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Abstract

On-line optimisation provides a means for maintaining a process around its opti-
mum operating range. This optimisation heavily relies on process measurements
and accurate process models. However, these measurements often contain random
and possibly gross errors as a result of miscalibration or failure of the measuring
instruments. This paper proposes a data reconciliation strategy that deals with
the presence of such gross errors. Instead of constructing the objective function to
be minimized on the basis of random errors only, the proposed method takes into
account both contributions from random and gross errors using a so-called contam-
inated Gaussian distribution. It is shown that this approach introduces less bias in
the estimation due to its natural property to reject gross errors.
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1 Introduction

The problem of obtaining reliable estimates of the state of a process is a fun-
damental objective in process control and supervision, these estimates being
used to understand the process behaviour. For that purpose, a wide vari-
ety of techniques has been developed to perform what is currently known as
data reconciliation (Mah, Stanley, Downing, 1976), (Maquin, Bloch, Ragot,
1991). Data reconciliation, which is sometimes referred too as mass and en-
ergy balance equilibration, is the adjustment of a set of data so the quanti-
ties extracted from the data obey physical laws such as material and energy
conservation. Since the pionner works devoted to the so-called data rectifica-
tion (Himmelblau, 1978), the scope of research has expanded to cover other
fields such as data redundancy analysis, system observability, optimal sensor
positionning, sensor reliability, error characterization, measurement variance
estimation. Many applications are related in scientific papers involving various
fields in process engineering (Dhurjati, Cauvin, 1999), (Heyen, 1999), (Singh,
Mittal, Sen, 2001), (Yi, Kim, Han, 2002).

Process measurements are inevitably corrupted by errors during the measure-
ment itself but also during its processing and transmission stages. The total
error in a measurement, which is the difference between the measured value
and the (definitely unknown) value of a variable, can be conveniently rep-
resented as the sum of the contributions from two types of errors : random
and gross errors. Random errors which are inherent to the measurement pro-
cess are usually small in magnitude and are most often described by the use
of probability distributions. On the other hand, gross errors are caused by
non random events such as instrument malfunctioning, miscalibration, wear
or corrosion of sensors and so on. The nonrandom nature of these errors im-
plies that at any given time they have a certain magnitude and sign which
may be unknown. Thus, if the measurement is repeated with the same instru-
ment under identical conditions, the contribution of a systematic gross error
to the measurement value will be the same (Narasimhan, Jordache, 2000). It
is the reason why gross errors are also called systematic errors or biases. In
the sequel of the paper all these terms will be employed without distinction.
However, despite this strict definition of gross errors, a means for elaborating
robust estimators of process variables consists to consider gross errors as ran-
dom variables. For Veverka, Madron (1997), “Statistically, a gross error is an
error whose occurrence as realization of a random variable is highly unlikely”.
This trick will be clearly justified in the section 3.2 dedicated to the use of a
contaminated distribution.

As previously said the measurements collected on the process may be unknow-
ingly corrupted by gross errors. As a result, the data reconciliation procedure
can give rise to absurd results and, in particular, the estimated variables are
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most often corrupted by these biased data. Several schemes have been sug-
gested to cope with the corruption of normal assumption of the errors, for
static systems (Narasimhan, Mah, 1989), (Kim, Kang, Park, Edgar, 1997),
(Arora, Biegler, 2001), (Soderstrom, Himmelblau, Edgar, 2001) and also for
dynamic systems (Abu-el-zeet, Roberts, Becerra, 2001). Methods for includ-
ing bounds in process variables to improve gross error detection have also
been developed. One major disadvantage of these methods is that they lead
to situations where it may be impossible to estimate all the variable by using
only a subset of the remaining gross errors free measurements. Alternative
approach using constraints both on the estimates and the balance residual
equations has been developed for linear system (Ragot, Maquin, Adrot, 1999),
(Ragot, Maquin, 2004). Johnston, Kramer (1995) established an analogy be-
tween maximum likelihood estimation and robust regression and they reported
the feasibility and better performance of the robust estimators as the objec-
tive function in the data reconciliation problem when the data contain gross
errors. These studies have been based on robust statistics and their ability to
reject outliers (Huber, 1981), (Hampel, Ronchetti, Rousseeuw, Stohel, 1986).
This kind of approach will be recalled in the first part of section 3. Another
approach is to take into account the non ideality of the measurement error
distribution by using an objective function constructed on contaminated error
distribution (Tjoa, Biegler, 1991), (Ozyurt, Pike, 2004). In the following, this
idea is adopted and developed for the data reconciliation problem.

The next section is devoted to recall the background of data reconciliation
based on the assumption that all the measurements are normally distributed.
Robust data reconciliation method is described in section 3. In a first part,
the main idea is introduced based on the use of the so-called generalized
maximum likelihood function. The second part presents the proposed method
which make use of a contaminated error distribution. The previous results are
established in the context of linear models, so the next section extends the
method to the bilinear case. Section 5 shows the adaptation of the method to
the frequently encountered case of partial measurements. Finally, the proposed
method is implemented on a fictitious but realistic mineral processing plant.
Performances of the proposed approach are analyzed and compared with those
of a more classical method.

2 Data reconciliation background

The classical general data reconciliation problem, (Mah, Stanley, Downing,
1976), (Hodouin, Flament, 1989), (Crowe, 1996), deals with a weighted least
squares minimisation of the measurement adjustments subject to the model
constraints. In order to simplify the presentation, let us first consider a linear
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steady state process model:

Ax = 0, A ∈ IRn.v, x ∈ IRv (1)

where x is the state of the process and A describes the static constraints with
rank(A) = n according to the fact that the constraints are independent. The
measurement devices give the information:

x̃ = x + ε, ε ∼ N(0, V ) (2)

where ε ∈ IRn is a vector of random errors characterised by a normal prob-
ability density function (pdf) with a diagonal variance matrix V . For each
component xi of x, the following pdf is defined:

p(x̃i | xi, σi) =
1√
2πσi

exp

(

−1

2

(

xi − x̃i

σi

)2
)

(3)

where σ2
i are the diagonal elements of V . From (3), one derives the likelihood

function of the observation with the hypothesis of independent realizations.
The maximisation of the likelihood function of the observation x̃, with regard
to x, and subject to the model constraints (1) leads, in that particular case,
to minimize a classical least squares objective function:

min
x

φ =
1

2

v
∑

i=1

(

xi − x̃i

σi

)2

=
1

2
‖x − x̃‖2

V −1 (4)

Using Lagrange multiplier method for solving this quadratic optimization
problem subject to equality constraints leads to the following system:















V −1(x̂ − x̃) + AT λ = 0

Ax̂ = 0
(5)

where λ ∈ IRn is the so-called Lagrange parameter vector. Solving this system
of equations gives the well-known following estimate (Kuehn, Davidson, 1961),
(Maquin, Bloch, Ragot, 1991):

x̂ = (I − V AT (AV AT )−1A)x̃ (6)

In fact, the estimates obtained by this method are not always exploitable, the
main drawback being the contamination of all estimated values by the gross
errors which corrupt the measurements. For that reason, robust estimators
could be preferred, robustness being the ability to ignore the contribution of
extreme data such as gross errors. Two different approaches can be imple-
mented to deal with gross errors. The first one consists to sequentially detect,
localize and suppress the data which are contaminated and after to reconcile
the remaining data. Most of these methods involve the use of statistical tests
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based on the assumption that the random errors in the data are normally
distributed. In one of the simplest methods, the set of residuals from the least
squares procedure is tested for outliers and any measurement for which the
corresponding residual fails the test is considered to contain a gross error.
Serth, Heenan (1986) showed that superior performance is obtained if the test
for outliers is applied in an iterative way. At each stage of the iteration, only
the measurement corresponding to the greater outlier is identified as contain-
ing a gross error and removed from the data set. The procedure is stopped
when all remaining residuals satisfy the test for outliers. The second approach
is a global one and reconcile the data without a preliminary classification;
in fact, weights in the reconciliation procedure are automatically adjusted in
order to minimise the influence of the abnormal data. The method presented
in this paper is only focused on this last strategy.

3 Robust data validation – the linear case

3.1 Generalized maximum likelihood estimation

Clearly, the least squares objective function in the previous formulation comes
from the assumption that all the measurements are normally distributed, with-
out taking into account gross errors that may be present. The influence of these
gross errors on the estimates can be minimized by defining robust objective
functions. For example, let us consider the following so-called generalized max-
imum likelihood objective function proposed by Huber (Huber, 1981):

φ =
v
∑

i=1

ρ
(

xi − x̃i

σi

)

(7)

In this last expression, ρ is any reasonable monotone function of the standard
error provided that the gross errors have reduced effect on the estimation of
process variables. How such objective functions can be built will be examined
later, but now let us establish the solution of the optimization problem with
this new objective function.

Let us define the influence function Ψ(u) and the weight function w(u):

Ψ(u) =
∂ρ(u)

∂u
and w(u) =

Ψ(u)

u
(8)

The minimization of the objective function (7) with regard to x and subject
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to (1) leads to following system of equations:























∂L
∂xi

∣

∣

∣

∣

xi=x̂i

= wi(x̂i − x̃i) +
n
∑

j=1

ajiλj = 0 i = 1, . . . , v

∂L
∂λj

∣

∣

∣

∣

xi=x̂i

=
v
∑

i=1

ajix̂i = 0 j = 1, . . . , n

(9)

where wi is a simplified notation for w(x̂i− x̃i). Let us now define the following
matrix:

Wx̂ = diag
i=1..v

(

1

wi

)

(10)

where the notation diagi=1..v(ai) stands for the operator that convert a v-
dimensional vector a, which entries are ai, into a diagonal matrix.

Using this notation, the system (9) can be written in the following more com-
pact form:















W−1
x̂ (x̂ − x̃) + AT λ = 0

Ax̂ = 0
(11)

The two systems (5) and (11) can be easily compared; in (5) the weight matrix
V −1 is constant though, in (11), W−1

x̂ is depending on the adjustments x̂− x̃.
The equation system (5) is linear with regard to the unknown x̂, that’s why
the solution (6) is expressed by a closed form. Unfortunately, it is not the
case for the system (11) which is nonlinear. However, following the classical
approach previously mentioned (see eq. (6)), the solution x̂ is expressed using
the following implicit formulation:

x̂ = (I − Wx̂A
T (AWx̂A

T )−1A)x̃ (12)

The reader will notice that (12) has the general form ϕ = f(ϕ) and thefore
may be solved by a fixed point iteration algorithm for which the fixed point
theorem forecasts the convergence conditions (Border, 1985), (Hoffman, 2001).
The solution can therefore be obtained in an iterative way, updating, at each
step, the weight matrix Wx̂. For the kth step of this iterative calculus, let
us denote x̂(k) and W

(k)
x̂ the estimate and the corresponding weight matrix.

Starting with x̂(0) = x̃, the solution is then expressed, at the (k+1)th step, as:

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

x̃ (13)

The stopping rule of this calculus can be conditioned by a test on the norm of
the difference between two consecutive estimates. If ‖x̂(k+1) − x̂(k)‖ ≤ ε where
ε is fixed by the user, the calculus is stopped and the final estimate is equal
to x̂(k).
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Of course the choice of the objective function introduced in (7) completely
conditions the results of the proposed method. As previously said, if ρ is
a quadratic function of the standard error corresponding to a least squares
objective function, all the adjustments influence linearly the criterion (7); that
explains the lack of robustness with regard gross errors of the classical least
squares estimation. A robust estimator should not be influenced a lot when
gross errors occur. Therefore, an important property can be deduced from that
remark: the influence function must be bounded. In fact, the choice for the
influence function (or equivalently for the corresponding objective function) is
very large. The reader is referred to the paper by Özyurt (Ozyurt, Pike, 2004)
for a comparison of their respective performances.

To explain more the role played by this function, let us consider now a family
of Cauchy functions parameterized by α:

ρ(u) =
α2

2
log

(

1 +
(

u

α

)2
)

(14)

From (8), it is easy to obtain the associated weight function:

w(u) =
1

1 +
(

u
α

)2 (15)

This weight function can be generalized in order to control the slope of its
decreasing by substituting the power of the term u/α by any positive integer
p:

w(u) =
1

1 +
(

u
α

)p (16)

In that case, the associated objective function is much more complex. However,
the reader will notice that its expression is not necessary in the considered
context. Figure 1 shows the look of the influence function and the weight
function for some value of p with α = 2.

For p = 1, the influence function is increasing but for p > 1, that function in-
creases until a particular value and next decreases. This property explains the
ability to limit the influence of gross errors onto the estimates. The α parame-
ter determines the intermediate zone between increasing and decreasing of the
influence function. The parameter α must be chosen by the user depending
on an a priori knowledge about the magnitude of the errors (considered as
abnormal) which corrupt the measurements.

The ability to limit the influence of gross errors can also be explained looking
at the weight function. Indeed, the more the estimation procedure applies a
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Fig. 1. Influence and weight functions.

large adjustment to the measurement of a variable in order to satisfy the pro-
cess model, the less the weight of this adjustment influences the criterion to
be optimized. In fact, this idea is very close to the classical so-called Iterative
Measurement Test (IMT) (Serth, Heenan, 1986) dedicated to the serial elimi-
nation of measurements containing gross errors. Indeed this strategy identifies,
at each stage of an iterative procedure, the measurement corrupted by a gross
error (generally based on a threshold applied on the adjustment) before re-
moving it from the data set. Of course, after that elimination, the suspected
measurement do not influence the residual criterion at all as the corresponding
variable is then considered as unknown. In the proposed method, the elimina-
tion of measurements corrupted by gross errors is done through the adaptation
of their weights in the criterion to be optimized. The elimination is also done
through an iterative procedure, but at a particular step of calculus, the weights
of all the adjustments are updated taking into account their magnitudes.

3.2 Estimation based on a contaminated distribution

Another means to be unaware of the presence of gross errors consists to take
them into account a priori in the error probability distribution. A distribu-
tion based on the additive combination of two Gaussian distributions can
be used. Indeed, if the measurements contain gross errors, then a single pdf
described as in (3) cannot account for their occurrences. To overcome this
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problem let us assume that measurement noise is sampled from two pdf, the
normal one having a small variance representing regular noise and the abnor-
mal one other having a large variance representing outliers (Wang, Romagnoli,
2002),(Ghosh-Dastider, Schafer, 2003). In a first approach, each measurement
x̃i is assumed to have the same normal σ1 and abnormal σ2 standard devia-
tions; this hypothesis will be released later on. Thus, for each observation x̃i,
the two following pdf (j = 1, 2) are defined:

pj,i(x̃i | xi, σj) =
1√

2πσj

exp



−1

2

(

xi − x̃i

σj

)2


 (17)

The so-called contaminated pdf is then obtained using a combination of these
two pdf:

p(x̃i | xi, θ) = η p1,i + (1 − η) p2,i, 0 ≤ η ≤ 1 (18)

The vector θ collects the standard deviations σ1 and σ2. The quantity (1 −
η) can be seen as an a priori probability of the occurrence of gross errors.
Assuming the independence of the measurements, the log-likelihood function
of the measurement set is then written as:

Φ = ln
v
∏

i=1

p(x̃i | xi, θ) (19)

As previously said, the best estimate x̂ (in the maximum likelihood sense) of
the state vector x is obtained by maximizing the log-likelihood function with
respect to x subject to the model constraints:

x̂ = arg max
x

ln
v
∏

i=1

p(x̃i | xi, θ) (20a)

subject to Ax = 0 (20b)

The corresponding Lagrange function associated to this optimization problem
is written as follows:

L =
v
∑

i=1

ln p(x̃i | xi, θ) + λT Ax (21)

The partial derivatives of this Lagrange function with regard to the unknown
variables x and λ must therefore be evaluated. It is easy to establish that:

∂ ln p(x̃i | xi, θ)

∂xi
=

η
σ2
1
p1,i + 1−η

σ2
2

p2,i

η p1,i + (1 − η) p2,i
(xi − x̃i) (22)
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Therefore, the estimate x̂ is the solution of the following system:















∂L
∂x

∣

∣

∣

x=x̂
= W−1

x̂ (x̂ − x̃) + AT λ = 0

∂L
∂λ

∣

∣

∣

x=x̂
= Ax̂ = 0

(23)

with:

W−1
x̂ = diag

i=1..v





η
σ2
1
p̂1,i + 1−η

σ2
2

p̂2,i

η p̂1,i + (1 − η) p̂2,i



 (24a)

p̂j,i =
1√

2πσj

exp



−1

2

(

x̂i − x̃i

σj

)2


 (24b)

Clearly, the obtained system of equations defining the estimate (23) is exaclty
the same as that obtained previously using the generalized maximum likeli-
hood objective function (11). The only difference concerns the definition of
the weight matrix W−1

x̂ . Following the resolution method introduced in the
previous section, the following direct iterative scheme is proposed for solving
this nonlinear system (23):

k = 0, x(k) = x̃ (25a)

p̂
(k)
j,i =

1√
2πσj

exp





−1

2





x̂
(k)
i − x̃i

σj





2




 (25b)

(W
(k)
x̂ )−1 = diag

i=1..v







η
σ2
1
p̂

(k)
1,i + 1−η

σ2
2

p̂
(k)
2,i

η p̂
(k)
1,i + (1 − η) p̂

(k)
2,i





 (25c)

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

x̃ (25d)

Clearly, representing gross errors by random variables with centered probabil-
ity density functions can appear as a complete contradiction with the definition
of what a gross error is. If so, gross errors are then only considered as normal
errors with high variance and low probability. However, this trick that has
been already used by other authors, even if it don’t really describe the situa-
tion, allows the construction of a robust estimator. The main idea is already to
give a small weight, in the criterion to be minimized, to the large adjustments
(differences between estimate and measurement). Indeed, this approach limits
the “smearing” caused by the occurrence of a gross error on the estimates of
other process variables.

Let us now analyze the behavior of the weight function introduced in (22)
and explain how the proposed estimation method is able to reject the data
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contaminated by gross errors. Figure 2 shows the graph of the function:

w(u) =

η
σ2
1
p1 + 1−η

σ2
2

p2

η p1 + (1 − η) p2

with:

pi =
1√
2πσi

exp

(

−1

2

(

u

σi

)2
)

i = 1, 2

The weight functions w(u) were evaluated for σ1 = 0.5 and σ2 ∈ {1, 5} (cor-
responding to the ratios r = σ2/σ1 ∈ {2, 10}) and η ∈ {0.5, 0.8, 0.9, 0.99}.
For a better comparison, the graphs have been normalized, i.e. the function
g(u) = w(u)/w(0) has been drawn. The behaviour of this function is very
similar to that derived from generalized likelihood objective function (see fig.
1) therefore the proposed method will have the same ability to reject gross
errors. Analysing these functions, one can observe that, provided the standard
deviation ratio r is greater than 10, the weight function tends to zero for suf-
ficiently large adjustments. One can also notice that the contamination ratio
η influences the width of the zone for which the normalized weight function
g(u) is approximately equal to one.
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Fig. 2. Weight functions
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4 Extension to bilinear systems

We consider now the case of a process characterised by two types of variables:
macroscopic variables such as flowrates x and microscopic variables such con-
centrations or mineral species yc, c = 1..q. As for the linear case, measurement
noise is sampled from two pdf, one having a small variance representing regu-
lar noise and the other having a large variance representing biases. In order to
simplify the presentation, each measurement xi (resp. yc,i) is assumed to have
the same normal σx,1 (resp. σyc,1) and abnormal σx,2 (resp. σyc,2) standard-
deviations. As previously mentioned, this hypothesis will be withdrawn later
on. Thus, for each observation x̃i and ỹc,i, the following pdf are defined:

p(x̃i|xi, σx,j) =
1√

2πσx,j

exp



−1

2

(

xi − x̃i

σx,j

)2


 (26a)

p(ỹc,i|yc,i, σyc,j) =
1√

2πσyc,j

exp



−1

2

(

yc,i − ỹc,i

σyc,j

)2


 (26b)

with j = 1, 2, i = 1..v, c = 1..q. In the following, px,j,i and pyc,j,i are shorten-
ing notations for p(x̃i|xi, σx,j) and p(ỹc,i|yc,i, σyc,j) where indexes i and j are
respectively used to point the number of data and the number of the dis-
tribution. As for the linear case, the contaminated pdf of the two types of
measurements are defined:

px,i = η1 px,1,i + (1 − η1) px,2,i (27a)

pyc,i = η2 pyc,1,i + (1 − η2) pyc,2,i (27b)

In order to simplify the presentation, all the distributions describing the yc,i

variables have been chosen identical i.e. with the same contamination ratio
η2. Assuming independence of the measurements allows the definition of the
global log-likelihood function:

Φ = ln
v
∏

i=1

(

px,i

q
∏

c=1

pyc,i

)

(28)

Mass balance constraints for total flowrates and partial flowrates are written
using the operator ⊗ used to perform the element by element product of two
vectors:

Ax = 0 (29)

A(x ⊗ yc) = 0, c = 1..q (30)
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Let us now define the optimisation problem consisting in estimating the pro-
cess variables x and y. For that, consider the Lagrange function:

L = Φ + λT Ax +
q
∑

c=1

µT
c A(x ⊗ yc) (31)

Constraints are taken into account through the introduction of the Lagrange
parameters λ and µc, c = 1..q. The stationarity conditions of (31) can be
expressed as (the estimates are now noted x̂ and ŷc):

W−1
x̂ (x̂ − x̃) + AT λ +

q
∑

c=1

(A ⊗ ŷc)
T µc = 0 (32a)

W−1
ŷc

(ŷc − ỹc) + (A ⊗ x̂)T µc = 0 (32b)

Ax̂ = 0 (32c)

A(x̂ ⊗ ŷc) = 0 (32d)

where the weighting matrices Wx̂ and Wŷc
are defined by:

W−1
x̂ = diag

i=1..v







η1 px̂,1,i

σ2
x,1

+
(1−η1) px̂,2,i

σ2
x,2

η1 px̂,1,i + (1 − η1) px̂,2,i





 (33a)

W−1
ŷc

= diag
i=1..v







η2 pŷc,1,i

σ2
ŷc,1

+
(1−η2) pŷc,2,i

σ2
yc,2

η2 pŷc,1,i + (1 − η2) pŷc,2,i





 (33b)

Notice that if each measurement xi (resp. yc,i) has a particular standard-
deviation, formulas (33a) and (33b) still hold by replacing the parameters σx,1

and σx,2 (resp. σyc,1 and σyc,2) by σx,1,i and σx,2,i (resp. σyc,1,i and σyc,2,i).

Using the same resolution scheme as previously, system (32) may be solved
and the solution is expressed as:

x̂ = (I − Wx̂A
T (AWx̂A

T )−1A)(x̃ − Wx̂

q
∑

c=1

AT
ŷc

(Ax̂Wŷc
AT

x̂ )−1Ax̂ỹc) (34a)

ŷc = (I − Wŷc
AT

x̂ (Ax̂Wŷc
AT

x̂ )−1Ax̂)ỹc (34b)

where the shortening notation Au stands for A diag(u) (let us remark that
A(x̂ ⊗ ŷc) = Ax̂ŷc = Aŷc

x̂). System (34) is clearly non linear with regard to
the unknown x̂ and ŷc, the weights Wx̂ and Wŷc

depending on the pdf (26)
which themselves depend on the x̂ and ŷc estimations (34). In fact (34) is an
implicit system in respect to the estimates x̂ and ŷc for which the following
iterative scheme can be suggested:

Step 1: initialisation

k = 0, x̂(k) = x̃, ŷ(k) = ỹc
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Choose the contamination ratios η1 and η2

Adjust σx,1 and σyc,1 from an a priori knowledge about the noise distribution
Adjust σx,2 and σyc,2 from an a priori knowledge about the gross error distri-
bution.

Step 2: estimation

Compute the quantities (for j = 1, 2, i = 1..v and c = 1..q )

p
(k)
x̂,j,i =

1√
2πσx,j

exp





−1

2





x̂
(k)
i − x̃i

σx,j





2






p
(k)
ŷc,j,i =

1√
2πσyc,j

exp





−1

2





ŷ
(k)
c,i − ỹci

σyc,j





2






W−1
x̂ = diag

i=1..v









η1 p
(k)
x̂,1,i

σ2
x,1

+
(1−η1) p

(k)
x̂,2,i

σ2
x,2

η1 p
(k)
x̂,1,i + (1 − η1) p

(k)
x̂,2,i









W−1
ŷc

= diag
i=1..v









η2 p
(k)
ŷc,1,i

σ2
yc,1

+
(1−η2) p

(k)
ŷc,2,i

σ2
yc,2

η2 p
(k)
ŷc,1,i + (1 − η2) p

(k)
ŷc,2,i









A
(k)
x̂ = A diag(x̂(k)) A

(k)
ŷc

= A diag(ŷ(k)
c )

Update the estimates of x and yc

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

(

x̃ − W
(k)
x̂

q
∑

c=1

A
(k)T
ŷc

(A
(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ ỹc

)

ŷ(k+1)
c = (I − W

(k)
ŷc

A
(k)T
x̂ (A

(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ )ỹc

Step 3: convergence test

Compute an appropriate norm of the corrective terms: τ (k+1)
x = ‖x̂(k+1) − x̃‖

and τ (k+1)
yc

= ‖ŷ(k+1) − ỹc‖. If the variations τ (k+1)
x − τ (k)

x and τ (k+1)
yc

− τ (k)
yc

are
less than a given threshold then stop, else k = k + 1 and go to step 2.

Remark : for non linear systems, the initialisation remains a difficult task,
convergence of the algorithm being generally sensitive to that choice. In the
present situation, measurements are a natural choice for initializing the esti-
mates (step 1 of the algorithm). The solution given by classical least squares
approach can also provide an acceptable initialization although its sensitivity
to gross errors may be sometimes important; the reader will be able to verify
that this solution may be obtained by redefining the distributions (27) with
η1 = η2 = 1.
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5 Extension to partial measurements

Let us now consider the more realistic situation where only some variables are
measured. For that purpose, two selection matrices Hx and Hy are introduced
allowing to define which variables are measured:

x̃ = Hxx + εx (35a)

ỹ = Hyy + εy (35b)

Here, only one species or concentration y is considered. The extension to sev-
eral species is straightforward. Moreover, in mineral industry, the measurement
techniques are such that, generally, all species of a particular stream are ana-
lyzed simultaneously leading to the same selection matrix Hy for all species.
Then, the pdf (26a), defined for each measurement x̃i, can be written using a
vector form:

px,j =
1

(2π)v/2
√

det(Vx,j)
exp

(

−1

2
(Hxx − x̃)T V −1

x,j (Hxx − x̃)
)

(36)

where Vx,j is the diagonal matrix containing the variances σ2
x,j. A similar ex-

pression for py,j may be written, that allows the global log-likelihood function
to be expressed:

Φ = ln (η1 px,1 + (1 − η1) px,2) (η2 py,1 + (1 − η2) py,2) (37)

Following the same steps as previously, the Lagrange function associated to the
maximization of (37) subject to the model constraints can be explained. The
optimality equations defining the solution are deduced from the derivatives of
this Lagrange function with respect to the unknown variables x, y, λ and µ:

HT
x W−1

x̂ (Hxx̂ − x̃) + AT λ + (A ⊗ ŷ)T µ = 0 (38a)

HT
y W−1

ŷ (Hyŷ − ỹ) + (A ⊗ x̂)T µ = 0 (38b)

Ax̂ = 0 (38c)

A(x̂ ⊗ ŷ) = 0 (38d)

In these last expressions, the weight matrices Wx̂ and Wŷ were already defined
in (33). Of course system (38) can be solved if and only if all the system
variables are observable. This observability study is not presented here and
the interested reader is referred to the book of Bagajewicz (2000). When this
property holds, the system (38) can be transformed into the following implicit
system:
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x̂ =
(

Gx̂ − Gx̂A
T (AGx̂A

T )−1AGx̂

) (

HT
x W−1

x̂ x̃ − AT
ŷ (Ax̂GŷA

T
x̂ )−1Ax̂GŷH

T
y W−1

ŷ ỹ
)

(39a)

ŷ = (Gŷ − GŷA
T
x̂ (Ax̂GŷA

T
x̂ )−1Ax̂Gŷ)H

T
y W−1

ŷ ỹ (39b)

Gx̂ = (HT
x W−1

x̂ Hx + AT A)−1 (39c)

Gŷ = (HT
y W−1

ŷ Hy + AT
x̂ Ax̂)

−1 (39d)

Comparing the structures of (39) and (34) allows us to use the iterative scheme
of the fourth section. Thus, the same estimation scheme for x̂ and ŷ may be
applied either when all the variables or a part of them are measured.

6 Example and discussion

It is usual to represent the mass conservation laws of a given phase, species or
property using an oriented graph. Such a graph schematizes the flowing of that
phase, species or property. An arc in the graph corresponds to a stream and a
node to a process equipment or to a group of process equipments. Generally,
the basic conservation equations are written in a compact form using the graph
incidence matrix.

The method described in section 4 was applied to a fictitious but realistic
mineral processing plant which process graph is depicted by figure 3. The con-
sidered process involves 16 streams; each of them is characterized by a flowrate
and two concentration variables. Except the flowrates of streams number 1, 4
and 11, all the other variables are measured (45 measurements) and are cor-
rupted by random noises. Moreover, 7 measurements are also biased by gross
errors. Table 1 indicates the biased measurements and the magnitude of the
biases.

Table 1
Biased measurements

x3 x7 x16 y1,1 y1,9 y2,8 y2,14

Magnitude 8.00 8.00 5.00 1.50 1.50 2.00 2.00

Table 2 gathers the measurements and their standard deviations as well as
the obtained estimates. For this example, the ratio between “normal” and
“abnormal” standard deviations, for all the measurements, has been fixed to
r = 10 and the contamination ratios η1 = η2 = 0.95.
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Fig. 3. Oriented graph describing the process flowsheet

It is important to note that the presence of the seven biased measurements
had only a weak influence on the obtained estimated values. Indeed, Table
3 shows the corrective terms related to biased measurements. Clearly, the
proposed robust data reconciliation method has been able to “compensate” the
biases by applying adequate corrective terms to the raw measurements. The
magnitude of the corrective terms (table 3) can be compared to the magnitude
of the biases (table 1).

In order to analyze the efficiency of the proposed data reconciliation method,
corrective terms have been expressed in terms of a percentage of the measure-
ment. Therefore, for each measured variable z, z ∈ {x, y1, y2}, c(z) = 100 ẑ−z̃

z̃
.

Figure 4 shows the relative corrections c(z) made by the proposed method
while figure 5 depicts the same relative corrections when using the classical
method of least squares.

The analysis of these figures clearly shows the robustness to the presence of
gross errors in the data. The contrast between the relative corrections of the
biased measurements and the others is considerably enhanced by the proposed
method. Only the biased measurements are strongly corrected and the smear-
ing effect classically observed when using least squares method is considerably
minimized.

The main goal of the paper is to provide a robust data reconciliation method
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Table 2
Measurements, standard deviations and robust estimates

Measurement Standard deviation Robust estimate

x y1 y2 Std(x) Std(y1) Std(y2) x̂ ŷ1 ŷ2

1 3.890 3.440 0.389 0.344 22.580 2.430 3.460

2 26.500 2.700 3.530 1.325 0.270 0.353 25.540 2.700 3.640

3 29.200 2.520 3.550 1.460 0.252 0.355 20.670 2.500 3.510

4 4.750 5.000 0.475 0.500 2.960 4.760 4.980

5 18.320 2.090 3.290 0.916 0.209 0.329 17.710 2.120 3.270

6 22.020 2.460 3.510 1.101 0.246 0.351 21.870 2.500 3.510

7 20.800 2.900 3.740 1.040 0.290 0.374 12.290 2.900 3.720

8 9.430 2.010 5.200 0.472 0.201 0.520 9.570 2.000 3.250

9 8.010 3.710 3.290 0.401 0.371 0.329 8.140 2.270 3.290

10 4.140 4.150 4.550 0.207 0.415 0.455 4.150 4.140 4.560

11 3.490 4.190 0.349 0.419 4.870 3.550 4.160

12 6.560 3.630 4.340 0.328 0.363 0.434 6.650 3.500 4.280

13 1.040 8.710 6.320 0.052 0.871 0.632 1.040 8.590 6.300

14 7.380 4.240 6.650 0.369 0.424 0.665 7.690 4.190 4.550

15 4.990 3.490 4.100 0.250 0.349 0.410 4.870 3.550 4.160

16 7.690 5.150 5.180 0.385 0.515 0.518 2.820 5.290 5.230

Table 3
Corrective terms

x3 x7 x16 y1,1 y1,9 y2,8 y2,14

Corrective term 8.52 8.51 4.87 1.46 1.45 1.95 2.10

which results are the more insensitive as possible to the presence of gross
errors in the measurement set. However, it is clear that the obtained results,
in particular the corrective terms, can be analyzed in order to detect and
locate these gross errors. Indeed, the magnitude of the corrective terms, i.e.
x̂− x̃, ŷ1 − ỹ1 and ŷ2 − ỹ2, can give some information about the quality of the
raw measurements. In the linear case, it is easy to deduce, from the statistical
properties of the measurements, that of the corrective terms (x̂ − x̃). The
detection test of gross errors can then be done using a classical hypothesis test.
For the nonlinear case (even for the considered bilinear case), the statistical
properties of the corrective terms are more difficult to establish. In all the
cases, the variance of the estimates cannot be expressed in a closed form
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Fig. 4. Relative corrections – RLS case
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Fig. 5. Relative corrections – LS case

and always relies on some approximations. These approximations are often to
blame, in particular in the presence of gross errors.

It is important to note that almost all the existing methods of gross error de-
tection and localization are based on the crossing of a threshold related to the
corrective terms (or any standardized corrective terms). When the statistical
distribution of these terms is known (and/or calculable), this threshold can
be determined on statistical considerations as, for example, the type I error of
hypothesis testing. In the other cases, a similar methodology can be applied;
however, the threshold must be fixed on an empirical way. For example, one
can decide that a measurement contains a gross errors if its corrective term is
greater than three or four times its standard deviation. This kind of analysis
can also be done, of course, using the relative corrections.

Another technique, described by Tjoa, Biegler (1991) consists to test each
corrective term against the contaminated distribution. If the probability as-
sociated with a corrective term related to a measurement that is suspected to
contain a gross error is greater than that of random error, then the measure-
ment is identified as containing a gross error.
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As previously mentioned, the ratio between “normal” and “abnormal” stan-
dard deviations of the contaminated distribution do not really constitute a
design parameter of the proposed method. Provided the standard deviation
ratio r is greater than 10, the weight function tends to zero for sufficiently
large adjustments. In order to evaluate the sensitivity of the results with re-
gard to the choice of the contamination ratios η, 100 different sets of data
have been simulated changing, for each set, the additive random noise on the
measurements while keeping the seven biases mentioned in table 1. Table 4
shows the mean of the relative corrective terms for the 100 data sets and
for three distinct values of the contamination ratio η ∈ {0.8, 0.9, 0.95} (the
contamination ratios η1 and η2 have been chosen identical and equal to η).

Table 4
Mean of the relative corrective terms

η = 0.80 η = 0.90 η = 0.95

c(x) c(y1) c(y2) c(x) c(y1) c(y2) c(x) c(y1) c(y2)

1 – 38 6 – 38 3 – 37 1

2 1 0 4 2 0 0 2 0 1

3 28 0 5 28 1 1 28 1 1

4 – 0 2 – 0 0 – 0 0

5 0 1 8 0 0 5 0 0 2

6 0 2 6 0 1 3 0 1 0

7 38 2 6 40 1 3 40 1 1

8 1 1 24 0 0 31 0 0 38

9 1 39 8 1 40 3 0 39 0

10 0 2 1 0 1 0 0 1 0

11 – 1 1 – 1 0 – 1 0

12 2 3 1 3 3 0 8 2 0

13 0 1 0 0 1 0 0 1 0

14 2 1 31 2 0 31 7 0 31

15 4 1 1 3 1 0 4 1 0

16 60 2 1 61 2 0 55 1 0

If the proposed method functioned perfectly (not any propagation of biases to
the healthy measurements), these averages of the relative corrections should
be null except for the biased measurements. The results presented in that
table are closed to this ideal case and one can notice that the results are not
very sensitive to the choice of the contamination ratio. This important result
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was foreseeable taking into account the shape of the weight functions shown
on figure 2.

7 Conclusion

To deal with the issues of gross errors influence on data estimation, the pa-
per has presented a robust reconciliation approach. For that purpose, a cost
function which is less sensitive to the outlying observations than that of least
squares is used. The algorithm can handle multiple biases or gross errors at a
time. For the given example, 7 measurements among 45 have been biased and
the proposed method has been able to provide a good estimation of the true
values of the different variables of the process. The implementation of the al-
gorithm is easy; moreover many simulations carried out showed a relative low
sensitivity of the results to the design parameters, i.e. the standard deviation
ratio r and the contamination ratio η (provided, of course, these parameters
are not completely randomly chosen).

The results of reconciliation will clearly depend not only on the data, but also
on the model of the process itself. As a perspective of development of robust
reconciliation strategies, there is a need for taking account of model uncer-
tainties and optimise the balancing parameter w. Moreover, for process with
unknown parameters, it should be important to jointly estimate the reconciled
data and the process parameters.
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