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(2) Université Grenoble 2,
LabSAD, 1251 Avenue centrale
B.P. 47, 38040 Grenoble Cedex 9

(3,∗) Corresponding author.
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Abstract. In this paper, we consider the problem of the estimation of a Weibull tail-coefficient θ.
In particular, we propose a regression model, from which we derive a bias-reduced estimator of θ.
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Key words and phrases. Weibull tail-coefficient, Bias-reduction, least-squares ap-
proach, asymptotic normality.

AMS Subject classifications. 62G05, 62G20, 62G30.

1



1. Introduction.

Let X1, ...,Xn be a sequence of independent and identically distributed random variables
with distribution function F, and let X1,n ≤ ... ≤ Xn,n denote the order statistics associated
to this sample.

In the present paper, we address the problem of estimating the Weibull tail-
coefficient θ > 0 defined as

1 − F(x) = exp(−H(x)) with H−1(x) := inf{t : H(t) ≥ x} = xθ`(x), (1)

where ` is a slowly varying function at infinity satisfying

`(λx)

`(x)
−→ 1, as x→∞, for allλ > 0. (2)

Girard (2004) investigated this estimation problem and proposed the following estima-
tor of θ:

θ̃n =

kn∑

i=1

(
log Xn−i+1,n − log Xn−kn+1,n

)

kn∑

i=1

(
log log

n

i
− log log

n

kn

)
, (3)

where kn is an intermediate sequence, i.e. a sequence such that kn → ∞ and kn/n → 0
as n→∞.

We refer to Beirlant et al. (1995) and Broniatowski (1993) for other propositions and to
Beirlant et al. (2005) for Local Asymptotic Normality (LAN) results. Estimator (3) is
closed in spirit to the Hill estimator (see Hill, 1975) in the case of Pareto-type distri-

butions. In Girard (2004), the asymptotic normality of θ̃n is established under suitable
assumptions. To prove such a result, a second-order condition is required in order to
specify the bias-term. This assumption can be expressed in terms of the slowly varying
function ` as follows:

Assumption (R`(b, ρ)) There exists a constant ρ ≤ 0 and a rate function b satisfying b(x)→ 0
as x→∞, such that for all ε > 0 and 1 < A < ∞, we have

sup
λ∈[1,A]

∣∣∣∣∣
log `(λx)

`(x)

b(x)Kρ(λ)
− 1

∣∣∣∣∣ ≤ ε, for x sufficiently large,

with Kρ(λ) =

∫ λ

1

tρ−1dt.

It can be shown that necessarily |b| is regularly varying with index ρ (see e.g. Geluk
and de Haan, 1987). Moreover, we focus on the case where the convergence (2) is slow,
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and thus when the bias term in θ̃n is large. This situation is described by the following
assumption:

xb(x)→∞ as x→∞. (4)

Let us note that this condition implies ρ ≥ −1. Gamma and Gaussian distributions
fulfill (4), whereas Weibull distributions do not (see Table 1) since, in this case, the bias
term vanishes.
Using this framework, we will establish rigorously in Section 2 the following approxi-
mation for the log-spacings of upper order statistics:

Z j := j log
n

j

(
log Xn− j+1,n − log Xn− j,n

)
≈
(
θ + b

(
log

n

kn

)( log n
j

log n
kn

)ρ)
f j, (5)

for 1 ≤ j ≤ kn, where ( f1, ..., fkn) is a vector of independent and standard exponentially
distributed random variables.

This exponential regression model is similar to the ones proposed by Beirlant et al.
(1999, 2002) and Feuerverger and Hall (1999) in the case of Pareto-type distributions.

Ignoring b
(

log n
kn

)( log n
j

log n
kn

)ρ
in (5) leads to the maximum likelihood estimator

θ̌n =
1

kn

kn∑

j=1

Z j,

which turns out to be an alternative estimator of θ̃n.

The full model (5) allows us to generate bias-corrected estimates θ̂n for θ through
maximum likelihood estimation of θ, b(log n/kn) and ρ for each 1 ≤ kn ≤ n − 1. An
alternative to this approach consists in using a canonical choice for ρ and to estimate
the two other parameters by a least-squares method (LS). For the canonical choice
of ρ, we can use for instance the value -1, which is the same as the one proposed
by Feuerverger and Hall (1999) for the regression model in the case of Pareto-type
distributions. The asymptotic normality of the resulting LS-estimator is established
in Section 3. In order to illustrate the usefulness of the bias-term, we provide a small
simulation study in Section 4. The proofs of our results are postponed to Section 6.

2. Exponential regression model

In this section, we formalize (5). First, remark that

F−1(x) =
[
− log(1 − x)

]θ
`
(
− log(1 − x)

)
.

Since Xn− j+1,n
d
= F−1(Un− j+1,n), 1 ≤ j ≤ kn, where U j,n denotes the j-th order statistic of a
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uniform sample of size n, we have

Xn− j+1,n
d
=

[
− log(1 −Un− j+1,n)

]θ
`
(
− log(1 −Un− j+1,n)

)

which implies that

log Xn− j+1,n
d
= θ log

[
− log(1 −Un− j+1,n)

]
+ log

[
`
(
− log(1 −Un− j+1,n)

)]
.

Moreover, considering the order statistics from an independent standard exponential

sample, En− j+1,n
d
= − log(1 −Un− j+1,n). Therefore

log Xn− j+1,n
d
= θ log(En− j+1,n) + log

[
`(En− j+1,n)

]

=: An( j) + Bn( j).

Our basic result now reads as follows.

Theorem 1 Suppose (1) holds together with (R`(b, ρ)) and (4). Then, if kn → ∞ and
log kn/ log n→ 0, we have

sup
1≤ j≤kn

∣∣∣∣∣ j log
n

j

(
log Xn− j+1,n − log Xn− j,n

)
−
(
θ + b

(
log

n

kn

)( log n
j

log n
kn

)ρ)
f j

∣∣∣∣∣

= oP
(
b
(

log
n

kn

))
, (6)

where ( f1, ..., fkn) is a vector of independent and standard exponentially distributed random
variables.

The proof of this theorem is based on the following two lemmas:

Lemma 1 Suppose (1) holds together with (R`(b, ρ)) and (4). Then, if kn →∞ and kn/n→ 0,
we have

sup
1≤ j≤kn

∣∣∣∣∣ j log
n

j

[
An( j) − An( j + 1)

]
− θ f j

∣∣∣∣∣ = oP
(
b
(

log
n

kn

))
, (7)

and

Lemma 2 Suppose (1) holds together with (R`(b, ρ)). Then, if kn →∞ and log kn/ log n→ 0,
we have

sup
1≤ j≤kn

∣∣∣∣∣ j log
n

j

[
Bn( j) − Bn( j + 1)

]
− b
(

log
n

kn

)( log n
j

log n
kn

)ρ
f j

∣∣∣∣∣ = oP
(
b
(

log
n

kn

))
. (8)

The proof of these lemmas is postponed to Section 6.
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Remark 1 Under the assumptions of Theorem 1, we also have

sup
1≤ j≤kn

∣∣∣∣∣ j log
n

j

(
log Xn− j+1,n − log Xn− j,n

)
−
(
θ + b

(
log

n

kn

)( log n
j

log n
kn

)−1)
f j

∣∣∣∣∣

= oP
(
b
(

log
n

kn

))
,

where ( f1, ..., fkn) is a vector of independent and standard exponentially distributed random
variables.

This implies that one can plug the canonical choice ρ = −1 in the regression model (6)
without perturbing the approximation. From model (6) we can easily deduce the

asymptotic normality of the estimator θ̌n, given in the next theorem:

Theorem 2 Suppose (1) holds together with (R`(b, ρ)) and (4). Then, if kn → ∞,√
knb(log(n/kn))→ λ ∈ R and if λ = 0: log kn/ log n→ 0, we have

√
kn

(
θ̌n − θ − b

(
log

n

kn

) 1

kn

kn∑

j=1

( log n
j

log n
kn

)ρ)
d−→ N(0, θ2).

This model (6) now plays the central role in the remainder of this paper. It allows us to
generate bias-corrected estimates of θ as we will show in the next section.

3. Bias-reduced estimates of θ

In order to reduce the bias of the estimator θ̌n, we can either estimate simultaneously
θ, b(log n/kn) and ρ by a maximum likelihood method or estimate θ and b by a least-
squares approach after substituting a canonical choice for ρ. In fact, this second-order
parameter is difficult to estimate in practice and we can easily check by simulations
that fixing its value does not much influence the result. This problem has already been
discussed in Beirlant et al. (1999, 2002) and Feuerverger and Hall (1999) where similar
observations have been made in the case of Pareto-type distributions. The canonical
choice ρ = −1 is often used although other choices could be motivated performing a
model selection.

In all the sequel, we will estimate θ and b(log n
kn

) by a LS-method after substituting ρ
with the value −1. In that case, we find the following LS-estimators:



θ̂n = Zkn − b̂
(

log n
kn

)
xkn

b̂
(

log
n

kn

)
=

∑kn

j=1(x j − xkn)Z j

∑kn

j=1(x j − xkn)2
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where x j =

(
log n

j

log n
kn

)−1

, xkn =
1
kn

∑kn

j=1 x j and Zkn =
1
kn

∑kn

j=1 Z j.

Our next goal is to establish, under suitable assumptions, the asymptotic normality of

θ̂n. This is done in the following theorem.

Theorem 3 Suppose (1) holds together with (R`(b, ρ)) and (4). Then, if kn is such that

kn →∞,
√

kn

log n
kn

b
(

log
n

kn

)
→ Λ ∈ R and, if Λ = 0,

log2 kn

log n
kn

→ 0 and

√
kn

log n
kn

→∞, (9)

we have √
kn

log n
kn

(
θ̂n − θ

)
d−→ N(0, θ2).

Remark that the rate of convergence of θ̌n is the same as the one of θ̂n in the cases where
both λ and Λ are not equal to 0.

The proof of this theorem is postponed to Section 6.

In order to illustrate the usefulness of the bias-term in the model (6), we will provide a
small simulation study in the next section.

4. A small simulation study

The finite sample performances of the estimators θ̂n, θ̃n and θ̌n are investigated on 5
different distributions: Γ(0.25, 1), Γ(4, 1), N(1.1, 1),W(0.25, 0.25) andW(4, 4). We limit

ourselves to these three estimators, since it is shown in Girard (2004) that θ̃n gives better
results than the other approaches (Beirlant et al., 1995; Broniatowski, 1993). In each case,
N = 100 samples (Xn,i)i=1,...,N of size n = 500 were simulated. On each sample (Xn,i),

the estimates θ̂n,i(kn), θ̃n,i(kn) and θ̌n,i(kn) were computed for kn = 2, . . . , 360. Finally, the
Hill-type plots were built by drawing the points


kn,

1

N

N∑

i=1

θ̂n,i(kn)


 ,

kn,

1

N

N∑

i=1

θ̃n,i(kn)


 and


kn,

1

N

N∑

i=1

θ̌n,i(kn)


 .

We also present the associated MSE (mean square error) plots obtained by plotting the
points

kn,

1

N

N∑

i=1

(
θ̂n,i(kn) − θ

)2

 ,

kn,

1

N

N∑

i=1

(
θ̃n,i(kn) − θ

)2

 , and


kn,

1

N

N∑

i=1

(
θ̌n,i(kn) − θ

)2

 .

The results are presented on figures 1–5. In all the plots, the graphs associated to θ̃n
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and θ̌n are similar, with a slightly better behaviour of θ̌n. The bias corrected estimator

θ̂n always yields a smaller bias than the two previous ones leading to better results for
Gamma and Gaussian distributions (figures 1–3). On Weibull distributions (figures 4–
5), it presents a larger variance.

5. Concluding remarks

In this paper, we introduce a regression model, from which we derive a bias-reduced
estimator for the Weibull tail-coefficient θ. Its asymptotic normality is established and
its efficiency is illustrated in a small simulation study. However, in many cases of
practical interest, the problem of estimating a quantile xpn = F−1(1 − pn), with pn < 1/n,
is much more important. Such a problem has already been studied in Gardes and
Girard (2005) where the following Weissman-type estimator has been introduced

x̃pn = Xn−kn+1,n

( log 1
pn

log n
kn+1

)θ̃n

.

It is, however, desirable to refine x̃pn with the additional information about the slowly
varying function ` that is provided by the LS-estimates for θ and b. To this aim,
condition (R`(b, ρ)) is used to approximate the ratio F−1(1 − pn)/Xn−kn+1,n, noting that

Xn−kn+1,n
d
= F−1(Un−kn+1,n),

with U1,n ≤ ... ≤ Un,n the order statistics of a uniform (0, 1) sample of size n,

xpn

Xn−kn+1,n

d
=

F−1(1 − pn)

F−1(Un−kn+1,n)

d
=

(− log pn)θ

(− log(1 −Un−kn+1,n))θ
`(− log pn)

`(− log(1 −Un−kn+1,n))

d'
( log 1

pn

log n
kn+1

)θ
exp

[
b
(

log
n

kn

)
( log 1

pn

log n
kn+1

)ρ
− 1

ρ

]
.

The last step follows from replacing Ukn+1,n (resp. En−kn+1,n) by (kn+1)/n (resp. log n/(kn+

1)). Hence, we arrive at the following estimator for extreme quantiles

x̂pn = Xn−kn+1,n

( log 1
pn

log n
kn+1

)θ̂n

exp

[
b̂
(

log
n

kn

)
( log 1

pn

log n
kn+1

)ρ̂
− 1

ρ̂

]
.

Here, the LS-estimators of θ and b can be used after substituting ρ by the canonical
choice −1. The study of the asymptotic properties of such an estimator is beyond the
scope of the present paper, but it will lead to further investigations.
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6. Proofs of our results

6.1 Preliminary lemmas

Lemma 3 For all 1 ≤ j ≤ kn such that kn →∞ and kn

n
→ 0, we have

En− j,n

log n
j

= 1 +OP
( 1

log n
kn

)
uniformly in j.

Proof of Lemma 3. According to Rényi’s representation, we have

En− j,n
d
=

n− j+1∑

`=1

fn−`− j+1

` + j − 1

where f j
i.i.d.∼ Exp(1). Since

Var

( n− j+1∑

`=1

fn−`− j+1

` + j − 1

)
= O(1),

denoting

T j,n :=

n− j+1∑

`=1

[
fn−`− j+1

` + j − 1
− E

fn−`− j+1

` + j − 1

]
,

we have, using Kolmogorov’s inequality (see e.g. Shorack and Wellner, 1986, p. 843),
that

P

(
max
1≤ j≤kn

|T j,n| ≥ λ
)
≤ Var(T1,n)

λ2
, λ > 0.

This implies that T j,n = OP(1) uniformly in j. Taking into account the fact that

∣∣∣∣∣
n∑

`= j

1

`
− log

n

j

∣∣∣∣∣ = O(1) uniformly in j, 1 ≤ j ≤ kn,

it is easy to deduce Lemma 3. tu
Let us introduce the Em−function defined by the integral

Em(x) :=

∫ ∞

1

e−xt

tm
dt

for a positive integer m. The asymptotic expansion of this integral is given in the
following lemma.
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Lemma 4 As x→∞, for any fixed positive integers m and p, we have

Em(x) =
e−x

x

{
1 − m

x
+

m(m + 1)

x2
+ ... + (−1)p

m(m + 1)...(m + p − 1)

xp
+O
( 1

xp+1

)}
.

The proof of this lemma is straightforward from Abramowitz and Stegun (1972, p. 227-
233) and the O−term can be obtained by a Taylor expansion with an integral remainder.
Denote

µp :=
1

kn

kn∑

j=1

(
x j − xkn

)p
, p ∈N∗.

The next lemma provides a first order expansion of this Riemman sum.

Lemma 5 If kn →∞, kn

n
→ 0, kn

log n
kn

→∞ and
log2 kn

log n
kn

→ 0, then

µp ∼ Cp

(
log

n

kn

)−p

as n→∞, where Cp =

∫ 1

0

(
log x + 1

)p
dx < ∞.

Proof of Lemma 5. Denote αn =
1

log n/kn
. Then xkn can be rewritten as

xkn =
1

kn
+

(
1

kn

kn−1∑

j=1

fn( j/kn) −
∫ 1

0

fn(x)dx

)
+

∫ 1

0

fn(x)dx =:
1

kn
+ T1 + T2,

where fn(x) = (1 − αn log x)−1, x ∈ [0, 1].

Denoting by f (i)
n , i ∈ {1, 2}, the ith derivative of fn, we infer that

T1 =

kn−1∑

j=1

∫ ( j+1)/kn

j/kn

( j

kn
− t
)

f (1)
n

( j

kn

)
dt +

kn−1∑

j=1

∫ ( j+1)/kn

j/kn

∫ t

j/kn

(x − t) f (2)
n (x)dxdt

+

∫ 1/kn

0

fn(x)dx

=: T3 + T4 + T5.

Remark that

T3 = − 1

2kn

(
1

kn

kn−1∑

j=1

f (1)
n

( j

kn

)
−
∫ 1

1/kn

f (1)
n (t)dt

)
− 1

2kn

∫ 1

1/kn

f (1)
n (t)dt

=: − 1

2kn
T6 + T7.
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Since f (1)
n is positive and decreasing on

[
1
kn
, 1
]

for n sufficiently large, we can prove that



|T4| ≤ 1
2k2

n

∣∣∣∣∣ f
(1)
n

(
1
kn

)
− f (1)

n (1)

∣∣∣∣∣ = o
(

1
kn

)

T5 = O
(

1
kn

)
,

|T6| ≤ 1
kn

∣∣∣∣∣ f
(1)
n

(
1
kn

)
− f (1)

n (1)

∣∣∣∣∣ = o(1)

T7 = − 1
2kn

(
fn(1) − fn

(
1
kn

))
= o
(

1
kn

)

and consequently T1 = O
(

1
kn

)
. Besides, a direct application of Lemma 4 provides

T2 = 1 − αn +O(α2
n).

Therefore xkn = 1 − αn +O
(

1
kn

)
+O(α2

n). Now, we can check that

µp = α
p
n

{
1

kn

kn∑

j=1

(
log
( j

kn

)
+ 1
)p
+ Rn

}

where

Rn =
1

kn

kn−1∑

j=1

{(
log
( j

kn

)
+ 1 + εn

)p
−
(

log
( j

kn

)
+ 1
)p}

with εn = O
(
αn log2 kn

)
+O
(

1
kαn

)
which tends to 0 by assumption.

Since 1
Cp

1
kn

∑kn

j=1

(
log
(

j

kn

)
+ 1
)p
→ 1, in order to conclude the proof of Lemma 5, we only

have to remark that Rn → 0. tu

6.2 Proof of Lemma 1

Remark that

α j,n := j log
n

j

[
An( j) − An( j + 1)

]

= θ j log
n

j
log

En− j+1,n

En− j,n

= θ log
n

j

j(En− j+1,n − En− j,n)

E∗
n− j,n

d
= θ f j

log n
j

E∗
n− j,n

10



where E∗
n− j,n
∈
[
En− j,n; En− j+1,n

]
. Consequently, from Lemma 3,

α j,n = θ f j +OP
( 1

log n
kn

)

= θ f j + oP
(
b
(

log
n

kn

))
, (10)

by the assumption xb(x)→∞ as x→∞with a oP−term which is uniform in j. Lemma 1
is therefore proved. tu

6.3 Proof of Lemma 2

We consider
β j,n := j log

n

j

[
Bn( j) − Bn( j + 1)

]
.

In order to study this term, we will use the notations λ1 j =
En− j+1,n

En−kn+1,n
, λ2 j =

En− j,n

En−kn+1,n
and

ykn = En−kn+1,n, and we rewrite β j,n as

β j,n = j log
n

j

{
log `

(
λ2 j

λ1 j

λ2 j
ykn

)
− log `

(
λ2 j ykn

)}
.

It is clear that 1 ≤ λ1 j

λ2 j

P−→ 1 uniformly in j by Lemma 3 and therefore for n ≥ N0,
λ1 j

λ2 j
∈ [1, 2] in probability. Under our assumption (R`(b, ρ)) on the slowly varying

function, we deduce that

β j,n = j log
n

j

{
b(λ2 jykn)Kρ

(λ1 j

λ2 j

)
(1 + oP(1))

}
.

Now, since λ2 j
P−→ 1 uniformly in j and b(.) is regularly varying with index ρ, b(λ2 jykn) =

λ
ρ

2 j
b(ykn)(1 + oP(1)) with a oP(1)-term uniform in j.

Therefore

β j,n = j log
n

j
b(ykn)

{
λ
ρ

2 j
Kρ
(λ1 j

λ2 j

)
(1 + oP(1))

}
.

Again, uniformly in j,

Kρ
(λ1 j

λ2 j

)
=

(
λ1 j

λ2 j
− 1

)
(1 + oP(1)),

which implies that β j,n can be rewritten as follows:

β j,n = − j log
n

j
b(ykn)(λ2 j − λ1 j)λ

ρ−1

2 j
(1 + oP(1)).
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Therefore, we have

β j,n = f j

( log n
j

log n
kn

)ρ
b(ykn)(1 + oP(1)),

with a oP(1)-term which is uniform in j. This achieves the proof of Lemma 2. tu

Remark that, since
log(n/ j)

log(n/kn)
→ 1 uniformly in j, one also has

β j,n = f j

( log n
j

log n
kn

)−1

b(ykn)(1 + oP(1)),

with a oP(1)-term which is uniform in j, and this proves Remark 1.

6.4 Proof of Theorem 2

From model (6), we infer that

√
kn

(
θ̌n − θ − b

(
log

n

kn

) 1

kn

kn∑

j=1

( log n
j

log n
kn

)ρ)

=

√
kn θ

1

kn

kn∑

j=1

( f j − 1) +
√

knb
(

log
n

kn

) 1

kn

kn∑

j=1

( log n
j

log n
kn

)ρ
( f j − 1) + oP

(√
kn b
(

log
n

kn

))
.

Now, an application of Tchebychev’s inequality gives that

1

kn

kn∑

j=1

( log n
j

log n
kn

)ρ
( f j − 1) = oP(1).

Then, under our assumptions, Theorem 2 follows by an application of the Central Limit
Theorem. tu

6.5 Proof of Theorem 3

From Remark 1, we have
√

kn

log n
kn

(
θ̂n − θ

)
=

√
kn

log n
kn

1

kn

kn∑

j=1

(
θ + b

(
log

n

kn

)
x j

)(
1 −

x j − xkn

µ2
xkn

)
( f j − 1)

+oP

( √
kn

log n
kn

b
(

log
n

kn

))
.

Since we have (9), the oP-term is negligible. The first term can be viewed as a sum
of a weighted mean of independent and identically distributed variables. Now, using

12



Lyapounov’s theorem, we only have to show that

lim
kn→∞

1

s4
kn

kn∑

j=1

EX4
j = 0,

where X j =

(
θ + b

(
log n

kn

)
x j

)(
1 − x j−xkn

µ2
xkn

)
( f j − 1), j = 1, ..., kn and s2

kn
=
∑kn

j=1 VarX j.

We remark that

s2
kn
∼ θ2

kn∑

j=1

(
1 −

x j − xkn

µ2
xkn

)2
as n→∞

and
kn∑

j=1

EX4
j ∼ 9θ4

kn∑

j=1

(
1 −

x j − xkn

µ2
xkn

)4
as n→∞

from which we deduce by direct computations that

1

s4
kn

kn∑

j=1

EX4
j ∼

9

kn

µ4
2 + 6(xkn)2µ3

2
− 4(xkn)3µ2µ3 + (xkn)4µ4

[µ2
2
+ (xkn)2µ2]2

∼ 9C4

kn

by Lemma 5. Our Theorem 3 now follows from the fact that

s2
kn
∼ θ2kn log2(n/kn).

tu
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θ b(x) ρ

GaussianN(µ, σ2) 1/2
1

4

log x

x
−1

Gamma Γ(α , 1, β) 1 (1 − α)
log x

x
−1

WeibullW(α, λ) 1/α 0 −∞

Table 1: Parameters θ, ρ and the function b(x) associated to some usual distributions
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Figure 1: Comparison of estimates θ̂n (× × ×), θ̃n (___) and θ̌n (+ + +) for the Γ(0.25, 1)
distribution. In (a), the straight line is the true value of θ.
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Figure 2: Comparison of estimates θ̂n (×××), θ̃n (___) and θ̌n (+++) for the Γ(4, 1) distribution.
In (a), the straight line is the true value of θ.
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Figure 3: Comparison of estimates θ̂n (× × ×), θ̃n (___) and θ̌n (+ + +) for the N(1.1, 1)
distribution. In (a), the straight line is the true value of θ.
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Figure 4: Comparison of estimates θ̂n (× × ×), θ̃n (___) and θ̌n (+ + +) for theW(0.25, 0.25)
distribution. In (a), the straight line is the true value of θ.
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Figure 5: Comparison of estimates θ̂n (×××), θ̃n (___) and θ̌n (+++) for theW(4, 4) distribution.
In (a), the straight line is the true value of θ.


