k) 1—w (k)
ZP1i t+ 5 i
(W) = diag jk; : ka) (14c)
i=1..v pri + (1 - w>p2,’i
fkF1) ([ _ Wék)AT(AWék)AT>*1A> T (14d)

A stopping criterion must be chosen for implementing the algorithm; more
details will be given in the following section. For sake of simplicity, the proof
for the local convergence of the algorithm is omitted.

3.2 Weigthing function

In order to appreciate how the weights in W, which should be compared to
an influence function as explained in (Hampel, Ronchetti, Rousseeuw, Stohel,
1986), are able to reject the data contaminated by gross errors, figure 1 shows
the graph of the function:

w 1—w

2P+ 22
~ wpr+ (L —w)py

1 1<u)2
= exp|—=(—
h V2o P 2 \oy

1 1(u)2

= exp|—=(—

b2 210y P 2 \oy
with o7 = 0.5 and 03 = {1,4} and where w takes the indicated values. For a
better comparison, the graphs have been normalized, i.e. we have represented
g(u) = g(u)/g(0). For w = 1, we naturally obtain a constant weight; thus all
the data are equallly weighted and, in particular, the optimisation criterion
will be sensitive to large magnitude of data, i.e. to outliers. Taking w = 0.02 re-

duces the influence of outliers. For example, with o9 = 4, the weight decreases
from 1 for data around the origine to 0.1 for data with large magnitude.

g(u)
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Fig. 1. Influence function

4 Extension to bilinear systems

We consider now the case of a process characterised by two types of variables:
macroscopic variables such as flowrates x and microscopic variables such con-
centrations or mineral species y., ¢ = 1..q. As for the linear case, measurement
noise is sampled from two pdf, one having a small variance representing regular
noise and the other having a large variance representing outliers. In order to
simplify the presentation, each measurement x; (resp. y.;) is assumed to have
the same normal o, ; (resp. o, 1) and abnormal o, (resp. oy, 2) standard-
deviations. As previously mentioned, this hypothesis will be withdrawn later
on. Thus, for each observation Z; and y.;, we define the following pdf:

p(xi‘xiao'zJ) = \/%TQXP —5 (T) (15&)
z,j z,J
~ 2
~ 1 1 Yei — Yeyi
c,ilYe,iy i) = T - = — 15b
e rs) = e (=3 (B22) ) o

with j = 1,2, ¢ = 1..v, ¢ = 1..q. In the following, p, ;; and p,, ;; are shorten-
ing notations for p(Z;|x;, 0,;) and p(Ge:|ye,i, 0y..;) Where indexes ¢ and j are



respectively used to point the number of data and the number of the dis-
tribution. As for the linear case, the contaminated pdf of the two types of
measurements are defined:

Pri = WPz 1+ (1 — w)pe o, (16a)
Pyei = WPye1i + (1 — w)py 2, (16b)

In order to simplify the presentation, one used here the same mixture coef-
ficient w for the two z; and y,.; distributions. Assuming independence of the
measurements allows the definition of the global log-likelihood function:

v q
& =] pos [[ Pres (17)
=1 c=1

Mass balance constraints for total flowrates and partial flowrates are written
using the operator ® used to perform the element by element product of two
vectors:

Az =0 (18)
Az ®@y.) =0, c=1.q (19)

Let us now define the optimisation problem consisting in estimating the pro-
cess variables z and y. For that, consider the Lagrange function:

q
L=0+\NAz+> plA(z®y,) (20)

c=1

Constraints are taken into account through the introduction of the Lagrange
parameters A and p., ¢ = 1..¢. The stationarity conditions of (20) can be
expressed as (the estimates are now noted & and g.):

q
Wil (@ —2) + ATA+ D (A®Ge) e =0 (21a)
c=1
Wi (e — ) + (A® 2) =0 (21b)
Az =0 (21c)
Az ®74.) =0 (21d)

where the weighting matrices W; and W, are defined by:

WP | (1—w)ps 2.
—1 d 0320 1 0325 2 (22 )

W. " = dia : : a
* z‘:l.% wpz1i+ (1 —w)ps o

U)pge,li + (1*11’2)101;6 2,
W1 = diag Thent Pye:2 (22b)

Y .
¢ =L\ Wpg1i + (L —w)py, 2.




Notice that if each measurement z; (resp. y.,;) has a particular standard-
deviation, formulas (22a) and (22b) still hold by replacing the parameters o ;
and o, (resp. oy,1 and o, 2) by 0,1, and 0,2, (resp. oy, 1,; and oy, 2,;).

System (21) may be directly solved and the solution is expressed as:

q
&= —-W;A"(AW;AT)TA) (7 — W5 Y AgC(AinCAg YAz (23a)
c=1

Je = (I — Wy AL (AaW5, AT) ™ Az )i (23b)

where the shortening notation A, stands for A diag(u) (let us remark that
Az ® §.) = Azl = Ay T). System (23) is clearly non linear with regard to
the unknown # and g, the weights W; and Wj_ depending on the pdf (15)
which themselves depend on the & and g, estimations (23). In fact (23) is an
implicit system in respect to the estimates & and . for which we suggest the
following iterative scheme:

Step 1: initialisation

k=0, 2 =z, ¢® =g,

Choose w

Adjust 0, and o0, ; from an a priori knowledge about the noise distribution
Adjust 0,2 and o, 2 from an a priori knowledge about the gross error distri-
bution.

Step 2: estimation
Compute the quantities (for j =1,2,i=1..v and c = 1..q )

(k)

2
1 1 (20— 7
A e e T e— eX _— _—
px,],z /—27]_017]' p 92 o

3t = o

2 * 2
W, = dia el The2



Update the estimates of x and y,

k1) _ ([ . Wﬁ(k)AT(AWék)AT)AA)

( W S0 AT (B AT A%c)

T
c=1

g = (1= WD AT AP WAL AL
Step 3: convergence test
Compute an appropriate norm of the corrective terms: 7*+1 = ||2(+1) — 7|
and 7k = [|[§*FD — || If the variations 7t — 7% and 7D — 70 are
less than a given threshold then stop, else k = k + 1 and go to step 2.

Remark: for non linear systems, the initialisation remains a difficult task,
convergence of the algorithm being generally sensitive to that choice. In our
situation, measurements are a natural choice for initializing the estimates (step
1 of the algorithm). The solution given by classical least squares approach
would also provides an acceptable initialization although its sensitivity to gross
errors may be sometimes important; the reader should verify that this solution
may be obtained by redefining the distributions (16) with w = 1.

5 Extension to partial measurements

Let us now consider the more realistic situation where only some variables are
measured. For that purpose, two selection matrices H, and H,, are introduced
allowing to define which variables are measured:

T=H,x+¢, (24a)
g=Hy+e, (24b)

Here, only one species or concentration y was considered. The extension to
several species is straightforward. Moreover, in mineral industry, the measure-
ment techniques are such that, generally, all species of a particular stream
are analyzed simultaneously leading to the same selection matrix H, for all
species. Then, the pdf (15a), defined for each measurement Z;, can be written
using a vector form:

1
(27)v/2,/det

1 ATy -1 ~
Duj = ) exp <—§(Hxx —I) Vo (Hyx — :L')> (25)

where V. ; is the diagonal matrix containing the variances o2 2+ A similar ex-
pression for p, ; may be written, that allows the global log-likelihood function

10



to be expressed:

¢ =In (wpa:,l + (]- - w)pa:,2) (wpy,l + (1 - w)])y,?) : (26>

Following the same step as previously, the Lagrange function associated to the
maximization of (26) subject to the model constraints can be explained. The
optimality equations defining the solution are deduced from the derivatives of
this Lagrange function with respect to the unknown z, y, A et u:

H'W A (Hg —3) + AT N+ (A 9) 'u=0 (27a)
H'W (Hyg—5)+ (A0 2) =0 (27b)
A =0 (27¢)

A ®)) =0 (27d)

In these last expressions, the weight matrices W; and W, were already defined
n (22). Of course system (27) can be solved if and only if all the system
variables are observable. This observability study is not presented here and
we refer the interested reader to the book of Bagajewicz (2000). When this
property holds, the system (27) can be transformed into the following implicit
system:

i = (Gs — G AT(AG:AT) T AG: ) (HIW; & — AT(A:GyAT) " Az Gy H W )

(28a)

§ = (Gy — GyAL (A:GyAT) ' Az Gy) H W, (28b)
Gy = (H'W.'H, + ATA)™ (28c¢)

Gy = (HyW; 'H, + AT A;)~" (28d)

Comparing the structures of (28) and (23) allows us to use the iterative scheme
of the fourth section. Thus, the same estimation scheme for z and y may be
applied either when all the variables or a part of them are measured.

6 Example and discussion

It is usual to represent the mass conservation laws of a given phase, species
or property using an oriented graph. Such a graph schematizes the flowing of
that phase, species or property. A branch in the graph corresponds to a stream
and a node to a process equipment or to a group of process equipments. Gen-
erally, the basic conservation equations are written in a compact form using
the graph incidence matrix.

11



The method described in section 4 was applied to a fictitious but realistic
mineral processing plant which process graph is depicted by figure 2. The
considered process involves 16 streams; each of them is characterized by a
flowrate and two concentration measurements. All these 48 measurements are
corrupted by random noises and some of them are biased by gross errors.

Fig. 2. Oriented graph describing the process flowsheet

The performance results are given when three gross errors (with magnitudes
of 6, 8 and 8) affect the measurement 3, 7 and 16; simultaneously, gross errors
of magnitude 1.5 affect the measurement of the first concentration for streams
1, 9 and 12, and gross errors of magnitudes 4 and 2.5 affect the measurement
of the second concentration for streams 4 and 8. Comparison of the proposed
robust least squares algorithm (RLS) with the classical least squares (LS) al-
gorithm is now provided in table 1 where bold characters point out the true
values, the RLS and the LS estimates for the variables corrupted by gross
erTors.

Columns 2 to 4 relate the row measures, columns 5 to 7 show the estimates
obtained with RLS and columns 8 to 10 the estimates obtained with LS ;
analysing the estimation errors, the RLS estimator clearly allows to suspect
variables 3, 7 and 16 for being contaminated by a gross error. Such conclusion
is more difficult to express with LS estimator. Table 2 gives explicitely the cor-
rective terms & — & and g, — g, for RLS (row 3) and LS (row 4) approaches; for

12



Table 1
Measurements and estimates

Measurement RLS estimate LS estimate

x (0 Y2 z (0 Y2 z (0 Y2

1| 55.88 | 3.93 | 3.53 | 56.50 | 2.38 | 3.46 | 57.30 | 2.63 | 3.58
2] 65.31 | 2.73 | 3.70 | 65.07 | 2.71 | 3.70 | 65.80 | 2.89 | 4.16
3161.68 | 248 | 3.54 | 52.99 | 2.52 | 3.58 | 54.63 | 2.73 | 4.16
4 8.38 | 4.83 | 9.01 8.57 | 4.83 | 5.30 8.50 | 4.62 | 8.03
5| 44.15 | 2.13 | 3.16 | 44.42 | 2.07 | 3.24 | 46.13 | 2.38 | 3.45
6| 55.90 | 2.45 | 3.57 | 55.30 | 2.52 | 3.51 | 56.85 | 2.67 | 3.68
7139.05 | 287 | 3.74 | 31.44 | 2.87 | 3.76 | 32.97 | 3.23 | 3.49
81 23.90 | 2.05|5.72 | 23.86 | 2.05 | 3.18 | 23.88 | 1.91 | 3.95
9| 20.58 | 3.75 | 3.34 | 20.55 | 2.09 | 3.32 | 22.25 | 2.88 | 2.91
10 | 10.33 | 4.35 | 4.60 | 10.89 | 4.34 | 4.60 | 10.72 | 3.95 | 4.69
11| 12.40 | 3.57 | 4.16 | 12.08 | 3.54 | 4.25 | 11.17 | 3.68 | 4.15
12 | 17.66 | 5.11 | 4.32 | 1749 | 3.47 | 4.27 | 19.85 | 3.97 | 4.30
13 2.66 | 892 | 6.91 227 892 | 6.90 2.71 | 8.45 | 6.90
14 | 19.38 | 4.18 | 4.66 | 19.76 | 4.10 | 4.57 | 22.56 | 4.51 | 4.61
15| 1242 | 345 | 4.24 | 12.08 | 3.54 | 4.25 | 11.17 | 3.68 | 4.15
16 | 14.77 | 4.95 | 5.01 7.68 | 498 | 5.07 | 11.39 | 5.33 | 5.06

a better comparison, row 2 indicates the true value of the gross error and thus
we can appreciate the vicinity of the corrective terms obtained from RLS with
the “true” gross errors, that is not always the case when using the LS method.

Table 2
Corrective terms

z3 T7  Tie Y11 Y1,9 Y112 Y24 Y28

T 6.00 800 800 150 1.50 1.50 4.00 2.50
RLS 8.69 761 7.09 155 169 164 3.71 254
LS 7.05 6.08 338 13 0.87 1.14 098 1.77

For another data set, figure 3 visualizes more clearly the estimation errors
(z — & and g, — g.) both for RLS (upper part) and LS (lower part). On each
graph, horizontal and vertical axis are respectively scaled with the number
of the data and the magnitude of the absolute estimation error; the dashed

13



horizontal line is the threshold chosen to detect abnormal corrective terms.
Analysing figure 3 shows two advantages on RLS upon LS approach: first, the
corrective terms are more precisely estimated, second, the scattering of the
gross errors is less (the corrective terms mainly affect the variables affected by
the gross errors and not the others).

RLS y2

o = N W H» OO0 O N 0 ©

o
(&)}

10 15

LS x LS y1 LS y2
1.5 Y 3 Y

O =4~ N WA OO N O ©
T
I
I
I

o
(&)}

10 15 0 5 10 15

Fig. 3. Corrective terms

Performances of the proposed approach can be also analysed when using a
great number of data. For that purpose, the same process has been used with
different additive random noise on the data, the gross errors being superposed
to the same data as previously. 10000 runs have been performed, allowing
to enumerate the cases where the gross errors have been correctly detected
or not, both for RLS and LS method. Results, expressed in percentage, are
shown in table 3. Roughly speaking, for the given example, the ability of gross
error detection for RLS is twice of those of LS. This has been confirmed by
many other runs involving various distributions of the measurement errors.

Of course, the choice of the tuning parameters w, o,; and o, ; of the con-
taminated distribution affects the detection and the estimation of outliers and
therefore requires special attention. In fact, due to the structure of the func-
tion defining the weight, we can reduce these parameters to w, o, 1/0,, and
Oy.1/0y.2. Table 4 presents some results of sensitivity, expressed in percent-
age of correct detection, using the same process. For each result of detection,

14



Table 3
Correct fault detection in %

RLS gross error LS gross error
detection detection
Var. x Y1 Y2 T Y1 Y2
w=0.10 | 92.5 |1 99.9 | 91.4 | 41.4 | 57.2 | 55.2

concerning a particular value of w, f = 0,1/0., = 0y.1/0,.2, 10000 runs
have been performed, each run having the same outliers but specific random
noise affecting the measurements. It should be noted that almost all gross
errors were correctly detected with a proper choice of the parameters w and
f, excepted the error on the flowrate 3. For this particular example (but
this situation were noticed for almost all the treated examples), one observes
that a ‘large” range of parameter values are acceptable; that implies a low
sensitivity of the obtained results with regard to the tuning parameters. How-
ever, it is also possible to use an adaptive algorithm for the adjusting of these
parameters.

Table 4
Performance of the approach

w | fllx3| z7r| Te | Y1 | Y19 | Y112 | Y24 | Y28

0.02 | 25 1 1 1| 100 1 1 1] 99

0.05 | 25 1 1 0 | 100 0 1 1100
0.30 | 25 5| 45 3 | 100 0 2 0| 100
0.02 50| 72| 99| 99| 100 | 75| 100 | 41 | 100
0.05 | 50 || 77 | 100 | 100 | 100 | 96 | 100 | 59 | 100
0.30 | 50 || 76 | 100 | 100 | 100 | 100 | 100 | 90 | 100
0.02 | 75 || 76 | 100 | 100 | 100 | 100 | 100 | 99 | 100
0.05 | 75| 76 | 100 | 100 | 100 | 100 | 100 | 100 | 100
0.30 | 75| 76 | 100 | 99 | 100 | 100 | 100 | 100 | 100

A last example is presented to analyse false detection. The same flowsheet is
used but there are now three gross errors for each variable, for x on streams
3, 7 and 16 with magnitudes 6, 8 and 8, for y; on streams 1, 9 and 12 with
the same magnitudes 1.5, and for ys on streams 5, 8 and 14 with the same
magnitudes 2. 10000 runs have been performed and the results are summarized
in figure 4; detection have been established with the following thresholds : 3,
0.75 and 0.75 respectively for corrective terms on z, y; and ys.

Although the data have been changed, the previous conclusion are still valid

15
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Fig. 4. Corrective terms

and the advantage of RLS against LS is obvious. To be more precise, the
number of detected gross errors for the 48 variables are gathered in table 5.
Results are expressed in percentages and, for example, 98 percent of the faults
affecting variable y; ¢ are correctly detected. False detection are also indicated
and, for example, the fault-free variable y 11 has been detected as faulty with
a score of 4 percent. The comparison between RLS and LS reveals three major
points: fault on variable y; 12 has never been detected with LS, false detection
occurs on variable y; 13 with a score of 100 percent, fault on variable ys g is
detected with a score of 67 percent. Although the results are issued from a
particular flowsheet, they clearly show the advantage of the RLS approach.

7 Conclusion

To deal with the issues of gross errors influence on data estimation, the paper
has presented a robust reconciliation approach. For that purpose, we use a
cost function which is less sensitive to the outlying observations than that
of least squares. The algorithm can handle multiple biases or outliers at a
time and for the given example, 8 outliers have been correctly detected on 48
variables. The implementation of the algorithm is easy, the only parameters
to adjust being the variances of the errors (or a ratio between normal and
abnormal variance errors), the mixing parameter of the two distributions and
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Table 5

Percentages of detected gross errors

€z ! Y2 z Y1 Y2

RLS |RLS | RLS| LS| LS| LS

1 0 99 0 0| 100 1
2 0 0 0 0 0 0
3| 100 0 0| 100 0 2
4 0 10 0 0 11 0
5 0 0| 100 0 6 | 100
6 0 0 0 0 0 19
71 100 1 0| 100 28 0
8 0 1 99 0 1| 67
9 0 98 0 0| 40 0
10 0 1 0 0 55 0
11 0 0 4 0 0 0
12 0| 100 2 0 0 6
13 0 0 0 0| 100 0
14 0 0| 100 3 0| 100
15 0 0 0 0 0 1
16 | 100 0 0| 100 0 7

the detection threshold.

The results of reconciliation will clearly depend not only on the data, but also
on the model of the process itself. As a perspective of development of robust
reconciliation strategies, there is a need for taking account of model uncer-
tainties and optimise the balancing parameter w. Moreover, for process with
unknown parameters, it should be important to jointly estimate the reconciled

data and the process parameters.
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