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An asymptotic formula for the ranks of the

homotopy groups of a finite complex
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September 23, 2005

Abstract

Let X be a finite simply connected CW complex of dimension
n. The loop space homology H∗(ΩX ; Q) is the universal envelop-
ing algebra of a graded Lie algebra LX isomorphic with π∗−1(X) ⊗
Q. Let QX ⊂ LX be a minimal generating subspace, and set α =

lim supi
log rk πi(X)

i . Theorem:

If dimLX = ∞ and lim sup(dim (QX)k)1/k < lim sup(dim (LX)k)1/k ,
then

n−1
∑

i=1

rk πk+i(X) = e(α+εk)k , where εk → 0 as k → ∞ .

In particular
n−1
∑

i=1

rk πk+i(X) grows exponentially in k.
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1 Introduction

Suppose X is a finite simply connected CW complex of dimension n. The
homotopy groups of X then have the form

πi(X) = Zρi ⊕ Ti ,

where Ti is a finite abelian group and ρi = rkπi(X) is finite. It is known [6]
that either πi(X) = Ti, i ≥ 2n (X is rationally elliptic) or else for all k ≥ 1,
∑n−1

i=1 rkπk+i(X) > 0. In this case X is called rationally hyperbolic.
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In [7] it is shown that in the rationally hyperbolic case
∑n−1

i=1 rkπk+i(X)
grows faster than any polynomial in k. Here we show that with an addi-
tional hypothesis this sum grows exponentially in k and, in fact, setting
α = lim sup log rk πi

i we have

n−1
∑

i1

rkπk+i = e(α+εk)k , where εk → 0 as k → ∞ .

In subsequent papers we will identify a large class of spaces for which
the additional hypothesis holds: in fact it may well hold for all finite simply
connected CW complexes.

Note that rkπi(X) = dim πi(X)⊗Q. Thus we work more generally with
simply connected spaces X such that each Hi(X; Q) is finite dimensional.
In this case dim πi(X) ⊗ Q is also finite for each i. On the other hand, a
theorem of Milnor-Moore-Cartan-Serre asserts that the loop space homology
H∗(ΩX; Q) is the universal enveloping algebra of a graded Lie algebra LX

and that the Hurewicz homomorphism is an isomorphism π∗(ΩX) ⊗ Q
∼=−→

LX . Since there are natural isomorphisms πi(X) ∼= πi−1(ΩX) it follows that
the results above can be phrased in terms of the integers dim (LX)i.

For any graded vector space V concentrated in positive degrees we define
the logarithmic index of V by

log indexV = lim sup
log dimVk

k
.

In ([5], [6]) it is shown that if X (simply connected) has finite Lusternik-
Schnirelmann category (in particular, if X is a finite CW complex) and if
X is rationally hyperbolic then

log indexLX > 0 .

Now let QX denote a minimal generating subspace for the Lie algebra
LX , and let α denote log indexLX .

Theorem 1. Let X be a simply connected topological space with fi-
nite dimensional rational homology concentrated in degrees ≤ n. Suppose
log indexQX < log indexLX , then

n−1
∑

i=1

dim (LX)k+i = e(α+εk)k , where εk → 0 as k → ∞ .

In particular this sum grows exponentially in k.
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Theorem 2. Let X be a simply connected topological space with fi-
nite dimensional rational homology in each degree, and finite Lusternik-
Schnirelmann category. Suppose log indexQX < log indexLX < ∞. Then
for some d > 0,

d−1
∑

i=1

dim (LX)k+i = e(α+εk)k , where εk → 0 as k → ∞ .

In particular,
∑d−1

i=1 dim (LX)k+i grows exponentially in k.

Corollary: The conclusion of Theorem 1 holds for finite simply connected
CW complexes X for which LX is infinite, but finitely generated. The con-
clusion of Theorem 2 holds for simply connected spaces of finite LS category
and finite rational Betti numbers provided that LX is infinite, but finitely
generated, and, log indexLX < ∞.

Recall that the depth of a graded Lie algebra L is the least m (or ∞)
such that Extm

UL(Q, UL) 6= 0.
The key ingredients in the proofs of Theorems 1 and 2 are

• A growth condition for LX established in ([5],[6])

• The fact that depth LX < ∞, established in ([3],[6])

We shall use Lie algebra arguments in Theorem 3 below to deduce the
conclusion of Theorems 1 and 2 from these ingredients, and then deduce
Theorems 1 and 2.

Theorems 1 and 2 may be compared with the results in [7] and in [8]
that assert for n-dimensional finite CW complexes (respectively for simply
connected spaces with finite type rational homology and finite Lusternik-
Schnirelmann category) that

∑n−1
i=1 dim (LX)k+i (resp.

∑d−1
i=1 dim (LX)k+i)

grows faster than any polynomial in k. These results use only the fact that
LX has finite depth, and require no hypothesis on QX .

The hypothesis on QX in Theorems 1 and 2 may be restated as requiring
that the formal series

∑

q dimTorULX

1,q zq have a radius of convergence
strictly greater than that of the formal series

∑

q dim (ULX)q zq. Lambrechts
[9] has proved a much stronger result under the hypothesis that the formal

series
∑

q

(

∑

p(−1)pdim Torp,q

)

zq has a radius of convergence strictly larger

than that of
∑

q dim (ULX)q zq.
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2 Lie algebras

In this section we work over any ground field lk of characteristic different
from 2; graded Lie algebras L are defined as in [7] and, in particular, are
assumed to satisfy [x, [x, x]] = 0, x ∈ Lodd (This follows from the Jacobi
identity except when char lk = 3).

A graded Lie algebra L is connected and of finite type if

L = {Li}i≥1 and each Li is finite dimensional.

We shall refer to these as cft Lie algebras. The minimal generating subspaces
Q of a cft Lie algebra L are those subspaces Q for which Q → L/[L,L] is a
linear isomorphism.

A growth sequence for a cft Lie algebra L is a sequence (ri) such that
ri → ∞ and

lim
i→∞

log dim Lri

ri
= log indexL .

A quasi-geometric sequence (ℓi) is a sequence such that for some integer m,
ℓi < ℓi+1 ≤ mℓi, all i; if additionally (ℓi) is a growth sequence then it is a
quasi-geometric growth sequence.

Of particular interest here are the growth conditions

0 < log indexL < ∞ ; (A.1)

and
log indexQ < log indexL . (A.2)

Proposition. Let L be a cft Lie algebra satisfying (A.1) and (A.2), and
assume L has a quasi-geometric growth sequence (rj). Then any sequence
(si) such that si → ∞ has a subsequence (sij ) for which there are growth
sequences (tj) and (pj) such that

tj ≤ sij < pj and pj/tj → 1 .

Proof. First note that because of (A.2),

log indexL/Q = log indexL
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Now adopt the following notation, for i ≥ 1 :

log indexL/Q = α

dim Lie
(α+εi)i

dim Qi = e(α+σi)i

dim Li/Qi = e(α+τi)i

dim (UL)i = e(α+δi)i



























(1)

Then because of (A.1) and (A.2), 0 < α < ∞, and lim sup εi = 0. More-
over, by a result of Babenko ([2], [6]), log indexUL = log indexL, and so
lim sup(δi) = 0. Finally (A.2) implies that lim sup(σi) = σ < 0, and that
τqi

→ 0 as i → ∞.
Next, since rj is a quasi-geometric sequence, for some fixed m we have

rj < rj+1 ≤ mrj , all j. It follows that for each si in our sequence we may
choose qi in the sequence (rj) so that

si < qi ≤ msi . (2)

Thus qi → ∞ as i → ∞. The adjoint representation of UL in L defines
surjections

⊕

(ℓ,k,t)∈Ji

(UL)ℓ ⊗ Qk ⊗ Lt ։

⊕

(ℓ,k,t)∈Ji

(UL)ℓ ⊗ [Qk, Lt] ։ Lqi
/Qqi

, (3)

where Ji consists of those triples for which ℓ+ k + t = qi and t ≤ si < t + k.
Thus

3(qi + 1) max
(ℓ,k,t)∈Ji

dim (UL)ℓ dim [Qk, Lt] ≥ dimLqi
/Qqi

.

For each si we may therefore choose (ℓi, ki, ti) ∈ Ji so that

3(qi + 1) dim (UL)ℓi
dim [Qki

, Lti ] ≥ dimLqi
/Qqi

. (4)

Lemma 1. (ki+ti) ≥
1
m qi, and (ki+ti) ≥

1
m−1ℓi. In particular, ki+ti → ∞

as i → ∞.

Proof. It follows from (2) that ki + ti ≥ si ≥
1
m qi. Since qi = ki + ti + ℓi,

(ki + ti) ≥
1

m−1ℓi. Since si → ∞ so does ki + ti. �

Next, define ε(ki, ti) by

dim [Qki
, Lti ] = e[α+ε(ki,ti)](ki+ti) .
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Lemma 2. ε(ki, ti) → 0 and εki+ti → 0 as i → ∞.

Proof. Define ǫ(qi) by 3(qi + 1) = eε(qi)qi . Then (4) reduces to

ε(qi)qi + (α + δℓi
)ℓi + [α + ε(ki, ti)](ki + ti) ≥ (α + τqi

)qi .

Since ℓi + ki + ti = qi,

ε(qi)
qi

ki + ti
+ δℓi

ℓi

ki + ti
+ ε(ki, ti) ≥ τqi

qi

ki + ti
.

Now as i → ∞, qi ≥ si → ∞. Thus ε(qi) → 0. Moreover, since qi belongs
to a growth sequence, εqi

→ 0 and τqi
→ 0. Use Lemma 1 to conclude that

ε(qi)
qi

ki + ti
→ 0 and τqi

qi

ki + ti
→ 0 ,

and hence

lim inf ε(ki, ti) ≥ − lim sup δℓi

ℓi

ki + ti
.

Next, since lim sup δℓi
= 0 and ℓi

ki+ti
≤ m − 1, it follows that

− lim sup δℓi

ℓi

ki + ti
= 0 .

Finally, [Qki
, Lti ] embeds in Lki+ti/Qki+ti , and it follows that

εki+ti ≥ ε(ki, ti) .

But ki+ti → ∞ and so lim sup εki+ti ≤ 0. This, together with lim inf ε(ki, ti) ≥
0, completes the proof of the lemma. �

Next, since Qki
⊗ Lti → [Qki

, Lti ] is surjective we have

σki
ki + εtiti ≥ ε(ki, ti)(ki + ti) (5)

Lemma 3. ti/ki → ∞ and ti → ∞ as i → ∞.

Proof. If ti/ki does not converge to ∞ then we would have tiν/kiν ≤ T for
some subsequence (siν ). But

σkiν
≥ −εtiν

tiν
kiν

+ ε(kiν , tiν )(1 + tiν/kiν ) .
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Since (Lemma 1) kiν +tiν → ∞ and (Lemma 2) ε(kiν , tiν ) → 0, the lim inf of
the right hand side of this equation would be ≥ 0. Hence lim sup σkiν

≥ 0,
which would contradict lim sup σi < 0. Finally, since ti + ki → ∞ it follows
that ti → ∞. �

Lemma 4. Write kiλiti. Then,

λi → 0 and εti → 0 as i → ∞ .

Proof. Lemma 3 asserts that λi → 0. Rewrite equation (5) as

εti ≥ (ε(ki, ti) − σki
)λi + ε(ki, ti) . (6)

Since lim supσj is finite, the σj are bounded above. Thus −σj ≥ A, some
constant A. Since λi → 0, lim inf(−σki

λi) ≥ 0. Since (Lemma 2) ε(ki, ti) →
0 it follows from (6) that lim inf εti = 0. But lim sup εti ≤ lim sup εi = 0 and
so εti → 0. �.

The lemmas above establish the Proposition. Simply set pi = ti + ki

and note that ti → ∞ (Lemma 3), pi → ∞ (Lemma 1), pi/ti = 1 + λi → 1
(Lemma 4). Furthermore εti → 0 (Lemma 4) and εpi

→ 0 (Lemma 2). Thus
(ti) and (pi) are growth sequences. �

Theorem 3. Let L be a cft Lie algebra of finite depth and satisfying the
growth conditions (A.1) and (A.2). Set α = log indexL. Then for some d,

d−1
∑

i=1

dim Lk+i = e(α+εk)k , where εk → 0 as k → ∞ .

In particular, this sum grows exponentially in k.

Proof. According to [4] there is a finitely generated sub Lie algebra E ⊂ L
such that Extr

UL(lk, UL) → ExtrUE(lk, UL) is non-zero.

Lemma 5. The centralizer, Z, of E in L is finite dimensional.

Proof. Since E has finite depth, Z ∩ E is finite dimensional [3]. Choose
k so Z ∩ E is concentrated in degrees < k. Suppose x ∈ Z≥k has even
degree, and put F = lkx ⊕ E. Then ExtUF (lk, UF ) → ExtUE(lk, UF ) is
zero, contradicting the hypothesis that the composite

ExtrUL(lk, UL) → ExtrUF (lk, UL) → ExtrUE(lk, UL)
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is non-zero.
It follows that Z≥k is concentrated in odd degrees, hence an abelian ideal

in Z + E. Again

ExtrUL(lk, UL) → ExtrU(Z+E)(lk, UL) → ExtrUE(lk, UL)

is non-zero. Thus ExtrU(Z+E)(lk, UL) 6= 0, Z + E has finite depth and every
abelian ideal in Z + E is finite dimensional. �

Choose d so that E is generated in degrees ≤ d−1. As in the Proposition,
set log indexL = log indexL/Q = α. If the theorem fails we can find a
sequence si → ∞ such that

d−1
∑

j=1

dim Lsi+j ≤ e(α−β)si , (7)

some β > 0. Apply the Proposition to find growth sequences ti and pi such
that ti ≤ si < pi and pi/ti → 1.

We now use (7) to prove that

dim (UE)(si−ti,si−ti+d) dimL(si,si+d) < dim Lti , i large . (8)

In fact since lim sup (dim (UL)i)
1/i = eα it follows that for some γ > 0,

d−1
∑

j=1

dim (UE)j+k ≤ eγ(k+1) , all k .

Thus it is sufficient to show that

γ(si − ti + 1) + (α − β)si < (α + εti)ti , large i ,

where εti → 0 as i → ∞. Write si = µiti; then µi → 1 and the inequality
reduces to the obvious

γ/ti + γ(µi − 1) + (α − β)µi < (α + εti) , large i .

Thus (8) is established.
Choose s = si, t = ti so that (8) holds and so that Zj = 0, j ≥ t. Write

s − t = k. The adjoint action of UL in L restricts to a linear map

[

⊕d−1
j=1(UE)k+j

]

⊗ Lt → ⊕d−1
j=1Ls+j
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and it follows from (8) that for some non-zero x ∈ Lt,

(ad a)x = 0 , a ∈ UE(k,k+d) .

On the other hand, since E is generated in degrees ≤ d − 1, (UE)>k =
UE · (UE)(k,k+d). Thus (UE)>k ·x = 0 and so (UE) ·x is finite dimensional.
A non-zero element y of maximal degree in UE · x satisfies

[a, y] = (ad a)(y) = 0 , a ∈ E ,

i.e. y ∈ Z in contradiction to Z≥t = 0. This completes the proof of the
Theorem. �

3 Proof of Theorems 1 and 2

Proof of Theorem 2: We show that LX satisfies the hypothesis of Theorem
3. Since depth LX < ∞ ([3]) and (A.2) holds by hypothesis we have only
to construct a quasi-geometric growth sequence (ri).

Let α = log indexLX . Then α > 0 by [5]. Choose a sequence

u1 < u2 < · · ·

such that (dim (LX)ui
)1/ui → eα.

Next, suppose cat X = m and put a

(

1

2(m + 1)

)m+1

. By starting the

sequence at some uj we may assume dim (LX)ui
> 1

a , all i. Thus the formula
in ([5], top of page 189) gives a sequence

ui = v0 < v1 · · · < vkui+1

such that vi+1 ≤ 2(m + 1)vi and

(

dim (LX)vj

)
1

vj+1 ≥ [adim (LX)v0
]

1

v0+1 , j < k .

Since v0 = ui and ui → ∞ it follows that a 1
v0+1 → 1 as i → ∞. Hence

interpolating the sequences ui with the sequences vj gives a quasi-geometric
growth sequence (rj). �

Proof of Theorem 1: A theorem of Adams-Hilton [1] shows that

ULX = H∗(ΩX; Q) = H(TV, d)
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where TV is the tensor algebra on V and Vi
∼= Hi+1(X; Q). Thus V is finite

dimensional. Since TV has a strictly positive radius of convergence so do
H(TV, d) and LX :

log indexLX < ∞ .

Thus X satisfies the hypotheses of Theorem 2. The fact that d can be
replaced by n is proved by Lambrechts in [10]. �
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