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Abstract

The nuclear envelope is composed on the nuclear membranes, nuclear lamina and
nuclear pore complexes. In recent years, mutations in nuclear envelope proteins have
been shown to cause a surprisingly wide array of inherited diseases. While the mutant
proteins are generally expressed in most or all differentiated somatic cells, many
mutations cause fairly tissue-specific disorders. Perhaps the most dramatic case in
mutations in A-type lamins, intermediate filament proteins associated with the inner
nuclear membrane. Different mutations in the same lamin proteins have been shown to
cause striated muscle diseases, partial lipodystrophy syndromes, a peripheral
neuropathy and disorders with features of severe premature aging. In this review, we
summarize fundamental aspects of nuclear envelope structure and function, the
inherited diseases caused by mutations in lamins and other nuclear envelope proteins
and possible pathogenic mechanisms.

Key Words: Nuclear envelope, lamin, muscular dystrophy, cardiomyopathy,
lipodystrophy, peripheral neuropathy, aging, progeria



|. Introduction

The nuclear envelope separates the cytoplasm from the nucleus in eukaryotic cells.
It is composed of the nuclear membranes, nuclear lamina and nuclear pore complexes.
It has become a focus of increasing attention over the past decade, initially because of
the identification of all the components of the nuclear pore complexes and the
elucidation of mechanistic details of nucleocytoplasmic transport. More recently,
research on the nuclear envelope has been headed in new directions due to the
discoveries that mutations in several of its protein components cause a wide range of
inherited diseases. This has resulted in attempts to associate what is known, and even
what is not known, about nuclear envelope function with disease phenotypes. We
summarize here what is known about nuclear envelope structure and function, the
inherited diseases caused by mutations in lamins and other nuclear envelope proteins
and possible pathogenic mechanisms.

[l. Nuclear Envelope Structure, Function and Proteins

The nuclear envelope is composed of the nuclear membranes, nuclear pore
complexes and nuclear lamina (Figure 1). The nuclear membranes are divided into
three morphologically distinct but interconnected domains: outer, inner and pore. The
pore membranes connect the inner and outer nuclear membranes at numerous points
and are associated with the nuclear pore complexes. Pore membranes contain unique
integral proteins, such as gp210 and POM121 in mammals and POM152 in yeast,
which form parts of the nuclear pore complexes (Wozniak et al., 1989,1994; Hallberg et
al., 1993). Nuclear pore complexes are composed of multiple copies of approximately
30 to 50 different proteins (Rout et al., 2000; Cronshaw et al., 2002). The structure of
the pore complex, its protein composition and its role in nucleocytoplasmic transport has
been the topic of several relatively recent reviews (Bednenko et al., 2003; Fahrenkrog
and Aebi, 2003; Suntharalingam and Wente, 2003; Cronshaw and Matunis, 2004; Rabut
et al., 2004).

A. Outer Nuclear Membrane and Perinuclear Space

The outer nuclear membrane contains ribosomes on its outer surface and has long
been assumed to be identical in protein composition to the rough endoplasmic reticulum
membrane, with which it is directly continuous. However, recent data suggest that the
outer nuclear membrane contains integral proteins involved in nuclear positioning that
are not localized to the bulk endoplasmic reticulum (Starr and Han, 2003). Among outer
nuclear membrane proteins involved in nuclear positioning are the products of two
genes, nesprin 1 and 2, that encode polypeptides containing spectrin repeat sequences
(Zhang et al., 2001, 2005; Young and Kothary, 2005). Spectrin repeats were first
identified in large structural proteins, the best characterized being plasma membrane or
cytoplasmic proteins as dystrophin and alpha-actinin. The general structure of spectrin
repeat-containing proteins is a central domain containing the repeats that are competent
for self-association, an amino-terminal actin-binding region composed of two calponin




homology domains and a carboxyl-terminal region containing a distinct functional
domain. The carboxyl-terminal regions function in activities such as a membrane
association, intermediate filament binding and microtubule binding. Nesprins have this
general structure with a transmembrane segment in their carboxyl-terminal regions.
Alternative transcription initiation and RNA splicing generate multiple nesprin isoforms
with molecular masses ranging from approximately 50 kDa (nesprin-alpha2) to 800 kDa
(nuance). These proteins can laterally diffuse in the endoplasmic reticulum membrane,
but while the smaller isoforms are able to reach the inner nuclear membrane, the larger
isoforms are excluded from this membrane, likely due to the restricted size of the lateral
channels of the nuclear pore complex (Soullam and Worman, 1995). However, the
larger nesprin isoforms are enriched in the outer nuclear membrane by interactions of
their luninal carboxyl-terminal domains with perinuclear luminal SUN domains of integral
inner nuclear membrane proteins such as UNC84 and Matefin in Caenorhabditis
elegans and SUN1 and SUN2 in mammals (Malone et al., 1999; Lee et al., 2002,
Hodzic et al., 2004; Fridkin et al., 2004) (Figure 1). An example is the spectrin repeat-
containing protein ANC-1 in Caenorhabditis elegans, which contains a perinuclear
domain that interacts directly or indirectly with the perinuclear SUN domain of UNC84
(Starr and Han, 2002).

In the cytoplasm, different nesprin isoforms are associated via their carboxyl-
terminal transmembrane segments not only with the nucleus but also with other
organelles, in particular the endoplasmic reticulum and mitochondria, and through their
amino-terminal domains with the actin cytoskeleton. These interactions are of
importance during cellular differentiation, for example during myogenesis when
myoblasts fuse into highly organized multinucleated muscle fibers in which precise
spatial organization is a prerequisite for function (Zhang et al., 2005). Outer nuclear
membrane connections to microtubules are also of physiological importance. ZYG-12 in
Caenorhabditis elegans is retained in the outer nuclear membrane by binding to SUN1
in the perinuclear space and to the cytoskeleton by binding dynein and microtubules via
its amino-terminal domain (Malone et al., 2003). As a result, ZYG-12 maintains the
stable attachment of the centrosome to the nucleus, which is necessary for positioning
the nucleus in the cell and pulling the nuclear membrane during prometaphase
(Beaudouin et al.,, 2002; Salina et al., 2002). Similar nuclear membrane and dynein-
microtubule-centrosome connections occur with Klarsicht proteins in Drosophila
photoreceptor nuclei (Patterson et al., 2004), where both these proteins and nuclear
lamins are required for nuclear migration in the developing eye. The SUN binding
domain of Klarsicht and related proteins has been named the KASH (Klarsicht, Anc-1,
Syne-1, homology) domain (Figure 1).

Similar to the outer nuclear membrane, the perinuclear space between the inner and
outer nuclear membranes has been considered identical to the continuous endoplasmic
reticulum lumen. One could imagine, however, that the composition of the perinuclear
space could differ from the bulk endoplasmic reticulum lumen as portions of integral
proteins localized to the inner and pore membranes within this luminal region could bind
to resident non-membrane proteins (Figure 1). Recent data indeed demonstrate that
torsinA, a luminal endoplasmic reticulum protein mutated in DYT1 dystonia (see below),



concentrates in the perinuclear space by binding to the luminal domain of lamina-
associated polypeptide 1 when mutated (Goodchild and Dauer, 2005). Hence, the outer
nuclear membrane and perinuclear space appear to be differentiated subdomains of the
rough endoplasmic reticulum membrane and lumen.

B. Nuclear Lamina

Using electron microscopy, Fawcett (1966) first described the nuclear lamina of
vertebrate cells as a fibrous structure underlying the inner nuclear membrane.
Approximately a decade later, Blobel and colleagues (Aaronson and Blobel, 1975;
Dwyer and Blobel, 1976; Gerace et al., 1978) demonstrated that the interphase
vertebrate lamina is associated with nuclear pore complexes and composed of three
major polypeptides called lamin A, lamin B and lamin C. At around the same time,
Franke and colleagues (Scheer et al., 1976) obtained biochemical and morphological
evidence that a network of fibrils connects the nuclear pore complexes in amphibian
oocytes. Gerace and Blobel (1980) first showed that depolymerization of the nuclear
lamina during mitosis in cycling cells correlated with hyperphosphorylation of its major
protein components. A decade later, specific mitotic phosphorylation sites associated
with lamina disassembly were identified (Heald and McKeon, 1990; Ward and
Kirschner, 1990; Peter et al., 1990). In 1986, Aebi et al. (1986) and Goldman et al.
(1986) provided morphological and biochemical evidence that the nuclear lamina was
an intermediate filament-like structure. That same year, cDNA cloning in the
laboratories of Blobel (Fisher et al., 1986) and Kirschner (McKeon et al., 1986) showed
that nuclear lamins were members of the intermediate filament protein family.

Like their cytoplasmic intermediate filament counterparts, lamins contain head and
tail domains of variable structure and conserved alpha-helical central rod domains.
Members of the intermediate filament protein family polymerize to form filaments
approximately 10 nm in diameter (Herrmann and Aebi, 2004). The basic building block
is the coiled-coiled dimer, which polymerizes to form the higher ordered macromolecular
structures. Although all of the different mammalian lamin proteins interact in the yeast
two-hybrid assay and in vitro (Ye and Worman, 1995; Schirmer and Gerace, 2004), it is
not clear whether heteropolymers or only homopolymers of lamins form filaments in vivo
and, if so, at what stoichiometries. It is also unclear if lamins in mammalian somatic cell
nuclei polymerize between the inner nuclear membrane and chromatin by the same
mechanism as intermediate filament proteins polymerize in the cytoplasm to form 10 nm
diameter filaments.

In contrast to vertebrate cytoplasmic intermediate filament proteins, nuclear lamins
contain an additional 42 amino acids in their rod domains. They also have nuclear
localization signals in their tail domains. Except for lamin C, lamins contain CAAX
boxes and are prenylated, specifically farnesylated, either permanently or transiently at
their carboxyl termini (Beck et al., 1988,1990; Wolda and Glomset, 1988; Farnsworth et
al., 1989; Weber et al., 1989; Sinensky et al., 1994) (Figure 2). The terminal three
amino acids of the CAAX box are cleaved by a protease during the prenylation process
(Figure 2). Lamin A is synthesized as a precursor, prelamin A, which is farnesylated
and then proteolytically processed twice, resulting in the removal of 18 carboxyl-terminal




amino acids (Sinensky et al., 1994) (Figure 2). Lamins also contain an S-type
immunoglobulin fold in their tail domains (Dhe-Paganon et al., 2002; Krimm et al.,
2002).

Lamins have been identified in numerous eukaryotic species, including the model
invertebrate organisms Drosophila melanogaster (Fisher et al., 1982; Lin and Fisher,
1990; Riemer and Weber, 1994) and Caenorhabditis elegans (Riemer et al., 1993).
However, lamin gene orthologues do not appear to be present in budding or fission
yeast genomes. Lamins have also been extensively characterized in Xenopus laevis
(Krohne et al., 1984, 1987; Stick, 1988, 1992, 1994; Doring and Stick, 1990). In
humans, three genes encode nuclear lamins (Biamonti et al., 1992; Lin and Worman,
1993, 1995) (Figure 2). LMNA is localized on chromosome 1921.2 (Wynder et al.,
1996), LMNB1 is on chromosome 5023.3—q31.1 (Wydner et al., 1996) and LMNBZ2 on
chromosome 19p13.3 (Biamonti et al., 1992). Orthologous genes at syntenic
chromosomal locations are present in mice. LMNA encodes the A-type lamins. Lamins
A and C arise by alternative splicing of RNA encoded by LMNA (Fisher et al., 1986;
McKeon et al., 1986; Lin and Worman, 1993) (Figure 2). These proteins are identical
for their first 566 amino acids and vary in their carboxyl terminal tails. Lamin AA10, an
isoform lacking the amino acids encoded by exon 10, is also generated by alternative
RNA splicing (Machiels et al., 1996). Lamins A and C and possibly lamin AA10 are
expressed in most somatic cells but are absent from or expressed in diminished
quantities in early embryos, some hematopoietic cells, some types of neuron, most
undifferentiated epithelial and mesenchymal cells, and several types of cancer (Guilly et
al., 1987, 1990; Lebel et al., 1987; Stewart and Burke, 1987; Worman et al., 1988;
Rober et al., 1989, 1990; Cance et al., 1992). Lamin C2, a germ cell-specific, arises
from alternative splicing of RNA encoded by an alternative first exon of LMNA
(Furukawa et al., 1994; Alsheimer and Benavente, 1996). Two genes encode B-type
lamins. LMNB1 encodes lamin B1, which seems to be expressed in all somatic cells
(Lin and Worman, 1995). LMNBZ2 encodes lamin B2, which is expressed in all or most
somatic cells (Hoger et al., 1990), and lamin B3, a germ cell-specific (Furukawa and
Hotta, 1993).

Since its discovery, the nuclear lamina has been thought to play primarily a structural
role, supporting the nuclear membranes and the nuclear pore complexes. This putative
role was suggested by the filamentous structure of the lamina and the fact that its
protein building blocks are intermediate filament proteins. Mouse cells lacking lamin B1
have severely abnormal nuclear morphology (Vergnes et al., 2004). Although some
vertebrate somatic cells do not express A-type lamins, cells that normally contain them
have abnormalities in nuclear architecture and the mislocalization of integral proteins of
the inner nuclear membrane when they are absent (Sullivan et al., 1999; Harborth et al.,
2001; Muchir et al., 2003; Nikolova ef al., 2004). Such cells also have increased
nuclear deformability, decreased mechanical stiffness and decreased viability when
subjected to mechanical strain (Broers et al., 2004; Lammerding et al., 2004).
Numerous fairly recent studies have also shown that cells expressing mutant A-type
lamins have abnormalities in nuclear morphology (Ostlund et al., 2001; Raharjo et al.,
2001; Vigouroux et al., 2001; Novelli et al., 2002; Bechert et al., 2003; Capanni et al.,



2003; Chen et al., 2003; De Sandre-Giovannoli et al., 2003; Eriksson et al., 2003;
Favreau et al., 2003; Holt et al., 2003; Mounkes et al., 2003; Csoka et al., 2004a;
Goldman et al., 2004; Muchir et al., 2004; Navarro et al., 2004; Reichart et al., 2004,
Scaffidi and Misteli, 2005). In addition, cells with certain lamin A/C mutants have
increased susceptibility to damge from heat shock (Vigouroux et al., 2001). The lamina
also plays a role in anchoring or positioning the nuclear pore complexes, based on their
co-purification in a “pore complex-lamina fraction” (Dwyer and Blobel, 1974; Aaronson
and Blobel, 1975) and its interaction with Nup153 (Smythe et al., 2000; Hawryluk-Gara
et al., 2005). Nuclear lamins may also be involved in the biogenesis or maintenance of
the nuclear envelope membranes, as over-expression of prenylated lamins in cells
induces excessive nuclear membrane formation and growth (Ralle et al., 2004; Prufert
et al., 2004).

Based on its location at the inner nuclear membrane, the lamina has long been
thought to anchor chromatin to the nuclear envelope (Figure 1). The binding of lamins
to whole chromatin, DNA and histones supports such a function (Luderus et al., 1992,
1994; Glass et al., 1993; Taniura et al., 1995; Goldberg et al., 1999; Stierlé et al., 2003).
Lamins have also been implicated in RNA polymerase Il-dependent transcription
(Kumaran et al., 2002; Spann et al., 2002) and control of DNA replication (Meier et al.,
1991; Spann et al., 1997; Moir et al., 2000a). However, the precise spatial coincidence
between the intranuclear pool of A-type lamins and DNA replication sites is a matter of
debate (Kennedy et al., 2000; Dimitrova and Berezney, 2002; Barbie et al., 2004).
Some studies have also implicated lamins in RNA splicing (Jagatheesan et al., 1999;
Kumaran et al., 2002) but recent evidence indicates that formation of nuclear splicing
compartments is independent of lamins A and C (Vecerova et al., 2004). Since lamins
or domains of lamins have not been directly studied in in vitro assays of DNA
replication, transcription and RNA splicing, their roles in these processes may be
indirect, resulting from secondary effects of the pleiotropic functions of lamins. The
discoveries described below that mutations lamins A and C cause several different
tissue-specific diseases have revealed that the lamina likely plays an important role in
the regulation of gene expression, development of certain cell lineages and possibly
other critical cellular processes.

C. Inner Nuclear Membrane

The lamina interacts with integral proteins of the inner nuclear membrane. A
proteomics analysis has suggested that as many as 80 transmembrane proteins are
localized to the inner nuclear membrane in mammalian interphase cells (Schirmer et al.,
2003). To date, only approximately a dozen of these proteins have been characterized
in detail. Most integral proteins of the inner nuclear membrane have amino-terminal
domains that face the nucleoplasm and either single or multiple transmembrane
segments. These proteins are synthesized on the rough endoplasmic reticulum
membrane and diffuse laterally to reach the inner nuclear membrane, where interactions
with the lamina, the chromatin or both retain them (Soullam and Worman, 1993, 1995;
Ellenberg et al., 1997; Ostlund et al., 1999; Wu et al., 2002). Size constraints imposed
by the lateral channels of the nuclear pore complex appear to restrict proteins with




nucleocytoplasmic domains of larger than approximately 60 kDa from reaching the inner
nuclear membrane (Soullam and Worman, 1995; Wu et al., 2002). In addition, energy-
dependent remodeling of pore complexes may be necessary to allow integral proteins to
diffuse through the pore membranes (Ohba et al., 2004).

During mitosis, integral inner nuclear membrane proteins dissociate from the lamina
and chromatin and are dispersed into a residual endoplasmic reticulum; they
subsequently diffuse in this membrane structure back to decondensing chromatin to
reform nuclear envelopes in the daughter cells (Ellenberg et al., 1997; Yang et al.,
1997). Like lamins, inner nuclear membrane proteins are phosphorylated on specific
sites concurrent with mitotic nuclear envelope disassembly (Courvalin et al., 1992;
Foisner and Gerace, 1993; Ellis et al., 1998). Several integral inner nuclear membrane
proteins are targeted to decondensing chromatin early in nuclear reassembly, prior to
the assembly of the lamina, likely via their interactions with chromatin components
(Chaudhary and Courvalin, 1993; Buendia and Courvalin, 1997; Haraguchi et al., 2000).
Specific integral proteins of the inner nuclear that have been shown to cause human
diseases when mutated are discussed in detail below.

lll. Inherited Diseases Caused by Mutations in Nuclear Envelope Proteins

Research on the nuclear envelope took a turn in a new direction in 1994 when the
gene mutated in X-linked Emery-Dreifuss muscular dystrophy was identified (Bione et
al., 1994). Soon after this discovery, the encoded protein, called emerin, was shown to
be an integral inner nuclear membrane protein (Manilal et al., 1996; Nagano et al.,
1996). Then, in 1999, mutations in lamins A and C were reported to cause the
autosomal dominantly inherited form of Emery-Dreifuss muscular dystrophy (Bonne et
al., 1999). Between 1999 and 2004, mutations in A-type lamins were surprisingly
shown to cause several other inherited disorders, some affecting striated muscles but
others with dramatically different phenotypes. In the past few years, disease-causing
mutations have additionally been identified in the protease responsible for prelamin A
processing, two other integral proteins of the inner nuclear membrane and an
endoplasmic reticulum protein that abnormally concentrates in the perinuclear space
when mutated. Despite our gaps in understanding many of their fundamental functions,
much of the current research on the nuclear envelope is focused on how mutations in its
protein components cause inherited diseases.

A. Perinuclear Space: TorsinA

Dystonia refers to a condition characterized by involuntary, sustained muscle
contractions affecting one or more sites of the body. The term torsion describes the
twisting nature of body movements observed in subjects with dystonia. Several types of
primary inherited torsion dystonias can be distinguished based on their clinical features
and genetics (Fahn, 1991). In 1997, Ozelius et al. (1997a, 1997b) mapped the locus for
an early-onset autosomal dominant dystonia to chromosome 9934 and demonstrated
mutation in the DYT1 gene encoding an ATPase they called torsinA. Most cases had a




three base pair deletion in the gene that resulted in loss of one of a pair of glutamate
residues.

TorsinA is normally localized to the lumen of the endoplasmic reticulum. In 2004,
Goodchild and Dauer (2004) and subsequently other groups (Gonzalez-Alegre and
Paulson, 2004; Naismith et al., 2004) reported that the disease-causing torsinA mutant
is concentrated in the perinuclear space as opposed to the bulk endoplasmic reticulum.
Goodchild and Dauer (2005) have recently shown that the disease-causing mutant
binds preferentially to the luminal domain of lamina-associated polypeptide 1, an
integral protein of the inner nuclear membrane (Senior and Gerace, 1988), while wild
type torsinA preferentially binds to a related integral protein of the bulk endoplasmic
reticulum membrane.

It is not known how mislocalization of torsinA to the perinuclear spaces leads to
damage or death of particular types of neurons. One hypothesis is that it interferes with
connections between integral proteins of the inner and outer nuclear membranes that
occur within the perinuclear space (Gerace, 2004). Mislocalized torsinA may interfere
with these protein-protein interactions (see above), altering proper anchoring of the
nucleus to the cytoskeleton. This intriguing hypothesis remains to be tested as a
pathogenic mechanism in DYT1 dystonia.

Mutant torsinA has been studied in vertebrate and invertebrate animal models.
Transgenic mice overexpressing human mutant torsinA in neurons develop abnormal
involuntary dystonic-appearing movements as early as three weeks after birth
(Shashidharan et al., 2005). The animals also have hyperkinesias and rapid bi-
directional circling. Transgenic mutant torsinA is localized to the nuclear envelope,
sometimes in perinuclear inclusions and aggregates (Goodchild and Dauer, 2004;
Shashidharan et al., 2005). In Drosophila, expression of mutant human torsinA elicits
locomotor defects and induces morphological defects at the neuromuscular junctions,
some of which resemble those reported in mutants with defects in transforming growth
factor-beta signaling (Koh et al., 2004). Null mutations in the Caenorhabditis elegans
torsinA homologue ooc-5 result in defects in spindle orientation, nuclear rotation and
polarity in early embryos (Basham and Rose, 1999, 2001). These animal models
suggest possible connections between torsinA, nuclear positioning and possibly
transforming growth factor-beta signaling.

B. Integral Inner Nuclear Membrane Proteins
1. LBR

LBR was first identified as a relatively abundant protein in avian erythrocyte nuclear
envelopes that bound to B-type lamins, hence its being named lamin B receptor
(Worman et al., 1998). Complementary DNA cloning and sequencing has shown that
LBR has a basic, amino-terminal domain of approximately 200 amino acids that faces
the nucleoplasm followed by a mostly hydrophobic domain with eight putative
transmembrane segments (Worman et al., 1990; Ye and Worman, 1994). The human
LBR gene contains 13 protein-coding exons and is located on chromosome 1g42.1
(Schuler et al., 1994; Wydner et al., 1996).
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The nucleoplasmic domain of LBR interacts with B-type lamins (Worman et al.,
1988; Ye and Worman, 1994), orthologues of Drosophila heterochromatin protein 1 (Ye
and Worman, 1996; Ye et al., 1997) and DNA (Ye and Worman, 1994; Duband-Goulet
and Courvalin, 2000). Its hydrophobic domain has a high degree of sequence similarity
to sterol reductases of the endoplasmic reticulum that are conserved in plants, yeast
and animals (Schuler et al., 1994; Holmer et al., 1998). Human LBR has C14-sterol
reductase activity when expressed in yeast (Silve et al., 1998). These finding have led
to the hypothesis that LBR is a “bi-functional” protein involved in nuclear organization
and sterol metabolism. This indeed appears to be the case based on more recent
findings in human disorders.

Pelger-Huét anomaly is an autosomal dominantly inherited condition in which the
normally hyperlobulated nuclei of peripheral blood granulocytes have two as opposed to
the usual five or more lobes that contain coarser and denser heterochromatin (Pelger,
1928; Huét, 1932; Klein et al., 1955). Hoffmann et al. (2002) used positional cloning to
show that mutations in the LBR gene cause this disorder. This has been confirmed in
additional subjects (Best et al., 2003). Homozygosity for Pelger-Huét anomaly has been
associated with skeletal abnormalities and early lethality (Aznar and Vaya, 1981).
Waterham et al. (2003) identified a homozygous LBR mutation in a human fetus that
died in utero with Greenberg/HEM skeletal dysplasia. This is a rare, lethal disorder
characterized by skeletal dysplasia, severe hydrops, short-limbed dwarfism and marked
disorganization of cartilage and bone calcification with a moth-eaten aspect (Greenberg
et al.,, 1988). Waterham et al. (2003) also found elevated levels of cholesta-8,14-dien-3-
beta-ol in cultured skin fibroblasts of their subject, compatible with a deficiency of the
cholesterol biosynthetic enzyme 3-beta-hydroxysterol delta(14)-reductase. Hence, the
human clinical syndromes associated with heterozygous and homozygous mutations in
LBR are consistent with its known associations with chromatin and the lamina and its
sequence similarity to other sterol reductases. It appears that having only one copy of
wild type LBR is compatible with life but leads to a morphological nuclear abnormality
only in a particular type of cell with nuclei of a highly specialized shape. On the other
hand, loss or mutation of both copies of LBR appears to be incompatible with long-term
human life but it is not clear if lethality is due to deficiency in a critical sterol reductase
activity during fetal development or abnormalities in gene expression that occur as a
result of more profound alterations in chromatin organization.

In mice, ichthyosis mutants have mutations in Lbr (Shultz et al., 2003). These mice
have a blood granulocyte phenotype similar to human Pelger-Huét anomaly but
homozygous mutants survive and develop other phenotypic abnormalities, including
alopecia, variable expression of syndactyly and hydrocephalus. Inherited Pelger-Huét
anomaly has also been reported to occur in rabbits, cats and several breeds of dogs but
mutations genetic mutations have not yet been described in these species. Depletion of
the Drosophila orthologue of LBR by RNA interference in embryos and cultured cells
induces no obvious effect on viability or nuclear architecture (Wagner et al., 2004).

2. MAN1
The “MAN antigens” were originally identified as three nuclear envelope proteins
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recognized by autoantibodies from a human subject with a collagen vascular disease
(Paulin-Levasseur et al.,1996). One of the “MAN antigens” was identified as lamina
associated polypeptide 2-beta (Lang et al., 1999). This is an integral protein of the inner
nuclear membrane with a single transmembrane segment and nucleoplasmic amino-
terminal domain that associates with the lamina and chromatin (Foisner and Gerace,
1993). Lin et al. (2000) used expression cloning to show that the largest of the “MAN
antigens,” MAN1, is a protein of approximately 97 kDa, with a nucleoplasmic amino-
terminal domain, two transmembrane segments and a nucleoplasmic carboxyl-terminal
domain encoded by a human gene on chromosome 12q14. Sequence analysis showed
that MAN1 shares a conserved globular motif of approximately 40 to 50 amino acids
near it amino-terminus, termed the LEM domain, with lamina-associated polypeptide 2
and emerin (Lin et al., 2000). It is composed mostly of two large alpha helices and
binds to the nucleoplasmic protein barrier-to-autointegration factor (Cai et al., 2001;
Laguri et al,, 2001; Wolff et al., 2001). The LEM domain has since been found in
several other mammalian integral proteins of the inner nuclear membranes and some
other nuclear proteins (Schirmer et al., 2003).

Recent work from several laboratories has shown that the carboxyl-terminal
domain of mammalian MAN1 and its Xenopus orthologues binds to Smad1, Smad2 and
Smad3 and antagonize signaling by bone morphogenic protein and transforming growth
factor-beta (Osada et al., 2003; Raju et al., 2003; Hellemans et al., 2004; Lin et al.,
2005; Pan et al., 2005). Using positional cloning, Hellemans et al. (2004) showed that
osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis are allelic variants
caused by loss-of-function mutations in MAN1. Fibroblasts from subjects with these
disorders also showed enhanced expression of transforming growth factor-beta
responsive genes (Hellemans et al., 2004). Osteopoikilosis is an autosomal dominant
skeletal dysplasia characterized by multiple areas of hyperostotic bone and can occur
either as an isolated anomaly or in association with other bone and skin abnormalities
(Berlin et al., 1967; Chigira et al., 1991). Buschke-Ollendorff syndrome is the
association of osteopoikilosis with disseminated connective-tissue nevi (Buschke and
Ollendorff, 1928; Giro et al., 1992). Melorheostosis is characterized by hyperostosis of
tubular bone cortex and frequently accompanied by abnormalities of adjacent soft
tissues, such as joint contractures, sclerodermatous skin lesions, muscle atrophy and
hemangiomas (Campbell et al., 1969; Rozencwaig et al., 1997). Enhanced bone
morphogenic protein and transforming growth factor-beta signaling can explain most or
all of the phenotypes in these allelic disorders caused by MAN1 mutations.

The phenotype of Man1 null mice has not yet been reported. Interference with
endogenous MAN1 function in Xenopus laevis using antisense morpholino
oligonucleotides leads to the reduction of anterior neuroectoderm, consistent with
enhanced bone morphogenic protein signaling (Osada et al., 2003). In Caenorhabditis
elegans, RNA interference-mediated removal of approximately 90% of the MAN1
orthologue is lethal in approximately 15% of embryos but those surviving develop into
normal fertile adults (Liu et al., 2003). In the absence of the emerin orthologue,
approximately 90% reduction of MAN1 in Caenorhabditis elegans is lethal to all
embryos by the 100-cell stage, with a phenotype involving repeated cycles of anaphase
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chromosome bridging and cytokinesis (Liu et al., 2003).

3. Emerin

Emery and Dreifuss (1966) described a X-linked form of muscular dystrophy with
early contractures of the elbows, Achilles tendons and postcervical muscles, slowly
progressive muscle wasting and weakness with a humeroperoneal distribution and
cardiomyopathy usually presenting as heart block. Rowland et al. (1979) subsequently
proposed the term Emery-Dreifuss muscular dystrophy for this condition. In 1994, using
positional cloning, Toniolo and associates (Bione et al., 1994) identified a gene on the X
chromosome encoding a 254 amino acid protein they named emerin, in honor of
Professor Emery, that is mutated in X-linked Emery-Dreifuss muscular dystrophy.
Arahata and colleagues (Nagano et al., 1996) and Morris and colleagues (Manilal et al.,
1996) subsequently showed that emerin was a nuclear envelope protein lacking from
most subjects with X-linked Emery-Dreifuss muscular dystrophy. Sequences in the
nucleoplasmic domain of wild type emerin mediate its inner nuclear membrane retention
(Ostlund et al., 1999; Tsuchiya et al., 1999).

Emerin has a nucleoplasmic amino-terminal domain of 220 amino acids, a single
transmembrane segment and a short luminal tail in the perinuclear space. It contains a
LEM domain near its amino-terminus (Lin et al., 2000; Wolff et al., 2001). The
nucleoplasmic domain of emerin binds to lamins A and C (Fairley et al., 1999; Sullivan
et al., 1999; Clements et al., 2000; Sakaki et al., 2001). It also binds to chromatin-
associated proteins such as barrier-to-autointegration factor, via its LEM domain, the
transcription factor germ cell-less (Lee et al., 2001; Holaska et al., 2003) and Bif, a
death promoting transcriptional repressor (Haraguchi et al., 2004). Emerin has also
been implicated in capping the pointed ends of actin filaments in the nucleus (Holaska
et al., 2004). Despite receiving considerable attention, the physiological significance of
these protein-protein interactions and their consequences for disease pathogenesis in
cells lacking emerin remain unclear.

In most cases, skeletal and cardiac muscle from patients with X-linked Emery-
Dreifuss muscular dystrophy shows a deficiency or a complete lack of emerin (Manilal et
al., 1996; Nagano et al., 1996; Ellis et al., 2000; Sewry, 2000; Niebroj-Dobosz et al.,
2003). Analysis of cultured fibroblasts from affected subjects or ectopic expression of
mutant emerin have emphasized the weakening of the interactions between emerin and
A-type lamins (Clements et al., 2000; Ellis et al., 1999; Fairley et al., 1999) that can
provoke an increase in the solubility of all lamin types (Markiewicz et al, 2002).
However, the spatial chromosome organization studied in the cells of an individual with
the X-linked Emery-Dreifuss muscular dystrophy using chromosome painting was not
altered (Boyle et al., 2001). Thus, there has been no emergence of a clear model that
would explain the pathophysiology of X-linked Emery-Dreifuss muscular dystrophy.
Owing to the specific interactions of emerin with A-type lamins, a similar mechanism
may be operating for X-linked and autosomal forms of the disease (see below).

The phenotype of emerin-deficient mice has not yet been reported. In
Caenorhabditis elegans, depletion of the emerin orthologue using RNA interference
leads to no detectable phenotype throughout development (Gruenbaum et al.. 2002).
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Depletion of both the emerin and MAN1 orthologues in Caenorhabditis elegans is lethal
(Liu et al., 2003).

C. A-type Lamins
1. Striated Muscle Diseases

Emery-Dreifuss muscular dystrophy is also inherited as an autosomal dominant
disorder, which is clinically identical to the X-linked form (Fenichel et al., 1982; Miller et
al., 1985; Emery, 1989). Bonne et al. (1999) mapped the locus for autosomal dominant
Emery-Dreifuss muscular dystrophy to chromosome 1q11-g23 and showed that
mutations in LMNA co-segregated with the disease phenotype. These results were the
first identification of mutations in A-type nuclear lamins as a cause of an inherited
disorder. Subsequently, Fatkin et al. (1999) showed that lamin A/C mutations cause a
dilated cardiomyopathy with conduction defect, a condition in which the affected
subjects have heart abnormalities identical to those in subjects with Emery-Dreifuss
muscular dystrophy but minimal or no skeletal muscle involvement. The following year,
Muchir et al. (2000) reported A-type lamin mutations cause autosomal dominant limb
girdle muscular dystrophy type 1B, which also has the same cardiac abnormalities but a
different distribution of skeletal muscle involvement. Analyses of additional families
showed that these allelic variants could occur in different subjects with the same
mutation even within the same family (Bonne et al., 2000; Brodsky et al., 2000). Other
atypical patterns of muscle involvement have also been described, as well as significant
atypical variability in different subjects with the same mutation (Forissier et al., 2003;
Sebillon et al., 2003; Mecuri et al., 2004). Rare LMNA compound heterozygotes have
also been identified in which Emery-Dreifuss muscular dystrophy is inherited in an
autosomal recessive manner (Raffaele Di Barletta ef al., 2000). The emerging picture is
that certain mutations in A-type lamins cause striated muscle disease characterized by
a predominant cardiomyopathy with skeletal muscle either affected in an Emery-
Dreifuss pattern, a limb girdle distribution, an atypical pattern or not at all. From a
clinical perspective, the cardiomyopathy is the life-threatening component of these
disorders caused by LMNA mutations (Sanna et al., 2003; Taylor et al., 2003; van Berlo
et al., 2005).

Mutations in LMNA that cause striated muscle disease are found throughout most of
the coding region for lamins A and C (Figure 3). Most are either amino acids
substitutions or single amino acid deletions. Some splicing mutations have been
identified, as have nonsense mutations early in the coding sequence that result in
essential haploinsufficient for lamins A and C. Based on one report of neonatal lethality
(van Engelen et al., 2005) and the lack of reports of surviving adults, homozygosity for a
single LMNA mutation that causes striated muscle disease appears to be incompatible
with postnatal human life.

The generation of Lmna null mice by Sullivan et al. (1999) has provided an
informative animal model of Emery-Dreifuss muscular dystrophy. Soon after birth,
homozygous Lmna null mice show a reduction in their growth rate and develop a
cardiac and skeletal myopathy bearing a striking resemblance to the human disease.
The cardiac condition is a rapidly progressing dilated cardiomyopathy without
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compensatory hypertrophy (Nikolova et al., 2004). More recently, Arimura et al. (2005)
have generated “knockin” mice carrying a Lmna H222P mutation. At adulthood,
homozygous mice display reduced locomotion activity with a stiff walking posture,
cardiac chamber dilation and hypokinesia with conduction defects. In contrast to
affected humans, however, mice with one normal copy of Lmna are apparently normal.

2. Partial Lipodystrophy

Lipodystrophies are a heterogeneous group of syndromes characterized by a paucity
of adipose tissue often associated with insulin-resistant diabetes mellitus (Reitman et
al., 2000). Dunnigan-type familial partial lipodystrophy, also known as lipoatrophic
diabetes mellitus and Dunnigan-Kbdbberling syndrome, is an autosomal dominant
disorder characterized by peripheral fat loss, excess central adiposity, insulin resistance
and usually type Il diabetes mellitus (Dunnigan et al., 1974; Kobberling et al., 1975;
Jackson et al., 1997). Some affected subjects have generalized hypertrophy of skeletal
muscles (Wildermuth et al. 1996; Vantyghem et al., 2004). In 1998, the gene for
Dunnigan-type partial lipodystrophy was mapped to chromosome 1g21-22 (Jackson et
al., 1998; Peters et al., 1998). This chromosome region contains LMNA and
subsequently mutations in lamins A and C were identified in affected subjects (Cao and
Hegele, 2000; Shackleton et al., 2000; Speckman et al., 2000).

Approximately 90% of the mutations that cause Dunnigan-type partial lipodystrophy
are localized in exon 8 of LMNA, in particular at codons 482 and 486 (Cao and Hegele,
2000; Shackleton et al., 2000; Speckman et al., 2000; Vigouroux et al., 2000; Garg et
al., 2001) (Figure 3). Mutations in exon 11 of LMNA at codons 582 and 584 occur in
some atypical cases of Dunnigan-type partial lipodystrophy (Speckman et al., 2000;
Vigouroux et al., 2000; Garg et al., 2001). A heterozygous amino acid substitution at
residue 133 of the lamin A/C rod domain has also been described in a subject with
generalized lipoatrophy with insulin-resistant diabetes, hypertriglyceridemia, hepatic
steatosis, hypertrophic cardiomyopathy with valvular involvement and disseminated
whitish papules (Caux et al., 2003). Two families with Dunnigan-type partial
lipodystrophy with mutations in the lamin A/C head domain have also been described
that have cardiac conduction system defects and cardiomyopathy (Garg et al., 2002).

Mandibuloacral dysplasia is a rare autosomal recessive disorder, characterized by
postnatal growth retardation, craniofacial anomalies, skeletal malformations, mottled
cutaneous pigmentation and progeroid features (Young et al., 1971; Zina et al., 1981;
Pallotta and Morgese, 1984). In addition, affected individuals have prominent partial
lipodystrophy, insulin resistance and diabetes mellitus (Cutler et al., 1991; Freidenberg
etal, 1992). Fat loss patterns in mandibuloacral dysplasia has been classified as type
A, with loss of subcutaneous fat from the extremities but normal or excess fat in the
neck and truncal regions, and type B, with generalized loss of subcutaneous fat
involving the face, trunk and extremities (Simha and Garg, 2002). Since individuals with
mandibuloacral dysplasia have partial lipodystrophy, Novelli et al., (2002) hypothesized
that the disease may be caused by mutations in the LMNA gene. They analyzed five
consanguineous families and demonstrated linkage to chromosome 1921 and identified
a homozygous missense mutation at amino acid residue 527 of lamin A/C in all of their
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affected subjects (Figure 3). The same mutation was subsequently identified in other
affected subjects with the type A distribution of fat loss (Shen et al., 2003; Simha et al.,
2003).

Although Lmna null mice develop cardiomyopathy and skeletal muscular dystrophy,
they do not develop partial lipodystrophy or insulin resistance (Sullivan et al., 1999;
Cutler et al., 2002). This strongly suggests that partial lipodystrophy does not result
from loss of lamin A or C function. Adipocyte loss in lipodystrophies caused by lamin
A/C mutations may therefore result from dominant interference with a specific lamin-
mediated activity necessary for survival of differentiated adipocytes.

3. Peripheral Neuropathy
Charcot-Marie-Tooth disorders are a group of clinically and genetically

heterogeneous hereditary motor and sensory neuropathies, mainly characterized by
muscle weakness and wasting, and foot deformities and characteristic
electrophysiological and histological changes (Saifi et al., 2003). Type 2 Charcot-Marie-
Tooth disorders are defined by a slight or absent reduction of nerve conduction
velocities, loss of large myelinated fibers and axonal degeneration. De Sandre-
Giovannoli et al. (2002), using homozygosity mapping in inbred Algerian families,
provided evidence for linkage of an autosomal recessive Charcot-Marie-Tooth type 2
disorder to chromosome 1921.2-q21.3. They then showed that all affected subjects in
these families as well as additional subjects in an unrelated family shared a common
homozygous mutation in LMNA that led to an amino acid substitution at residue 298 in
the lamin A/C rod domain (Figure 3). Subsequent analysis of 21 subjects from seven
unrelated Algerian families with the same lamin A/C mutation showed marked variability
of the clinical phenotype (Tazir et al., 2004). There is a wide range of age of onset, from
six to 27 years, with a mean of 14.4 years. Some affected individuals with disease
duration of ten to 15 years had a severe phenotype with distal wasting and weakness of
all four limbs and areflexia associated with involvement of the proximal lower limb
muscles. Others had a more classical Charcot-Marie-Tooth phenotype with mild
functional disability without proximal lower limb involvement after five to 18 years.
Electrophysiological studies showed a median motor nerve conduction velocity in the
normal range in almost all the subjects and nerve biopsies in six patients revealed
severe rarefaction of myelinated fibers and an increased density of demyelinated fibers.

Individuals with Charcot-Marie-Tooth disorders do not typically develop a
primary muscular dystrophy or cardiomyopathy. The specific mutation in the rod
domain that causes this disease might therefore lead to loss of only one specific
function of lamins A and C, which is necessary for proper nerve cell axonal structure or
function. Lmna null mice develop scoliosis/kyphosis and become hunched, which is
evocative of a severe peripheral neuropathy (De Sandre-Giovannoli et al., 2002). This
was confirmed by ultrastructural exploration of sciatic nerves that revealed a reduction
of axon density, axonal enlargement and the presence of nonmyelinated axons, findings
highly similar to those observed in human Charcot-Marie-Tooth type 2 disorders (De
Sandre-Giovannoli et al., 2002). Thus Lmna null mice develop both muscular dystrophy
and axonal neuropathy. Similarly, Walter et al. (2005) recently identified a human
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mutation in the 5' region of LMNA resulting in the loss of 15 nucleotides including the
translation ATG initiator codon that segregates in a previously described family with a
clinical phenotype that shared features of both Emery-Dreifuss muscular dystrophy and
Charcot-Marie-Tooth type 2.

4. Premature Aging Syndromes

Hutchinson-Gilford progeria syndrome is an extremely rare autosomal dominant
disorder characterized by striking features of premature aging. Subjects are usually
apparently normal at birth but develop signs and symptoms by about a year of age.
Prominent signs include the complete or almost complete lack of hair, a
disproportionately large head, “pinched” facial features, generalized fat loss, thin skin,
incomplete extension at the knees and elbows indicating stiffness of joints and a
generally aged appearance (DeBusk, 1972; Brown, 1979). Death from premature
coronary artery disease is frequent and may occur in the first decade of life. Hutchinson
(1886) was apparently the first to write on this disorder and Gilford (1904) later gave the
term progeria to it. DeBusk (1972) may have been the first to call it Hutchinson-Gilford
progeria syndrome.

Eriksson et al. (2003) localized the gene causing Hutchinson-Gilford progeria
syndrome to chromosome 1q by observing two cases of uniparental isodisomy and a
case with a six-megabase paternal interstitial deletion. They identified a de novo point
mutation in exon 11 of LMNA that was identical in 18 of 20 classical cases. The
mutation is a cytosine to thymidine transition resulting in a silent glycine to glycine
change at codon 608 within exon 11 (Figure 3). They identified one additional case with
a guanosine to adenine substitution within the same codon. Simultaneously, De
Sandre-Giovannoli et al. (2003) reported the same cytosine to thymidine transition at
codon 608 in two other subjects with Hutchinson-Gilford progeria syndrome. Cao and
Hegele (2003) confirmed that five cell lines from subjects with a diagnosis of
Hutchinson-Gilford progeria syndrome carried the cytosine to thymidine mutation and
another the guanosine to adenine substitution. D'Apice et al. (2004) further identified
the cytosine to thymidine mutation in three additional families. These LMNA mutations
create an abnormal splice donor site that generates a mRNA encoding a protein with 50
amino acids deleted from its carboxyl-terminal domain. The amino acids deleted from
the mutant protein are unique to prelamin A and not in lamin C. The mutant truncated
protein is predicated to contain the CAAX box (CSIM) at its carboxyl-terminus but lack
the endoproteolytic cleavage site for conversion to prelamin A, hence it likely remain
farnesylated in cells.

Different LMNA mutations have been described in individuals with atypical
progeria syndromes (Figure 3). In four patients with a diagnosis of atypical Werner
syndrome, Chen et al. (2003) noted heterozygosity for missense mutations in LMNA,
specifically at amino acid residues 57, 133 and 140. Csoka et al. (2004a) identified
heterozygous mutations in three subjects with diagnoses of “atypical Hutchinson-Gilford
progeria syndrome,” “severe Werner syndrome” and “Seip syndrome.” Plasilova et al.
(2004) reported a homozygous lamin A/C mutation in a family with individuals
diagnosed with “autosomal recessive Hutchinson-Gilford progeria syndrome,” however;
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these individuals may actually have had mandibuloacral dysplasia. Based on the
available data, it appears that classical Hutchinson-Gilford progeria syndrome is caused
by a cytosine to thymidine, or rarely a guanine to adenine, mutation at codon 608 of
LMNA. These mutations lead to expression of a truncated prelamin A. Less common
atypical conditions with progeroid features may be caused by other lamin A/C
mutations.

A progeroid syndrome has been obtained in “knockin” mice homozygous for a
proline to leucine substitution at amino acid 530 of lamin A/C (Mounkes et al., 2003).
This mutation causes autosomal dominant Emery-Dreifuss muscular dystrophy in
humans (Bonne et al., 1999). Mice are normal at birth but rapidly develop severe
growth retardation, dying within four to five weeks. Similarities to human progeria
include thinning of the skin, hypoplasia and degeneration of cardiac and skeletal
muscle, osteoporosis and abnormal dentition. The mechanism of aging in these mice,
which could be either an accelerated cell differentiation with premature death or
instability to preserve a state of terminal differentiation, has not been elucidated.

5. Other Disorders Caused by Abnormal Prelamin A Processing

As discussed briefly above, prelamin A is processed to lamin A by a series of
proteolyic reactions catalyzed by ZMPSTE?24 that depend upon protein farnesylation.
The steps in prelamin processing are outlined in Figure 4. The first step in prelamin A
processing is the addition of farnesyl to the cysteine of the CAAX box at the carboxyl-
terminus, which is catalyzed by farnesyl transferase (Sinensky et al., 1994). The
second step is the endoproteolytic removal of the last three amino acids by the
ZMPSTE24 metalloproteinase, which recognizes the prenylated prelamin A (Leung et
al., 2001). In B-type lamins, this step is catalyzed by RCE1 (Maske et al., 2003). The
isoprenylated cysteine is then carboxymethylated, a reaction catalyzed by
isoprenylcysteine carboxyl methyltransferase (Sinensky et al., 1994; Bergo et al., 2002).
Finally, ZMPSTE24 catalyzes a second proteolytic reaction “upstream” to the prenylated
cysteine to yield mature lamin A (Kilic et al., 1997; Corrigan et al., 2005). The LMNA
mutation in classical Hutchinson-Gilford progeria syndrome in fact leads to abnormal
processing of prelamin A because the “upstream” ZMPSTE24 endoprotease site is
lacking from the truncated mutant protein.

In a woman with mandibuloacral dysplasia with a type B pattern of fat loss who
did not have a detectable LMNA mutation, Agarwal et al. (2003) identified a compound
heterozygous mutation in the gene encoding ZMPSTE24. Navarro et al. (2004)
examined explored nine fetuses and newborn children with restrictive dermopathy, also
known as tight skin contracture syndrome. This is a rare disorder characterized by
intrauterine growth retardation, tight and rigid skin with erosions, prominent superficial
vasculature, small mouth, small pinched nose, micrognathia, sparse eyelashes and
eyebrows, mineralization defects of the skull, thin dysplastic clavicles, pulmonary
hypoplasia, multiple joint contractures and an early neonatal lethal course. They found
that two had a heterozygous splicing mutation in LMNA, resulting in expression of a
truncated prelamin A protein lacking amino acids also absent from the truncated protein
in Hutchinson-Gilford progeria syndrome. The other seven had a heterozygous

18



insertion introducing a premature termination codon in ZMPSTE24. Therefore, it
appears that mutations in both A-type lamins and ZMPSTE24 protease cause diseases
with phenotypic overlap, such as mandibuloacral dysplasia, Hutchinson-Gilford progeria
syndrome and restrictive dermopathy. A neonatal “tight skin” phenotype has been
recently reported in a subject with classical Hutchinson-Gilford progeria syndrome and
the cytosine to thymidine mutation at codon 608 of LMNA (Sevenants et al., 2005).
Disruption of Zmpste24 in mice causes lack of processing or prelamin A to
lamin A (Leung et al., 2001; Bergo et al., 2002; Pendas et al., 2002). These mice have
been reported to have several abnormalities, including retarded growth, alopecia,
micrognathia, dental abnormalities, osteolytic lesions in bones and osteoporosis. Some
of these phenotypic features are similar to those in human subjects with Hutchinson-
Gilford progeria syndrome and mandibuloacral dysplasia. Heterozygosity for Lmna-
deficiency ameliorates the abnormal phenotype of these mice (Fong et al., 2004).

V. Pathogenic Mechanisms of Diseases Caused by Mutations in A-type Lamins

One of the most challenging issues facing investigators who study the nuclear
envelope is how mutations in A-type lamins result in such a wide range of clinical
conditions. Despite major advances in identifying mutations in these diseases, little has
been achieved in understanding pathogenic mechanisms. However, information gained
from the sites of these mutations in the lamin A and lamin C molecules and the cellular
defects observed in cells expressing mutant A-type lamins have lead to the
development of several hypothetical models of pathogenesis that are the focus of
current experimental testing.

A. Location of Mutations in A-type Lamins and Effects on Protein Function

Examination of the locations of disease-causing mutations in the lamin A and
lamin C molecules has provided some clues as to why different mutations result in
different disease phenotypes. In contrast to individuals with cardiac and skeletal muscle
diseases in whom mutations in LMNA are located throughout 11 of the 12 exons that
encode lamins A and C, most individuals with Dunnigan-type partial lipodystrophy have
mutations in exon 8 of LMNA, in particular at amino acids 482 and 486 (Figure 3).
These amino acids are part of an immunoglobulin-like fold in the carboxyl-terminal tails
of lamins A and C. Immunoglobulin folds frequently function in interactions between
proteins and in interactions between proteins and nucleic acids.

Information obtained from solving the three-dimensional structure the lamin
immunoglobulin-like fold provides insights into to how different mutations in this domain
that cause striated muscle disease and those that cause partial lipodystrophy may
produce different alterations in protein function (Dhe-Paganon et al., 2002; Krimm et al.,
2002). Most of the mutations in the immunoglobulin-like fold in lamins A and C known to
cause striated muscle disease occur in conserved hydrophobic residues or in buried
conserved polar residues. Thus, mutations that cause muscle diseases appear to
destabilize the overall structure of the immunoglobulin-like fold. Striated muscle
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diseases also result from mutations in the rod domain of lamin A or C and from all of the
frameshift and translation termination mutations described so far. The common effect of
mutations in muscle pathology might therefore be destabilization of the entire lamin A
and/or lamin C molecule or lamin dimers. This could lead to a global loss of protein
function and possibly a destabilization of lamin filaments, consistent with structural or
mechanical abnormalities as the primary cellular defect in disease. On the other hand,
mutations in the immunoglobulin-like fold that cause Dunnigan-type partial lipodystrophy
occur three positions that are close in space and are solvent accessible. These
mutations lead to a reduction in the conserved, positively charged character of a surface
site defined by these residues. This change in surface charge would not be expected to
disrupt protein structure markedly but might perturb the binding of a specific partner,
such as a transcription factor, DNA or other chromatin component necessary for
adipocyte-specific gene expression.

The information gained from the elegant structural studies of the lamin
immunoglobulin-like fold cannot however explain the differences between all mutations
reported to cause striated muscle diseases and lipodystrophy (Figure 3). A few of the
mutations causing atypical cases of Dunnigan-type partial lipodystrophy are located in a
lamin-A specific region, outside of the immunoglobulin-like fold and near the carboxyl-
terminus of the protein at amino acids 582 and 584. In addition, two mutations have
been reported to cause both partial lipodystrophy and cardiac abnormalities in the same
subjects and are located near the amino-terminus of the rod domain of lamins A and C
(Garg et al., 2002). ltis possible that these regions of lamins A and C interact in some
way with the immunoglobulin-like fold but this has not been demonstrated. The
mutation causing mandibuloacral dysplasia is also located within the immunoglobulin-
like fold at amino acid 527 and changes an arginine to a histidine. Two copies of this
mutant allele must be inherited for the disease to occur. Intriguingly, inheriting one
mutant LMNA allele in which the same arginine is changed to a proline leads to striated
muscle disease.

The heterozygous deletions that occur at the carboxyl-terminal end of prelamin A in
subjects with Hutchinson-Gilford progeria and restrictive dermopathy could have a
double effect on lamin A function. First could be the loss of an amino acid stretch that
may have specific interactions. Second, the deletions include the cleavage site for
ZMPSTE24 endoprotease that normally trims the several amino acids from prelamin A
to generate mature lamin A (Figure 4). Thus, the truncated prelamin A should retain at
its carboxyl-terminus a farnesylated and carboxymethylated cysteine residue. The
same carboxymethylated and farnesylated cysteine would be retained in wild type
prelamin A in subjects with inactivating mutations in ZMPSTE24 endoprotease and
normal LMNA alleles (Agarwal et al., 2003; Navarro et al., 2004). Ralle et al. (2004) and
Prufert et al. (2004) have shown that the modified CAAX box in B-type lamins is
responsible for nuclear membrane growth. Therefore, one can imagine that the
abnormal persistence of a similarly modified cysteine residue in truncated or wild type
prelamin A could confer to the unprocessed protein a membrane proliferation function.
In support of this hypothesis, the nuclear perimeter in cultured cells from subjects with
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Hutchinson-Gilford progeria syndrome has a two-fold increase compared to controls,
suggesting that excessive membrane biogenesis occurs (Goldman et al., 2004).

Toxicity of posttranslationally modified but unprocessed prelamin A and truncated
prelamin A is strongly suggested by recent studies. Long et al. (2004) have shown that
the phenotype in Zmpste24 null mice with a normal content in prelamin A is not
observed when these mice are crossed to Lmna +/- mice, reducing the prelamin A
content by half. The latter mice are apparently normal, suggesting that prelamin A is
toxic and that reducing its level provides protection from disease. A similar effect has
been observed in cultured HelLa cells (Gruber et al., 2005). Using RNA interference,
these investigators showed that dramatic changes in nuclear morphology and
premature cell death induced by knocking down ZMPSTE24 expression was prevented
by knockdown of prelamin A 24 hours earlier. These data confirm that unprocessed
prelamin A is a cellular toxin. Using fibroblasts from subjects with Hutchinson-Gilford
progeria syndrome, Scaffidi and Misteli (2005) have recently shown that introduction of
wild type lamin A protein does not rescue cellular morphological abnormalities.
However, upon correction of the aberrant splicing event using a modified oligonucleotide
targeted to the activated cryptic splice site, fibroblasts assumed a normal nuclear
morphology and proper expression of several misregulated genes was established.
The results of these studies strongly suggest that unprocessed prelamin A and the
truncated prelamin A in classical Hutchinson-Gilford progeria syndrome are cellular
poisons and identify a possible target for therapeutic intervention.

B. Cellular Defects Resulting from A-type Lamin Mutations

Although various abnormalities in nuclear structure in tissues of individuals with
mutations in A-type lamins have been reported, their relationship to pathophysiology is
unclear. Skeletal muscle from individuals with Emery-Dreifuss muscular dystrophy
shows an increase in internal nuclei, with fewer nuclei at the normal location near the
periphery of the fibers (Brown et al., 2001; Sewry et al., 2001). However, this is a
pathological feature that is common to most muscular dystrophies. There can be an
abnormal distribution of heterochromatin in cells from individuals with Emery—Dreifuss
muscular dystrophy and lamin A and C mutations but it is not clear whether it is a
primary or secondary effect (Sabatelli et al., 2001; Sewry et al., 2001; Fidzianska and
Hausmanowa-Petrusewicz, 2003). Nerve biopsies from individuals with Charcot—
Marie—Tooth disorder type 2 caused by LMNA mutation show a substantial loss of large
myelinated fibers and abnormally myelinated axons but their nuclei appear normal (De
Sandre-Giovannoli et al., 2002). Studies of affected adipocytes from individuals with
Dunnigan-type partial lipodystrophy or mandibuloacral dysplasia have not been
published.

Cultured fibroblasts from subjects with mutations in A-type lamins have proven to be
useful tools for analyzing morphological disorders induced by the mutations (Novelli et
al., 2002; Bechert et al., 2003; Capanni et al., 2003; Chen et al., 2003; De Sandre-
Giovannoli et al., 2003; Eriksson et al., 2003; Favreau et al., 2003; Holt et al., 2003;
Mounkes et al., 2003; Csoka et al., 2004a; Goldman et al., 2004; Muchir et al., 2004;
Navarro et al., 2004; Reichart et al., 2004, Scaffidi and Misteli, 2005). Nuclear defects
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in patients affected with diseases other than the progeroid syndromes mainly consist of
nuclear herniations that contain A-type lamins and emerin but have a diminished
content in nuclear pore complexes and other inner nuclear membrane proteins. Another
abnormality that occurs in nuclei of overall normal shape is a polar defect in B-type
lamins and other proteins in an area where the lamina network is irregular, sometimes
with a honeycomb aspect. Intranuclear aggregates of lamin A have also been
observed, most commonly when mutations are in the lamin A/C rod domain. Nuclear
abnormalities are generally obsereved in only a minority of fibroblasts from subjects with
LMNA mutations and the percentage of affected cells depends upon culture conditions
and passage number (Vigouroux et al., 2001; Muchir et al., 2004). Importantly, there is
no clear association of a specific cellular phenotype with a particular mutation or with a
particular disease (Muchir et al., 2004). Nonetheless, these morphological alterations
suggest that the mechanical properties of the nuclear lamina are altered. This has been
confirmed by the extensive deformations observed in nuclei when these cells were
submitted to heat shock and by the easier chemical extraction of some of their protein
components (Vigouroux et al., 2001).

Nuclear abnormalities observed in cultured fibroblasts from subjects with
Hutchinson-Gilford progeria syndrome or restrictive dermopathy are sometimes similar
to those in cells from subjects with other diseases caused by different lamin A/C
mutations (Eriksson et al., 2003; De Sandre-Giovannoli et al., 2003; Goldman et al.,
2004, Navarro et al., 2004; Scaffidi and Misteli, 2005). However, some abnormalities
appear specific for these diseases, such as a high degree of nuclear lobulation, a large
increase in the nuclear perimeter, a thickening of the lamina, a loss of peripheral
heterochromatin and clustering of nuclear pore complexes (Goldman et al., 2004).
Expression of the truncated prelamin in classical Hutchinson-Gilford progeria in
transfected normal cells induces similar changes (Goldman et al., 2004). Mouse
embryo fibroblasts from progeroid mice heterozygous for the L530P lamin A/C mutation
have morphological abnormalities consistent with the phenotypes observed in fibroblast
cell lines from human subjects with autosomal dominantly inherited disorders caused by
various LMNA mutations (Mounkes et al., 2003). Specific features of cells from these
mice are their short lifespan, which is not associated with telomere shortening, and
increased apoptosis. Nuclei in cells from Zmste24 null mice are polylobulated with
herniations and similar to nuclei in cells from subjects with progerias (Pendas et al.,
2002; Long et al., 2005).

Analysis of cultured fibroblasts from mice and humans that do not express A-type
lamins has clearly demonstrated the close association between A-type lamins and
emerin and nesprin-alpha2 (Sullivan et al., 1999; Raharjo et al., 2001; Muchir et al.,
2004). These two transmembrane proteins of the nuclear envelope are delocalized to
the bulk endoplasmic reticulum membrane in cells lacking lamins A and C and
relocalized to the inner nuclear membrane after expression of lamin A by transfection.
Fibroblasts lacking lamins A and C also have increased nuclear deformability,
decreased mechanical stiffness and decreased viability when subjected to mechanical
strain (Broers et al., 2004; Lammerding et al., 2004).
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Expression of mutant A-type lamins in transfected cultured cells reproduces many of
the nuclear envelope abnormalities observed in cells from human subjects and mutant
mice (Raharjo et al., 2001; Ostlund et al., 2001; Favreau et al., 2003; Holt et al., 2003;
Bechert et al., 2003; Goldman et al., 2004). Alterations in transfected cells appear to be
caused by a dominant negative effects of the mutant proteins and not to a decrease in
the stability of the mutant lamins (Ostlund et al., 2001). Delocalization of emerin to the
bulk endoplasmic reticulum membrane has also been observed when several lamin A
mutants that cause striated muscle diseases are expressed in transfected cells but not
when the most common mutant that causes Dunnigan-type partial lipodystrophy is
expressed (Ostlund et al., 2001; Raharjo et al., 2001; Holt et al., 2003). Cell types that
have a lower content of endogenous emerin and A-type lamins appear to be more
sensitive to developing nuclear structural alterations when mutated lamins are
expressed (Favreau et al., 2003). Studies of the dynamics of mutant A-type lamins
using green fluorescent protein fusions and photobleaching methods have shown that
the mobility of a lamin A mutant in Dunnigan-type partial lipodystrophy is
indistinguishable from wild type lamin A but that three mutants causing striated muscle
disease have increased mobility within the nuclear lamina (Gilchrist et al., 2004).
Similar studies using fluorescence loss in photobleaching have revealed increased
mobility of lamin A and lamin C mutants found in striated muscle diseases as well as in
Dunnigan-type partial lipodystrophy (Broers et al., 2005).

C. Hypothetical Models of Pathogenesis

One of the most intriguing issues regarding inherited diseases caused by mutations
in nuclear lamins is how mutations in proteins that are expressed in virtually all somatic
cells cause different tissue-specific diseases. Although this issue remains to be
resolved, as discussed in several previous reviews, investigators in the field appear to
have converged on two main hypotheses that will no doubt be the focus of future
testing: the “gene expression” hypothesis and the “mechanical stress” hypothesis
(Worman and Courvalin, 2000, 2002, 2004; Cohen et al., 2001; Hutchinson et al., 2001;
Wilson et al., 2001; Burke and Stewart, 2002; Goldman et al., 2002; Hutchinson and
Worman, 2004). Emerging data suggest that aspects of these hypotheses overlap.

The striated muscle phenotype caused by many LMNA mutations suggests that
defective lamins A and C increase cellular sensitivity to mechanical stress. The nuclear
lamina, inner nuclear membrane and nuclear pore complexes are tightly connected in
the nuclear envelope. Through filaments attached to the cytoplasmic aspect of the
nuclear pore complex, the lamina could be connected indirectly with cytoplasmic
intermediate filaments, such as desmin in muscle cells, and thus with the dystrophin-
dystroglycan complex of the sarcolemma membrane. Mutations in components of the
dystrophin-dystroglycan complex are responsible for several muscular dystrophies
(Straub and Campbell, 1997; Cohn and Campell, 2000; Dalkilic and Kunkel, 2003).
Electron microscopy of Lmna -/- mice cardiomyocytes shows a disruption of the
cytoskeletal desmin network and its detachment from the surface of the nuclei (Nikolova
et al., 2004). We have discussed above the connection of the lamina via integral inner
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nuclear membrane proteins of the Sun family to integral proteins of the outer nuclear
membrane. Such proteins in the outer nuclear membrane, including nesprins, Zyg12,
and Klarsicht, contact actin and microtubule networks. Therefore, the nuclear skeleton
and components of the cytoskeleton are connected, determining nuclear position and,
when necessary, nuclear migration. Weakness in any component of this integrated
cellular skeleton, including the lamina, may make the entire network fragile and the cell
more susceptible to damage from recurrent mechanical strain.

Certain genes and signal transduction pathways are activated by mechanical strain.
Impaired response to mechanical stimulation can attenuate transcriptional activation of
mechanosensitive genes, some of which may be necessary in the heart for the
development of compensatory hypertrophy (Nikolova et al., 2004). The role of the
lamina in mechano-transduction has been directly investigated by subjecting lamin A
and C deficient mouse fibroblasts to mechanical strains (Lammerding et al., 2004).
Under strain, these fibroblasts have increased nuclear deformation, defective mechano-
transduction, attenuated strain-induced signaling and impaired viability. Thus, the
separation between mechanical and gene expression models to explain the cell-specific
and tissue-specific alterations in diseases caused by lamin mutations may be artificial
and, in fact, abnormalities in response to mechanical stress may lead to aberrant
responses in gene activation.

In the “gene expression” hypothesis, lamins A and C are considered essential for the
proper tissue-specific expression of certain genes. Dynamic studies have shown that
the motion of peripheral chromatin is constrained (Abney et al., 1997; Marshall et al.,
1997; Chubb et al., 2002), likely as a result of its association with a stable interphase
nuclear lamina-pore complex network (Aaronson and Blobel, 1975; Dwyer and Blobel,
1976; Broers et al., 1999; Moir et al., 2000b; Daigle et al., 2001). Silent genes are
located preferentially in this peripheral chromatin whereas expressed genes are usually
concentrated in the center of the nucleus (Cremer and Cremer, 2001). Repositioning of
a chromatin region from the nuclear periphery to the nuclear core could alter
transcriptional activity of genes within the region. Alterations in lamina structure induced
by mutations in lamins A and C could therefore perturb normal chromatin
compartmentalization and induce tissue-specific changes in gene expression.

The peripheral lamina, particularly A-type lamins, has been shown to play a
scaffolding role for several proteins with gene regulatory functions. Lamins form
complexes with integral inner nuclear membrane proteins that may immobilize
transcription factors and other gene regulatory proteins such as retinoblastoma protein,
heterochromatin protein 1, SREBP1, germ cell-less, Oct1, YT521-B and MOK2 (Mancini
et al., 1994; Ozaki et al., 1994; Ye and Worman, 1996; Ye et al., 1997; Imai et al., 1997;
Nili et al., 2001; Lloyd et al., 2002; Dreuillet et al., 2002; Wilkinson et al., 2003; Holaska
et al., 2003; Haraguchi et al., 2004; Johnson et al., 2004). In association with
retinoblastoma protein, the A-type lamina network can sequester a large panel of
proteins that play a key role in cell cycle progression, such as PCNA, p21, CDK4, and
cyclin D3 (Markiewicz et al., 2002, 2005; Favreau et al., 2004). Immobilization of
hypophosphorylated retinoblastoma protein on an insoluble nuclear structure is a
prerequisite for cell cycle arrest and cell differentiation. Cells lacking lamins A and C
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have a dramatic decrease in retinoblastoma protein due to proteosomal degradation,
which is restored upon reexpression of lamin A (Johnson et al., 2004). Expression in
myoblast cell lines of lamin A with a mutation that causes Emery-Dreifuss muscular
dystrophy impairs myotube differentiation in correlation with the persistence of a high
level of retinoblastoma protein phosphorylation and a low level of expression of the
muscle-specific transcription factor myogenin (Favreau et al., 2004; Markiewicz et al.,
2005). This strongly suggests a functional link between the lamina and proteins
involved in cell cycle progression and cell differentiation.

V. Concluding Remarks/Future Directions

Our incomplete understanding of the basic functions of lamins and other nuclear
envelope proteins makes understanding the pathogenesis of diseases caused by their
mutations extremely difficult. Experimental designs have been hampered by the lack of
simple “read outs” for the functions of lamins and other proteins. Except for assessing
Smad activity in the case of MAN1 mutants and potentially sterol reductase activity in
the case of LBR mutants, there are no easily measurable downstream consequences
of, for example, abnormal A-type lamin function. Several studies have used nuclear
morphology as a marker for A-type lamin function; however, nuclear morphological
abnormalities in cells expressing mutant lamins are variable and difficult to quantify.

Future research will be facilitated by the identification of individual genes or
functional groups of genes that are dependent on nuclear envelope protein function.
Experiments using DNA microarrays have identified genes that are differentially
expressed in cells lacking emerin and with mutant A-type lamins; however, the data so
far are limited to fairly small studies (Tsukahara et al., 2002; Amati et al., 2004; Csoka et
al., 2004b). Nonetheless, gene expression data obtained from DNA microarray studies
of fibroblasts from only a small number of subjects with Hutchinson-Gilford progeria
syndrome have been useful in examining the “correction” of the abnormal cellular
phenotype when reducing the amount of the truncated prelamin A mutant in cells
(Scaffidi and Misteli, 2005). Future statistically robust gene expression data obtained
using large numbers of human samples and tissues from mouse models should be able
to identify important pathways and functional groups of genes that are abnormally
activated or repressed when nuclear envelope proteins are mutated or absent. Such
results will be tremendously useful for evaluating the effects of mutant nuclear envelope
proteins in cellular models of disease.

Animal models deficient in or expressing mutant nuclear envelope proteins have
been useful models of human disease. Undoubtedly, additional animal models will be
created in the future. Genetically altered mice deficient in nuclear envelope proteins or
expressing mutants using either homologous recombination or transgenic approaches
will likely be most applicable to understanding human disease physiology. However, as
demonstrated by the models already available, all of the features of human disease may
not be reproduced in mice. For example, while most of the human diseases caused by
A-type lamin mutations are autosomal dominant, heterozygous Lmna null mice are
apparently normal (Sullivan et al., 1999).
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Most importantly, collaborations between a broad range of physicians and scientists
with different areas of expertise will be essential for understanding the multiple disorders
caused by mutations in lamins and other nuclear envelope. The clinical phenotypes of
affected human subjects span the disciplines of neurology, cardiology, endocrinology,
metabolism, pediatrics, geriatrics, orthopedics, dermatology, hepatology and
hematology. Collection of adequate human cell and tissue samples for experimental
studies will require a major coordinated effort between physicians who traditionally have
worked in very different areas and basic scientists. The experimental studies
themselves will require the efforts of scientists with many different skills, including cell
biologists, physiologists, geneticists, biochemists and bioinformaticists. Laudatory
efforts to bring together diverse groups of researchers from around the world have been
extremely rewarding (Bonne et al., 2002, 2003; Evans et al., 2004; Chadwick and
Goode, 2005) and should be encouraged and financially supported in the future.
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Figure Legends

Figure 1. Schematic diagram of the nuclear envelope showing the inner, pore and outer
nuclear membranes, the continuous endoplasmic reticulum (ER) membrane, the nuclear
lamina and a nuclear pore complex. Integral proteins of the pore membrane include
POM121 and gp210, which comprise part of the pore complexes. Representative
integral inner nuclear membrane proteins shown are MAN1, LBR, nurim, a SUN protein
and another polypeptide with a single transmembrane segment that could represent
emerin or one of the lamina-associated polypeptides (LAPs). A nesprin is shown in the
outer nuclear membrane with its with its cytoplasmic calponin homology domain (CH)
and its luminal KASH domain, which can interact directly or indirectly with the luminal
SUN domain of SUN1 and SUN2. Lamina is represented apposed to the inner nuclear
membrane and peripheral heterochromatin, in tight contact with the nuclear pore
complex (NPC). The lamina is fenestrated, allowing for the direct contact of the inner
nuclear membrane and its integral proteins herein with chromatin. Note that the left side
of the nuclear pore complex is not in contact with the pore membrane, representing
lateral channels of approximately 10 nm in diameter, which allow the for diffusion of
integral proteins synthesized on the rough endoplasmic reticulum membrane to the
inner nuclear membrane.

Figure 2. Nuclear lamins and their genes. LMNA on chromosome 1 encodes lamin A
and lamin C (as well as a minor isoform lamin AA10 and a germ cell isoform lamin C2,
not shown). Lamins A and C are identical for their first 566 amino acids; lamin C
contains 6 unique amino acids (white rectangle) and lamin A 98 unique amino acids.
LMNB1 on chromosome 5 encodes lamin B1. LMNBZ2 on chromosome 19 encodes
lamin B2 (and a germ cell isoform lamin B3, not shown). The lamin proteins contain
head and tail domains (thin lines) and alpha helical central rod domains (gray
rectangles). Lamins contain a nuclear localization signal (NLS) in their tail domains. All
lamins except lamin C (and C2) contain a CAAX box (CAAM) at their carboxyl-termini,
which is a signal for farnesylation (squiggly line). A protease cleaves off the three
terminal amino acids (double headed arrow) as part of the prenylation reaction (the
cysteine is also carboxymethylated in the process). Prelamin A is also cleaved
“‘upstream” from the prenylated cysteine (double headed arrow to the left) in a second
proteolytic reaction to yield mature lamin A.

Figure 3. Schematic diagram of prelamin A showing the nature and locations of
disease-causing mutations. Thin gray rectangle at left is the head domain, thicker blue
rectangles the rod domain and thin gray rectangle at right the tail domain; these
sequences are common to lamins A and C. The nuclear localization signal is
represented by light blue. The orange striped area at the far right represents sequence
absent from lamin C. Mutations that cause the striated muscle diseases Emery-
Dreifuss muscular dystrophy (EDMD, red), limb girdle muscular dystrophy type 1B
(LGMD1B, orange) and dilated cardiomyopathy with conduction defect (DCM-CD, pink)
are shown above the schematic diagram of the molecule. Mutations causing Charcot-
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Marie-Tooth disorder type 2A (CMT2A, dark red), Dunnigan-type familial partial
lipodystrophy (FPLD, dark green), lipoatrophy, insulin-resistant diabetes, disseminated
leukomelanodermic papules, liver steatosis, and cardiomyopathy (LILLC, light green),
mandibuloacral dysplasia (MAD, purple), Hutchinson-Gilford progeria syndrome (HGPS,
dark blue), Seip syndrome (Seip, light blue) and atypical Werner syndrome (AWS,
lighter blue) are shown below the schematic diagram of the molecule. The R28W and
R62G mutations shown for FPLD are atypical cases with cardiac disease; 90% of cases
have mutations at either residue 482 or 486. For HGPS, the classical cases have either
the G608G mutation or, more rarely, the G608S mutation; the others have been
reported in atypical cases.

Figure 4. Schematic diagram outlining the steps in the processing of prelamin A to

lamin A. Amino acids in prelamin A encoded by part of LMNA exon 11 and exon 12 are
shown. See text for details.

46



Figure 1

CH
Outer Pore
Nesprin membrane membrane
KASH% =
ZSun c

inner N N Imc . N

memb. N
Sun Nurim LBR MAN1 LAPs

Emerin

— Cytoplasm e

POM121

e

e N gp210

Lamina f\j‘

Chromatin

Nucleoplasm

47



Figure 2

Chr/ Genes Lamins

A
1 LMNA

C
5 LMNB1 B1

19 LMNB2 B2

NLS

48



Figure

3

Qe
EDMD R25P

R25G

AKT2
LGMD1B
DCM-CD

Qe

szl

CMT2A

FPLD

LILLC

HGPS

Seip

AWS

Lasv

Y4iC
RHAP
RS
K38
WGIN

AK1

12

R133P
L14apP
T154P
AR19

AKX

EfZK
LASR

RE3
K97
E11
E1&

Albpin L165> f=at 176

L
E
1X
1K

RI1T
R1XW

N19

SK

E203K
EX13G

L21

5P

HZ22Y
HZ22P
GZI2E

RZ2 5K

L2458P
R249Q
Albpin
AK2E
Q23dpP
X3P
Albpin
R33EQ
Qs
E358K
MI71K
RI77H
RI77L

Albpin
Albpin

K28 > fsat 479

R > f=at 479

LI > f=at 479
RI21> f=at 479

Albpin L3> fsat 176

E317K

Albpin LI > f=at 176

EX7K
R343L
Q355
R377H

R3BEK
R&KIC
R4S
N4%K
NdSEl

WS
WG
R527P
T525K
T525R
L53dP
R51H

Y451H
L53dP
MEH H>C

R&24H

del 1bpin NSEE> fsat 479
ins dbp in R527> f=at 552

e = —

R2MN

Tl

R133L

Sid
Eld

3F
5K

R133L
L1KR

RZ35C

3 C-term

RHIC

S573L

G650 R582H
R4H2L RS554H
R452Q

R4EAY

K48EN

R527H

R47IC GBS
R527C GHIAG
K542N T&238
ES7 &V REMC

49



Figure 4
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