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Abstract. We generalize our previous work on the compatibility of kinetic equations with second

virial corrections to the inclusion of spin and particle indistinguishability; the system is supposed to be

sufficiently dilute for higher order virial density corrections (interactions and statistics) to be negligi-
ble. We show that the general idea of the "free Wgner transform" can be extended to this situation;
the function which appears in the kinetic equation becomes here a matrix which acts in the space of

spin states of the particles. Assuming that the collisions are described by a hamiltonian which does not

act on the spins (a very good approximation for nuclear spins), we write explicitly a kinetic equation
which is valid for this case. The right hand side of the equation is an 18 dimension integral, as for

spinless distinguishable particles, but here it contains an additional term due to statistics, which intro-

duces commutators and anticommutators. We discuss the local conservation laws in this formalism

and find, as expected, a total number of 8 conserved quantities for spin 1/2 particles (including three

components of the magnetization). When the gas is at equilibrium, we obtain a pressure dependence
which is in agreement with known calculations on spin polarized gases. We finally study the gradient
expansion of the collision integral, and show that the zero-order (local) part is identical with the 4

terms (including identical spin rotation terms) obtained previously by Lhuillier et al The first order

(non-local) part contains many terms, which we compare with those obtained by Silin in a context

more closely related to the Landau theory.

Introduction.

In a previous study [I] we have introduced the use of the "free Wigner transform" to write

a kinetic equation which remains valid for a semi-dense gas (it is compatible with the two-body
correlations which are the origin of the second virial correction to the pressure). For the sake

of simplicity, that work was developed only for spinless particle obeying Boltzmann statistics.

Here, we wish to generalize it to the inclusion of spin and of particle indistinguishability. This

is of course important Tone has in mind the application of the theory to spin-polarized he-

lium three [2] or hydrogen [3, 4] it is also interesting if one wishes to make the connection to

the work of Silin or more recent studies on transport in spin-polarized gases [6] to [12]
We will see that the direct continuation of the ideas used in [Ii provides results which are in full
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agreement with calculations of the effect of spin polarization and statistics on second virial correc-

tions in the pressure of the gas at equilibrium [13] This was not the case of the pressure obtained

from the simpler theory of [12]
,

where collision processes were treated as point processes in space
and time (no range, no duration), and where two-body correlations were treated too crudely for

obtaining correct virial corrections.

For spinless particles, the free transform is associated with a function f(r, p) that depends

on the same variables as the one-particle distribution function fi(r, p). Its physical meaning is

nevertheless somewhat different: f defines the properties of only those particles which are far

from all other particles, as opposed to fi which describes all of them, including particles in the

middle of a collision. Mathematically, because the definition of f implies some information on

the position of all particles (which have to be suflicently distant from the test panicle)
,

this free

distribution can be expressed only from the fit-body distribution function, and not only in terms

of fi (or even fu). Another difference is that the integral over d3p of this function does not give
the local number density of particles n, as would be the case for fi, but a "free" number density nf;

it actually differs from
n

by a density correction which is second order in n (see also the physical
discussion of this difference given by Snider [14] ). Physically, this integral can be seen as a local

characterization of the chemical potential of the system. Away to understand this is to notice that,

because f describes the properties of the ideal gas which exists in between the locations where

collisions take place, one can write in terms of f relations that are valid for an infinitely dilute gas.
An analogy can be seen for example with a liquid in equilibrium with its saturated vapour at very
low density: f would then describe the distribution function of only those atoms which are in this

diute gas rather than inside the dense liquid phase. One can therefore use the well known ideal

gas relation:

~ =
kBTLOgnfA~ (11

(where is the thermal wavelength) which, in terms of f, translates into:

/
d~p f

=

A~~ exp(~/kBT) j2)

Actually, in this article we include spin variables, sc that we will have to replace f(r, p) by a matrix,
ps(r, p), which depends on one position

r
and on one momentum p. In relation (2), f should then

be interpreted as the trace of ps over spin variables.

In [I]
,

two forms of the formalism were developed in succession: the first form introduces a

kinetic equation with, in the collision term, a gradient expansion containing 5 dimension colli-

sion integrals (the same number of dimensions as in the Boltzmann theory); the second form [Id]
makes no gradient expansion but requires the use of 18 dimension integrals. Another difference

h the non-local character of the density corrections of [ld]. Here we shall take the second for-

malism, the main reason being that it gives much more compact equations; this is important when

one wants to keep simultaneously spin, statistics and non-local interaction integrals. Indeed, in

[12]
,

the inclusion of spin and statistics in the Boltzmann equation already resulted in the intro-

duction of 4 different collision terms in the right hand side (spin anticommutators to account for

the changes of the cross sections introduced by statistics, commutators for identical spin rotation

effect); the number of terms was even larger in [16], where correlation and retardation effects in

collisions were included (without spin or stathtics). lteatirig both problems simultaneously would

therefore lead to about 20 terms in the interaction integrall The use of18 dimension integrals is

indeed much more convenient; if necessary, at the end of the calculation, one can always make a

spatial gradient expansion which gives the full detailed structure of the terms.

We wish to stress here that the present work is limited to the study of the effect of binary
collisions only, which implies that the system is not too dense and that the inclusion of second
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virial corrections (in the pressure at equilibrium for example) is sufficient. In other words, we study
particle correlations, but only to the lowest density order at which they appear. Recently, Snider

has considered a more general situation where thin restriction is not necessary, and shown how the

consideration of the dhtribution function for free particles is also useful in the context of dense

gases [15] Another recent article connected to ours is reference [16]
,

where spin and statistics are

included in a kinetic equation which reduces to that of [12] iri its local terms (includin g for example
identical-spin-rotation effects), but can also generate non-local terms. The generalization of the

collision integral of [12] to degenerate systems has been given recently by Jeon and Mullin [10b],
and applied by these authors to the study of spin diffusion [10c]. See the work of Meyerovich [17j
for a general study of the combined effects of intemal variables and non-localities, as well as [18]
and [19] for examples of very recent studies of spin dynamics in quantum gases or dilute systems.

For convenience, the organisation and the notation of the present article have been chosen as

close as possible to those of reference [ld]. In section I, we give the definition of the "free Wgner
transform" which is adequate for a collision between two identical particles with spin, and study

its evolution in a two-body collision; we also discuss the expression of the difference between tile

real and the free distribution functions (correction to the distribution function). In section 2, we

propose a kinetic equation for a dilute system of many identical particles with spin, in a gas where

they undergo only binary collisions; we then study the local conservation laws in this formalism

and, finally, the equilibrium situation where we recover the M dependence of the pressure already
obtained in [13]

1. Free Wigner transform (two panicle system).

1. I DERNITION. We consider here a system of Dvo particles, for which we wish to adapt and

generalize the definition of the "free Wigner transform", given in [la], in order to include particle
indistinguishability and spin. As in [la], a cancellation of the effects of the potential at short range
will be obtained by tile adequate use of two unitary transformations Q; nevertheless, we will see

that that this is not sufficient when the panicles are indistinguishable: in addition, it is necessary to

remove the effects of statistics at short relative distance by another mathematical transformation,
which we introduce below in section I.1.4.

1. I. I Notafion. Our starting point in tliis section is the two-particle density operator p, on

which we will apply the unitary transformations associated with the two Moller operators Q(+
i

-).

We assume that the hamiltonian does not act on the spins, so that these operators act only in the

space of states of the orbital relative motion of the particles. They transform plane waves into

entering or outgoing stationary scattering states respectively (we also assume that there are no

bound states so that the Q's are indeed unitary). The positions of the two interacting particles are

noted ri,2 and their momenta pi,2, from which we define as usually the variables of the centre of

mass and of the relative motion:

R =((ri+r2)
r=ri-r2

P
= pi + p2 p = pi p2)

=
hk (3)

The internal state of the particles is described by the quantum number m, which can take on

two values for spin I/2 particles (such as helium three atoms), but more generally any number of

discrete values. The Wigner transforms we shall consider in this section are functions, either of

the individual variables ri,2's and pi,2's, or of the variables defined in (3); in addition, because

the Wigner transformation acts only inside the orbital space of the two particles, the transforms
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remain operators in the space of internal spin states of the two particles; they are therefore de-

scribed by matrices with elements labelled by pain of values of quantum numbers m's (for spin
I/2 particles, 4 x 4 matrices).

We define tile "free entering" and "free outgoing" density operators p($'~~ by:

p(j>-)
=

jQ(+,-)jt ~ jQ(+,-)j (4)

Because the effect of the inverse (Q-~
=

at of any of the Q unitary transformations is to change
the hamiltonian of the system into that of non-iteracting particles, these density operators have a

simpler evolution than the real density operator (a free evolution).
We are interested iri situations where the particles before collision have tile minimum degree

of correlation that remains compatible with the symmetrization postulate; mathematically this

corresponds to the equation:

p($~ =
Ii + e Pex.I p(~(i) ti~ pi~(2) Ii + e Pex.1 (5)

where Pex_ is the exchange operator for the two particles, which acts on both orbital and spin
variables, e is either +I for bosons or -I for fermions, and p~'~~ define the density operators
of each individual particle long before collision (no overlap of the wave packets). These one-

particle operators play an important role in the kinetic theory developed in section 2; we denote

by p((~~(r, p) their Wigner transform (which are stiff operators in the space of one-particle spin

states, or equivalently 2x 2 matrices) and by f)~'~~ (r, p) their trace over spin variables:

p(j~~
=

W-T- (p('~~)
(~)

fl'~~ (r, p)
=

its Pij~~(r, p))

(where W-T- is for Wigner transform). Because of the presence the exchange terms of (5), the

norm of pjj$~ is not simply the product of the integrals over phase space of f)~~ and f)~~.

l.1.2 Semi-flee Wigner ~ansform In a first step, we shall introduce the "semi-free" Wigner
transform where, as in reference [la], the short-range effects of the potential are removed by the

use of Q transformations; each of them associated with one of the two regions of phase space
where the scalar product

r p is either negative (entering region) or positive (outgoing region):

p~ f
(R, r, P, p)

=
Y(~)(p r) W-T- (p($~) + Y(+)(p r) W-T- (p(,~) (7)

In this equation, Y(+) is the Heaviside function and Y(~) h the difference I Y(+) We now study
the properties of this function (operator in the spin-state space); we will see that it still contains

short range effects, due to pure statistics, so that another mathematical operation will be needed

before obtaining the "completely free" Wigner transform. We evaluate the matrix element:

(m, m'(psf.(R,r,P,p)(m", m"') (8a)

as a function of the one-particle Wigner transforms p(/~(r, p) that define the operators p)j(~.
First, the calculation requires that one relates the Wigner transforms of the two operators p(,

and p($~, which are connected by a unitary transformation S:

~(-) ja(-)j~ p ja(-)j ja(-)j ja(+)j p(+) ja(+)j~ ja(-)j
n' n'

=
S p($~ St (8b)
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where the matrix elements of S are given by:

S(k, k')
=

lklslk'l
=

k lo~~~lt lQ~+~l k' (8C)

(we assume throughout this article that the hamiltonian, and therefore the operator S, have no

action on the internal variables of the atoms). From (5), we then obtain:

p~_I (R, r, P, p)
=

Y(~)(p r) W-T- ([I + ePex p(~(l) © p~~(2) [1 + ePex ]) +

+ Y(+)(p r) W-T- (S [I + ePex.] P~~(I) © p(~(2) [1 + ePex.] St

(9)

In this expression, the direct terms are those which contain no exchange operator Pex_, the ex-

change terms those which contain one operator Pex_, and the double exchange terms those which

include one Pex_ on each side of the one-particle operators.

* direct term: except the factor 1/2 introduced in (5) and the fact that the f)~'~~'s are replaced

here by spin operators p(j~~, the calculation is essentially that of reference [la]. It introduces the

same succession of integrals, namely first:

/d~K e~~'~ (10a)

which allows one to express the Wigner transforms of p($'~~ as functions of their matrix elements

(~ ); then, when closure relations are injected in (9) on each side of the one particle operators, the

integrals: /
~~~~

/
~~~~ ~(~+ ~~) ~~ (~- ~~) (~°~)

which acccount for the effect of the unitary transformation S (which does not act in the spin state

space of the atoms); finally, when one comes back from matrix elements of operators to the one-

particle Wigner transforms defined in (6), the integral:

/d~r' e~(~l~~~) ~' (10c)

It is convenient at this point to use the shorter notation of [ld] :

/=
d~K d~k[ d~k[ d~r~ (lla)

12

k+
=

+ (lib)

~z'
=

k[ k[ (llc)

~~~

r(~
=

R +
~

(lid)'

~,

~~,
,

~
+ h 1 ~

l>2

2 2

(~) All transforms are made in the space of the relative motion of the two particles only; this is because

the variables R and P remain simply unchanged, see relations (18) and (19) of [la] ).
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so that the direct term reads:

(~~)~~ /~ ~~~~~~~'~'~ l~lP©11')l~~l l~'lP©l~')till"~lX

X
Y(+)(p r) S(k+, k[) S*(k_, k[) + Y(~)(p r) b(k+ k[) b(k_ k[)j

pile)

where (I') and (2') summarize the variables r' and p' written in (lid).
* double exchange term. The operator Pex_ has two effects: first it changes the matrix elements

of S according to:

(k[SPex_[k')
=

(k[S[-k')
=

S(k,-k') (12)

second, it changes the spin indices m. The double exchange term is thus obtained from (lie) by
first interchanging the indices

m and m', then the indices m" and m'", and finally changing the

sign of the vectors k[,~ inside tile matrix elements of S and S*. Using a parity operation over k[
~

and (I Id), one can easily see that tile double exchange term is also obtained from (11-e) by merely
exchanging p() and pi)

j in other words, it is sufficient to interchange the initial conditions of the

two particles.
In the study of two-particle exchange effects, it is well known that the genuinely new effects

introduced by particle indistinguishability are generally contained in the interference terms which

are linear in the exchange operator; the double exchange terms merely account for the trivial

fact that no distinction is made between the two particles (an effect which also occurs in classical

physics). Indeed, in the present case, this is the interpretation of the double exchange terms;

moreover, because in section 2 we shall asssume that tile two operators p~'~~ are in fact equal,
the double exchange term will become merely equal to the direct term, so that it will not require
a separate study.

* exchange terms: in one of the two terms, m and m' are interchanged with a change of the

sign of k+ (or of k( ); in tile other, the interchange occurs for m" and m"' and the sign change for

the vector k_ (or k[). We now study these exchange terms in more detail, and we show that they
contain a interaction-independent term (pure statistics) which has a limited, microscopic, range.

I.1. 3 Study ofthe exchange terns. In quantum stathtical physics, in the calculation of second

virial corrections, one usually gets the sum of two terms: one due to the interactions (modified
by particle indistinguishability) and one due to pure statistics; the latter acccounts for exchange

effects which occur when the particles are at a distance of the order of the De Bro glie wavelength.
Here we have a similar situation. To see why, we can extract from the exchange terms those that

are due to pure statistics, which can be done by replacing the elements of the S matrix by the

well-known expression in terms of those of the T matrix:

S( k', k)
=

b( k' k) 2i~
( b(k' k) T( k', k (13)

The terms containing two matrix elements of T (more precisely, one of T, one of Tt)
are the

lateral scattering terms; those containing one matrix element of T (or Tt), the forward scattering
terms; finally, those obtained by substituting delta functions for both coefficients S and S* the

non-interacting particle terms due to pure statistics.

Physically, we expect that these terms due to pure statistics play a role only when the two par-
ticles are at a distance which is not much larger than the De Broglie wavelength. Indeed, if we
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study the term where the exchange operator Pex_ acts on the left in (5), we can make the following
substitutions:

~j _~~

k[
=

k- (14a)

which lead to:

~
=

-2k

(14b)
'~~

~~~ kj
= -~z

One then gets:

(2~)~~
/

d~K
/ d~r' e~~'~ e~'~'~'

X

x
lm'lpi)lR +

,
~'~)lm"I lmlpi)(R (,

+ ~'~)lm"'1 (15)

On this expression, one can check that the range of tile variable
r

is limited to a distance which

is comparable to the inverse of the width of the functions giving the momentum dependence of

p(~j~), in other words a microscopic distance. This term is therefore not relevant to the long-
distance properties of the system.

The same has no reason to be true of the forward and lateral scattering terms: they account for

the effect of statistics on the collision cross sections, a physical effect that clearly has long range

consequences on the properties of the system (if a more precise argument is necessary, one can

use the results of calculations below to check this point). The exchange terms due to pure statistics

iri the semi-free Wigner transform have therefore a special short range property, and should tlius

be treated accordingly.

I.1. 4 Free lligner ~an~fiorrn 16 define a free Wigner transform where all short range effects

(potential and statistics) have been discarded, it is therefore natural to remove the pure exchange
terms from the semi-free distribution function, keeping only those which arise from the interac-

tions:

p[(R,
r, P, p)

= ps f
(R, r, P, p) exch.terms (ps_f (R, r, P, p; T

=
0) (16a)

We keep tile same notation as in [Ii
,

so that the letter L for "libre", free in French, is still used; the

second term in the right hand side symbolizes tha exchange terms of tile semi-free transform where

the T matrix, that is the interaction potential, has been put equal to zero. At the end of section

2.1.2, we come back to the physical reasons for removing the pure exchange terms in this way.
This leads to the following definition of the matrix elements of the free distribution function:

(m, m'( p~j(R,
r, P, p) (m", m"')

=

" )(2~)~~ /~ ~~~~ ~~~' ~'~ ((ill(Pi~(I)(m") (m'(Pi)(2~) (lll~") X

X (Y(+)(p r) S(k+, k[) S*(k_, k[) + Y(~)(p r) b(k+ k[ 6(k- k[)j +

+ f
lm'lP()li') lm") lmlP©12')lm"') x

x Y~+~lP r) lS(k+, -ki S*(k-, ki) 61k+ + ki 6(k- ki)I + h-C-)

(16b)
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In this expression, id. symbolizes a double exchange term similar to the direct term, but with the

substitutions which are specified inside the bracket; h-c- is for the second exchange term, which is

hermifian conjugate of the first [because, in thin term, tile operator Pex_ acts on the right side iri

(5), one can show that the same substitutions that transform the first term into the second (double
exchange) also interchange the third and the fourth]; the removal of the pure exchange terms has

been performed with the help of the equality:

(Y~+~(p r)S(k+, -kl )S* (k-, kl) + Y~~~ (p r)b(k+ + kl )b(k- kl)j (17a)

b(k++k[)b(k_ k[)
=

Y(+)(p r) [S(k+, -k[)S*(k_, k[) b(k+ + k[)b(k_ k[)]

The consequence of this operation is tha~ in (16b), the exchange effects now occur only iri the

"outgoing" region where p r is positive.
The next step is to calculate the trace over particle 2 of the free Wigner transform, obtained

by summing (16b) over m'
=

m'" and integrating over d3r2d3p2 The calculation is similar to

that of [12] and, in the exchange terms, introduces the products of one-particle spin operators.

For simplification, from now on we assume that the one-particle operators p~ and p(~ are equal,

and we denote by p(+~ (r, p) their common Wigner transform as well as f+ (r, p) tlieir trace over

spins:

pi~~(i)
"

pi)(rl>pl)
"

pi)(rl>pl)

f+(i)
"

'its (Pi~(rl> pi)) j17b)

We then obtain:

/
d~r~

/
d3p~~its~ jplv(ri,

r~, pi, p~)
= ((2~)-3

/
e<(~ r-~"r')

IS

(~'~~~(P'~) ~(~+ ~~) ~~(~- ~~) ~ ~'~ ~(P '~) ~(~+ ~~) ~(~- ~~)j f+(~') P~~(~')~

~
~'~~~ (P ~) ~(~+ ~~~ ~~ (~- ~~~) ~ ~'~ ~(P ~) ~(~+ ~ ~~ ~(~- ~ ~~)j f+(~') P~~(~~)~

~ f
~'~~~(P ~) ~(~+ ~~~) ~~ (~- ~~) ~(~+ ~ ~~) ~(~- ~~)j P~~(~')

~
P~~(~')~

~ f ~'~~~(P ~) ~(~+ ~~) ~~ (~- ~~~) ~(~+ ~~) ~(~- ~ ~~)) P~~(~') ~ P~~(~')) (~~)

In this expression, ltsa refers to a trace over the spin states of the collision partner; again, we use

the notation of [ld] :

=
d3q d3r d~K d~k[ d~k[ d~r' (19a)~8

and we symbolize by (I') and (2') the one-particle variables:

r
~

r'
~~>~ ~~

2 ,2 (19b)
j

q ~~ki+k2

~>~

~~
2 2

where q is defined by:

q = pi p2 =
2hk (19c)

In (18), it is possible to change the sign of all primed integration variables, k[, k[ and r'; this

operation shows that the second term in the right hand side of the equation (the double exchange
term) is equal to the first, the fourth to the third; see Appendix A for a brief study of the symmetry
properties of this type of expression.
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1.2 EvoLuTioN IN A BINARY coLLisioN. We now wish to calculate the time evolution of the

trace over particle 2 of the free Wigner transform:

PS(I)
#

pS(rl>Pl)
" /d~r2 /d~P2'ifSa (P~if(~l>~2,Pl>P2)) (20)

According to (18) and to the symmetry of exchange of primed variables, this operator is equal to:

ps(1)
=

(2~)~3
/ e'(~~~~"~')

18

(Y~~~(P r) S(k+ k~) S*(k-, k~) + Y~ ~(P r) b(k+ k~) b(k- k~)j f+(2') P/~(l')+

+ f Y~~~(P r) S(k+, -k~) S*(k-, k~) b(k+ + k~) b(k- k~)) P/~(2')
X Pi~~(I))

(21)

16 evaluate the time variation of thin operator, we proceed as in section 2 of reference [la] by a

series of integrations by parts (see also the end of section I.I of [ld] ). We use the relation:

1( +
f 7r>lps(1)

=

/
d3r~

/
d3p~ lts~ D~ ply(ri,

r~, pi, p~)1 (22a)

where:
~

Ilr
=

()
+

~
VR +

~~ rj
=

)
+ £ ~~ Vr, (22b)

ill m m

(tile term in p2 Vr~ vanishes when traced over particle 2, as can be seen by integrating by parts

over d3r2). Then using equations (24) and (25) of [la] to perform the integration over d3r' and,
for each of the terms in the right hand side of (21), a reasoning similar to that of this reference,

we obtain:

()
+

I
.vr>j Ps(i)

=
I«u + ILII (23)

with:

I~ojj =
(2~)~~

/ e'(~~~~'~') ~ b((.r)
18 ill

(lS(k+ kl) S* (k- kl) b(k+ kl b(k- kl)I f+ (2~) P/~(l')+

+ f
S(k+> ~kl) S~ (k- kl) 6(k+ + kl) b(k- kl)I pi~(~'l

X pi~~(1')) (~4)

where § is the unit vector parallel to q (or p). The collision integral I[jj is obtained by inserting,

in expression (21), an operator D[ in front of the Wigner transforms f+'s or p~+~'s; that operator
D) is defined similarly to LT (Eq. (22b)), but in terms of the primed variables written in (19b).

Now, for a system of two particles only, I[jj merely vanishes. This is because the f+'s and p(+~'s

are the Wigner transforms associated with tile free entering density operator p($~, see relation

(5); this operator evolves as if the particles were completely non-interacting, so that the effect of

D[ on tliese functions is zero.
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1.3 CORRECTION TO THE DISTRIBUTION FUNCTION.

1.3. I Real diktdbufion Jkncfion. We can also express the real one-particle distribution func-

tion (~), which we note p§(I),
as a function of the Wigner transforms of the operators p~'~~ ap-

pearing iri (5). It is sufficient for this purpose to apply a unitary transformation Q(+) to p($~, in

order to obtain the real Dvo-particle density operator p, to take the Wigner transform, and to

trace over particle 2. The calculation is very similar to that done in the preceding section, but

here instead of the matrix elements of S we have to use those of Q, defined by:

Q(k,k')
=

(k(Q(+)(k')
= (k[~P[$~) (25)

where the [4t[$~) are the outgoing stationary collision states; see also for example the Appendix
of [la] for the effect of a unitary transform on a Wigner distrlution. We then obtain:

Pl(1)
"

(2~)~~ /~ e~~~ ~~~'~'~ (Q(k+ kl) Q*(k- kl) f+ (I') Pi~(2~)+

+ f Q(k+> -kl) Q* (k- kl) Pi~(2')
X Pi~(1')) (26)

As in the preceding section, we have made use of the symmetry of parity over all primed variables

to condense the direct and double exchange terms into one, as well as the two simple exchange
terms (see Append ix A of thin article).

1.3. 2 Expression of the correction. We define the correction bps(I) as as the difference be-

Dveen the real one-particle distribution and the free distribution ps(I):

bPS(11
"

Pi(]) Ps(1) (27j

It b equal to:

bps(1)
=

(2~)~~
/ e'(~ ~~~'~') X(k+, k-, k[, k[; f r) f+(I') p(+~(2')+

18

+ e
x(k+, k-, -kl, kl; 4 r) + b(k+ + kl) b(k- kl)I p(+~(2~) x p(+~(i')

(28)

where the coefficients X's are defined as in relation (33b) of [ld] :

X(k+, k-
,

kl, kl 4 r)
=

Q(k+, kl Q* (k-, kl)

Y~+~(4 r) S(k+, kl) S* (k-, kl)

Y(~)(# r) b(k+ k[ b(k_ k[ (29)

We notice that the correction to the distribution function contains terms introduced by the inter-

actions (terms in X) for distinguishable particles, modified by particle indistinguhhability (terms
in eX), and terms due to pure statistics which occur even in the absence of the interactions (terms
in

e with two delta functions). This is reminiscent of the Beth-Uhlenbeck formula or, more gen-
erally, of usual virial expansions of the partition function.

(~) Whatwe call here"distribution functions"areactuallystilloperators (ormatrices)intheone-particle
spin state space. For simplicity, we shall not use the words "distribution operators" or "distribution matrices".
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1.3. 3 Evolufion of the real dislribufion fi~ncdon. We now apply the differential operator DT

to the distribution function pi (I). The calculation is not very different from tliat of section 1.2,

but there are a few changes: Heaviside functions occur in (21) but not in (26), which simplifies tile

calculation; on the otlier hand the matrix elements of Q do not conserve energy (in opposition to

those of S), so that the expression q ~z
q' n' appears see expression (29a) of [ld] q' is equal

to p[ p[
=

h(k[ + k[ ). One finds, by the same reasoning as in section 1.2 of that reference:

1) +
~~

.Vr,j pj(I)
=

Iw + 1[ (30)
m

where the "Wigner collision integral" Iw is defined by:

Iw
=

(2~)~~
/ e'(~'~~~"~') l [q ~z

q' ~z']
18 m

(Q(k+, kl) Q* (k-, kl) f+(2') pi+~(i') +e Q(k+, -kl Q*(k-, kl) pi+~(2') x pi+~(i')

(31)

and where the collision integral I[ can be obtained by inserting, in the right hand side of (26),
differential operators D[ in front of the distrlution functions (I( vanishes for a system of two

isolated particles).
An interesting property of the Wigner collision integral can be obtained by remarking that (Ref.

Jdl 'Eq (29b))~

a(k+,~ki) a*(k-, +ki) iq
n

q' nil
=

-) ik+i iv ,ii~[i[iii~[i[ij ik -1 132a)

When inserted into (31), this relation gives to the Wigner integral a form which is very similar to

that of the Snider collision integral [20]
,

but in terms of the free distribution function ps instead

of the one-particle distribution function (and, of course, with spin and statistics in addition); see

Appendix C for more details. Now, when (31) is summed over
d3pi, one can as in paragraphe

1.2.2 of [ld] use closure relations to reconstruct the diagonal element of this commutator in the

position representation (relation (31') of [ld] ), which is simply zero because V is diagonal in this

representation. This gives the relation:

/d3pi Iw(1)
=

0 (32b)

2. Kinetic equation and conservation laws (many particles).

Until now, we have made exact calculations, valid for a system of two particles. We now turn

to a system containing a large number, fit, of particles. Of course, this automatically makes us

leave the ground of exact calculations; we will have to resort to some kind of reasonable Ansatz in

order to introduce a kinetic equation satisfying our particular requirements: it should reproduce
the evolution of the system with a sufficiently accurate treatment of two-body correlations and

lead to correct values of the second virial corrections (throughout this article, we assume that

the system is supposed sufficiently dilute for higher order density corrections to be negligible).
The essence of the Amatz that we shall introduce is a modified version of Boltzmann's molecular

chaos assumption, the major change being that the duration and finite range of collisions are not

ignored. It is based on the use of the free distribution function defined above, and exploits tile fact

that the "free entering" part of the dhtribution function remains exactly factorized, even during
collision, provided it was so long before collision.
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2. I DISTRIBUTION APPEARING IN THE KINETIC EQUATION

2. I. I Defining the one-panicle flee disthbufion Jkncfion Our first task is to define the distri-

bution function (actually an operator acting in tile space of spin states for one particle; see note

(2) in terms of which we shall write the kinetic equation. For a sytem of fit particles, the Wigner
transform of the full density operator is a very complex mathematical object, containing all cor-

relations developed by the system. During its motion inside the gas, every particle constantly

creates around it, and leaves behind it, a "wake" of correlations which play an important physi-
cal role. This irnplies rapid variations of the Wigner transform two-particle density operator as a

function of the relative distance between the two particles (but not as a function of the position
of their centre of mass). On the other hand, this type of variation can not be reproduced by a

simple product of functions f( I X f(2), whatever the definition of f is; see sections 3.2 and 3.3

of reference [21] for a more detailed discussion of thin question. As a consequence, if we intend

at some point of the calculation to write a factorisation of a dhtribution function in terms of a

simpler (one-body-like) dhtribution, that is a dhtribution which depends on a small number of

variables in phase space, we necessarily have to remove the short range two-body correlations by

some mathematical technique. We will now reason in two successive steps: first we shall go from

fit particles to only two; then from two to one, with the help of the results obtained in section I.

Clearly, the complexity of the problem is already strongly reduced if we trace the full distribu-

tion function (that is the density operator) over fit 2 particles. Thin can be done by integration

over the positions and momentums of these particles and trace over their spin variables. If we did

simply that, we would obtain the usual Wigner distribution of the two-particle density operator,
which among other things includes the effects of perturbations from the fit 2 collhion partners

on the two test particles; these perturbations remain present even if the two particles are far apart.
This therefore does not correspond to the notion of free distribution: what we need here is the

distribution function for pair of particles that are far from all other particles. Consequently, as in

section 2 of reference [ld]
,

we proceed in a slightly different way when performing the trace oper-
ation: we assume that the range of integration of the positions of the fit 2 particles is restricted

to some minimum distance from the two test particles (the exact value of this arbitrary dhtance

h presumed to be of little importance for a dilute gas). We shall actually just assume that this

operation has been already been done, with adequate normalization, and that it has provided the

density operator p (or its Wigner transform), which we shall call the "isolated two-particle density
operator", and which can be used as the starting point (~) for calculations of the same type as in

section I.

We now have to reduce the number of variables to that of one particle only. Because of the

useful factorization property of the entering free density operator obtained in (4) under the ac-

tion of the inverse of the unitary transformation Q(+)
one could be tempted to reason in terms

of the one-particle operators p+11, 2) appearing in (5). The difficulty with this idea, however, is

the following: if the entering part reproduces well the Wigner transform of the real density op-
erator in the entering region r p < 0 (almost identically at large distances, that is long before

collision, and more approximately inside the potential), it nevertheless completdly destroys all ef-

fects of collisions in the outgoing region. This is because the inverse of the unitary transformation
Q(+) suppresses all the effects of the interactions (the particles become "transparent") and can

therefore completely change the velocities and the positions of the particles after collision. In

other words, the unitary transformation does too much: it indeed removes nicely the correlations

(~) A well-known property of the real two-particle density operator is that it is factorized in two one-

particle density operators at large distances, possibly symmetrized by exchange as in (5). Because we start

here from a different two-particle density operator, that for isolated particles, this long distance factorization

is changed into a different product, that of free density operators ps.



N°2 A KINEnC EQUAnON FOR QUANTUM GASES 193

inside the potential range, which allows preserving an inital factorization, but it does this at the

expense of strong, unphysical, modifications occurring at large distances inside the outgoing re-

gion of phase space. This is exactly the point where we need the free Wigner transform: while it

also preserves the essential factorization properly of the entering part (even inside the range of

the potential), it uses for the outgoing part another unitary transformation; in this way, one avoids

introducing drastic modifications of the physical properties of the particles long after collision.

As the building block of our kinetic equation, we therefore decide to use the free one-particle
distribution ps, which was defined in relation (20) as the trace over particle two of the free two-

particle distribution function; the latter is in turn defined through (16b) and (5) from the "isolated

Dvo-particle density operator" introduced above in this section.

2.1. 2 closure Ansatz What is now needed is an additional relation in order to obtain a closed

kinetic equation. We shall simply write:

P[+~(i)
=

Ps(1) (33)

In other words, we take for the density operator of any atom long before collision the trace over

the collhion partner of the free distribution for the preceding collision; this amounts to ignoring

any physical effect of the correlations which appear in the outgoing part of the free distribution.

This is a good approximation in a dilute system, for which there is a weak probablilily of multiple
successive collisions between the same partners. Relation (33) is well adapted to a model where

more than Dvo-body interactions are ignored: because the outgoing part of the free transform,
after it appears iri the plane p r =

0 of phase space, propagates completely freely in the region

p r > 0 (no effect of the potential, see Ref. [la] ), what we inject in the entering part of the

next collision is just the long range effects of the collision; we do not include the possibility of the

interaction potential being still active while a particle approaches the next collision partner, which

would be a three-particle interaction.

At this point, it is instructive to come back to the choice we have made in section I for the

definition of the free Wigner transform, more specifically to the removal in section I.I.4 of the

terms due to pure statistics in order to arrive to the "completely free" distribution function. We

can now see better how essential this precaution was. A relation like (33), if ps was derived from

the "semi-free" distribution by a trace over the collision partner as in (20), would actually become

inconsistent: the effects of exchange are added to a product p+'s in (9), and would therefore

already be contained in a definition of ps through this modified version of (20), but then injecting
(33) into (9) would amount to introduce them again: the whole procedure would become a kind

of vicious circle. With our definition of the (completely) free Wigner transform of section I.1.4,
where the pure exchange terms have been removed from the right hand side of (20), ps contains no

pure exchange effect and this redundancy is avoided. For example, for non-interacting particles,
it is easy to check that (33) becomes an exact relation when the pure exchange terms are removed

from p(
as we have done, but not if ps was obtained by trace of the semi-free distribution.

2.2 FORM oF THE KINETIC EQUATION. Now that we have made contact with the calculations

of section I, we can use them as a guide in order to write explicitly a kinetic equation in terms

of the free distribution ps. We remark that equation (23), with the form of the collision integral
that we have given in (24), is in fact rather general: it was obtained in section I without any
particular assumption concerning the evolution of the system. The only step at which the dynamics
of the distribution functions was used in section I is when we noticed that the additional collision

integrals I[J~_ and Ii are zero for a system of Dvo particles only, but we shall not use this particular
property in what follows.
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We therefore write our kinetic equation in the form:

1) +
~~

.Vr,j ps(I)
= I~ou. + bl~on_ (34)

m

where Icon, is simply obtained (~) by substituting (33) into (24):

I~ou_ =
(2~)~3 e'(~'~~~"~') ~ b(§.r)~8

~

1(Slk+, kl S* lk-, kl) blk+ kl) blk- kl)j f(2') Ps( i~)+

+ e
S(k+, -k[ S*(k-, k[) 6(k+ + k[) 6(k-

[)j
ps(2')

x
ps(1') (35)

In tliis equation, f(I) is the trace over spin of the free distribution psi

f(ri,Pi)
=

lltslm(ri,Pi)1 (36)

For the moment, we do not specify the exact form of the correction blcon to the collision integral,
noting only that is will be third order iri density. Actually, it will play little role in the following,
mostly because this dependence in density makes it similar to a three-body collision term, which

is beyond the accuracy that one can expect from our theory.
The Wigner transform p((I of the real one-body density operator will be taken as equal to tile

free distribution ps, Plus a correction bps given, according to (28), by:

bps(1)
=

(2~)~3
/

e~(~ ~~~"~') X(k+, k_, k[, k[; § r) f(I') ps(2')+
18

+ e
X(k+, k-, -k[, k[; r) + b(k+ + k[) b(k_ k[)] ps(2')

x
ps(1') (37)

where the definition of the coefficient X is given in (29). We notice that bps is the sum of three

contributions: that of pure interactions, which is the first term in the right hand side of (37); a

crossed term beDveen interaction and statistics, which is the term in eX; finally a term due to pure
statistics, containing Dvo delta functions, which can be written:

bp)~~ (l)
= e (2~)~~ d~q d3r d~K d~r' e~(~'~+'l'~'/~) ps(2')

x
ps(1')

(38a)

where the p[
~

are given by inserting the relation k[ + k[
= -~z inside (I Id). If, in addition, we

assume that (he spatial dependence of the distribution functions h very slow, or even that the gas
h in a uniform situation, the integrations over d3r and d3r' introduce delta functions of q and ~z,

and the equation simplifies into:

bP)~~~
(i)

= f
h~ lPs(i)l~ (38b)

(~) One should remember that, like ps itself, the collision integrals Icojt and bl~oii_ are in fact operators
acting in the space of one-particle spin states (2x2 matrices if the particles have I/2 spins). For simplicity,
we nevertheless keep the same notation as in reference[ld]
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(h is the Planck constant 2~h); the exchange term is merely proportional to the square of the

matrix descrling tile free distribution. This result fits well with the physical idea of an exchange

term: only particle§ which are in the same cell of phase space (r, p) undergo mutual exchange;
the relative correction to the distribution function is of the order of the number of particles in a

cell of volume h3.

We now calculate the tbne evolution of bps. By reasoning that is directly transposed from that

of sections 1.2 and 1.3.3 (one simply has to take the difference), we obtain the following result:

l~ + h.Vr,j bps(I)
=

Iw -I~ou_ +blx (39a)
m

where IW is obtained from (31) by simply replacing the p(+~'s by ps's, and where blx is defined

by:

blx
=

(2~)~3
/

e~(~'~~~' ~') IX (k+, k-
,

k[, k[ § r) D) f(P) ps(2')
18

+e [X(k+, k-, -k[, k[; § r) + b(k+ + k[) b(k- k[)] D[ pS(2') x ps(I')1
(39b)

(the operator D[ acts on the Dvo distributions which follow it; we recall that it is defined as the

total derivative (22b), but in terms of the primed variables which appear in these distributions).
We therefore have:

At this point it is natural, and we will see below that this leads to exact conservation laws, to set:

6Ico~
=

Six (41)

so that we get the simpler equation:

Now that its value has been specified, we can check that b I~oii. is third order in density (or more), as

mentioned at the be ginning of this section. This can be seen by injecting the kinetic equation (34)
into the right hand side of (39b), which leads to the following implicit definition of this collision

integral:

&I~~
=

-(2~)-3
j~e~(~

r-~"r') x(k+, k-,kj, kj; j r)

(f(I') Icon lPs(2')1 + bI«u. iPs(2')1 +
I«u

if(I')I + bI«u lf(I')lj Ps(2'))

e
(2~)-3 j~ e~(~.r-~' r') jx(k+, k-, -kj, kj; j r) + &(k+ + kj &(k- kj)j

Ps(2') 1«ii.lPs(l~)I
+ bI«ii lPs(i')I + (1') ~# (2')) (43)
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In this expression, Ico~_lps(2~)] for example refers to the evolution of ps(2') under the effect of

collisions, which is obtained from (35), but of course with new notation for the variables (I') and

(2') under the integral [for instance (I") and (2")]; Imu [f( P)] is the trace over spin variables of

Icon ~ps(I')], and a similar convention is used for blcou_. In (43), because the ps's are operators in

the spin space, one should be careful about not changing the order of the operators ps(P) and

ps(2') when writing the contribution of the last part of the exchange term, noted P) #m (2').
As a first approximation, one may ignore the contribution of bI~o~_ in the right hand side of

(43), which then becomes an explicit definition; if we do that, the collision integral blcou_ becomes

exactly third order in density. The next approximation is to inject thin correction into the right
hand side of (43), which then acquires a component fourth order in density, then by iteration

a fifth order component, etc. All these corrections, as already noted, are actually beyond the

accuracy of our calculations, but keeping them will allow us to obtain exact conservation laws

(instead of laws valid up to second order only).
With this definition, and with (37) which gives the real one-particle distribution function pi

from ps, the set of equations that we have introduced is now closed and complete.

2.3 CONSERVATIONLAWS.

The local number density of pa rticles at the point of space r = ri is the sum of the "free particle
density" :

NL(r)
=

f
d~pi its iPs(I)j (44a)

and of the density correction:

bN(r)
=

/ d~pi its (bps(1)) (44b)

We remark that, according to (37), this correction contains contributions of the interactions as

well as of pure statistics. Similarly, we introduce the "free particle current" by:

j~
=

/d3pi ~~ n~tsjps(i)j (45al
m

as well as its correction:

bJ(rl
=

/
d~pi ) ~lis ibPs( i)1 (45b)

Introducing the total number density and currents:

N(r)
=

NL(r) + bN(r)

J(r)
"

JL(r) + bJ(r) (46)

we can integrate equation (42) over d3pi and obtain, using (32b):

(N(r) + V J(r)
=

/
d~pi its (Iw(1))

=
0 (47)

t

which gives the first local conservation law.

The local density of internal angular momentum is treated in a similar way. To simplify, we

assume that the particles are spin I/2 particles, and we define:

fi4 lr)
=

ML (r) + bfi4(r)
=

/ d~Pi tits I« lPs( I) + bps( ill1 (48a)
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where ~ is the Pauli matrix acting in the space of spin states; as N (r), the local density of angular

momentum is the sum of a free part plus a correction. The associated current is, for component
I of thb intemal angular momentum:

J», (r)
=

/
d~Pi ) tits I«I lPs(1) + 6m(1)11 (48b)

(it is also the sum of a free part and a correction, but we do not write it explicitly). Because relation

(32b) is an operatorial relation in spin space, very little is to be changed in the preceding reasoning
in order to obtain the local conservation law for intemal angular momentum:

(fi4i(r) + V J», (r)
=

0 (48C)

For particles with more than two internal states (still uncoupled to the collision hamiltonian), one

would obtain in addition local conservation laws for higher order operators (alignment, etc).
For the study of the local conservation of momentum, we continue to transpose the results of

section 3 of [ld] and write the "free stress tensor" as:

tlL
=

m~~ /
d~Pi iPil @ iPil tits lPs(I)1 (49a)

and its density correction:

box
=

m~
/

d~Pi lPil @ h~il 'Iks lbPs(i)1 (49b)

Now, if we multiply (42) by pi, and sum over d~pi whfie taking the trace, we obtain:

m

(
J(r) + V tlL +

box
=

/
d~Pi Pi tits llw(i)1 (50)

The study of this conservation law leads naturally to the evaluation of the integral in the right
hand side of this equation, which should be put in the form of the divergence of an additional

stress tensor bow. We do not give explicitly the reasoning, because it is very close to that of

reference [ld]
,

see equation (49) of this reference, and we only write the result :

bow
"

(2~)~~
/

d~Pi /~ e~~~ ~~~' ~~ ) lq
'~

q' '~'I lq li~ rl

Q(k+ kl) Q~(k- kl) L
~~ ~~j

I) 'vr,I" fill) f(~l) +

n=0,2,4

+~ ~(~+> ~ki) ~~(~- kit L
~~ j~j

i) '~r,i~ ~f~S IFS(~i)
~

S(21)1)
(5~)

where (I[) and (2[) are used instead of (I') and (2') to emphasize that all space derivatives in

the right hand side are taken at r =
0. Since expression (51) contains a factor [q

~z
q' ~z']

which vanishes "on shell" (when energy is conserved), we can if we wish replace the products of

Q and Q* by coefficients X's, defined in (29); this adds terms in S x S* and b x b which do not

contribute to the result. Because the X's are zero in the absence of interactions, this emphasizes
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the fact that bow is the contribution of the interactions to the pressure tensor it is second order

in density while the other contributions are first order only (~).
When all contributions are summed, we therefore obtain the local momentum conservation

law:
~

J(r) + Vr Q(r)
=

0 (52a)

where the total stress tensor is defined by:

Q
=

QL + box + bow (52b)

As for the local conservation of energy, it will not be studied in great detail here, and we only briefly
repeat the essence of the argument given in section 3.3 of [ld] Because the Wigner collision

integral reduces, in homogeneous situations, to the LL collision integral of reference [12]
,

and

because that integral conserves locally the density of kinetic energy (see Appendix I of [12] ), our

theory predicts that the local variation of kinetic energy will be slow in hydrodynamic situations.

The density of energy will then be defined as the sum of that ofkinetic energy, plus that of potential
energy, which is a function of the square of N(r). This ensures that the density of energy has only

hydrc~dynamical variations.

2.4 SYSTEM AT THERMAL EQUILIBRIUM. We now wish to study the properties of a system at

thermal equilibrium. Nevertheless, we assume that the spin polarization of the atoms is arbitrary;
in other words, we assume that the orbital variables of the atoms have reached equilibrium, but not

the internal spin variables. This metastable situation may occur when the longitudinal relaxation

time of the spins is suf%ciently long, and when a method of spin polarization is available, as in

spin-polarized helium three or hydrogen [2, 3, 4] We will see that, in this case, we can recover by

a different method the polarization dependence of the pressure already obtained in [13]
Because the free distribution function remains unperturbed by quantum virial corrections

[14,21]
,

it is exactly gaussian at equilibrium and one can write (for the sake of simplicity, we

only study the case of spin 1/2 particles, but the generalization is straightforward):

Ps(Pi)
=

fm (Pi) (Ii + «
Ml (S3a)

with:

im (p)
= mm

exp(-flp2/2m) (S3b)

where fl
=

I /kBT (kB is the Boltzmann constant, T the temperature), and where the normaliza-

tion coef%cient am has the following expression in function of the free number density NLI

mm =

(£)3'2 NL (53c)

(~) In order to change the density, let us assume that we multiply the real one-particle density operator,

ps + bps, by a scaling constant z; then, ps changes proportionally to a series of powers of z of the forrn

[1 + ax + flz~ + ], while the correction bps starts only at first order and scales as [-az flz~ ...].
Quantities such as J or fi4 for example are indeed exactly proportional to z, and the same is true of the sum

QL + box (but not of box only), while bow is second order (or more) in z.
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In (53a), the spin polarization is fixed by the length of the vector M; for instance, this length is

zero for an unpolarized gas, one for a full polarbation. We can separate the effects related to the

centre of mass from those related to the relative motion by writing:

fm(I')
X

fm(2') f2m(P~ ~P~)
~ fm/2(~~

~
~~) (~~)

16 obtain the corrections to the number density of particles and to the stress tensor, we now have to

insert these equalities into the definition (37) of bps. The result is the sum of three terms, a direct

term and two exchange terms (interaction and pure statistics). For the direct term, the calculation

is perfectly similar to that of section 4 of reference [ld] and we do not need to reproduce it here;

we get a first contibution to bN in the form:

bN~$~ =
2~'~[lT]~(NL)~L~+~ (55)

where, for convenience, we now denote by L(+) the diJnensionless quantity that was called L in

jid] :

Z(+)
=

/ d~r (r(e~fl'~m'. e~fl'~° (r)
=

/~ dk e~fl~~~~'~ £(21 + 1) b( (k) (56)
o

j
~

In (55), AT is the thermal wavelength of the atoms:

,
h ~ij

~ @@
m

~
2~m

~~~~

The value of SN;[$~ gives the contribution to SN for distinguishable particles. For the crossed

terms between interactions and stathtics, the calculation is also shnilar, but nevertheless with two

differences; the first is that there is a minus sign affecting the variable k[ in X, which corresponds
to the action of the parity operator Pr reversing the relative position of the two particles; the

second difference is that one has to take traces over the spin states, which introduces an extra

factor:

(~lts ii + «
Ml ii + «

Ml
= 11

+M2j (58)

This contribution is therefore equal to:

bN~(.
= e

2~'~ ~/~ [I T)~ (NL)~ Z(~) (S9a)

where Z(-) differs from L(+) by the effect of the parity operator Pr:

L(~)
=

/ d~r(-r(e~fl'~re' e~fl'~°(r)
=

/~ dk e~fl~~~~'~ £(-1)'(21+ 1) S((k) (S9b)
o ~

Finally, the term due to pure statistics may be obtained by integration of (38b) over momentum.

One notices that the square of the equilibrium dhtribution function fm(p) is equal to
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2~~'~am fmj~, so that its norm is 2-~'~am,
or

2-~'2NL(lT/h)~; the contribution of the trace

over spins is the same as in the preceding term, and one obtains:

SN~~t
= e

2~~'2 ~/~ [I T]~ (NL)~ (60)

The total value of bN at equilibrium h then the sum:

bN
= bN~$~ + bN;(( + bN~~t

=

2~'~ [lT]~(NL)~ L(+~
+ e

~/~ L(-~ + j]j (61)

We now have to study the pressure tensor and to evaluate the sum of the three terms in the right
hand side of (52b). The major difference with the calculation of section 4.2 of [ld] is that bps
contains three terms in the right hand side of (37), instead of only one for b f. Moreover, SQW

does not contain the same function X as Sp, but a product of Q's. But we have already seen (end
of Sect. 2.3) that this product of Q's may be replaced by factors X's without affecting the result;
the same argument based on the cancellation of the factor [q ~c

q' ~c'] also permits to add pure
exchange terms with the same delta functions as in (37). Then, because the arguments of section

4.2 of [ld] do not depend on the particular expression of the function X, one can follow the same

reasoning term by term. We just recall the main steps without details.

In the evaluation of SQX, one can distinguish between two contributions, that which is bilinear

in the total momentum P, and that which h bilinear in q (for parity reasons, the crossed terms

vanhh). The calculation of the former is completely similar to that of SN, since the only dil§erence

appears in an integral over the total momentum P, which does not play any role other than being
a normalisation factor in front of the result, One then obtains a contribution which h similar to

(61):

2~'~[lT)~ (NL)~
~~~ L(+~

+ e
~~~[L(-~

+
]j

(62a)
2 2 8

As for the term which is quadratic in q, it exactly cancels the contribution of bow at equilibrium,
as can be seen by considering the term n =

0 of (51), and using an integration by parts over
d3r'

as in reference [ld] Consequently, one finds that (62a) is the only contribution to the correction

SF to the pressure, and we obtain again relation (72) of [ld] :

bP I bN
j62b)

N~kBT 2 NL

Finally, the virial coefficient for the pressure is given by:

82(T)
=

~~
=

-2~'~ [lT)~ N L(+~ + e

~ ~
[L(~~ + (63)

2 N 2

~

8

(one can ignore the difference between NL and N, in the right hand side of this expression). This

equation generalizes to any value of M the result obtained in [13] for M equal to one or zero,

and by a different method.
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2.5 GRADIENT EXPANSION OF THE COLLISION INTEGRAL We nOW aSSUme that the Spatial
dependence of ps h slow, more precisely that it is suf%ciently weak in relative value on any micro-

scopic distance. Thin allows the use of lhylor expansions for the dhtribution functions appearing
inside the collision integral Icofl, written in (35). One obtains in this way several kinds of terms;

first, those which are zero order in gradients, and will be called "local terms" as usual in the con-

text of kinetic theory; then, terms which are first order in gradients and which, as we will see, have

a more complicated structure. We shall not go beyond first order; this is suf%cient for comparing

our results to those obtained by Silin [5]
Before we proceed, it is useful to examine the nature of collision terms in general. When, into

(35), we insert expression (13) to replace the matrix elements of the S matrix by those of T, we

obtain two kinds of terms in Icojj_. The first are linear in T or T*, and correspond to forward

scattering terms; they contain one three-dimensional delta function of vectors and one of vector

length only (conservation of energy in the matrix elements of S). The second include the product
T x T*, and they correspond to the effect of lateral scattering; they contain only one-dimensional

delta functions. It will be convenient to distinguhh between forward and lateral scattering terms

in the calculations. Actually, depending where we whh to put the emphash, we have altogether
three independent ways for classifying the various collision terms: direct or exchange, forward or

lateral scattering, local or non-local.

lJvo remarks will be helpful for the calculations below. The first is that the forward scattering
terms in T and T* are simply hermitian conjugate of each other; see Appendix A, symmetry (e);

it will then be sufficient to calculate the first of these terms. The second remark is that the direct

term of (35) has exactly the same form as the collhion term studied in reference [la] and [16]
one can for example see it by integrating equation (22) of [la] over d3q and replacing the entering
free Wigner transform by the product f(2') ps(I'). We can therefore iJnmediately transpose to

the study of our direct term the results of [16] and write that the direct term of Icojj is the sum of

three contributions:
Itl.

=
IB + G(*. + Gi~ (64)

where IB is the Boltzmann collision integral and G(*. and Gfl.
are the first-order gradient correc-

tions in the absence ofstathtics; their preche expressions can be obtained by making the following
substitutions in equations (23c) and (23d) of [16] :

f(1) ~ Ps(I) f(1') ~ Ps(1') (65)

while the f(2) and f(2') remain unchanged.
We now study the gradient expansion of the whole collhion integral I~ajj

,

with of course more

emphasis on exchange terms since the others are already known from (64).

2.5. I Local temls. The local terms are obtained by replacing
r and r' by zero in the positions

associated with (I') and (2'). They are the sum of the Boltzmann integral IB of (64) with exchange
terms, which we now study, starting with the forward scattering term in T. The only difference

with the reasoning of section 3.2 of [la] is that T(k+, k+I) is replaced by T(k+, -k+k), while the

distribution function becomes of course now a product of spin operators as in (35). The adaptation
of formula (44) of [la] therefore gives a contribution:

-8f(i~~h) TP/A(-I) Ps(ri, Pi q) x ps(ri, Pi) (66a)

which, as that equation, should be integrated over d3 q; the variable made explicit in T is the cosine

of the collision angle: T(-I) refers to the value of T when the values of the momentum before

and after collision are opposed, as usual for exchange terms in collision theory, Now, we have to
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add to (66a) the term is T*, which h hermitian conjugate, so that we obtain the following value

(6).
~8~(I' h) lG/h(~i)l~ pS(~l> pi X pS(~l, pl q) (66b)

Putting these equations together gives the result:

-) ) «i~d.(k) ips(i),ps(2)1+ + iT~i.(k) ips(i),ps(2)1 (66c)

with the definition already iiitroduced in [12] :

~~~'~~~ ~~~'~~~
i~i~ ~~~'~~~ (66d)

where, in (6tk), the brakets with a + mean anticommutators, otherwise commutators.

The lateral scattering terms are treated as in section 3.3 of [la]
,

with very little change: just a

sign in the cosine of the collision angle for T (not for T* ). Formulas (51) and (52) of [la] become

here (with an additional integration over the momentum of collision partner):

e~~~/~ /
d~q

/ d~l' Tp /~(-fi I') T)/~ (fi I')j ps(2')
x

ps(1') (67a)
h

where I') and (2') have a new definition, which is actually nothing but the usual definition for the

Boltzmann integral, where the two particles are located at the same point as particle (1):

~~,2 " ~

q
1' (67b)

P~,2 "P~§+q§

It h convenient to introduce the following (real) "generalized cross sections" (relation (16d) of

(12) )~
~ ~

a(~ (i I') ir(~ (i I')
=

~~ /
Tk (-I k') T( (k k') (67c)

h

We can again make use of symmetry (a) of Appendix A~ which here becomes merely a parity over

k'. Thin interchanges (I') with (2'), while it h easy to see on (67c) that a(~. is even and T(x is odd.

Finally, we get the following result (7) for the local and lateral part of the exchange term of Icoji

/ d~q) / d~k' (al~ (b I') lPs(I'), Ps(2')1+ + iTl~(b k') lPs(I'), Ps(2')1) (67d)

We have now made contact with the calculations of [12]
,

but there is still one last step to make

for obtaining exactly the collhion integral ILL of this reference: for the anticommutators, one has

(~) we could also adapt the reasoning of section 3.2 of [1a] and calculate the value of this term without

invoking the property of Hermitian conjugaison. One should then be careful about the sign change inside

the three dimensional delta function which, for this second exchange term, modifies the exponential under

the integral; consequently, after integrating over
d3z' and d3y', which leads to two determinations of I',

k'
=

+I,
one then finds when summing over

d~z' that the only contribution comes from the opposite values

of t~e two vectors.

we recall that q =
2p

=
2hk, see relation (19c), so that all three unit vectors §, fi and k are simply

equal.
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to use sum rules which are analoguous to those used in the Boltzmann collision integral (rela-
tion (21b) of [12] ), so that one can group in the same integral the forward and lateral scattering

terms. Finally, as in [12]
,

the only forward scattering term which remains unpaired with any lateral

scattering term is the spin-rotation commutator, and we obtain:

Ico~_ =
ILL + (68)

(where the dots symbolize the non-local corrections). See also the recent work of De Haan [16]
for another derivation of the local part of the interaction integral with spin and stathtics.

2. 5. 2 Non-local cornechbns Again, we do not have to worry about direct terms, which are al-

ready known from (64); we just study the exchange terms, and we start with the forward scattering
terms. What we have to do h to adapt the calculations of section 4. I of [la] to the present case. As

in the preceding section, there is only one major difference: each time that a term was associated

in [la] with its complex conjugate, resulting in the introduction of real parts of T
,

here we have to

reverse the order of spin operators which do not necessarily commute. This h analogous to (66a)
and (66b) and results in commutators and anticommutators as in (66c).

The terms in fF in equation (86) of [la] then become (including the term for distinguishable
particles, already contained in (64):

Gi~
=

/
d~q ) fi (fp(k) f(2) UPS(I) + ffi(k) lVPs(I), Ps(2)1+ + iffi(k) lVPs(I), Ps(2)1

-fp(k) Ps(I) Vf(2) ffi(k) lPs(I), UPS(2)1+ iffi(k) lPs(I),
PS(2)1)

(69)

where V is a gradient with respect to the space coordinate, while fF is given in [la] and the real

numbers f) and f) are defined by:

~3m d

jTk(~l)j (7°)ti(k) -if(k)
" VT k

Similarly, we can wdte the terms in AF as:

Ga~
=

/
d3q j jv~, v~~j (Ap(k) ps(i) (v #(# v)) f(2) (71)

+fAi(k) lPs( I)
,

(V fi(fi V))Ps(2)1+ + ifAi(k) lPs( I)
,

(V fi(fi
))Ps(2)1)

where Ap(k) h defined in [la] whfie the real coef%cents A )(k) and AS (k) are given by:

Ai(k) I AS(k)
"

~)/~ Tk(-1) (72)

As for the lateral scattering terms, they are obtained by a procedure which is similar to that of

the preceding section: a parity over
I' is used to introduce real quantities with commutators and

anticommutators. The term in f is (f is the angle of collision, and cos f
=

fi I'):

Gj~~~~ =

/
d3q j / d2i'

" (fk(f) f(2') UPS(I') + ffi(b) WA(I'), Ps(2')1+ + iffi'(f) lVPs(I'), Ps(2')1

-fk(f) Ps(I') Vf(2') ffi(f) lPs(I'), UPS(2')1+ left(«) lPs(I'),
PS(2')1)

(73)
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where fk (f) has the same definition as iii [la]
,

while ii (f) and it (f) are given by:

The
term in

Ak f) h
tained

a
ocedure

from

a~~g~ = / / d2i, (1 - I, . #) x

(k'
#) .

lAk(«) (2')
ps(i')

+
ps(i'),

+ / d2iJ (1 + ii . >) x

(k'-

where Ak(f) is defined iii [la] while A[ (f) and A((f) are the real numbers given by:

A[(b) -iA((b)
=

# t
Tk(-cosb)

~

~ T((cosb)j
(76)

h k CDS

Finally we find :

I~jj
=

ILL + Gj~ + Ga~ + Gj~~~~ + Ga~~~~ + (77)

where the terms G in the right hand side have been written explicitly above, and where the dots

symbolize terms which are at least second order in gradients (we shall not study them here).

2.5.3 Discussion It is interesting at this stage to dhcuss the physical meaning of the various

terms that we have written, and to compare them with those contained in the kinetic equation
given by Silin [5] For a general dhcussion of the limits of applicability of Fermi-like approaches
to the study of quantum gases, see the recent article of hE. Meyerovich [17j

,

in particular the

discussion at the end of section IV Here, we limit ourselves to a comparison between our colli-

sion integral and that of reference [5] Its results are based on a mean field theory where each

quasiparticle moves in the average field created by all the others. The motion is therefore Hamil-

tonian (even if the Hamiltonian is a functional of the distribution function); as a consequence,
when the Schr0dinger (or Von-Neumann) equation of the density operator is written in terms of

the Wigner transform of this operator, one obtains the evolution in the form of a 12 dimensional

integral. Mathematically, this is because no trace operation is made over the collision partner.
Moreover, when the collision integral is expanded in powers of h, which amounts to a gradient

expansion, one obtains a local term which has the form of a commutator, followed by first order

terms which are anticommutators, etc. This is an inherent property of the mean-field Hamiltonian

formalhm: it does not introduce commutators in first order gradient terms. Another mathemati-

cal difference is that Silin does not study the dissipative effects of collisions, but simply adds them

by putting a phenomelogical collision integral I into the right hand side of the kinetic equation.
Generally speaking, the Silin theory makes no attempt to treat the transient shon range corre-

lations which occur during binary collisions; it is therefore natural to have significant differences

between the two formalisms, so that one can hardly expect to recover exactly the same results. Let

us nevenheless compare those particular terms which are shnilar in the two approaches:
* our local commutator in T~j in (66c) corresponds to the local term (the commutator) in

Silin's equation. They are precisely the molecular field terms which give rise to spin waves in
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gases. We refer to [22] for a
discuision of the differences and similarities of the results given by a

mean-field theory, or an atomic collision approach, for the study of molecular field terms.

* the next term in Silin's kinetic equation is a "drift term", which contains a space derivative

of the distribution function and a momentum derivative of the quasi-particle energy. They corre-

spond to the terms in fF and f) in the first line of equation (69). We have obtained them from the

study of retardation effects in collisions; it is natural that they should be associated with changes
in the dhpersion relation of the quasipanicles in the Landau theory.

* the last term in the left hand side of Sfiin's equation is agaiii an anticommutator, containing

space derivative of the energy and momentum derivative of the distribution function; in other

words, it corresponds to a mean-field force acting on the quasiparticles. In our point of view,
these terms have been found as a consequence of the "refraction effects" occurring during atomic

collisions discussed in [la] they have introduced the terms in AF and A) in equation (71). In

the latter equation, we nevertheless note the limitation of spatial derivatives to directions that are

perpendicular to the relative velocity (defined by the unit vector fi); this is, as dhcussed in [la]
,

a direct consequence of energy conservation in atomic collisions. It is clear that, in a mean field-

theory, this conservation law, or recoil effects in atomic collisions, are not taken into account: such

a theory is better adapted to long range forces and many-particle interactions, where the recoil

effects are spread over several collision partners.
We find no correspondence in f for many of our collision terms, for example for the com-

mutators terms in f) in (69). The first of these terms (that in the first line of the equation) can

be described as a direct coupling of spatial vadations (rotations) of the magnetization (but not

of the magnetization itself~ to the magnetization of the collision partner; it would add a correc-

tion to the local commutator in r~j_ in the calculation of spin wave oscillations. The second, on

the second line, is a consequence of the non-local character of the molecular field itself: the spin
rotation effect does not depend only on the spin orientation of the collision partner at the same

point of space, but also on its value in a neighbourhood of this point. Similarly, the terms in fF
in this second line can be seen as a non-local modification of the cross section which occur in the

Boltzmann integral. It would be too long to discuss all collision terms that we have obtained, and

we shall just summarize the differences with the results of a mean-field theory:
(I) commutators are also obtained in the non-local terms,

(it) the lateral scattering terms are treated on the same footing as forward scattering; they
include dissipative terms, but also commutators corresponding to identical spin rotation effects,

as discussed in [22]
(iii) the conservation of energy in binary collision affects the form of the force terms; it re-

stricts the spatial derivatives to directions which are orthogonal to the relative momentum of the

collision.

Conclusion.

The formalism of the free Wigner transform adapts well to the inclusion of spin and statistics,
and leads to results which are in agreement with those already known for a system at equilibrium;
the inconsistency between [12] and [13] is therefore lifted. Writing the collision term of a kinetic

equation in terms of the free Wigner transform instead of the real Wigner transform has advan-

tages: all terms which appear can be expressed in terms of phase shifts only; this is because only
the elements of the S matrix appear in (35). Of course, the "off-shell effects", which involve matrix

elements of the T matrix between wave vectors of different lengths, do not disappear completely:
they have to play a role because, physically, the system always contains particles which are in the
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middle of a collision so that they are sensitive to off-shell effects. Nevenheless, they are only con-

tained in the correction to the distribution function, a property which allows one to study each

problem separately. In general, there might be technical difficulties in calculating the correction

to the distrlution function; fortunately, we have seen in section 14 that this is not the case at

thermal equilibrium, mostly because the entering and the outgoing parts of the free distribution

become identical, so that the discontinuity in the plane r p =
0 vanishes.

When compared to a mean-field theory, our model gives the feeling that a more precise treat-

ment of collisions h obtained, at least for short range binary collisions. Recoil effects are included,
and more symmetry is gained in the treatment of forward and lateral scattering. All terms can be

expressed exactly in terms of the T matrix, with no phenomenological coetficienL Moreover,
bosons and fermions are treated equivalently, as in [12]

Altogether, the present work remains limited to the study of binary effects, for both collisional

effects and degeneracy. This weakness is the price that we have paid for a more detailed treatment

of collisions. The recent work of Jeon and Mullin based on the kinetic equation that they have

introduced in [10b]
,

or approaches based on the Landau kinetic equation [23, 24]
,

do not have

this limitation. A correct second virial correction to the pressure from a Landau-Silin type theory
has been obtained by Miyake et al (see the appendix of [9] ). It would be useful to make a more

detailed term-by-term comparison with the results of these references, with a special emphash on

the various contribution to the virial corrections. Using techniques shnilar to those developed by
the authors of reference [25j

,

it might be posslle to extend the validity of our theory to systems
with a higher degree of degeneracy, but still dfiute in terms of interactions. A recent general

dhcussion of perspectives in the field can be found in reference [24c]
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Appendix A

In thin appendix, we briefly study the symmetries of expressions such as (18), which repeatedly
occur in the righ hand side of the equations of this article. Equations (lib) and (llc), as well as

(19b), give the definitions of the variables inside integral.
(a) Parity over the primed variables: r', k[, k[; thin operation exchanges I') with (2'), the first

(direct) term with the second (double exchange), and the third with the fourth (the two siJnple
exchange terms). This is why expressions like (21), (24)

,

and (26) in section I, or (35) and (37) in

section 2, have been simplified and contain in their fight hand side two terms instead of four.

(fl) General parity over r, k+, k- (and therefore ~c) as well as r', k[ and k[ (and therefore ~c);
because of rotational invariance:

S(k,k')
=

S(-k,-k') (Al)

nothing is changed in the 18 dimension integral, except the sign of
r as well as an exchange of I')

and (2'). This is equivalent to exchanging the numbering of the two particlel.
(7) The combination of the two preceding operations gives the parity over unprimed variables,

with no exchange of (I') and (2').
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(S) Parity over Jc and Jc', which corresponds to:

k+
-

k- k[
-

k[ (A2)

This operation does not exchange (I') and (2'); it changes the first term into its own hermitian

conjugate, the second also, but the third into the hermitian conjugate of the fourth (and con-

versely). This operation can be used to show the hermiticity of the direct term of expression (35)
of the collision integral.

(e) Combining (a) and (S) amounts to a parity of r' and of
Jc ~but not of ~c') with the substitu-

tions:

k+
-

k- kl,~ ~ -kl,1 (A3)

which interchanges (I') and (2'). The operation turns each exchange term into its hermitian con-

jugate. It can be used to show the hermitian character of the exchange term of Icojj_ or of similar

expressions, such as (37) for example.

Appendix B

The real two-panicle distribution function p~s (1, 2) can also be obtained by a calculation which

is similar to that of section 1.3.I; the only difference is that a trace over particle 2 is not necessary.
One gets in this way:

pls(1, 2)
=

(2~)~~ /~ e'~~'~~~"~'~ (Q(k+, kl) Q*(k-,kl) pi+~(i') @ pi+~(2')

+ e
Q(k+, -kl Q*(k-, kl) Pl~. pi+~(2') @ pi+~( i')) (Bi)

where the integration vadables are defined in (I la), while the variables I') and (2') in the distri-

bution function are those of (I ld). The direct term is a tensor product of operators, as emphasized
by the sign @; in the absence of trace over the spin states of the collision partner, one can not as

in (26) or (37) write the exchange term with an ordinary product of operators; this is why the

exchange operator P)~. has to be present in the equation.
This formula is the generalization of equation (825) of reference [16] see also the results

obtained by de Haan in section 5 and equation (5.2) of [I16]

Appendix C

Relation (32a), when inserted into (31), can be used to make the connection between the

Snider collhion integral [20] and our form of Iw. In the 18 dimension integral, the sum over

d~r' with the exponential e-"~' r' changes the Wigner transform of the free entering part into its

matrix elements between (k[ and (k[) (with a coof%cient h~, see for example formula (A6) of

Ref. [la] ); as already noted, the transforms occur only in the space of the relative distance be-

tween the two particles, while the variables associated with the centre of mass remain unchanged.
Then, writing the relation:

IV
liljj lliljj

"

V
Q~~~ lkll klllo~~~l~j (Cl)
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we can introduce two closure relations over the bases (k[ and (k[ ), which absorbs the integrations
over the variables k[ and k[. The integration over

d~n is then used to come back to a Wigner
transform; this introduces a coef%cient (2~h)-~, see for example formula (Al) of [la]

,

which,
with the preceding acef%cient h~, cancels the factor (b~)-~ of equation (31). Finally the sums

over
d~r and d3q introduce a trace over the orbital variables of the collision panner, so that one

obtains:

Iw
=

(T.W.(1t2 (V, Q(+~[l + ePex_] [p~+~(l) @ p~+~(2)] [Q(+~]tj) (C2)

where lt~ implies a trace over orbital and spin variables. Thin relation is very reminiscent of the

Snider collision integral [20]
,

but here the right hand side contains the free entering part of the

two-body density operator (equation (4)), instead of the product of one-body operators; in a more

recent article [14]
,

Snider has also used free distributions in order to extend the validity of the

collision integral.
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