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Abstract

This paper describes procedure for generating anatyi

redundancy equations for procefault detection and
isolation. The proposed procedure uses a dapptoach

by considering the relations betwetre inputs and the
outputs of the process ; systewith known or partially

known inputs are considered and it is poirget that the

same teahmique yields for these different situations.

1. Introduction

The design of fault tolerantontrol systems requires
failures to be detected, identifieshd taken into account
within acceptable time interval amt to affect excessi
vely the system operation. Surveys on design methods
for failure detectiorand isolation are given in the papers
of Isermann (1984) and Gertler (1991). In plast decade,
interest has been focused dhe use of analytic
redundancy equ@mns rather than massiwedundancy. In
particular, analytical redundancy equatiohave been
designed to formand process residuals ; these residuals
are closed to zero if no failure occurs addfer
significantly from zero when a failure occurs.

When certain inputs of the process carlmmtmeasured,
the state observation must be designed by eliminstiag
unknown inputsThis problem has received cotsiable
attention in the literature. Severedsearchers have -in
vestigated state amput observers when some inputs are
unknown ; among them, the readerreferred to Kurek
(1983), EI-Toham{1983) or Miller (1984) for example.
In the study of Park1988) a closed-loop observer that
can identify simultaneously states and inputs basn
developed. Asygdematic investigation of unknown input
observers was carried out recertly Wiinnenberg (1990)
using the Kronecker canonickdrm transformation. A
moresimple design procedure is given by Hou (1991)
using only algebraic approach. time present work, we
introduce a generation scheme afalytical redundancy
equations.

2. Decoupling properties

In practise, the process modatg not perfectly known :
parameter variations, unknown inpuisid component
faults significantlyinfluence processes behavior. If these
perturbations have not been includedhie models, the
model behavior differs from those of thetual process.
Consequently, the residuals are as much sensitifault

as to inherent uncertainties of the models. To septte

faults from the model inaccuracy, we must wuebust
redundancy relations which are insensittee undesired
perturbations. We considerliaear system described by
the following state space equation :

Ax(K) =Ax(k) + B u(k) +B f(k) (1a)
y(k) = C x(k) + D u(k) +D f(k) (1b)

where f(k) is a perturbation vectarstatesfor the s or z
operator dependingn the representation of the model in
continuousor discrete form and8 and D represent the
perturbation matrices of appropriate dimensionsis It
assumed in the following th& is a full rank matrix.
Robustredundancy equations can be generated by the
elimination of the state x(k) and thperturbation vector
f(k). Therefore, using (1), the equation to solaay be
generally written :

(PT) d'(™)) =(0 0) (@)

C D

where pA) andg(A) are two vectors with compatible
dimensions with the state matrices. this condition
holds, multiplying equation (1) witfpT(\) q'(\)),
yields the redundancy equations :

0 B
(') a'() (EI EY(k) - ED Eu(k)) =0 3)

If the system (2has no solution, due for example to an
excessivenumber of perturbations, then one may look
for an approximate solutioin order to find the optimal
approximation, acertain performance index that contains
a measure of the effeaté the disturbances must be defi
ned. If the perturbation matrices do not exist, fhexe
ding formalism is still valid andillows to generate the
redundancy relations.

3. General solution of the decoupling problem

To solve equation (2), rewrite it in the equivalent form :

T(\) g’ A B Aﬁloﬁ—oo4
(p()q())(cf)- 00)—( ) (4)

Solving (4)corresponds to the well-known problem of
the determinatiorof the left nullspace of a binomial



matrix (Gantmacher1977). Taking the transpose of
equation (4) yields :

o il BELERE o

The solution of equation (5) is obtained throwughwo
step algorithm. First, we solve (5) with=0 (i.e. [y =

0). Second, we transform system {®)order to satisfy
this property.Then, the first step leads to solve the
following system :

(A 1-Ag) pA) =Coa) (6a)
Bo p(A\) =0 (6b)

Equation (6b)mplies that pX) belongs to the kernel of
Bp, so that the general solution @b) is expressed in
term of an appropriate vector of constants :

p(A) =By V(A) @)

Substitutingp(A) in (6a) and pre-multiplying first by N
the leftannihilator of G (N Cg = 0) and second byoC
the left inverse of @ (CoCq = 1) yields the two
equations :

NQAI-Ag)Bov(d) =0 (8a)
Co (A\1-Ap)BoVv(A) =aq@) (8b)

Equation (8a) maybe solved in respect to AX

(Gantmacher, 1977, p. 29-3en pd) is deduced from
(7) and gh) from (8b). At the second stepopnsider the
complete system (5) in which o may always be
expanded into :

R 0
Do:HE EKT 9)
00

where H and K are two orthogonal matrices and ig a
gular matrix. With Kig\) = g(A\) and B = HTBg, we
have from the second equation of system (5) :

B R 0
Bo p(A) + E EEO\):O (10)
00

which may be expanded into :
Bo1 p(A) + Raa(A) =0
Bo2 PQ\) =0

The solutional()\) of equation (11a) is thesubstituted
in (6a) which gives :

(A 1- A) p(A) = Co2 G2(0) (12)
with: A=Ag- Co1 R1Bpy (13)

(11a)

(11b)

Thus, theremaining equations (11b) and (12) have the
samestructure as the system (6) and therefore may be
solved by using the same technique. Therefahe,

residual generation consists in the extraction of the

redundancy relations from the system state equations.
fact, this extraction is possibley eliminating the
unknown variables (state variables or perttidres). If
the disturbance directiorsre unknown, the elimination
affects only the state variablg = 0, D = 0), otherwise
apriori knowledge can be used to design the matriges
andD

4. Unknown inputs systems

Consider the linear system, withpadimensional un
known input vector d(k), described by :

A x(k) = Ax(K) + B u(k) + G d(k)
y(K) = C x(K) + D u(k) + F d(K)

(14a)
(14b)

where G and F are known constamatrices. Without
loss of generality, we assume that :

rank( ° ) - dim(d) (15)

The classical conditions of observabilitgurek, 1983),
are not necessary because we do not tryedtimate
system state. With obvious definitiontbe matrices M,
N, A, Q and Bthe equations (14) can be expressed as :

M A x(k) + N y(k) =A x(k) + Q d(k) +Bu(k)  (16)

Assuming that equation (15) holds, there exist two
orthogonal matrices H and K and a non-singular m&trix
such that :

R
Q:HEO EKT (17)

Introducing a new vectai(k) defined by :
d(k) = KT d(k) (18)

and pre-multiplying equation (16) with H we can
partitioned equation (16) as :

M1 A x(k) + N1 y(k) = Ap x(K) + Rd(k) + By u(k)

_ _ (19a)
M2 A x(k) + N2 y(K) = Az x(k) + B u(k) (19b)
The first equation (19anay be used to estimate the
unknown inputd(k) since R is regular. Theecond one
(19b) maycontain redundancies between the input u(k)
and the output y(k) provide it is possiblesiominate the
state x(k). For that purpose (19b) is rewritten :

(A M2 - A2) x(K) = Bp u(k) - N2 y(k) (20)

Redundancy equatiorse then obtained by searching the
left null space of the pencik(M2 - Ap) :

PTA) A M2 - A) =0 (21)

The solution of equation (21) is tsame as those of the
equation (4). The redundaneguations can be described

by :
') (B2 u(k) - N2 y(k) =0 (22)



The previously described method can be used to detdct
localize faulty actuators. Consider a standard system
where thetf input has been isolated :

A x(kK) = A x(k) + Bj uj(k) + B uj(k) (23a)

y(k) = C x(k) + O uj(k) + Dy uj(k) (23b)
where B is the th column of B and Bis the n(r-1)
matrix obtainedrom B by deleting B(Wlth the same
definition for Q and Q) ). Let (k) be theith entry of
u(k) andtj(k) the (r-1)column vector obtained from u(k)
by deleting k). The structure of theystem (23) is
similar to the structure of the system (1%ye can
consideruj(k) as an unknown input and generate the
redundancy relations independently of this inputwé
exchange the roles of(k) andtj(k) which is therefore
considered as unknown inputs, tledurdancy equations
depend on all but onmput, therefore it make faulty
actuatorsisolation easier. This approach should be
compared with the dedicatambserver approach (Frank,
1989).

5. Numerical example

Consider a thirdrder system described by equation (14),

where :

11 0 0 0 1
A=[00 05 oé BZEIE Elé
0o 0 05 1 0
01 1 0 0 0
0o 0 1 0 0

Using the decomposition (17), we obtain :

Da -a OD

Ho O
H= withHo:Qa a OQ
o |

0 0 1
wherea=\/§/2andK:1.

The decomposition (19) allows to define the pencil :

-a(\-1) ap-0.5) 0

0 0 A-05
AMo-Ay= -1 -1 0

0 -1 -1

0 0 -1

from which we find the left orthogonal matrix :

-a(2r-1.5)

1 0 ald) a@-15
pTO‘)ZQ A A-0.5

01 0 0

Applying (22), the redundancy equations are then ex
pressed :

u(k) - 4-0.5) y3(k) = 0
2u(k) - 2(1A) ya(k) - (4A-3) y2(k) + (4A—3) y3(k) = 0

6. Conclusion

The problem of analytical redundancy equation design
has been considere#/e have pointed out a systematic
procedure to design these equations. fEbbnique can be
used for systems with unknown inputs.
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