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ON THE CONTROLLABILITY OF ANOMALOUS DIFFUSIONS
GENERATED BY THE FRACTIONAL LAPLACIAN

LUC MILLER

Abstract. This paper introduces a “spectral observability condition” for a
negative self-adjoint operator which is the key to proving the null-controllability

of the semigroup that it generates and to estimating the controllability cost

over short times. It applies to the interior controllability of diffusions gen-
erated by powers greater than 1/2 of the Dirichlet Laplacian on manifolds,

generalizing the heat flow. The critical fractional order 1/2 is optimal for a

similar boundary controllability problem in dimension one. This is deduced
from a subsidiary result of this paper, which draws consequences on the lack

of controllability of some one dimensional output systems from Müntz-Szász

theorem on the closed span of sets of power functions.

In this paper, an observability condition on the spectral subspaces of a nega-
tive self-adjoint operator is introduced which ensures fast controllability, i.e. the
semigroup generated by this operator is null-controllable in arbitrarily small time.
In this asymptotic, it also ensures an upper bound for the controllability cost, i.e.
the supremum, over every initial state with norm one, of the norm of the optimal
input function which steers it to zero (cf. section 1). This spectral observability
condition is the abstract version of a property proved for the Dirichlet Laplacian
∆ on a compact manifold observed on any non empty region in [LZ98, JL99] (cf.
[Mil05] for non-compact manifolds).

It applies to the semigroup generated by the fractional Laplacian on manifolds
−(−∆)α as long as α > 1/2. This semigroup is widely used to describe physi-
cal systems exhibiting anomalous diffusions (cf. references in sect.2.1). Thus new
interior null-controllability results for such fractional diffusions with non-constant
coefficients in any dimension are deduced (the one dimension problem with con-
stant coefficients and one dimensional input was recently considered in [MZ04]). In
particular, as the control time T tends to 0, the controllability cost grows at most
like Cβ exp(cβ/T β) where Cβ and cβ are positive constants and β > 1/(2α − 1)
(n.b. a lower bound of the same form with equality β = 1/(2α − 1) holds in the
case α = 1 which corresponds to the heat equation). It is proved in the appendix
that a similar one dimensional problem is not controllable from the boundary for
α ∈ (0, 1/2].

This last result is deduced from a more general remark of independent interest
on the lack of controllability of any finite linear combination of eigenfunctions of
systems with one dimensional input, based on the generalized Müntz theorem on
the completeness of sets of exponentials.

1. The main result in the abstract setting.

After recalling the duality between controllability and observability for parabolic
semigroups, this section states the main definition and theorem.

1.1. The abstract setting. Let the generator A be a positive self-adjoint operator
with domain D(A) on the Hilbert space H of states which we identify with its dual.
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The norm in H is denoted by ‖·‖ without subscript. Let H1 be the Hilbert space
obtained by choosing the graph norm on D(A). Let H−1 be the space dual to H1.
We keep the same notation for the extension of {e−tA}t>0 to a semigroup on H−1.

Let U be the Hilbert space of inputs which we identify with its dual. Let the
observation operator C be a bounded operator from H1 to U and let the control
operator B ∈ L(U ;H−1) be its dual. We make the following equivalent admissibility
assumptions on these operators (cf. [Wei89]): ∀T > 0, ∃KT > 0,

∀v0 ∈ D(A),
∫ T

0

‖Ce−tAv0‖2dt 6 KT ‖v0‖2,

∀u ∈ L2
loc(R;U), ‖

∫ T

0

e−tABu(t)dt‖2 6 KT

∫ T

0

‖u(t)‖2dt.

With this assumption, the output map v0 7→ Ce−tAv0 from D(A) to L2
loc(R;U) has

a continuous extension to H. The differential equation:

φ̇+Aφ = Bu, φ(0) = φ0 ∈ H, u ∈ L2
loc(R;U)(1)

has a unique solution φ ∈ C([0,∞);H) defined by the integral formula:

φ(t) = e−tAφ(0) +
∫ t

0

e(s−t)ABu(s)ds .

Definition 1. The parabolic control system (1) is said to be null-controllable in
time T if for all φ0 ∈ H there is an input function u ∈ L2

loc(R;U) such that the
solution φ ∈ C([0,∞);H) of (1) satisfies φ = 0 at t = T .

By duality (cf. [DR77]), it is equivalent to the following observability inequality
for solutions v(t) = e−tAv0 of the equation without source term: v̇ +Av = 0.

Definition 2. The parabolic semigroup {e−tA}t>0 is said final-observable through
C in time T if there is a positive constant CT such that:

∀v0 ∈ H, ‖e−TAv0‖ 6 CT ‖Ce−tAv0‖L2(0,T ;U) .(2)

The best constant CT in (2) can be considered as the controllability cost since it
is also the best constant such that, for all initial condition φ0, there is an input u
solving the controllability problem in def.1 and satisfying ‖u‖L2(0,T ;U) 6 CT ‖v0‖.

1.2. The main result. Now we introduce the spectral observability condition of
order γ > 0 for the generator A and observation operator C. This definition is
quite natural for dissipative problems as illustrated in sect.3: it allows to compare
the free dissipation of high-frequency modes to the cost of controlling low-frequency
modes.

Definition 3. Let γ > 0. We say that the observability of Aγ through C at low-
frequencies with exponential cost holds if there are positive constants d1 and d2 such
that

∀µ > 1,∀v ∈ 1Aγ6µ H, ‖v‖ 6 d2e
d1µ‖Cv‖ .(3)

The following main theorem shows that this definition is a relevant condition for
estimating how violent fast controls are (this is solved for dimH <∞ in [Sei88]).

Theorem 1.1. If def.3 holds with γ ∈ (0, 1) then the system (1) is null-controllable
in any time T > 0. Moreover the controllability cost CT (cf. def.2) satisfies

∀β > γ

1− γ
,∃C1 > 0,∃C2 > 0,∀T ∈ (0, 1) CT 6 C2 exp

(
C1

T β

)
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2. Application to the fractional diffusion

This section considers the controllability of the semigroup generated by the frac-
tional Laplacian on a manifolds −(−∆)α, where ∆ denotes the usual Laplacian
operator. When the manifold is the whole Euclidean space Rd, ∆ = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
d
.

When the manifold has a boundary, the null Dirichlet condition is always assumed.

2.1. Background on anomalous diffusion models. In recent years, the use of
fractional derivatives in dynamical models of physical processes exhibiting anoma-
lously slow or fast diffusion has diffused (cf. the surveys [MK04, SKB02]). Frac-
tional calculus includes various extensions of the usual derivative from integer to
real order. In this paper we always use the fractional Laplacian, which is not a local
operator when the power α is not an integer. Moreover, the model of anomalous
diffusion considered here do not include fractional derivatives, of any kind, with
respect to the time variable (cf. [SKB02, GM03, MK04] and references therein).

When the manifold is the whole Euclidean space Rd, the dynamics considered
here is the same as the “isotropic space-fractional diffusion equation” in [Han01],
the “strictly space fractional diffusion equation” in [GM03] and the “Lévy frac-
tional diffusion equation” in [MK04]. In this case, the fractional powers of the
Laplacian are also known as Riesz fractional derivatives ([GM03]) or Riesz-Weyl
operator ([MK04]). They are easily defined through the Fourier transform F :
F(−∆)αf(ξ) = |ξ|2αFf(ξ).

The fractional Laplacian −(−∆)α with α ∈ (0, 1] generates the rotationally
invariant 2α-stable Lévy process. For a textbook presentation of this stochastic
process, we refer the reader to [Sat99], in particular example 32.7, and for a survey
to [App04], in particular example 5 of Lévy process and example 2 of generator.
For α = 1 this process is the Brownian motion Bt on Rd, and for α < 1 it is
subordinated to Bt by a strictly α-stable subordinator Tt, so that it writes BTt

. The
convolution kernels of the corresponding semigroups are the rotationally invariant
Lévy stable probability distributions, in particular the Gaussian distribution for
α = 1 and the Cauchy distribution for α = 1/2. For α < 1 these distributions have
“heavy tails”, i.e. far away they decrease like a power as opposed to the exponential
decrease found in the Gaussian, which accounts for the “superdiffusive” behavior
of the semigroup. The more restrictive range α ∈ (1/2, 1) is the most widely
used to model anomalously fast diffusions (cf. [MK04]), and it turns out that the
controllability result th.2.1 applies to this range of fractional superdiffusions only.
Th.2.1 includes the “subdiffusive” range α > 1 but it seems that this model has not
been considered in the physics literature on anomalously slow diffusion. N.b. the
generalized Laplacian operators associated with anisotropic diffusion, also known
as the Riesz-Feller derivatives, generate all stable Lévy processes, i.e. including the
non invariant ones also called skewed (cf. [Han01], [GM03]). These Lévy processes
can be approximated by Lévy flights and references to random walk models of
anomalous diffusion can be found in [MK04, GM03].

When the manifold is a domain of the Euclidean space Rd, the Markov process
generated by the fractional Dirichlet Laplacian −(−∆)α with α ∈ (0, 1] can be
obtained by killing the Brownian motion on Rd upon exiting the domain then
subordinating the killed Brownian motion by the subordinator Tt introduced above
(cf. [SV03]). N.b. reversing the order of killing and subordination yields another
process which seems to have been investigated earlier and further.

2.2. Controllability of some fractional diffusions. Let M be a smooth con-
nected complete n-dimensional Riemannian manifold with metric g and boundary
∂M . When ∂M 6= ∅, M denotes the interior and M = M ∪ ∂M . Let ∆ de-
note the Dirichlet Laplacian on L2(M) corresponding to g with domain D(∆) =
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H1
0 (M) ∩ H2(M) (n.b. it denotes a negative operator). Let T be a positive time

and let χΩ denote the characteristic function of an open subset Ω 6= ∅ of M .
If M is not compact, assume that Ω is the exterior of a compact set K such

that K ∩ Ω ∩ ∂M = ∅. In this setting, the observability of (−∆)1/2 through C at
low-frequencies with exponential cost holds (cf. def.3). When M is compact this
is an inequality on sums of eigenfunctions proved as th.3 in [LZ98] and th.14.6 in
[JL99]. This was generalized to non compact M in [Mil05]. Applying th.1.1, with
H = U = L2(M), A = (−∆)α and B = C ∈ L(H;U) equal to the multiplication by
χΩ which truncates on the control region Ω, yields:

Theorem 2.1. For all α > 1/2, the fractional diffusion system:

∂tφ+ (−∆)αφ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2
loc(R;L2(M)),

is null-controllable in any time T > 0. Moreover the controllability cost CT (cf.
def.2) over short times satisfies the upper bound:

∀β > 1/(2α− 1),∃Cβ > 0,∃cβ > 0,∀T ∈ (0, 1) CT 6 Cβ exp
( cβ
T β

)
.

Remark 2.2. This upper bound for the fast controllability cost in the case α =
1 was already stated without proof in [Mil04]. The first motivation for writing
the proof came from the preprint version of [MZ04]. The final version of [MZ04]
mentions that “a careful analysis of the method of proof in [LR95, LZ98] shows
that it works if α > 1/2” without upper bound.

Micu and Zuazua considered in [MZ04] a similar controllability problems: the
space manifoldM and the input space U are one dimensional, B is the multiplication
by a shape function f ∈ L2(M) satisfying extra assumptions (instead of χΩ). They
deduce from the [FR71] a sufficient condition on the Fourier coefficients of f and
φ0 (involving α > 1/2 and T > 0) ensuring that there is a u steering φ0 to O in
time T . Their main negative result is discussed in the next section.

Remark 2.3. We should comment on the simplest case α = 1, i.e. diffusion by the
heat flow. The fast null-controllability for any control region Ω has been known for
a decade and the fast controllability cost has been investigated, e.g. [FCZ00, Mil04].
It allows us to discuss the optimality of the upper bound in th.2.1. Namely, a lower
bound of the same form with equality β = 2/(2− α) holds for α = 1 (cf. [Mil04]).
When M is a bounded Euclidean set and ∆ has constant coefficients, [FCZ00]
proves that lim supT→0 T lnCT <∞ for any Ω. For general (M, g), but under some
geometric condition on Ω, an explicit geometric upper bound on lim supT→0 T lnCT

is proved in [Mil04].

2.3. Non controllability of some one dimensional fractional diffusions.
Although there are no result for α 6 1/2 in the setting of the previous section, it
seems that the controllability in th.2.1 does not hold for α 6 1/2 since it does not
hold for some similar one dimensional fractional diffusions controllability problems.

Indeed, [MZ04] concerns such a negative result in the setting of “lumped” interior
control described in rem.2.2. Micu and Zuazua first recall a result of [Fat66] saying
that for any α 6 1/2 and T > 0 there is an f and a φ0 that cannot be steered to 0
in time T by any u. They improve this result in th.3.1 by describing a large set of
non controllable initial states.

The key point of this example compared to the setting of th.2.1 (even when M is
one-dimensional) is that the input space U is one dimensional. This allows to make
the well known reduction to some properties of entire functions and exponential
sums (cf. [FR71] and references in [Mil04]). Indeed, we point out in the appendix
that some abstract systems with finite dimensional inputs satisfying a condition
based on Müntz theorem on the completeness of sets of exponentials have a large
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set of non controllable initial states. In particular, it allows us to state here a
strong non controllability result for a one dimensional boundary control system
(n.b. here the input space is naturally one dimensional without extra assumption
on the structure of the source term).

For this result, the manifold is a segment, i.e. M = (0, L). For this result
only, we consider the Neumann Laplacian ∆N which acts as ∆ but has a different
domain: D(∆N ) = {φ ∈ H2(M) |φ′(0) = φ′(L) = 0}. Let A = −(−∆N )α with
α ∈ (1/4, 1/2]. Since α < 3/4, D(A) with the graph norm is X1 = H2α(0, L)
(without boundary condition) which injects continuously in the space of continuous
functions for α > 1/4. Therefore, b : φ 7→ φ(L) is continuous on X1, and thus
defines b in the dual X−1 of X1. N.b. if the metric is not Euclidean, then ∆N has
variable coefficients so that the eigenvalues {λn}n∈N and eigenfunctions {φn}n∈N
are not explicit. But they satisfy φn(L) 6= 0 and λn ∼ Cn2α where C is a negative
constant, so that bn = 〈b, φn〉 6= 0 and property ii) of th.A.1 holds for 2α < 1.
Therefore th.A.2 implies:

Theorem 2.4. Assume b is the boundary control operator and A is the fractional
Neumann Laplacian defined above with α ∈ (1/4, 1/2]. For all finite linear combi-
nation x0 6= 0 of the eigenvectors of A and for all T > 0, there is no input function
u ∈ L2(0, T ; C) such that the solution x ∈ C(0, T ;X−1) of ẋ(t) = Ax(t)+bu(t) with
initial state x(0) = x0 satisfies x(T ) = 0.

3. Proof of the main theorem

This section concerns the proof of th.1.1. In a first step, from the stationary
condition in def.3, we deduce the observability of low-frequency modes over any
positive time in the corresponding dynamics (this is the abstract version of sect.4
in [Mil05]). In a second step, using an abstract version of the iterative control
strategy introduced by Lebeau and Robbiano in [LR95] (cf. sect.5 in [Mil05]), we
prove the full null-controllability in arbitrarily small time. The main novelty is the
last step, in which we estimate the controllability cost as the control time tends to
zero.

3.1. From the stationary to the evolution equation. Assume that (3) holds.
Let τ ∈ (0, 1], µ > 1 and v0 ∈ 1Aγ6µ H. For all t ∈ [0, τ ], we may apply (3) to
v = e−tAv0 since it is in 1Aγ6µ H:

d2
2e

2d1µ‖Ce−tAv0‖2 > ‖e−tAv0‖2 =
∫ µ

0

e−2tλ1/γ

d(Eλv0, v0) .

First integrating on [0, τ ] with the new variable s = t/τ , then using τ 6 1 and
finally

∫ 1

0
exp(−αt)dt = (1− exp(−α))/α > (2α)−1 for α > ln 2 yields:

d2
2e

2d1µ

∫ τ

0

‖Ce−tAv0‖2dt > τ

∫ 1

0

∫ µ

0

e−2τsλ1/γ

d(Eλv0, v0) ds

> τ

∫ 1

0

e−2sµ1/γ

ds

∫ µ

0

d(Eλv0, v0) >
τ

4µ1/γ
‖v0‖2 .

Therefore, for any D1 > d1, there is a D2 > 0 such that fast observability at
low-frequencies for e−tA holds: there are positive constants D1 and D2 such that

∀µ > 1,∀τ ∈ (0, 1],∀v0 ∈ 1Aγ6µ H, ‖e−τAv0‖ 6
D2√
τ
eD1µ‖Ce−tAv0‖L2(0,τ ;U) .

(4)

By duality (cf. [DR77]), this is equivalent to the following null-controllability:
for all τ ∈ (0, 1] and µ > 1, there is a bounded operator Sτ

µ : H → L2(0, τ ;U)
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such that for all φ0 ∈ 1Aγ6µ H, the solution φ ∈ C([0,∞),H) of (1) with control
function u = Sτ

µφ0 satisfies 1Aγ6µ φ = 0 at t = τ . Moreover, we have the cost
estimate: ‖Sτ

µ‖ 6 D2√
τ
eD1µ.

3.2. From low-frequencies to full controllability. Assume that (3) holds with
γ ∈ (0, 1). We introduce a dyadic scale of frequencies µk = 2k (k ∈ N) and
a sequence of time intervals τk = σδT/µ

δ
k where δ ∈ (0, γ−1 − 1) and σδ =

(2
∑

k∈N 2−kδ)−1 > 0, so that the sequence of times defined recursively by T0 = 0
and Tk+1 = Tk + 2τk converges to T . The strategy of Lebeau and Robbiano in
[LR95] is to steer the initial state φ0 to 0 through the sequence of states φk =
φ(Tk) ∈ 1Aγ>µk−1 H at frequencies converging to infinity by applying recursively
the control function uk = Sτk

µk
φk to φk during a time τk and zero control during

a time τk. This strategy is successful if φk tends to zero and the control function
u(t) =

∑
k 106t−Tk6τk

uk(t) is in L2(0, T ;H). Since the cost estimate above implies
‖Sτk

µk
‖ 6 D2e

D1µk/
√
τk, it only remains to check that:

εk = ‖φk‖ and Ck = D2e
D1µk/µ

δ/2
k satisfy lim

k
εk = 0 and

∑
k∈N

C2
kε

2
k <∞ .(5)

Since 1Aγ6µk
φ(Tk +τk) = 0, we have εk+1 6 e−τkµ

1/γ
k ‖φ(Tk +τk)‖. The expression

of φ(Tk + τk) in terms of the source term uk (Duhamel’s formula) and ‖et∆‖ 6 1
(contractivity of the heat semigroup) imply ‖φ(Tk+τk)‖ 6 2(εk+

√
τk‖uk‖). There-

fore εk+1 6 2e−τkµ
1/γ
k (1 +

√
τkCk)εk. Since Ck+1/Ck = eD1µk/2δ/2, we deduce:

Ck+1εk+1

Ckεk
6 2e−τkµ

1/γ
k

(
1 +D2e

D1µk
)
eD1µk/2δ/2 6 D3 exp

(
2D1µk − σδTµ

γ−1−δ
k

)
,

for some D3 > 0. Since γ−1− δ > 1 this implies
∑

k∈N C
2
kε

2
k <∞, which proves (5)

and completes the proof of the first assertion of th.1.1.

3.3. Estimate of the controllability cost over short times. To estimate the
cost CT 6 (

∑
k∈N C

2
kε

2
k)1/2/ε0 as T → 0, we define ρk which satisfies:

∃D4 > 0, ρk :=
(
Ck+1εk+1

Ckεk

)2

6 D4 exp
(
4D1µk − 2σδTµ

γ−1−δ
k

)
according to the last estimate of the previous subsection. Since∑

06k6l−1

µγ−1−δ
k =

2(γ−1−δ)l − 1
2(γ−1−δ) − 1

> µγ−1−δ
l

1− 1/2
2(γ−1−δ)

= µγ−1−δ
l−1 /2

we have, with q := 2γ−1−δ ∈ (2, 2γ−1
) and T ′ := σδT/q:∏

06k6l−1

ρk 6 Dl
4 exp

(
4D1µl − 2σδTµ

γ−1−δ
l−1

)
= Dl

4 exp
(
4D12l − T ′ql

)
.

Therefore the cost satisfies for some D5 > 0:

∑
k>0

C2
kε

2
k = C2

0ε
2
0

1 +
∑
l>1

∏
06k6l−1

ρk

 6 ε20D5

1 +
∑
k>1

exp
(
4D12k − T ′qk

) .

To estimate the last sum, we shall use the simple estimate:

f(t) :=
∑
k>1

exp
(
−tqk

)
6

∑
k>1

exp (−tk) ∼t→0
1
t
.(6)
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Optimizing the function h(x) := 4D12x − T ′qx yields that, for ε ∈ (0, ln 2/ ln q):
h(x) 6 h(x0) − (1 − ε)T ′qx for x > 0, with x0 := ln(4D1 ln 2/(T ′ ln q))/ ln(q/2).

Therefore, using x0 ∼T ′→0 ln(1/T ′)/ ln(q/2), with βq :=
(

ln q
ln 2 − 1

)−1

:∑
k>1

exp
(
4D12k − T ′qk

)
6 exp(h(x0))f((1− ε)T ′)

= Aqx0
1
βq
f((1− ε)T ′) ∼T ′→0

1
T ′βq

1
βq
f((1− ε)T ′) .

Thanks to (6), this yields the cost estimate:

∃D6 > 0,∃D7 > 0,
∑
k>0

C2
kε

2
k 6 ε20D6 exp

(
D7

T ′βq

)
Since T ′ = σδT/q and, as δ increases to γ−1 − 1, q = 2γ−1−δ increases to 2γ−1

and
βq decreases to γ/(1− γ), the second assertion of th.1.1 is proved.

Appendix A. Lack of controllability based on Müntz theorem

This appendix concerns controllability systems having a Riesz basis of eigen-
vectors and a one-dimensional input space. It is well-known that their exact, null
and approximate controllability are related to properties of sets of exponentials (cf.
[AI95]). Such systems where recently considered in [RW00], [JZ01] and [JP04]. In
particular a necessary and sufficient condition for null-controllability in terms of
the eigenvalues is given in [JP04]. This condition is enough to prove that null-
controllability does not hold in sect.2.3. Here, we give a sufficient condition in
terms of the eigenvalues for a much stronger property : finite linear combination
of the eigenvectors are initial state which cannot be steered to zero by any input
function.

The generalized Müntz theorem referred to in the title of this appendix is the
following th. 7 of [Red77] (the original Müntz-Szász theorem concerned the ap-
proximation by power functions x 7→ xλn , with positive exponents λn, instead of
exponentials; we refer to[BE96] for more results and references):

Theorem A.1. Let {λn}n∈N be a sequence of distinct non zero complex numbers
and let {en}n∈N be the corresponding sequence of exponential functions defined by
en(t) = exp(λnt).
If {λn}n∈N satisfies one of these properties:

i) ∃ε > 0,
∑

n

1
|λn|1+ε

= ∞,

ii)
∑

n

|Re
1
λn
| = ∞,

iii) {λn}n∈N increases and there exists a sequence {θn}n∈N of nonnegative real

numbers such that
∑

n

1
nθn

<∞, and
∑

n

1
|λn|θn

= ∞,

then, for all T > 0, {en}n∈N is complete in L2(0, T ; C), i.e. any function of
L2(0, T ; C) is an infinite linear combinations of these exponential functions con-
verging in the norm of this space.

On a Hilbert space X we consider the system described by the following differ-
ential equation for t > 0 :

ẋ(t) = Ax(t) + bu(t), x(0) = x0 ∈ X , u ∈ L2
loc(R; C) .(7)

We assume that A is the infinitesimal generator of a C0-semigroup {etA}t>0 on X ,
which has a sequence of normalized eigenvectors {φn}n∈N forming a Riesz basis of
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X , with associated eigenvalues {λn}n∈N, that is, Aφn = λnφn. We denote by X1

the Hilbert space obtained by choosing the graph norm on the domain D(A) of the
unbounded operator A on X , by X−1 the space dual to X1, and we keep the same
notation for the extension of {etA}t>0 to a semigroup on X−1. We also assume
that the “control vector” b is in X−1 so that the solution x ∈ C(0, T ;X−1) of (7) is
defined for T > 0 by the integral formula:

x(T ) = eTAx0 +
∫ T

0

e(T−t)Abu(t)dt .(8)

There is a sequence of eigenvectors {ψn}n∈N of A∗ forming a Riesz basis of
X , with associated eigenvalues {λ̄n}n∈N, which is bi-orthogonal to {φn}n∈N, i.e.
〈φn, ψn〉 = 1 and 〈φn, ψm〉 = 0 if m 6= n. We introduce the coefficients bn = 〈b, ψn〉
in the expansion b =

∑
n∈N bnφn.

Theorem A.2. Assume that bn 6= 0 for all n larger than some integer Nb. If the
set of distinct non zero eigenvalues of A satisfies one of the properties stated in
theorem A.1, then, for all non zero initial state x0 which is a finite linear combi-
nation of the eigenvectors {φn}n∈N and for all T > 0, there is no input function
u ∈ L2(0, T ; C) such that the solution x ∈ C(0, T ;X−1) of (7) satisfies x(T ) = 0.

Proof. Introducing the coefficients xn(t) = 〈x(t), ψn〉, (8) writes xn(T ) = e−λnTx0
n+∫ T

0
e−λn(T−t)bnu(t)dt. With the notation en(t) = exp(λnt), x(T ) = 0 writes:

∀n ∈ N, −x0
n = bn

∫ T

0

en(t)u(t)dt .(9)

We make the assumptions on {bn}n∈N and {λn}n∈N of the theorem. Arguing
by contradiction, we also assume that there are T > 0, x0 6= 0 which is a finite
linear combination of the {φn}n∈N, and u ∈ L2(0, T ; C) such that (9) holds. Let
x0

N be the nonzero coefficient of x0 with the greatest index, i.e. x0
N 6= 0 and x0

n = 0
for n > N . Let M = max{Nb, N}. For all n > M , on the one hand M > Nb

implies bn 6= 0, on the other hand M > N implies x0
n = 0, so that (9) implies∫ T

0
en(t)u(t)dt = 0. The set of distinct non zero values of {λn}n>M also satisfies

one of the properties stated in theorem A.1, so that the corresponding subset of
{en}n>M is complete in L2(0, T ; C). In particular, eN =

∑
n>M cnen for some

coefficients {cn}n>M ∈ l2(C). Plugging this expansion in (9) with n = N yields
the contradiction:

0 6= −x0
N = bN

∑
n>M

cn

∫ T

0

en(t)u(t)dt = 0 .

�

Remark A.3. This abstract theorem applies directly to the context of th.3.1 in
[MZ04], since eq.2.10 in [MZ04] corresponds to the hypothesis bn 6= 0 for all n.
In an explicit setting where λn = n2α with α ∈ (0, 1/2], this th.3.1 of Micu and
Zuazua describes a much larger set of initial data which cannot be steered to zero.

Remark A.4. The following weaker result, in the setting of finite-dimensional in-
put space (instead of one-dimensional) but of eigenvectors forming a Hilbert basis
(instead of Riesz basis) and of eigenvalues with negative real parts, can be deduced
from [AI95] by combining th. III.3.3(d) with th. II.2.4 as in the proof of th. IV.1.3(c):
if the eigenvalues violate the Blaschke condition

∑
n Reλn(1+|λn|2)−1 > −∞, then,

for all T > 0, there is an initial state equal to some eigenvector φn which cannot be
steered to zero in time T by any input function (n.b. when |λn| → ∞, the violation
of the Blaschke condition here is equivalent to the property ii) in theorem A.1).
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[SV03] R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a

domain, Probab. Theory Related Fields 125 (2003), no. 4, 578–592.

[Wei89] G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math. 65
(1989), no. 1, 17–43.
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