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Abstract faults from the model inaccuracy, we must use robust
redundancy relations which are insensitive to undesired
perturbations. We consider a linear system described by
the following state space equation :

This paper describes a procedure for generating analytical
redundancy equations for process fault detection and
isolation. The proposed procedure uses a direct approach
by considering the relations between the inputs and the
outputs of the process ; systems with known or partially
known inputs are considered and it is pointed out that the
same technique yields for these different situations.

λ x(k) = A x(k) + B u(k) + B
_

 f(k) (1a)

y(k) = C x(k) + D u(k) + D
_

 f(k) (1b)

where f(k) is a perturbation vector, λ  states for the s or z
operator depending on the representation of the model in
continuous or discrete form and B

_
 and D

_
 represent the

perturbation matrices of appropriate dimensions. It is
assumed in the following that C is a full rank matrix.
Robust redundancy equations can be generated by the
elimination of the state x(k) and the perturbation vector
f(k). Therefore, using (1), the equation to solve may be
generally written :

1. Introduction

The design of fault tolerant control systems requires
failures to be detected, identified and taken into account
within acceptable time interval as not to affect excessi-
vely the system operation. Surveys on design methods
for failure detection and isolation are given in the papers
of Isermann (1984) and Gertler (1991). In the past decade,
interest has been focused on the use of analytic
redundancy equations rather than massive redundancy. In
particular, analytical redundancy equations have been
designed to form and process residuals ; these residuals
are closed to zero if no failure occurs and differ
significantly from zero when a failure occurs.
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where p(λ ) and q(λ ) are two vectors with compatible
dimensions with the state matrices. If this condition
holds, multiplying equation (1) with (pT(λ )  qT(λ )),
yields the redundancy equations :

When certain inputs of the process cannot be measured,
the state observation must be designed by eliminating the
unknown inputs. This problem has received considerable
attention in the literature. Several researchers have in-
vestigated state or input observers when some inputs are
unknown ; among them, the reader is referred to Kurek
(1983), El-Tohami (1983) or Miller (1984) for example.
In the study of Park (1988) a closed-loop observer that
can identify simultaneously states and inputs has been
developed. A systematic investigation of unknown input
observers was carried out recently by Wünnenberg (1990)
using the Kronecker canonical form transformation. A
more simple design procedure is given by Hou (1991)
using only algebraic approach. In the present work, we
introduce a generation scheme of analytical redundancy
equations.
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If the system (2) has no solution, due for example to an
excessive number of perturbations, then one may look
for an approximate solution. In order to find the optimal
approximation, a certain performance index that contains
a measure of the effects of the disturbances must be defi-
ned. If the perturbation matrices do not exist, the prece-
ding formalism is still valid and allows to generate the
redundancy relations.

3. General solution of the decoupling problem
2. Decoupling properties

To solve equation (2), rewrite it in the equivalent form :
In practise, the process models are not perfectly known :
parameter variations, unknown inputs and component
faults significantly influence processes behavior. If these
perturbations have not been included in the models, the
model behavior differs from those of the actual process.
Consequently, the residuals are as much sensitive to fault
as to inherent uncertainties of the models. To separate the
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Solving (4) corresponds to the well-known problem of
the determination of the left nullspace of a binomial



matrix (Gantmacher, 1977). Taking the transpose of
equation (4) yields :

redundancy relations from the system state equations. In
fact, this extraction is possible by eliminating the
unknown variables (state variables or perturbations). If
the disturbance directions are unknown, the elimination
affects only the state variables (B

_
 = 0, D

_
 = 0), otherwise

a priori knowledge can be used to design the matrices B
_

and D
_

.
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The solution of equation (5) is obtained through a two-
step algorithm. First, we solve (5) with D

_
 = 0 (i.e. D0 =

0). Second, we transform system (5) in order to satisfy
this property. Then, the first step leads to solve the
following system :

4. Unknown inputs systems

Consider the linear system, with a p dimensional un-
known input vector d(k), described by :

(λ  I - A0) p(λ ) = C0 q(λ ) (6a)
λ  x(k) = A x(k) + B u(k) + G d(k) (14a)B0 p(λ ) = 0 (6b)
y(k) = C x(k) + D u(k) + F d(k) (14b)

Equation (6b) implies that p(λ ) belongs to the kernel of
B0, so that the general solution of (6b) is expressed in
term of an appropriate vector of constants :

where G and F are known constant matrices. Without
loss of generality, we assume that :

rank ( )G
F  = dim(d) (15)p(λ ) = B0

_  
v(λ ) (7)

The classical conditions of observability (Kurek, 1983),
are not necessary because we do not try to estimate
system state. With obvious definition of the matrices M,
N, A

_
, Q and B

_
, the equations (14) can be expressed as :

Substituting p(λ ) in (6a) and pre-multiplying first by N
the left annihilator of C0 (N C0 = 0) and second by C0

_

the left inverse of C0 (C0
_
C0 = I) yields the two

equations :
M λ  x(k) + N y(k) = A

_
 x(k) + Q d(k) + B

_
 u(k) (16)

N (λ  I - A0) B0
_ 

v(λ ) = 0 (8a)
C0

_ 
 (λ  I - A0) B0

_ 
v(λ ) = q(λ ) (8b) Assuming that equation (15) holds, there exist two

orthogonal matrices H and K and a non-singular matrix R
such that :Equation (8a) may be solved in respect to v(λ )

(Gantmacher, 1977, p. 29-30), then p(λ ) is deduced from
(7) and q(λ ) from (8b). At the second step, consider the
complete system (5) in which D0 may always be
expanded into :
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Introducing a new vector d
_
(k) defined by :
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d
_
(k) = KT d(k) (18)

where H and K are two orthogonal matrices and R a re-
gular matrix. With KTq(λ ) = q

_
(λ ) and B

_
0 = HTB0, we

have from the second equation of system (5) :

and pre-multiplying equation (16) with HT, we can
partitioned equation (16) as :

M1 λ x(k) + N1 y(k) = A
_

1 x(k) + R d
_
(k) + B

_
1 u(k)

(19a)B
_

0 p(λ) +  






R 0

0 0
 q
_
(λ ) = 0 (10)

M2 λ x(k) + N2 y(k) = A
_

2 x(k) + B
_

2 u(k) (19b)

The first equation (19a) may be used to estimate the
unknown input d

_
(k) since R is regular. The second one

(19b) may contain redundancies between the input u(k)
and the output y(k) provide it is possible to eliminate the
state x(k). For that purpose (19b) is rewritten :

which may be expanded into :

B
_

01 p(λ) + R q
_
1(λ ) = 0 (11a)

B
_

02 p(λ ) = 0 (11b)
(λ M2 - A

_
2) x(k) = B

_
2 u(k) -  N2 y(k) (20)

The solution q
_
1(λ ) of equation (11a) is then substituted

in (6a) which gives : Redundancy equations are then obtained by searching the
left null space of the pencil (λ M2 - A

_
2) :

(λ  I - A
_

) p(λ ) = C02 q
_
2(λ ) (12)

pT(λ ) (λ M2 - A
_

2) = 0 (21)

with : A
_

 = A0 -  C01 R-1 B
_

01 (13) The solution of equation (21) is the same as those of the
equation (4). The redundancy equations can be described
by :Thus, the remaining equations (11b) and (12) have the

same structure as the system (6) and therefore may be
solved by using the same technique. Therefore, the
residual generation consists in the extraction of the

pT(λ ) (B
_

2 u(k) -  N2 y(k)) = 0 (22)



The previously described method can be used to detect and
localize faulty actuators. Consider a standard system
where the ith input has been isolated :

u(k) - (λ -0.5) y3(k) = 0
2u(k) - 2(1-λ ) y1(k) - (4λ -3) y2(k) + (4λ−3) y3(k) = 0

λ  x(k) = A x(k) + Bi  ui (k) + B
_

i  u
_
i (k) (23a)

6. Conclusion

y(k) = C x(k) +  Di  ui (k) + D
_

i  u
_
i (k) (23b)

The problem of analytical redundancy equation design
has been considered. We have pointed out a systematic
procedure to design these equations. The technique can be
used for systems with unknown inputs.where Bi  is the ith column of B and B

_
i  is the n(r-1)

matrix obtained from B by deleting Bi  (with the same
definition for Di  and D

_
i  ). Let ui (k) be the i th entry of

u(k) and u
_
i (k) the (r-1) column vector obtained from u(k)

by deleting ui(k). The structure of the system (23) is
similar to the structure of the system (14). We can
consider ui (k) as an unknown input and generate the
redundancy relations independently of this input. If we
exchange the roles of ui(k) and u

_
i (k) which is therefore

considered as unknown inputs, the redundancy equations
depend on all but one input, therefore it make faulty
actuators isolation easier. This approach should be
compared with the dedicated observer approach (Frank,
1989).
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