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ABSTRACT

This article presents a generalized metric distance, called
A-distance, between images represented by a tree structure
resulting from a recursive image partition. This distance
is used to perform content-based image retrieval queries in
databases. A-distance allows to retrieve images globally
similar to a query image. This distance takes into account
the location of the image visual features. It can be per-
formed using a multi-level filtering algorithm. Moreover,
A-distance allows region-based queries. In this case, the
resulting images contain quadrants similar to the quadrants
selected by the user in the query image or contain quadrants
similar to the entire query image. Because it is a generalized
distance function, some particular cases of the A-distance
appear in existing content-based image retrieval systems.
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1. INTRODUCTION

Content-based image retrieval (CBIR) has become a very
well studied research area because of the increased number
of available image databases. Readers are referred to surveys
[21] and [25]. In a CBIR system, the user chooses a query
image in the database and the system returns a list of images
similar to the query image. The similarity between images
is measured using a distance function [19]. The smaller the
distance between images is, the more similar the images are.

To improve image retrieval accuracy or to enlarge the query
expression, several approaches [1, 2, 5, 7, 9, 10, 11, 12, 13,
15, 20] use a tree to model a recursive image partition and
compute a distance between images based on the compari-
son of the image tree representation. All the distances used
in these approaches are analogous and can be generalized
into a single generic definition. However, to the best of our
knowledge, no general definition of such a distance exists.

The first contribution of this article is to formally define
the generalization of the distances used in the aforemen-
tioned approaches. We called this generalized distance: A-
distance. By analyzing A-distance, we point up that several
distances (global or local) and several distance computa-
tion processes (with or without filtering) could be derived
from the same definition depending on the parameters used.
The last contribution of this article is a short survey show-
ing the distance-based relations between the aforementioned
approaches.

The article is organized in the following way. Section 2
deals with the recursive image decomposition for content-
based image retrieval and presents the notation used in this
article. Section 3 presents the contributions of this article,
the A-distance and the A-based image retrieval processes.
Finally, Section 4 concludes this article and offers directions
for future work.

2. BACKGROUND AND RELATED WORK
Several content-based image retrieval approaches [1, 2, 5, 7,
9, 10, 11, 12, 13, 15, 20] deal with the same image search pro-
cess. Firstly, the images from the database are decomposed
into several fixed-size quadrants. Secondly, each image is
represented by a tree storing the feature vectors of all its



quadrants. Finally, image similarity is computed using a
distance between image trees.

This section explains in details the two first steps of the
aforementioned image retrieval process — the image decom-
position (see Section 2.1) and the tree representation (see
Section 2.2) — and presents the notation conventions (see
Section 2.3). It provides the necessary background to un-
derstand how a generalized A-distance, presented in Section
3, could be defined.
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Figure 1: An image recursively decomposed into
four or nine quadrants.

An image could be recursively decomposed into fixed-size
quadrants. Using a quadtree decomposition, an image is
recursively decomposed into four quadrants. Figure 1.(a)
shows an example. The root of the quadtree (stored at level
0 in this article) represents the entire image. At level 1, the
root node has four child nodes representing the first four
quadrants of the image. If the decomposition is stopped
after two iterations, level 2 contains 16 nodes, represent-
ing the four sub-quadrants of the first level quadrants. This
kind of decomposition is used in [1, 2, 5, 7, 9, 10, 12, 11, 15].

Using a quin-tree, an image is recursively decomposed into
five quadrants, the first fourth ones following the NW, NE,
SW and SE directions and the fifth one representing the
center of the image. This kind of decomposition is used in
[18]. Using a nona-tree decomposition, an image is recur-
sively decomposed into nine quadrants. As previously, the
root of the tree represents the entire image. But at level 1,
the root node has nine child nodes representing the first nine
quadrants of the image. Figure 1.(b) shows the nona-tree
decomposition of the Lena image. If the decomposition is
stopped after two iterations, level 2 contains 81 nodes, each
node of the first level having 9 child nodes. In [20, 27], a
nona-tree is used for content-based image retrieval.

Several types of decomposition can be mixed. For exam-
ple, level 1 of the hierarchical structure proposed in [13, 14]
contains nine nodes, as in a nona-tree. The second level,
however, corresponds to a second level of a quadtree con-
taining only 16 nodes.

Such a recursive image decomposition could be used for
content-based image retrieval. In this case, in order to com-
pare image visual features, all the images of the database
are decomposed in the same way and all the resulting trees
have the same number of nodes by level and the same num-
ber of levels. The images are represented by full balanced
trees. The following section explains more deeply how trees
could be used in CBIR systems.

2.2  Tree structures for CBIR

Content-based image retrieval systems allow to retrieve im-
ages from a database according to their visual features. The
features, including color [24], texture [19] and shape [4],
are stored as numerical vectors, called feature vectors [9].
When tree structures are used in CBIR system, each tree
node stores the feature vector of the corresponding image
quadrant. For example in [12], the quadtree nodes store
the color histograms of the corresponding quadrant. Fig-
ure 2.(b) gives an example of such a quadtree for the Lena
image. In [11], each quadtree root stores the average color
vectors of each corresponding image, in a three-dimensional
color space (Ravg, Gavg, Bavg), R for red, G for green and
B for blue. The other nodes store a color histogram of the
corresponding image quadrant. Figure 2.(c) gives an exam-
ple of such a quadtree storing an average color vector in all
its nodes. In [9], the tree nodes store color vectors having 9
dimensions (Fu,Ev,Fw, 0u,0v,0w, Su,Sv,Sw), based on color
moments where E represents the average color, o represents
the variance and s represents the skewness of each dimen-
sion in the color space (R, G, B). Any kind of feature vector
could be stored into the tree nodes, like a shape feature vec-
tor [10], a combination of color and texture captured via
histograms [15], or a dominant color [5]. We call such a
structure a Multi-Level Feature Vector. This structure has
several purposes in content-based image retrieval.
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Figure 2: The Lena image: (a) decomposed into a
quadtree and represented by (b) a multi-level color
histogram and (c) a multi-level average color feature
vector.



Firstly, a multi-level structure can be used as a multi-level
filtering structure as it is suitable to a coarse-to-fine rep-
resentation [9]. In this case, each image is first compared
with the query image according to its global feature vec-
tors (stored in the root node of the tree). If they are sim-
ilar enough (with regard to a similarity metric and a given
threshold), the first sub-quadrants of the images are com-
pared, and so on. For more details about multi-level filtering
using a partition-based tree, readers are referred to [9, 12].
Section 3.2 shows how the generalized distance, proposed in
this article, is used for multi-level filtering.

Secondly, a multi-level feature vector allows different kinds
of query image called, in [9], global search, sub-image search
or pattern search. Global search consists in retrieving im-
ages of the database globally similar to a query image. Sub-
image search compares a query image with any image quad-
rant stored in the database whatever is the size of the com-
pared quadrants. Pattern search retrieves images from the
database having similar regions chosen in a query image.
Among the approaches based on images represented by multi-
level feature vectors, the proposition presented in [11, 12]
allows global search. The approach of [13, 14] deals with
sub-image search. In [15], a solution is presented for pat-
tern search.

2.3 Notation

In this article, the tree nodes and the corresponding im-
age quadrants are identified in the following way. The root
node, identified by numeral 0 in this article, represents the
initial quadrant containing the whole image. Numerals 0, 1,
2 or 3, following their parent node identifier 0, identify the
four first level image quadrants and the four first level tree
nodes. This identification is done using a Z order, which cor-
responds to the NW, NE, SW and SE directions. Numeral
4, following its parent node identifier 0, identifies the central
quadrant and the corresponding tree node. Numeral 5 and
6 (resp. 7 and 8), following their parent node identifier 0,
identify the vertical (resp. horizontal) central quadrants and
the corresponding tree nodes. Recursively, sub-quadrants of
an image quadrant n and children of a tree node n are identi-
fied by nx where z € {0,1,2,3,5,6,7,8}. This identification
convention is used in Figure 1.

In the following, letter ¢ represents a level in a tree. The root
node is, in this article, at level 0. Letter n represents a tree
node or an image quadrant identifier. Letter N represents
the set of node (resp. quadrant) identifiers appearing in the
database. In this article, we consider that all images of the
database have the same tree decomposition (same numbers
of nodes by level and same number of levels by tree). Letters
i, 4" and j represent image identifiers and letter ¢ represents
the query image identifier. Table 1 (at the end of the paper)
summarizes the meaning of all symbols used in this arti-
cle. Two nodes (or quadrants) with the same identifier in
two different trees (or images) are called homologous nodes
(or homologous quadrants). This convention is used in the
definition of the A-distance presented in the next section.

3. A-DISTANCE

This section presents the A-distance. We first proposed this
distance in [22, 23] for images represented by quadtrees. In
this article, our first definition of A-distance is generalized to

any tree based on recursive decomposition of images. This
generalization represents the first step of our final main pur-
pose: to develop a CBIR system allowing to compare differ-
ent A-based distances on the same image set and helping
the user to define the right parameters depending on its im-
age database. At the end, this system could also be used
to compare similar approaches [1, 2, 5, 7, 9, 10, 12, 11, 15]
by implementing their common characteristics. Indeed, un-
til now, it is difficult to really compare the performances of
these approaches because their prototypes are not always
accessible and are generally based on different frameworks.
This article does not deal with this desired CBIR system
but gives the first bricks to develop it.

After defining the A-distance (see Subsection 3.1), this sec-
tion points up that A-distance is a distance for content-
based image retrieval allowing multi-level filtering (see Sub-
section 3.2) or region-based image queries (see Subsections
3.3 and 3.4). Existing distances used in several CBIR sys-
tems appear to be particular cases of A-distance, as shown
out in Subsection 3.5.

3.1 General definition of A-distance

Let 6(¢,j,n) be a normalized metric distance — 6(¢,5,n) €
[0, 1] — between feature vectors of quadrants n of two differ-
ent images i and j. § can be any geometric distance of the
Minkowski family (see [19] for more details about this fam-
ily) and can be a weighted distance. Let A be the distance
between two images ¢ and j, represented by a multi-level
feature vector. A-distance is defined as a weighted sum of
normalized d-distances between feature vectors stored in tree
nodes n:

- Zne.’\f w"(s(Z?]v TL)
Al ) = W (1)

The coefficient w,,, w, > 0, represents the weight of distance
0 between homologous nodes n in the A-distance computa-
tion. A-distance is normalized by the denominator VW which
is the sum of all weights w,, associated with the image quad-
rants n: W=73_ _ wn. At least one wy, must be different
from zero: A € [0,1]. Below we only consider normalized
distances.

A is a metric distance because it is a linear combination of
metric distances (0) between homologous tree nodes. Thus,
Vi, i’ and j, three different images represented by multi-level
feature vectors:

e A(i,i) = 0 because Vn € N, §(i,i,n) =0
o A(i,j) = A(j,4) because Vn € N, §(4, j,n) = 6(4,%,n)

o A(4,i') < A(i,7) + A(4,7') because § is a metric dis-
tance then Yn € N, §(i,i',n) < 8(i,4,n) + 6(4,7,n)
and thus w,d(7,7,n) < wnd(4,5,n) + wnd(j,7,n) be-
cause Vn € N, wy, >0

The A-distance must be used when the spatial position of
features is an important criterion for the image similarity.
This distance takes into account the feature vectors values
and their positions in the images. Figure 3, issued from the
prototype of [9], shows an example of this kind of content-
based image retrieval. The query image is on the left - see



Figure 3.(a). Several images of the database result from im-
age blurring, pixelization or spreading applied to the query
image. Other images correspond to the query image after
a rotation. As shown in Figures 3.(b) and 3.(c), the re-
sult image ranking is different when a global distance or
a A-distance is used. Using a global distance, the images
are compared with the query image using only their global
feature vectors (9-dimensional vectors based on color mo-
ments). In this case, the rotated images appear first in the
query result because they result from a rotation of the query
image without any other image processing operations. Us-
ing A-distance, the images are compared with the query
image using their multi-level feature vectors and then com-
paring all homologous image quadrants. In this example,
the images of the database are represented by a three-level
balanced quadtree containing a 9-dimension color vectors.
An image quadrant at level ¢ represents 4= of the entire
image surface. Thus each image quadrant n is associated
with a weight w, = 47¢ where ¢ is the level of the corre-
sponding quadtree node n. Using A-distance, the processed
images appear first in the query result. The rotated im-
ages appear farther because of the different location of their

features comparing to the query image.
\L«a _ ‘5
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Figure 3: A global search result using a global dis-
tance or a A-distance.

3.2 Multi-level filtering using A-distance

To compute the A-distance between two images represented
by multi-level feature vectors, an exhaustive comparison of
both trees is done. However, the A-distance computation
can be gradually refined by comparing both trees level by
level, following a breadth first order.

Let A([)(i,j) be an approximation of A-distance between
multi-level feature vectors of images ¢ and j. It is computed
from the distances between homologous nodes appearing
from root level (level 0) to level £. Intuitively, the A®)-
distance is computed without taking into account details
after a certain tree level £, i.e. the information contained in
lower-level tree nodes. Let ¥ be the set of nodes appear-
ing at level ¢ (N(O) = 1). For any given level £ > 1 in two
multi-level feature vectors of images ¢ and j:

A = Z 3

k=0 \ penN(k)

wnd (i, j,n) 2)

A(O)(i,j) is computed taking into account only both tree
roots, i.e. the global feature vectors of images ¢ and j. If all
multi-level feature vectors of the database have, for example,

three levels, then for all images i and j: A® (i, §) = A(4, ).
A®_distance is an increasing function of ¢:
AED A® excery U0t m)
) = ' " 3
(5,) = AOG, ) + > 3)

For any given level £ > 1 in multi-level feature vectors:

AU (G, 5) < AV, 5) < ATV (G, ) (4)

Using A®-distance, the global search of images similar to a
query image ¢ is computed in several steps of filtering. Let
R® be the set containing images 4 from the database such
that A® (¢,1) < a RE ¢ RUAD  the result sets are em-
bedded.

To compute a global search, the user has to specify the
query image g, the distance ¢ (for example the Euclidean
distance L2), the weights wy and a threshold a. The query
result is an ordered set of images 4 checking A(i,q) < o —
see Formula (1). The first step of the filtering consists in
computing A®. At the end of this first step, the result
is a set R containing images i from the database such
that A (g, i) < a. Then, for each images in set R, A
distance is computed. The result is a set R(Y) containing im-
ages i from R(?) such that A(l)(q7 1) < a. The process stops
when the last level of trees is reached, i.e. when A-distance
is computed. Thus, the exhaustive comparison between all
quadrant feature vectors is only computed for a restricted
number of images, each step of the filtering process reduc-
ing the image set to be compared. Figure 4 summaries this
filtering process. This figure deals with a quadtree-based
multi-level filtering, but the filtering process can obviously
be extended to any image recursive decomposition.

Feature vector of Feature vector of

quadrant 0 of the quadrant 0 of the
query image g image i

If AL (1)< @ then proueed
N to the next level

Quadrant  Quadrant Quadrant  Quadrant Quadrant  Quadrant Quadrant Quadrant

If A9 (i,j)< @ then
proceed to the next level

00 of 0l of 02 of 03 of 00 of 01 of 02 of 03 of
image ¢  lmageq 1imageq  imageq image i imagei  imagei  image i
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=+ W
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Figure 4: Using the A-distance for quadtree-based
multi-level filtering.

Formula (3) should be used to approximate A-distance when
the feature vector of a quadrant n is not an approximation
of the feature vectors of its sub-quadrants. For example in



[5], tree nodes store the dominant color of the correspond-
ing quadrant. However, feature vectors are often computed
from statistical methods (e.g. color moment). Tree node n
can also aggregate its rooted sub-tree’s values by containing
an approximation of feature vectors stored in its descendant
nodes. In these cases, A-distance can be approximated by
associating w, > 0 with all nodes n appearing at level £ and
associating null weights (wy, = 0) with the other nodes. Let

@-distance be this approximated A-distance computed by

taking only into account nodes of level £. A(®-distance is
defined by the following formula :

— w"5(7'7.77 TL)
A (i, j) = —=20 (5)

neN(®)

In this formula, nodes n appear at level £ in both trees of im-
ages i and j (n € N®). Formula (5) preserves the previous

inequality A1 (4, 5) < F@(i,j) < AW (4 4), because
feature vectors stored at level £ approximate those stored at
level (£+1).
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Figure 5: Number of images extracted at each step
of the multi-level filtering process.

Figure 5 shows the experiment results obtained with the
prototype of [9]. The database contains 2311 images. All
images are represented by a three-level feature vectors whose
nodes contain 9-dimensional color vectors based on the first
third color moments. A®)-distance is used to approximate
A-distance. The number of compared images decreases at
each step of the filtering process. The larger the threshold
@, the less the decrease of the number of images to be com-
pared. With @ = 0,5, the first step eliminates/gl_él/ images

from the result set: only 1397 images verify A0 (q,7) < a.

—~

After the second filtering step (computing A (q,i) < «),
set R™M contains 611 images: 414 images do not verify

AWM (g,7) < a.

3.3 Pattern search using A

A multi-level feature vector allows pattern search. It con-
sists in retrieving images having regions similar to a query
pattern given by the user [9]. The user selects one or several
quadrants in a grid image, for example a 4 x4 or 16 * 16
grid depending on the decomposition of the images. The
selected quadrants represent a pattern p which becomes the

query pattern g,. A-distance can be used to compute such
a pattern search associating wy,, > 0 with all nodes n, cor-
responding to the image quadrants selected by the user and
wy, = 0 for the other quadrants. We call such a distance:

Ap (i, )-

(b) 3-level
quadtree of the selected by the
query image user quadrants

(c) Quadrants  (d) Bounding box
of selected

(a) Query Image

(e) Translations of the bounding box

Figure 6: A pattern query (adapted from [15]).

To perform pattern query, the user specifies weights w,, and
a threshold « for each selected quadrant. Existing image
quadrants of the database can also be selected as query
pattern - see the example represented in Figures 6.(a) to
6.(c), adapted from [15]. The CBIR system described in
[15] detects the minimum bounding rectangle of the selected
quadrants — see Figure 6.(d). The initial query g, can be
transformed into several queries, each one representing a ge-
ometric transformation (translation or rotation) of the ini-
tial minimum bounding rectangle. In [15], for example, the
initial query of Figure 6.(d) is transformed into 6 queries:
the initial query of Figure 6.(d) and the 5 queries of Figure
6.(e). Each query results from a translation of the selected
quadrants in the initial query g,. An detailed algorithm to
compute Ap-distance is described in [9].

15p=0.9 Wy =0.1

(a) Query image : w,,=0.9
and iy, =0.1 and other
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Figure 7: A pattern search using A-distance.

Figure 7 shows an example of a pattern search realized by
the prototype of [9]. The user wants to retrieve images from
the database having NW and NE quadrants of level 1 sim-
ilar to the homologous quadrants of the query image (see
at the top of the figure). Weight 0.9 is associated with the
query image quadrant 00 and weight 0.1 with the query im-
age quadrant 01. The other quadrants are associated with
a null weight. In this example, no translation of the query



pattern is done.

3.4 Sub-image search using A

A multi-level feature vector also allows sub-image search.
In this kind of search, a query image is compared with all
image quadrants stored in the database, each quadrant be-
ing considered as an independent image. A-distance can be
used to computed such a sub-image search. In this case,
A(q,1) is computed for all images ¢ of the database and all
image quadrants of the images.

(a) Query Image

(b) Image 7 of the database

(1) Full tree comparison | v C

000 001 002 003 000 001 002 003

Figure 8: The first step of sub-image search: a global
search.
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Figure 9: The next steps of a sub-image search: a
comparison between the query tree and the sub-
trees representing the image quadrants.

A sub-image search is performed in several steps: as many
steps as the number of levels in the image trees. The first
step of a sub-image search is a global search (see Section
3.2). The second step compares the query image with all
image quadrants of the first level. The last step compares
the query image with the last level quadrants all images.
Figures 8 and 9 summarize the sub-image search process,
using a quadtree-based multi-level feature vectors — it can
be generalized to any tree resulting from a recursive image
decomposition. Figure 10 shows an example of a sub-image
search, from the prototype of [9]. The query image is on the
left. Some images of the database result from a composition
of real images in order to see when a quadrant appear at
different level. As shown in Figure 10, the result images are

globally similar to the query image (see the first returned
image) or have some quadrants similar to the query image
(see the last three returned images).

(b) Query result

(a) Query umage
Figure 10: A sub-image search using A-distance.

3.5 Particular cases of A-distance

Particular cases of A-distance can be found in [1, 2, 5, 7, 9,
10, 11, 12, 13, 15, 20], depending on the weights wy, and on
the d-distance used to compare image quadrants n. In the
following, due to a lack of space, particular cases presented
in this article are limited to the distances used in [9, 10,
11, 12, 13, 15, 20]. For the other approaches, readers are
referred to [23].

The authors of [9, 11] and [12] represent each image of
the database by a full fixed-depth balanced quadtree whose
nodes contain a color feature vector of the corresponding
image quadrants. In [11], the root nodes contain average
color vectors of the entire images and the other quadtree
nodes contain color histograms. In [12], all quadtree nodes
contain a color histogram. In both approaches, the distance
between images is a A-distance such that weights w, cor-
respond to surface coefficients (wy, = 4% for all nodes n at
level ¢) and ¢ is an Euclidean distance. Both approaches
use a multi-filtering process, using a A® _distance. More-
over, in the DISIMA image DBMS [17], implementing the
proposition of [11], sub-image queries can be answered us-
ing selected portions of the multi-scale color histograms.
This kind of distance can be defined using a Ap-distance.
In [9], quadtree nodes contain a 9-dimensional color vector
based on the first third color moments. This approach al-
lows multi-filtering global search using a A®_distance and
pattern or sub-image searches using a Ap-distance.

The authors of [15] also represent each image by a full fixed-
depth balanced quadtree to perform region queries. The
user, after choosing an image from the database, has to
select several image quadrants at a chosen level ¢, using
a 16 * 16 grid. A bounding box is defined as the small-
est sub-image containing the selected quadrants (see Figure
6). Then, each image of the database is compared with
the initial query image and the query images obtained af-
ter a translation of the bounding box containing selected
quadrants. The visual content of image quadrants is repre-
sented by a high dimensional feature vector combining color
and texture feature. The authors define a distance which
is a normalized linear combination of distances. This dis-
tance corresponds to a Aj,-distance. All chosen regions in
the query image have the same size, thus all nodes n repre-
senting the regions selected by the user in the query image
have the same value of weight w,. The values of weights
wy, are zero for the other nodes n which do no represent the
selected pattern.

In [13], images are represented by a tree structure, whose



first level corresponds to a nona-tree, containing 9 nodes,
and the last level corresponds to a quadtree, containing 16
nodes. Tree nodes store the mean and the covariance color
of the corresponding image quadrants in the L*a™b* color
space. The approach only deals with region-based image
retrieval, taking into account only the leaf node distances.
The distance computed is a A-distance such that weights
wy are zero for all internal nodes n ; only leaf nodes are
compared. This approach is extended in [14]. A relevance
feedback process (adapting weights w,) is proposed to im-
prove the image search. Moreover, the tree nodes contain
BIC feature vectors based on the Border/Interior pizel Clas-
sification defined in [26].

In [10], the quadtree decomposition is not applied to im-
ages but to shapes contained in the images of the database.
A shape is divided into four sub-regions by two principal
axes corresponding to the two eigenvectors at the center of
mass of the shape. Each sub-region is subdivided into four
sub-regions in the same way. The sub-division process is re-
peated a predetermined number of times resulting in a fixed-
depth balanced quadtree whose nodes correspond to the re-
gions of the shape derived from the above process. Four
parameters, invariant to translation, rotation and scale, are
calculated for the corresponding regions of each node while
only two parameters are extracted from the root node. The
similarity distance used to compare two shapes corresponds
to a A-distance where § is a distance L; (say Manhattan
or city block') between quadtree nodes, and where weights
wy = 1 for all nodes n.

In [20], a nona-tree (with only 49 nodes at level 2, redun-
dant quadrants being stored only once) contains texture vec-
tors. The query image is compared with all the different
image quadrants stored in the database, traveling through
all nona-trees. This approach deals with sub-image search
using a Ap-distance. When the query image is compared
with an image quadrant n, the compared image quadrant
n is associated with weight w, = 1 (the other quadrants
being associated with a null weight). The 0-distance used is
an Euclidean distance between texture feature vectors.

Table 2, at the end of the article, summarizes these par-
ticular cases of A-distance.

4. CONCLUSION AND FUTURE WORK

In this article, a generalized metric distance, A-distance, is
presented for images recursively decomposed into fixed-size
quadrants and represented by a multi-level feature vectors.
This distance allows specific content-based image retrieval
queries. It allows to retrieve images globally similar to a
query image, taking into account not only the visual fea-
tures of the images but the location of the visual features
too. Thanks to the tree representation of the images, A-
distance can be computed using multi-level filtering which
reduces the number of images to be compared at each fil-
tering step. A-distance also allows region-based queries. In
this kind of queries, the resulting images contain quadrants
similar to the quadrants selected by the user in the query
image (pattern search) or contain quadrants similar to the

!The sum of the absolute difference of each feature vectors
stored in homologous tree nodes.

entire query image (sub-image search). Because A-distance
is a generalized distance, some existing CBIR systems [9,
10, 13, 11, 12, 15, 20] use particular cases of it.

The A-distance computation is more time-consuming than
any global distancescomputed between global feature vec-
tors (for example, the color histogram of the entire image):
the time used to compute A-distance is proportional to the
number of image quadrants resulting from the image decom-
position. Thus, index structure must be used to improve
the query performances. Several approaches use an index
on the root of the multi-level feature vectors: a R-tree [8]
in [12], a K-d-tree [3] in [15] or a structure based on ex-
tendible hashing [6] in [11]. With this index, the number
of images having to be compared, quadrant by quadrant, is
limited because the index clusters the images according to
their global similarity. Deeper quadtree level comparisons
are only performed for the images contained in the filtering
result set [9]. As explained in [11], performing the filtering
on the entire image database gives a result set containing
false hits but no false dismissals. When a system should
perform not only global search but region-based search too,
an index including all nodes of the multi-level feature vec-
tors is more efficient. Such an index structure is proposed
in [9].

This article represents the first steps to develop a proto-
type allowing users to compare different A-based distances.
The purpose of such a prototype is to help users to fix the
right weights w,, and to choose the §-distance between im-
age quadrants, depending on the query they want and on the
images of their database. In this article, A-distance is only
defined to compare images represented by a full balanced
tree. However, such a tree could be unbalanced, for exam-
ple when it results from an image segmentation or when it is
used for image storage (see in [16] for a survey on quadtree
uses in image domain). Particular cases of A-distance can
be defined for images represented by unbalanced trees [22,
23]. Our future prototype will also integrate this kind of
distances.
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Table 1: Meaning of symbols used

| Symbol | Meaning

a tree level

tree node or image quadrant identifier

integer, z € {0,1,2,3,4,5,6,7,8}

set of all nodes (resp. quadrants) identifiers appearing in the image database

set of all nodes (resp. quadrants) identifiers appearing at level £

image identifiers

q query image
qp query pattern (i.e. quadrants selected in an image recursively decomposed)
A(i,7) | distance between multi-level feature vectors of images ¢ and j
0(i,3,n) | normalized metric distance between feature vectors of homologous quadrants n in images i and j
W, weight of homologous nodes (resp. quadrants) n in the A-distance computation
w sum of all weights w,, associated with the image quadrants, W =} . wn

AW (i, 7) | approximation of A-distance computed from nodes appearing from the root level (0) until level ¢

AW® (4, 5) | approximation of A-distance taking into account only nodes at level ¢

o similarity threshold ; images having a A-distance below « are similar
RO result set of the (¢ + 1)“‘ step of the multi-level filtering process
Ap(i,7) | A-distance computed for a query pattern gp
Table 2: Particular cases of A-distance
| Ref. | Tree | Feature vectors | A-distance | § | weights w,
[9] quadtree color moments A® and A, | Ly | 47* for all nodes n at level £
[10] quadtree shape feature A J 1 for all nodes n
average color in the root
[11] quadtree and color histograms A® and A, | Ly | 47° for all nodes n at level £
in the other nodes
[12] quadtree color histograms AD® Ly | 47¢ for all nodes n at level £
[13] mixed between mean and A L1 | wn, =0 for all internal nodes n
nona and quadtree covariance color and w, = 1 for leaf nodes n
[15) quadtree histograms combining A, d wy, = 0 for all quadrants n
color and texture not selected by the user
wn = 1 for each
[20] nona-tree texture vector A, Lo compared quadrants n
wp, = 0 otherwise

2In [15]: 6 = d, where d is a specific distance based on Gaussian assumption and using the Kronecker symbol.




