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ON THE CONTROLLABILITY OF ANOMALOUS DIFFUSIONS
GENERATED BY THE FRACTIONAL LAPLACIAN

LUC MILLER

Abstract. This paper introduces a “spectral observability condition” for a
negative self-adjoint operator which is the key to proving the null-controllability

of the semigroup that it generates and to estimating the controllability cost

over short times. It applies to the interior controllability of diffusions gen-
erated by powers greater than 1/2 of the Dirichlet Laplacian on manifolds,

generalizing the heat flow. The critical fractional order 1/2 is optimal for a

similar boundary controllability problem in dimension one. This is deduced
from a subsidiary result of this paper, which draws consequences on the lack

of controllability of some one dimensional output systems from Müntz-Szász

theorem on the closed span of sets of power functions.

In section 1.2 of this paper, an observability condition on the spectral subspaces
of a negative self-adjoint operator is introduced which ensures fast controllability,
i.e. the semigroup generated by this operator is null-controllable in arbitrarily small
time. In this asymptotic, it also ensures an upper bound for the controllability cost,
i.e. the supremum, over every initial state with norm one, of the norm of the optimal
input function which steers it to zero (cf. definitions in section 1.1). This spectral
observability condition is the abstract version of a property proved in [LZ98, JL99]
for the Dirichlet Laplacian ∆ on a compact manifold observed on any region.

It applies to the semigroup generated by the fractional Laplacian on manifolds
−(−∆)α as long as α > 1/2. This semigroup is widely used to describe physical
systems exhibiting anomalous diffusions (cf. references in section 2.1). Thus new
interior null-controllability results for such fractional diffusions with non-constant
coefficients in any dimension are deduced in section 2.2 (a similar problem with
constant coefficients in one dimension and one dimensional input was recently con-
sidered in [MZ04]). In particular, as the control time T tends to 0, the controllability
cost grows at most like Cβ exp(cβ/T β) where Cβ and cβ are positive constants and
β > 1/(2α− 1) (n.b. a lower bound of the same form with equality β = 1/(2α− 1)
holds in the case α = 1 corresponding to the heat flow). It is proved in section 2.3
that a similar problem in one dimension is not controllable from the boundary for
α ∈ (0, 1/2].

This last result is deduced from a more general remark of independent interest
on the lack of controllability of any finite linear combination of eigenfunctions of
systems with one dimensional input, based on the generalized Müntz theorem on
the completeness of sets of exponentials.

1. The main result in the abstract setting.

After recalling the duality between controllability and observability for parabolic
semigroups, this section states the main definition and theorem.

1.1. The abstract setting. Let the generator A be a positive self-adjoint operator
with domain D(A) on the Hilbert space H of states which we identify with its dual.
The norm in H is denoted by ‖·‖ without subscript. Let H1 be the Hilbert space
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2 L. MILLER

obtained by choosing the graph norm on D(A). Let H−1 be the space dual to H1.
We keep the same notation for the extension of {e−tA}t>0 to a semigroup on H−1.

Let U be the Hilbert space of inputs which we identify with its dual. Let the
observation operator C be a bounded operator from H1 to U and let the control
operator B ∈ L(U ;H−1) be its dual. We make the following equivalent admissibility
assumptions on these operators (cf. [Wei89]): ∀T > 0, ∃KT > 0,

∀v0 ∈ D(A),
∫ T

0

‖Ce−tAv0‖2dt 6 KT ‖v0‖2,

∀u ∈ L2
loc(R;U), ‖

∫ T

0

e−tABu(t)dt‖2 6 KT

∫ T

0

‖u(t)‖2dt.

With this assumption, the output map v0 7→ Ce−tAv0 from D(A) to L2
loc(R;U) has

a continuous extension to H. The differential equation:

φ̇+Aφ = Bu, φ(0) = φ0 ∈ H, u ∈ L2
loc(R;U)(1)

has a unique solution φ ∈ C([0,∞);H) defined by the integral formula:

φ(t) = e−tAφ(0) +
∫ t

0

e(s−t)ABu(s)ds .

Definition 1. The parabolic control system (1) is said to be null-controllable in
time T if for all initial state φ0 ∈ H there is an input function u ∈ L2

loc(R;U) such
that the solution φ ∈ C([0,∞);H) of (1) satisfies φ = 0 at t = T .

By duality (cf. [DR77]), it is equivalent to the following observability inequality
for solutions v(t) = e−tAv0 of the equation without source term: v̇ +Av = 0.

Definition 2. The parabolic semigroup {e−tA}t>0 is said final-observable through
C in time T if there is a positive constant CT such that:

∀v0 ∈ H, ‖e−TAv0‖ 6 CT ‖Ce−tAv0‖L2(0,T ;U) .(2)

The smallest positive constant CT in (2) is the controllability cost in time T .

N.b. by duality, the controllability cost is also the best positive constant CT such
that, for all φ0, there is a u as in definition 1 such that ‖u‖L2(0,T ;U) 6 CT ‖φ0‖.

1.2. The main result. Now we introduce the spectral observability condition of
order γ > 0 for the generator A and observation operator C. This definition is quite
natural for dissipative problems as illustrated in section 3: it allows to compare the
free dissipation of high modes to the cost of controlling low modes.

Our spectral notations are the following. Given γ > 0 and µ > 1, applying the
functional calculus for self-adjoint operators to the positive operator Aγ and the
bounded function on R+ defined by 1λ6µ = 1 if λ 6 µ and 1λ6µ = 0 otherwise,
yields the spectral projector 1Aγ6µ. The image of H under this projection operator
is just the spectral subspace 1Aγ6µ H of Aγ . N.b. when there are only eigenvalues
in the spectrum of A, 1Aγ6µ H is the set of linear combinations of the eigenvectors
of A with eigenvalues lower or equal to µ1/γ . In short, 1Aγ6µ H can be considered
as the space of generalized modes of Aγ lower or equal to µ.

Definition 3. Let γ > 0. The observability of low modes of Aγ through C at
exponential cost holds if there are positive constants d1 and d2 such that:

∀µ > 1,∀v ∈ 1Aγ6µ H, ‖v‖ 6 d2e
d1µ‖Cv‖ .(3)

The following theorem shows that this is a relevant condition for estimating how
violent fast controls are (this problem was solved for dimH <∞ in [Sei88]).
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Theorem 1.1. If definition 3 holds with γ ∈ (0, 1) then the system (1) is null-
controllable in any time T > 0 (cf. definition 1). Moreover the controllability cost
CT (cf. definition 2) over short times satisfies the upper bound:

∀β > γ

1− γ
,∃C1 > 0,∃C2 > 0,∀T ∈ (0, 1) CT 6 C2 exp

(
C1

T β

)
2. Application to the fractional diffusion

This section considers the controllability of the semigroup generated by the frac-
tional Laplacian on a manifolds −(−∆)α, where ∆ denotes the usual Laplacian
operator. When the manifold is the whole Euclidean space Rd, ∆ = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
d
.

When the manifold has a boundary, the null Dirichlet condition is always assumed.

2.1. Background on anomalous diffusion models. In recent years, the use of
fractional derivatives in dynamical models of physical processes exhibiting anoma-
lously slow or fast diffusion has diffused (cf. the surveys [MK04, SKB02]). Frac-
tional calculus includes various extensions of the usual derivative from integer to
real order. In this paper we always use the fractional Laplacian, which is not a local
operator when the power α is not an integer. Moreover, the model of anomalous
diffusion considered here do not include fractional derivatives, of any kind, with
respect to the time variable (cf. [SKB02, GM03, MK04] and references therein).

When the manifold is the whole Euclidean space Rd, the dynamics considered
here is the same as the “isotropic space-fractional diffusion equation” in [Han01],
the “strictly space fractional diffusion equation” in [GM03] and the “Lévy frac-
tional diffusion equation” in [MK04]. In this case, the fractional powers of the
Laplacian are also known as Riesz fractional derivatives ([GM03]) or Riesz-Weyl
operator ([MK04]). They are easily defined through the Fourier transform F :
F(−∆)αf(ξ) = |ξ|2αFf(ξ).

The fractional Laplacian −(−∆)α with α ∈ (0, 1] generates the rotationally
invariant 2α-stable Lévy process. For a textbook presentation of this stochastic
process, we refer the reader to [Sat99], in particular example 32.7, and for a survey
to [App04], in particular example 5 of Lévy process and example 2 of generator. For
α = 1 this process is the Brownian motion Bt on Rd, and for α < 1 it is subordinated
to Bt by a strictly α-stable subordinator Tt, so that it writes BTt

. The convolution
kernels of the corresponding semigroups are the rotationally invariant Lévy stable
probability distributions, in particular the Gaussian distribution for α = 1 and the
Cauchy distribution for α = 1/2. For α < 1 these distributions have “heavy tails”,
i.e. far away they decrease like a power as opposed to the exponential decrease
found in the Gaussian, which accounts for the “superdiffusive” behavior of the
semigroup. The more restrictive range α ∈ (1/2, 1) is the most widely used to model
anomalously fast diffusions (cf. [MK04]), and it turns out that the controllability
result theorem 2.1 applies to this range of fractional superdiffusions only. Theorem
2.1 includes the “subdiffusive” range α > 1 but it seems that this model has not
been considered in the physics literature on anomalously slow diffusion. N.b. the
generalized Laplacian operators associated with anisotropic diffusion, also known
as the Riesz-Feller derivatives, generate all stable Lévy processes, i.e. including the
non invariant ones also called skewed (cf. [Han01], [GM03]). These Lévy processes
can be approximated by Lévy flights and references to random walk models of
anomalous diffusion can be found in [MK04, GM03].

When the manifold is a domain of the Euclidean space Rd, the Markov process
generated by the fractional Dirichlet Laplacian −(−∆)α with α ∈ (0, 1] can be
obtained by killing the Brownian motion on Rd upon exiting the domain then
subordinating the killed Brownian motion by the subordinator Tt introduced above
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(cf. [SV03]). N.b. reversing the order of killing and subordination yields another
process which seems to have been investigated earlier and further.

2.2. Interior controllability of some fractional diffusions. LetM be a smooth
connected complete n-dimensional Riemannian manifold with metric g and bound-
ary ∂M . When ∂M 6= ∅, M denotes the interior and M = M ∪ ∂M . Let ∆ denote
the Dirichlet Laplacian on L2(M) with domain D(∆) = H1

0 (M) ∩H2(M) (n.b. ∆
denotes a negative differential operator with variable coefficients depending on the
metric g). Let T be a positive time and let χΩ denote the characteristic function
of an open subset Ω 6= ∅ of M .

In this application, the state and input space is H = U = L2(M) and the
observation operator C is the multiplication by χΩ, i.e. it truncates the input
function outside the control region Ω. If M is not compact, assume that Ω is the
exterior of a compact set K such that K ∩ Ω ∩ ∂M = ∅. In this setting, the
observability of low modes of (−∆)1/2 through C at exponential cost holds (cf.
definition 3). When M is compact this is an inequality on sums of eigenfunctions
proved as theorem 3 in [LZ98] and theorem 14.6 in [JL99]. This was generalized
to non compact M in [Mil05]. Applying theorem 1.1, with H = U = L2(M),
A = (−∆)α, γ = 1/(2α) and B = C ∈ L(H;U) yields:

Theorem 2.1. For all α > 1/2, the fractional diffusion system:

∂tφ+ (−∆)αφ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2
loc(R;L2(M)),

is null-controllable in any time T > 0 (cf. definition 1). Moreover the controllability
cost CT (cf. definition 2) over short times satisfies the upper bound:

∀β > 1/(2α− 1),∃Cβ > 0,∃cβ > 0,∀T ∈ (0, 1) CT 6 Cβ exp
( cβ
T β

)
.

Remark 2.2. This upper bound for the fast controllability cost in the case α = 1
was already stated without proof in [Mil04]. Micu and Zuazua mention indenpen-
dently in [MZ04] that “a careful analysis of the method of proof in [LR95, LZ98]
shows that it works if α > 1/2”, but no upper bound.

Micu and Zuazua considered in [MZ04] a similar controllability problem: the
space manifoldM and the input space U are one dimensional, B is the multiplication
by a shape function f ∈ L2(M) satisfying extra assumptions (instead of χΩ). They
deduce from the [FR71] a sufficient condition on the Fourier coefficients of f and
φ0 (involving α > 1/2 and T > 0) ensuring that there is a u steering φ0 to 0 in
time T . Their main negative result is referred to in the next section.

Remark 2.3. We should comment on the simplest case α = 1, i.e. diffusion by the
heat flow. The fast null-controllability for any control region Ω has been known
for a decade and the fast controllability cost has been investigated, e.g. [FCZ00,
Mil04]. It allows us to discuss the optimality of the upper bound in theorem 2.1.
Namely, a lower bound of the same form with equality β = 2/(2 − α) holds for
α = 1 (cf. [Mil04]). When M is a bounded domain of Rd and ∆ has constant
coefficients, [FCZ00] proves that lim supT→0 T lnCT < ∞ for any Ω. For general
(M, g), but under some geometric condition on Ω, an explicit geometric upper
bound on lim supT→0 T lnCT is proved in [Mil04].

2.3. Non controllability of some one dimensional fractional diffusions.
Although there is no result yet for α 6 1/2 in the setting of the previous section,
it seems that the controllability in theorem 2.1 does not hold for α 6 1/2 since it
does not hold for some similar one dimensional fractional diffusions problems.

Indeed, [MZ04] concerns such a negative result in the setting of “lumped” interior
control described in remark 2.2. Micu and Zuazua first recall a result of [Fat66]
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saying that for any α 6 1/2 and T > 0 there is an f and a φ0 that cannot be steered
to 0 in time T by any u. In theorem 3.1 they go much further in the analysis of
the space of initial states which are not controllable.

The key assumption in [MZ04] compared to the setting of theorem 2.1 (even
when M is one-dimensional) is that the input space U is one dimensional. This
allows to make the well known reduction to some properties of entire functions
and exponential sums (cf. e.g. [FR71, AI95, Mil04]). Indeed, as pointed out in
the appendix, it is easy to prove that abstract systems with finite dimensional
inputs have a large set of non controllable initial states as soon as their eigenvalues
satisfy a well-known condition on the completeness of sets of exponentials. As an
application, the next theorem states a strong non controllability result for a one
dimensional boundary control system. N.b. although theorem 3.1 of [MZ04] is a
stronger and more difficult result, here the input space is naturally one dimensional
without extra assumption on the structure of the controlled term.

In the next theorem, the manifold is a segment, i.e. M = (0, L). For this
result only, we consider the Neumann Laplacian ∆N which acts as ∆ but has a
different domain: D(∆N ) = {φ ∈ H2(M) |φ′(0) = φ′(L) = 0}. Let A = (−∆N )α

with α ∈ (1/4, 1/2]. Since α < 3/4, D(A) with the graph norm is X1 = H2α(0, L)
(without boundary condition) which injects continuously in the space of continuous
functions for α > 1/4. Therefore, b : φ 7→ φ(L) is continuous on X1, and thus
defines b in the dual X−1 of X1. N.b. if the metric is not Euclidean, then ∆N has
variable coefficients so that the eigenvalues {λn}n∈N and eigenfunctions {φn}n∈N
are not explicit. But they satisfy φn(L) 6= 0 and λn ∼ Cn2α where C is a positive
constant, so that bn = 〈b, φn〉 6= 0 and property ii) of theorem A.1 holds for 2α < 1.
Therefore theorem A.2 implies:

Theorem 2.4. Assume b is the boundary control operator and A is the fractional
Neumann Laplacian defined above with α ∈ (1/4, 1/2]. For all finite linear combi-
nation x0 6= 0 of the eigenvectors of A and for all T > 0, there is no input function
u ∈ L2(0, T ; C) such that the solution x ∈ C(0, T ;X−1) of ẋ(t)+Ax(t) = bu(t) with
initial state x(0) = x0 satisfies x(T ) = 0.

3. Proof of the main theorem

This section concerns the proof of theorem 1.1. In a first step, from the stationary
condition in definition 3, we deduce the observability of low modes over any positive
time in the corresponding dynamics (this is the abstract version of section 4 in
[Mil05]). In a second step, using an abstract version of the iterative control strategy
introduced by Lebeau and Robbiano in [LR95] (cf. section 5 in [Mil05]), we prove
the full null-controllability in arbitrarily small time. The main novelty is the last
step, in which we estimate the controllability cost as the control time tends to zero.

3.1. From the stationary to the evolution equation. Let dEλ denote the
projection valued measure associated to the self-adjoint operator Aγ by the spectral
theorem. Assume that definition 3 holds. Let τ ∈ (0, 1], µ > 1 and v0 ∈ 1Aγ6µ H.

For all t ∈ [0, τ ], we may apply (3) to v = e−tAv0 since it is in 1Aγ6µ H:

d2
2e

2d1µ‖Ce−tAv0‖2 > ‖e−tAv0‖2 =
∫ µ

0

e−2tλ1/γ

d(Eλv0, v0) .
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First integrating on [0, τ ] with the new variable s = t/τ , then using τ 6 1 and
finally

∫ 1

0
exp(−αt)dt = (1− exp(−α))/α > (2α)−1 for α > ln 2 yields:

d2
2e

2d1µ

∫ τ

0

‖Ce−tAv0‖2dt > τ

∫ 1

0

∫ µ

0

e−2τsλ1/γ

d(Eλv0, v0) ds

> τ

∫ 1

0

e−2sµ1/γ

ds

∫ µ

0

d(Eλv0, v0) >
τ

4µ1/γ
‖v0‖2 .

Therefore, for any D1 > d1, there is a D2 > 0 such that low modes fast observability
for e−tA at exponential cost holds: ∃D1 > 0, ∃D2 > 0,

∀µ > 1,∀τ ∈ (0, 1],∀v0 ∈ 1Aγ6µ H, ‖e−τAv0‖ 6
D2√
τ
eD1µ‖Ce−tAv0‖L2(0,τ ;U) .(4)

By duality (cf. [DR77]), this is equivalent to the following null-controllability:
for all τ ∈ (0, 1] and µ > 1, there is a bounded operator Sτ

µ : H → L2(0, τ ;U)
such that for all φ0 ∈ 1Aγ6µ H, the solution φ ∈ C([0,∞),H) of (1) with control
function u = Sτ

µφ0 satisfies 1Aγ6µ φ = 0 at t = τ . Moreover, we have the cost
estimate: ‖Sτ

µ‖ 6 D2√
τ
eD1µ.

3.2. From low modes to full controllability. From now on, we need to assume
that γ in definition 3 is lower than 1. We introduce a dyadic scale of modes µk = 2k

(k ∈ N) and a sequence of time intervals τk = σδT/µ
δ
k where δ ∈ (0, γ−1 − 1)

and σδ = (2
∑

k∈N 2−kδ)−1 > 0, so that the sequence of times defined recursively
by T0 = 0 and Tk+1 = Tk + 2τk converges to T . The strategy of Lebeau and
Robbiano in [LR95] is to steer the initial state φ0 to 0, through the sequence of
states φk = φ(Tk) ∈ 1Aγ>µk−1 H composed of ever higher modes, by applying
recursively the input function uk = Sτk

µk
φk to φk during a time τk and no input

during a time τk. This strategy is successful if φk tends to zero and the full input
function u(t) =

∑
k 106t−Tk6τk

uk(t) is in L2(0, T ;H). Since the cost estimate
above implies ‖Sτk

µk
‖ 6 D2e

D1µk/
√
τk, it only remains to check that:

εk = ‖φk‖ and Ck = D2e
D1µk/µ

δ/2
k satisfy lim

k
εk = 0 and

∑
k∈N

C2
kε

2
k <∞ .(5)

Since 1Aγ6µk
φ(Tk +τk) = 0, we have εk+1 6 e−τkµ

1/γ
k ‖φ(Tk +τk)‖. The expression

of φ(Tk + τk) in terms of the source term uk (Duhamel’s formula) and ‖et∆‖ 6 1
(contractivity of the heat semigroup) imply ‖φ(Tk+τk)‖ 6 2(εk+

√
τk‖uk‖). There-

fore εk+1 6 2e−τkµ
1/γ
k (1 +

√
τkCk)εk. Since Ck+1/Ck = eD1µk/2δ/2, we deduce:

Ck+1εk+1

Ckεk
6 2e−τkµ

1/γ
k

(
1 +D2e

D1µk
)
eD1µk/2δ/2 6 D3 exp

(
2D1µk − σδTµ

γ−1−δ
k

)
,

for some D3 > 0. Since γ−1− δ > 1 this implies
∑

k∈N C
2
kε

2
k <∞, which proves (5)

and completes the proof of the first assertion of theorem 1.1.

3.3. Estimate of the controllability cost over short times. To estimate the
cost CT 6 (

∑
k∈N C

2
kε

2
k)1/2/ε0 as T → 0, we define ρk which satisfies:

∃D4 > 0, ρk :=
(
Ck+1εk+1

Ckεk

)2

6 D4 exp
(
4D1µk − 2σδTµ

γ−1−δ
k

)
according to the last estimate of the previous subsection. Since∑

06k6l−1

µγ−1−δ
k =

2(γ−1−δ)l − 1
2(γ−1−δ) − 1

> µγ−1−δ
l

1− 1/2
2(γ−1−δ)

= µγ−1−δ
l−1 /2
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we have, with q := 2γ−1−δ ∈ (2, 2γ−1
) and T ′ := σδT/q:∏

06k6l−1

ρk 6 Dl
4 exp

(
4D1µl − 2σδTµ

γ−1−δ
l−1

)
= Dl

4 exp
(
4D12l − T ′ql

)
.

Therefore the cost satisfies for some D5 > 0:

∑
k>0

C2
kε

2
k = C2

0ε
2
0

1 +
∑
l>1

∏
06k6l−1

ρk

 6 ε20D5

1 +
∑
k>1

exp
(
4D12k − T ′qk

) .

To estimate the last sum, we shall use the simple estimate:

f(t) :=
∑
k>1

exp
(
−tqk

)
6

∑
k>1

exp (−tk) ∼
t→0

1
t
.(6)

Let ε ∈ (0, 1) and hε(x) := 4D12x − εT ′qx. The maximum of the function hε on R

is obtained at a point xε which satisfies, setting βq :=
(

ln q
ln 2 − 1

)−1

:

xε = ln
(

4D1 ln 2
εT ′ ln q

)
/ ln(q/2) ∼

T ′→0

ln(1/T ′)
ln(q/2)

, hε(xε) =
εT ′

βq
qxε ∼

T ′→0

ε

βqT ′βq
.

Applying h1(x) 6 hε(xε)− (1− ε)T ′qx to x = k for k > 1 yields, thanks to (6):∑
k>1

exp
(
4D12k − T ′qk

)
6 exp (hε(xε)) f((1− ε)T ′) ∼

T ′→0
exp

(
ε

βqT ′βq

)
1

(1− ε)T ′
,

hence the cost estimate: ∃D6 > 0,∃D7 > 0,
∑

k>0 C
2
kε

2
k 6 ε20D6 exp

(
D7/T

′βq
)
.

Since T ′ = σδT/q and, as δ increases to γ−1 − 1, q = 2γ−1−δ increases to 2γ−1
and

βq decreases to γ/(1− γ), the second assertion of theorem 1.1 is proved.

Appendix A. Lack of controllability based on Müntz theorem

This appendix concerns control systems having a Riesz basis of eigenvectors and
a one-dimensional input space. It is well-known that their exact, null and approx-
imate controllability are related to properties of sets of exponentials (cf. [AI95]).
Such systems where recently considered in [RW00], [JZ01] and [JP04]. In particular
a necessary and sufficient condition for null-controllability in terms of the eigenval-
ues is given in [JP04]. This condition is enough to prove that null-controllability
does not hold in theorem 2.4. This appendix concerns a much stronger property
which has not drawn much attention yet : finite linear combination of the eigen-
vectors are initial state which cannot be steered to zero by any input function.
Theorem A.2 gives a sufficient condition in terms eigenvalues which is applied in
theorem 2.4.

The generalized Müntz theorem referred to in the title of this appendix is the
following theorem 7 of [Red77] (the original Müntz-Szász theorem concerned the
approximation by power functions x 7→ xλn , with positive exponents λn, instead of
exponentials; we refer to [BE96] for more results and references):

Theorem A.1. Let {λn}n∈N be a sequence of distinct non zero complex numbers
and let {en}n∈N be the corresponding sequence of exponential functions defined by
en(t) = exp(λnt).
If {λn}n∈N satisfies one of these properties:

i) ∃ε > 0,
∑

n

1
|λn|1+ε

= ∞,

ii)
∑

n

|Re
1
λn
| = ∞,
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iii) {|λn|}n∈N increases and there exists a sequence {θn}n∈N of nonnegative real

numbers such that
∑

n

1
nθn

<∞, and
∑

n

1
|λn|θn

= ∞,

then, for all T > 0, {en}n∈N is complete in L2(0, T ; C), i.e. any function of
L2(0, T ; C) is an infinite linear combinations of these exponential functions con-
verging in the norm of this space.

On a Hilbert space X we consider the system described by the following differ-
ential equation for t > 0 :

ẋ(t) +Ax(t) = bu(t), x(0) = x0 ∈ X , u ∈ L2
loc(R; C) .(7)

We assume that −A is the infinitesimal generator of a C0-semigroup {e−tA}t>0 on
X , which has a sequence of normalized eigenvectors {φn}n∈N forming a Riesz basis
of X , with associated eigenvalues {λn}n∈N, that is, Aφn = λnφn. We denote by X1

the Hilbert space obtained by choosing the graph norm on the domain D(A) of the
unbounded operator A on X , by X−1 the space dual to X1, and we keep the same
notation for the extension of {e−tA}t>0 to a semigroup on X−1. We also assume
that the “control vector” b is in X−1 so that the solution x ∈ C(0, T ;X−1) of (7) is
defined for T > 0 by the integral formula:

x(T ) = e−TAx0 +
∫ T

0

e−(T−t)Abu(t)dt .(8)

There is a sequence of eigenvectors {ψn}n∈N of A∗ forming a Riesz basis of
X , with associated eigenvalues {λ̄n}n∈N, which is bi-orthogonal to {φn}n∈N, i.e.
〈φn, ψn〉 = 1 and 〈φn, ψm〉 = 0 if m 6= n. We introduce the coefficients bn = 〈b, ψn〉
in the expansion b =

∑
n∈N bnφn.

Theorem A.2. Assume that bn 6= 0 for all n larger than some integer Nb. If the
set of distinct non zero eigenvalues of A satisfies one of the properties stated in
theorem A.1, then, for all non zero initial state x0 which is a finite linear combi-
nation of the eigenvectors {φn}n∈N and for all T > 0, there is no input function
u ∈ L2(0, T ; C) such that the solution x ∈ C(0, T ;X−1) of (7) satisfies x(T ) = 0.

Proof. Introducing the coefficients xn(t) = 〈x(t), ψn〉, (8) writes xn(T ) = e−λnTx0
n+∫ T

0
e−λn(T−t)bnu(t)dt. With the notation en(t) = exp(λnt), x(T ) = 0 writes:

∀n ∈ N, −x0
n = bn

∫ T

0

en(t)u(t)dt .(9)

We make the assumptions on {bn}n∈N and {λn}n∈N of the theorem. Arguing
by contradiction, we also assume that there are T > 0, x0 6= 0 which is a finite
linear combination of the {φn}n∈N, and u ∈ L2(0, T ; C) such that (9) holds. Let
x0

N be the nonzero coefficient of x0 with the greatest index, i.e. x0
N 6= 0 and x0

n = 0
for n > N . Let M = max{Nb, N}. For all n > M , on the one hand M > Nb

implies bn 6= 0, on the other hand M > N implies x0
n = 0, so that (9) implies∫ T

0
en(t)u(t)dt = 0. The set of distinct non zero values of {λn}n>M also satisfies

the same property stated in theorem A.1 as {λn}n∈N, so that the corresponding
subset of {en}n>M is complete in L2(0, T ; C). In particular, eN =

∑
n>M cnen for

some coefficients {cn}n>M ∈ l2(C). Plugging this expansion in (9) with n = N

yields the contradiction: 0 6= −x0
N = bN

∑
n>M cn

∫ T

0
en(t)u(t)dt = 0. �

Remark A.3. This abstract theorem applies directly to the context of theorem 3.1
in [MZ04], since eq.2.10 in [MZ04] corresponds to the hypothesis bn 6= 0 for all n.
In an explicit setting where λn = n2α with α ∈ (0, 1/2], Micu and Zuazua describe
a much larger set of initial data which cannot be steered to zero.
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Remark A.4. The following weaker result, in the setting of finite-dimensional in-
put space (instead of one-dimensional) but of eigenvectors forming a Hilbert ba-
sis (instead of Riesz basis) and of eigenvalues with positive real parts, can be
deduced from [AI95] by combining theorem III.3.3(d) with theorem II.2.4 as in
the proof of theorem IV.1.3(c): if the eigenvalues violate the Blaschke condition∑

n Reλn(1 + |λn|2)−1 < ∞, then, for all T > 0, there is an initial state equal
to some eigenvector φn which cannot be steered to zero in time T by any input
function (n.b. when |λn| → ∞, the violation of the Blaschke condition here is
equivalent to the property ii) in theorem A.1).
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