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A COUNTER EXAMPLE TO THE BUELER’S CONJECTURE.

GILLES CARRON

Abstract. We give a counter example to a conjecture of E. Bueler stating the
equality between the DeRham cohomology of complete Riemannian manifold
and a weighted L

2 cohomology where the weight is the heat kernel.

1. Introduction

1.1. Weighted L2 cohomology : We first describe weighted L2 cohomology and
the Bueler’s conjecture. For more details we refer to E. Bueler’s paper ([2] see also
[5]).

Let (M, g) be a complete Riemannian manifold and h ∈ C∞(M) be a smooth
function, we introduce the measure µ :

dµ(x) = e2h(x)d volg(x)

and the space of L2
µ differential forms :

L2
µ(ΛkT ∗M) = {α ∈ L2

loc
(ΛkT ∗M), ‖α‖2

µ :=

∫

M

|α|2(x)dµ(x) <∞}.

Let d∗µ = e−2hd∗e2h be the formal adjoint of the operator d : C∞
0 (ΛkT ∗M) →

L2
µ(Λk+1T ∗M). The kth space of (reduced) L2

µ cohomology is defined by :

H
k
µ(M, g) =

{α ∈ L2
µ(ΛkT ∗M), dα = 0}

dC∞
0 (Λk−1T ∗M)

=
{α ∈ L2

µ(ΛkT ∗M), dα = 0}

dDk−1
µ (d)

where we take the L2
µ closure and Dk−1

µ (d) is the domain of d, that is the space

of forms α ∈ L2
µ(Λk−1T ∗M) such that dα ∈ L2

µ(ΛkT ∗M). Also if Hk
µ(M) = {α ∈

L2
µ(ΛkT ∗M), dα = 0, d∗µα = 0} then we also have Hk

µ(M) ≃ H
k
µ(M). Moreover

if the manifold is compact (without boundary) then the celebrate Hodge-deRham
theorem tells us that these two spaces are isomorphic to Hk(M,R) the real coho-
mology groups of M . Concerning complete Riemannian manifold, E. Bueler had
made the following interesting conjecture [2] :

Conjecture : Assume that (M, g) is a connected oriented complete Riemannian

manifold with Ricci curvature bounded from below. And consider for t > 0 and x0 ∈
M , the heat kernel ρt(x, x0) and the heat kernel measure dµ(x) = ρt(x, x0)d volg(x),
then 0 is an isolated eigenvalue of the self adjoint operator dd∗µ + d∗µd and for any

k we have an isomorphism :

Hk
µ(M) ≃ Hk(M,R).

E. Bueler had verified this conjecture in degree k = 0 and according to [3] it also
hold in degree k = dimM . About the topological interpretation of some weighted
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L2 cohomology, there is results of Z.M .Ahmed and D. Strook and more optimal
results of N. Yeganefar ([1],[5]). Here we will show that we can not hope more :

Theorem 1.1. In any dimension n, there is a connected oriented manifold M , such

that for any complete Riemannian metric on M and any smooth positive measure

µ, the natural map :

Hk
µ(M) → Hk(M,R)

is not surjective for k 6= 0, n.

Actually the example is simple take a compact surface S of genus g ≥ 2 and

Γ ≃ Z → Ŝ → S

be a cyclic cover of S and in dimension n, do consider M = T
n−2 × Ŝ the product

of a (n− 2) torus with Ŝ.

2. An technical point : the growth of harmonic forms :

We consider here a complete Riemannian manifold (Mn, g) and a positive smooth
measure dµ = e2hd volg on it.

Proposition 2.1. Let o ∈M be a fixed point, for x ∈M , let r(x) = d(o, x) be the

geodesic distance between o and x, R(x) be the maximum of the absolute value of

sectional curvature of planes in TxM and define m(R) = maxr(x)≤R{|∇dh|(x) +
R(x)}. There is a constant Cn depending only of the dimension such that if α ∈
Hk

µ(M) then on the ball r(x) ≤ R :

eh(x)|α|(x) ≤ Cn
eCnm(2R)R2

√

vol(B(o, 2R))
‖α‖µ.

Proof.– If we let θ(x) = eh(x)α(x) then θ satisfies the equation :

(dd∗ + d∗d)θ + |dh|2θ + 2∇dh(θ) − (∆h)θ = 0.

where the Hessian of h acts on k forms by :

∇dh(θ) =
∑

i,j

θj ∧∇dh(ei, ej)intej
θ,

where {ei}i is a local orthonormal frame and {θi}i is the dual frame. If R is
the curvature operator of (M, g), the Bochner-Weitzenböck formula tells us that
(dd∗ + d∗d)θ = ∇∗∇θ + R(θ). Hence, the function u(x) = |θ|(x) satisfies (in the
distribution sense)the subharmonic estimate :

(1) ∆u(x) ≤ Cn(R(x) + |∇dh|(x))u(x).

Now according to L. Saloff-Coste (theorem 10.4 in [4]), on B(o, 2R) = {r(x) < 2R}
the ball of radius 2R , we have a Sobolev inequality : ∀f ∈ C∞

0 (B(o, 2R))

(2) ‖f‖2

L
2ν

ν−2

≤ Cn
R2ecn

√
kRR

(

vol(B(o, 2R))
)2/ν

‖df‖2
L2

where −kR < 0 is a lower bound for the Ricci curvature on the ball B(o, 4R) and
ν = max(3, n) . With (1) and (2), the Moser iteration scheme implies that for
x ∈ B(o,R),

u(x) ≤ Cn
eCnm(2R)R2

√

vol(B(o, 2R))
‖u‖L2(B(o,2R).
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From which we easily infer the desired estimate. �

3. Justification of the example and further comments

3.1. Justification. Now, we consider the manifold M = T
n−2× Ŝ which is a cyclic

cover of T
n−2 × S; let γ be a generator of the covering group. We assume M is

endowed with a complete Riemannian metric and a smooth measure dµ = e2hd volg.
For every k ∈ {1, ..., n − 1} we have a k-cycle c such that γl(c) ∩ c = ∅ for any
l ∈ Z \ {0} and a closed k-form ψ with compact support such that

∫

c
ψ = 1 and

such that
(

supportψ
)

∩
(

support (γl)∗ψ
)

= ∅ for any l ∈ Z \ {0}. Let a = (ap)p∈N

be a non zero sequence of real number : then the k-form ψa =
∑

p∈N
ap(γ

p)∗ψ

represents a non zero k cohomology class of M , indeed
∫

γpc ψa = ap. We define

Rp = max{r(γl(x)), x ∈ c, l = 0, ..., p}, then if the deRham cohomology class of

ψa contains α ∈ Hk
µ(M), then according to (2.1), we will have |ap| =

∣

∣

∣

∫

γpc α

∣

∣

∣
≤

Mp‖α‖µ ; where

Mp = volg(γ
p(c))Cn

eCnm(2Rp)R2

p

√

vol(B(o, 2Rp))
max

r(x)≤Rp

e−h(x).

As a consequence, for the sequence defined by ap = (Mp + 1)2p, ψa can not be
represented by a element of Hk

µ(M).

3.2. Further comments. Our counter example doesn’t exclude that this con-
jecture hold for a complete Riemannian metric with bounded curvature, positive
injectivity radius on the interior of a compact manifold with boundary.
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