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ESTIMATION OF THE MEMORY PARAMETER OF THE INFINITE

SOURCE POISSON PROCESS

GILLES FAŸ, FRANÇOIS ROUEFF, AND PHILIPPE SOULIER

Abstract. Long range dependence induced by heavy tails is a widely reported feature
of internet traffic. Long range dependence can be defined as the regular variation of the
variance of the integrated process, and half the index of regular variation is then refered
to as the Hurst index. The infinite source Poisson process (a particular case of which is
the M/G/∞ queue) is a simple and popular model with this property, when the tail of
the service time distribution is regularly varying. The Hurst index of the infinite source
Poisson process is then related to the index of regular variation of the service times.
In this paper, we present a wavelet based estimator of the Hurst index of this process,
when it is observed either continously or discretely over an increasing time interval. Our
estimator is shown to be consistent and robust to some form of nonstationarity. Its rate
of convergence is investigated.

Keywords: heavy tails, internet traffic, long range dependence, Poisson point processes,
semiparametric estimation, wavelets.

1. Introduction

We consider the infinite source Poisson process with random transmission rate defined
by

X(t) =
∑

ℓ∈N

Uℓ 1{tℓ≤t<tℓ+ηℓ}, t ≥ 0 ,(1.1)

where

- the arrival times {tℓ}ℓ≥0 are the points of a unit rate homogeneous Poisson process on
the positive half-line, independent of the initial conditions;

- the durations and transmission rates {(ηℓ, Uℓ)} are independent and identically dis-
tributed random variables with values in (0,∞) × R and independent of the Poisson
process and of the initial conditions.

This process was considered by Resnick and Rootzén (2000), Mikosch et al. (2002) among
others. TheM/G/∞ queue is a special case, namely, for Uℓ ≡ 1. An important motivation
for the infinite source Poisson process is to model the instantaneous rate of the workload
going though an Internet link. Although too simple models are generally not relevant
for the Internet traffic at the packet level, it is generally admitted that rather simple
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models can be used for higher level (the so called flow level) traffic such as TCP or HTTP
sessions, one of them being the infinite source Poisson process (see Barakat et al., 2002).
One way to empirically analyze the Internet traffic at the flow level using the infinite
source Poisson process would consist in retrieving all the variables {tℓ, ηℓ, Uℓ} involved in
the observed traffic during a given period of time, but this would require to collect all the
relevant information in the packets headers (such as source and destination addresses)
for separating the aggregated workload into transmission rates at a pertinent level (see
Duffield et al., 2002, for many insights about this problem).

It is well known that heavy tails in the durations {ηk} result in long range dependence
of the process X(t). Long range dependence can be defined by the regular variation of the
autocovariance of the process or more generally by the regular variation of the variance
of the integrated process:

var

(
∫ t

0

X(s) ds

)

= L(t)t2H ,

where L is a slowly varying function at infinity and H > 1/2 is often refered to as the
Hurst index of the process. For the infinite source Poisson process, the Hurst index H
is related to the tail index α of the durations by the relation H = (3 − α)/2. The long
range dependence property has motivated many empirical studies of Internet traffic and
theoretical ones concerning its impact on queuing (these questions are studied in the
M/G/∞ case in Parulekar and Makowski, 1997).

However, up to the best of our knowledge, no statistical procedure to estimate H has
been rigorously justified. It is the aim of this paper to propose an estimator of the Hurst
index of the infinite source Poisson process, and to derive its statistical properties. We
propose to estimate H (or equivalently α) from a path of the process X(t) over a finite
interval [0, T ], observed either continuously or discretely. In practice this can be done by
counting all the packets going through some point of the network and then collect local
traffic rate measurements. Our estimator is based on the so-called wavelet coefficients of a
path. There is a wide literature on this methodology to estimate long range dependence,
starting as early as Wornell and Oppenheim (1992) for instance, but we are not aware of
rigorous results for non Gaussian or non Stable processes. The main contribution of this
paper is thus the proof of the consistency of our estimator. We also investigate the rate of
convergence of the estimator in the case α > 1. If the process is observed continuously, the
rate of convergence is good. In the case of discrete observations, the rate is much smaller.
Also, the choice of the tuning parameters of the estimators is much more restricted in the
latter case, and practitioners should perhaps be aware of this; see Section 4.3 for details.

Outline of the paper. The process X is formally defined in Section 2. We state our
assumptions and, using a point process representation of X, we establish some of its main
properties. The wavelet coefficients are defined and the scaling property of their variances
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is obtained in Section 3. The estimator is defined and its properties are established in
section 4. The Appendix contains technical Lemmas.

2. Basic properties of the model

2.1. Assumptions. We now introduce the complete assumption on the joint distribution
of the transmissions rates and durations.

Assumption 1. (i) The random vectors {(η, U), (ηℓ, Uℓ), ℓ ∈ Z} are independent with
common distribution ν on (0,∞)×R and independent of the homogeneous Poisson
point process on the real line with points {tℓ}ℓ∈Z such that tℓ < tℓ+1 for all ℓ and
t−1 < 0 ≤ t0;

(ii) there exists a positive integer p∗ such that E[|U |p∗ ] <∞;
(iii) there exist a real number α ∈ (0, 2) and positive functions L0, . . . , Lp∗ slowly varying

at infinity such that for all t > 0 and p = 0, . . . , p∗,

Hp(t) := E
[

|U |p1{η>t}

]

= Lp(t)t
−α .(2.1)

Since η > 0, the functions Hp are continuous at zero and Hp(0) = E[|U |p]. Condi-
tion (2.1) is equivalent to saying that the functions Hp, p = 0, 1, . . . , p∗, are regularly
varying with index −α. If α > 1 and p∗ ≥ 2, Assumption 1 and Karamata’s theorem
imply the following asymptotic equivalence:

E
[

U2{η − t}+

]

= E

[

U2

∫ ∞

v=t

1{v<η} dv

]

=

∫ ∞

v=t

H2(v)dv ∼
1

α− 1
L2(t)t

1−α .(2.2)

Remark 2.1. Assumption 1 will be used with p∗ = 2 to prove the regular variation of
the autocovariance function of the process X and with p∗ = 4 to prove consistency of
our estimators. It can be related to the theory of multivariate regular variation (see for
instance Maulik et al., 2002). But the definitions of multivariate regular variation involve
vague convergence and do not necessarily ensure the convergence of moments required
here.

Remark 2.2. We do not assume that U is nonnegative. This allows to consider applications
other than teletraffic modeling. For instance, the process X could be used to model the
volatiliy of some financial time series.

Remark 2.3. In the sequel, we will often have to separate the cases E[η] = ∞ and E[η] <
∞. These cases are respectively implied by α < 1 and α > 1. If α = 1, the finiteness of
E[η] depends on the precise behavior of L0 at infinity.

Example 2.1. Assumption 1 implies in particular that the tail of the distribution of η
is regularly varying with index α. This in turns implies Assumption 1 if U and η are
independent and E[|U |p∗ ] < ∞, in which case the functions Lp differ by a multiplicative
constant.
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Example 2.2. Assumption 1 also holds in the following case which is of interest in teletraffic
modeling. In a TCP/IP traffic context, η and U represent respectively the duration of
a download session and its intensity (bit rate). Then W := Uη represents the amount
of transmitted data. We assume that, for some u0 > 0, there exist two regimes, U ≥ u0

(xDSL/LAN/Cable connection), and U ∈ (0, u0) (RTC connection) such that:

• The distribution of W given U = u ≥ u0 is heavy tailed and independent of u:
P(W ≥ w|U = u) = L(w)w−α ;

• The distribution of W given U = u ∈ (0, u0) is light-tailed uniformly of u; for
instance, we assume expontially decaying tails:

P(W ≥ w|U = u) ≤ exp(−βw−γ) ,

for some β > 0 and γ > 0.

An explicit example for two such regimes is obtained when the conditional density of W
given U = u is equal to αw−α−11{w≥1} if u ≥ u0 and exp(−w) if u < u0.

Concerning the distribution of U we only assume that:

• P(U ≥ u0) > 0, E[|U |−α−ǫ] <∞ for some ǫ > 0 and E[|U |p∗ ] <∞.

Then (2.1) holds for p ≤ p∗. Indeed,

E[Up1{η>t}1{U≥u0}] = E[Up1{W>Ut}1{U≥u0}]

= E[UpL(Ut)(Ut)−α1{U≥u0}]

= L(t)t−α
E[Up−αL(Ut)/L(t)1{U≥u0}] .(2.3)

Since L is slowly varying at infinity, limt→∞ L(ut)/L(t) = 1, uniformly with respect to u
in compact sets of (0,+∞) and there exists t0 > 0 such that for u ≥ u0, t ≥ t0

L(ut)

L(t)
≤ (1 + α)uα/2 .

See e.g. Resnick 1987, Proposition 0.8. Then by the Dominated Convergence Theorem,

lim
t→∞

E[Up−α L(Ut)/L(t)1{U≥u0}] = E[Up−α1{U≥u0}](2.4)

Consider now the low-bitrate regime. We have, since, for all x > 0, exp{−βxγ} ≤ Cx−α−ǫ

for some positive constant C,

E[Up1{η>t}1{U<u0}] ≤ E[Up exp{−β(Ut)γ}1{U<u0}] ≤ Ct−α−ǫ
E[Up−α−ǫ1{U<u0}] .

Using the assumption on U , since p ≥ 0, the rightmost expectation in the previous display
is finite and we get that

lim
t→∞

tαL−1(t)E[Up1{η>t}1{U<u0}] = 0.

This, (2.3) and (2.4) imply that, as t → ∞, E[Up1{η>t}] t
α ∼ L(t) E[Up−α1{U≥u0}] hence

is slowly varying and Assumption 1 holds.



ESTIMATION OF THE MEMORY PARAMETER OF THE ISP PROCESS 5

2.2. Point Process representation and stationary version. Let N denote a Poisson
point process on a set E endowed with a σ-field E with intensity measure µ, that is
a random measure such that for any disjoint A1, . . . , Ap in E , N (A1), . . . ,N (Ap) are
independent random variables with Poisson law with respective parameters µ(Ai), i =
1, . . . , p. The main property of Poisson point processes that we will use is the following
cumulant formula (see for instance Resnick, 1987, Chapter 3). For any positive integer p
and functions f1, . . . , fp such that

∫

|fi|dµ < ∞ and
∫

|fi|pdµ < ∞ for all i = 1, . . . , p,
the p-th order joint cumulant of N (f1), . . . ,N (fp) exists and is given by

cum(N (f1), . . . ,N (fp)) =

∫

f1 · · · fp dµ .(2.5)

Let NS be the point processes on R × (0,∞) × R with points (tℓ, ηℓ, Uℓ)ℓ∈Z, i.e. NS =
∑

ℓ∈Z
δtℓ,ηℓ,Uℓ

. Under Assumption 1(i), it is a Poisson point process with intensity measure
Leb ⊗ ν, where Leb is the Lebesgue measure on R. For t, u ∈ R, define

At = {(s, v) ∈ R × R+ | s ≤ t < s+ v} ;

Bu = {λu | λ ∈ [1,∞)} .

-
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Figure 1. The set At

We can now show that if E[η] < ∞, one can define a stationary version for X and
provide its second order properties.

Proposition 2.1. If Assumption 1(i) holds and E[η] <∞, then the process

XS(t) =
∑

ℓ∈Z

Uℓ1{tℓ≤t<tℓ+ηℓ}(2.6)

is well defined and strictly stationary. It has the following point process representation

XS(t) =

∫ ∞

0

NS(At × Bu) du−
∫ 0

−∞

NS(At × Bu) du .(2.7)

Let K0 = sup{ℓ > 0 | t−ℓ + η−ℓ > 0}, Ũℓ = U−ℓ and η̃ℓ = η−ℓ + t−ℓ, then, for all t ≥ 0,

(2.8) XS(t) =

K0
∑

ℓ=1

Ũℓ1{t<η̃ℓ} +X(t).
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If moreover p∗ ≥ 2, then XS has finite variance and

E[XS(t)] = E[Uη] ,

cov(XS(0), XS(t)) = E[U2(η − t)+] =

∫ ∞

t

H2(v)dv .

Remark 2.4. Note that if α > 1, then E[η] <∞ and by Karamata’s theorem

cov(XS(0), XS(t)) ∼ 1

α− 1
L2(t)t

1−α , t→ +∞ .

Proof. The number of non vanishing terms in the sum (2.6) is NS(At × R) and has a
Poisson distribution with mean E

∫

R
1At

(s, η) ds = E[η]. Thus XS is well defined and
stationary since NS is stationary. The number of indices ℓ > 0 such that t−ℓ + η−ℓ > 0 is
NS(A0 × R), hence if K0 is the largest of those ℓ’s, it is almost surely finite and

∑

tℓ<0

Uℓ1{tℓ≤t<tℓ+ηℓ} =

K0
∑

ℓ=1

Ũℓ1{t<η̃ℓ} .

Hence (2.8).

The point process representation (2.7), Formulas (2.5) and (2.2) finally yield the given
expressions for the mean and the covariance. �

Relation (2.8) shows that the stationary version XS can be defined by changing the
initial condition of the system. More generally one could consider any initial conditions,
that is, any process defined as in the right-hand side of (2.8) with K0 and η̃ℓ, ℓ > 0 finite.
Since the initial conditions almost surely vanish after a finite period, they have a negligible
impact on the estimation procedure. Thus, our result on X easily generalizes to any such
initial conditions, and, in particular, to the stationary version XS, when it exists.

Applying similar arguments as those used for showing Proposition 2.1, we obtain

Proposition 2.2. The process X admits a point process representation:

X(t) =

∫ ∞

0

NS(A+
t ×Bu) du−

∫ 0

−∞

NS(A+
t × Bu) du ,(2.9)

where A+
t = At ∩ R

2
+.

If Assumption 1 hold with p∗ ≥ 2, then the process X is nonstationary with expectation
and autocovariance function given, for s ≤ t by

E[X(t)] = E[U(η ∧ t)] ,

cov(X(s), X(t)) = E[U2{s− (t− η)+}+] =

∫ t

t−s

H2(v)dv .
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By the Uniform Convergence Theorem for slowly varying functions, the following as-
ymptotic equivalence of the covariance holds. For any α ∈ (0, 2) and all t > s > 0, as
T → ∞,

(2.10) cov(X(Tt), X(Ts)) ∼ CL2(T )T 1−α

with C =
∫ s

t−s
v−αdv.

In accordance with the notation in use in the context of long memory processes, we can
define the Hurst index of the process X as H = (3 − α)/2, because the variance of the
process integrated between 0 and T increases as T 2H . If α < 1, then H > 1. This case
has been considered for instance by Resnick and Rootzén (2000)

3. Wavelet coefficients

3.1. Continuous observation. Let ψ be a bounded real valued function with compact
support in [0,M ] and such that

∫ M

0

ψ(s) ds = 0 .(3.1)

For integers j ≥ 0 and k ∈ Z, define

ψj,k(s) = 2−j/2ψ(2−js− k).(3.2)

The wavelet coefficients of the path are defined as (see e.g. Cohen, 2003)

dj,k =

∫ ∞

0

ψj,k(s)X(s) ds .(3.3)

Assume that a path of the process X is observed continuously between times 0 and T .
Since ψj,k has support in [k2j , (k + M)2j ], the coefficients dj,k can be computed for all
(j, k) such that T2−j ≥M and k = 0, 1, . . . , T2−j −M .

According to Lemma 5.1, one may define, for all j and k,

dS
j,k =

∑

ℓ∈Z

Uℓ

∫ tℓ+ηl

tℓ

ψj,k(s) ds .(3.4)

As precised in Lemma 5.1, if E[η] <∞, we have dS
j,k =

∫∞

0
ψj,k(s)XS(s) ds. Nevertheless,

even if E[η] = ∞, the sequence of coefficients at a given scale j, {dS
j,k, k ∈ Z} is stationary.

Moreover, the definition (3.4) yields

Lemma 3.1. Let Assumption 1 hold with p∗ ≥ 2. We have

E[dS
j,k] = 0 , var(dS

j,k) = L(2j) 2(2−α)j ,(3.5)
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where

L(z) := zα

∫ ∞

0

∫ ∞

−∞





∫ ∞

−∞

{

∫ t+vz−1

t

ψ(s) ds

}2

dt



 w2ν(dv, dw)(3.6)

is slowly varying as z → ∞. More precisely, we have the asymptotic equivalence

L(z) ∼ CLL2(z) as z → ∞ ,(3.7)

with CL = α
∫∞

0

∫∞

−∞

{

∫ x+y

x
ψ(s) ds

}2

dx t−α−1dt > 0.

Proof. See Appendix 5. �

3.2. Wavelet coefficients in discrete time. Let φ be a bounded R → R function with
compact support included in [−M + 1, 1] and such that

(3.8)
∑

k∈Z

φ(t− k) = 1, t ∈ R.

Let Iφ denote the operator defined on the set of functions x : R → R by

Iφ[x](t) =
∑

k∈Z

x(k)φ(t− k).(3.9)

The wavelet coefficients of x are then defined as the wavelet coefficients of Iφ[x].

From a computational point of view, it is convenient to chose φ and ψ to be the so-
called father and mother wavelets of a multiresolution analysis, see for instance Meyer
(1992). The simplest choice is to take φ and ψ associated to the Haar system, in which
case M = 1, φ = 1[0,1) and ψ = 1[0,1/2) − 1[1/2,1).

If the process X is observed discretely, we still denote dD
j,k its wavelet coefficients :

dD
j,k =

∫

ψj,k(s)Iφ[X](s) ds .(3.10)

If we observe X(0), X(1), . . . , X(T − 1) for some positive integer T , we can compute dD
j,k

for all j, k such that 0 ≤ k ≤ 2−j(T −M +1)−M . Roughly, for 2j ≥ T/M , no coefficients
can be computed and if 2j < T/M the number of computable wavelet coefficients at scale
2−j is of order T2−j + 1 −M for j and T large.

Remark 3.1. Observe that the choice of time units is unimportant here. Indeed, in As-
sumption 1, changing the time units simply amounts to adapt the slowly varying functions
Lk’s and the rate of the arrival process {tk}. Clearly both adaptations do not modify our
results as far as precise multiplicative constants are not considered.
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3.3. Averaged observations. We describe now a third observation scheme for which
our results can easily be extended. Suppose that T is a positive integer and that we
observe local averages of the trajectory

X(k) :=

∫ k+1

k

X(t) dt =

∫

X(t)φH(t− k) dt, k = 0, 1, . . . , T − 1 ,

where φH := 1[0,1] is the Haar wavelet. Let Iφ denote the operator on locally integrable
functions x defined by

Iφ[x](t) =
∑

k∈Z

(
∫

x(s)φH(s− k)ds

)

φ(t− k)

For this observation scheme, as in Section 3.2, one may compute the wavelet coefficients
of the function Iφ[X] at all scale and location indices (j, k) such that 0 ≤ k ≤ 2−j(T −
M + 1) −M . If φ = φH and ψ is the Haar mother wavelet, ψ = 1[0,1/2) − 1[1/2,1), then,

the wavelet coefficients of Iφ[X] are precisely the continuous wavelet coefficients defined
in (3.3). For any other choice of φ and ψ, this is no longer true. We will not treat this
case but all our results can be extended at the cost of more technicalities.

4. Estimation

Tail index estimation methods do not seem appropriate here for estimating the pa-
rameter α. Indeed, the parameter α is the tail index of the unobserved durations {ηk},
whereas the observed process X(t) always has finite variance (E[|X(t)|p] <∞ if and only
if E[|Up|] < ∞ and the marginal distribution of X(t) is Poisson if U = 1 almost surely).
But as shown by Proposition 2.2, α is related to the second order properties of the process:
the coefficient H = (3 − α)/2 can be viewed as its Hurst index, i.e. H governs the rate
of decay of the autocovariance function of the process. Therefore it seems natural to use
an estimator of the Hurst index.

4.1. The estimator. Lemma 3.1 provides the rationale for the following minimum con-
trast estimator of α which is related to the local Whittle estimator, cf. Künsch (1987).
Let

(i) dj,k denote the wavelet coefficients which are actually available; these may be ob-
tained from continuous time (dj,k = dj,k) or discrete time (dj,k = dD

j,k) observations;
(ii) ∆ be a set of indices (j, k) of available wavelet coefficients;

Denote the mean scale index over ∆

δ :=
1

#∆

∑

(j,k)∈∆

j .
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The reduced local Whittle contrast function is

Ŵ (α′) = log





∑

(j,k)∈∆

d2
j,k

2(2−α′)j



+ δ log(2)(2 − α′) .(4.1)

The local Whittle estimator of α is then defined as

α̂ := arg min
α′∈(0,2)

Ŵ (α′)(4.2)

In order to simplify the proof of our result, from now on, we take ∆ of the form

∆ = {(j, k) ; J0 < j ≤ J1 , 0 ≤ k ≤ nj − 1} ,
with

J = max{j; 2j ≤ (T −M + 1)/(M + 1)} ,
nj = 2J−j

and integers J0 and J1 such that

0 < J0 < J1 ≤ J.(4.3)

The sequence of integers J depends on T in such a way that 2J ≍ T . Note that the
dependence of the sequences J ,J0,J1,nj etc. with respect to T is omitted in our notation.

4.2. Consistency. Our estimator is consistent in the potentially unstable case, that is
when α is not assumed to be in (1, 2), provided that the assumptions on the functions φ
and ψ are strengthened. We assume that

∫ ∞

−∞

s ψ(s) ds = 0 ,(4.4)

and there exist constants a and b such that for all t ∈ R,
∑

k∈Z

k φ(t− k) = a + bt .(4.5)

These conditions are not satisfied by the Haar wavelet, but hold for any Daubechies
wavelets; see Cohen (2003).

Theorem 4.1. Let Assumption 1 hold with p∗ ≥ 4. Assume that J0 and J1 depend on T
in such a way that

lim
T→∞

J0 = lim
T→∞

(J1 − J0) = ∞ ,(4.6)

lim sup
T→∞

J0/J < 1/α ,(4.7)

lim sup
T→∞

J1/J < 1/(2 − α) .(4.8)

Then α̂ is a consistent estimator of α. Moreover if α ∈ (1, 2), Conditions (4.4), (4.5)
and (4.8) are not necessary for the same result to hold.
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Remark 4.1. Conditions (4.6), (4.7) and (4.8) are satisfied by the choice J0 = ⌊J/2⌋ and
J1 = ⌊J/2 + log(J)⌋.

Proof of Theorem 4.1. For clarity of notation, we denote
∑

j =
∑J1

j=J0+1, ∆j := {k :

(j, k) ∈ ∆} and #∆j = nj. Elementary computations give

(4.9) δ = J0 + 2 + (J0 − J1)/(2
J1−J0 − 1)

so that δ − (J0 + 2) → 0 under (4.6). By Karamata’s representation theorem, the slowly
varying function L defined in (3.6) can be written as

L(z) = c (1 + r(z)) exp

{
∫ z

1

ℓ(s)

s
ds

}

,

with c > 0 and limz→∞ ℓ(z) = limz→∞ r(z) = 0. Define L0(z) = c exp
{

∫ z

1
ℓ(s)
s

ds
}

, r∗(z) =

supz′≥z |r(z′)| and ℓ∗(z) = supz′≥z |ℓ(z′)|. The functions r∗ and ℓ∗ are non increasing and
tend to zero at infinity. Introduce some notation that will be used throughout the proof.

W (α′) = log
(

∑

j
2(α′−α)jnjL(2j)

)

+ δ log(2)(2 − α′) ,

W0(α
′) = log

(

∑

j
2(α′−α)jnjL0(2

j)
)

+ δ log(2)(2 − α′) ,

wj,0(α
′) :=

2(α′−α)jnjL0(2
j)

∑

j′ 2
(α′−α)j′nj′L0(2j′)

, wj(α
′) :=

2(α′−α)jnjL(2j)
∑

j′ 2
(α′−α)j′nj′L(2j′)

,

vj = L(2j) 2(2−α)j , Λj = n−1
j

nj−1
∑

k=0

{

v−1
j (dj,k)

2 − 1
}

,

E(α′) :=
∑

j
wj(α

′)Λj .

We have

W (α′) −W0(α
′) = log

(

1 +

∑

j 2(α′−α)jnj L0(2
j) r(2j)

∑

j 2(α′−α)jnjL0(2j)

)

.

The fraction inside the logarithm in the last display is bounded by r∗(2J0), thus for J
large enough

sup
α′

|W (α′) −W0(α
′)| ≤ Cr∗(2J0) .

Standard algebra yields

W ′
0(α

′) = log 2
∑

j
wj,0(α

′)(j − δ)

W ′′
0 (α′) = log2(2)

∑

j
wj,0(α

′)(j −
∑

j′
wj′,0(α

′)j′)2.
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By Lemma 5.13, under (4.6),

lim
T→∞

W ′
0(α) = 0 , lim

T→∞
W ′′

0 (α) = 2 .

Thus, there exist η > 0 and ζ > 0 such that

lim inf
T→∞

inf
α′∈(α−η,α+η)

W ′′
0 (α′) > ζ .

This implies that for large T , and some positive constant c

W (α̂) −W (α) ≥ W ′
0(α) log(2)(α̂− α) + c(α̂− α)2 − 2r∗(2J0)(4.10)

Since W ′
0(α) → 0 and |α̂− α| ≤ 2, this implies that for all ǫ > 0,

lim sup
T→∞

P((α̂− α)2 > ǫ) ≤ lim sup
T→∞

P(W (α̂) −W (α) ≥ cǫ) .(4.11)

Write

Ŵ (α′) = W (α′) + log {1 + E(α′)} ,

W (α̂) −W (α) = Ŵ (α̂) − Ŵ (α) − log {1 + E(α̂)} + log {1 + E(α)}
≤ 2 sup

α′∈(0,2)

|log {1 + E(α′)}| .(4.12)

Consistency will follow from (4.11) and (4.12) provided that we can prove that supα′∈(0,2) |E(α′)| =
oP (1). If α > 1, take ε ∈ (0, (α−1)/2) such that lim sup J0/J < 1/(α+ε) which is possible
by assumption (4.7). Define

J2 =

{

J1 if α ≤ 1 ,

J1 ∧ [J/(α+ ε)] if α > 1 .
(4.13)

so that, for T large enough, J0 < J2 ≤ J1. Write

E(α′) =

J2
∑

j=J0+1

wj(α
′)Λj +

J1
∑

j=J2+1

wj(α
′)Λj =: E1(α

′) + E2(α
′) ,

with the convention
∑J1

j=J2+1 = 0 if J2 = J1. By Lemma 5.11,

sup
α′∈(0,2)

|E1(α
′)| = OP (2−ξ1J)(4.14)

for some positive ξ1. Treat now E2 for α > 1 and J2 = [J/(α+ε)] > J1. For all α′ ∈ (0, 2),
we have α′−α−1 < −2ε. Since L is slowly varying, we obtain, for some positive constant
C, for all j = J2 + 1, J2 + 2, . . . , J1, wj(α

′) ≤ C2−ε(J2−J0). Using Lemma 5.10, it follows
that

E

[

sup
α′∈(0,2)

|E2(α
′)|
]

≤ C (J1 − J2) 2−ε(J2−J0) = O(2−ξ2J) ,(4.15)

for some ξ2 > 0 because lim sup J0/J < 1/(α+ ε). This concludes the proof. �
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4.3. Rate of Convergence in the stable case.

Theorem 4.2. Let Assumption 1 hold with α ∈ (1, 2) and p∗ = 4. Assume moreover that
L4 is bounded and that L(z) = c+O(z−β) with c > 0 and β > 0.

If X is observed continuously on [0, T ], that is, dj,k = dj,k, then the rate of convergence
in probability of α̂ is T−β/(2β+α), obtained for J0 = ⌊J/{2β + α}⌋ and J1 = J .

If X is observed at discrete time points 1, 2, . . . , T , that is, dj,k = dD
j,k, then the rate

of convergence in probability of α̂ is T−γ/(2γ+α) with γ = β ∧ (2 − α), obtained for J0 =
⌊J/{2γ + α}⌋ and J1 = J .

Remark 4.2. Observe that the choice of J0 corresponding to the best rate for α̂ depends
both on the unknown smoothness parameter β and on the parameter α itself. The case of
discrete observations is similar to the continuous time observations but with the smooth-
ness parameter β replaced by γ = β ∧ (2 − α), resulting in a slower rate of convergence.
This can be explained by the aliasing induced by the interpolation step (3.9). It is clear
that these rates of convergence are the best possible for our estimator under the assump-
tion on L, since this choice of J0 makes the squared bias and the variance of the same
order of magnitude. However, to our knowledge, the best possible rate of convergence for
the estimation of α under these observations schemes is an open question. In other words,
it is still to be found out whether our estimator is rate optimal.

The rate of convergence of our estimator is derived under assumptions on the function
L. The following lemma allows to check them through conditions on the joint distribution
of (U, η).

Lemma 4.3. Let Assumption 1 hold.

(i) If there exists positive constants c and β such that, as t→ ∞,

L2(t) = c+O(t−β),

then there exists a constant c′ such that, as z → ∞,

(4.16) L(z) = c′ +











O(z−β) if β < 2 − α,

O(zα−2 log z) if β = 2 − α,

O(zα−2) if β > 2 − α.

(ii) If there exists positive constants c and β such that, as t→ 0,

E[U2{1 − cos(ηt)}] = c |t|−α{1 +O(|t|β)} ,
then there exists a constant c′ such that, as z → ∞,

(4.17) L(z) = c′ +O(z−β) ,
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provided that ψ belongs to the Sobolev space W (α+β)/2−1, that is,

(4.18)

∫ ∞

−∞

(1 + |ξ|)(α+β)−2 |ψ∗(ξ)|2 dξ <∞ ,

where ψ∗ denotes the Fourier transform of ψ,

(4.19) ψ∗(ξ) =

∫ M

0

ψ(t) e−iξt dt .

Example 4.1. Assume that η has a Pareto distribution, i.e. P(η > t) = (1 ∨ t)−α, and
is independent of U . This corresponds to Lemma 4.3(i) with β = ∞, and we can easily
compute an exact expression for the O(zα−2) term:

L(z) = c′ +
αE[U2]

2 − α
zα−2 + o(zα−2) .

The best possible rate of convergence of α̂ is thus T−(2−α)/(4−α), irrelevant of the observa-
tion scheme.

Example 4.2. Let α ∈ (1, 2) and suppose that η is the absolute value of a symmetric
α-stable random variable. Then Assumption 1 holds, say, if U is independent of η and
has sufficiently many finite moments, and

E[cos(ηt)] = exp(−σ |t|α) = 1 − σ |t|α +O(|t|2α).

By Lemma 4.3, the best possible rate of convergence of α̂ is thus T−γ/(2γ+α) with γ = α
for continuous time observations and γ = 2 − α for discrete time observations.

Proof of Theorem 4.2. In the following, we give a decomposition of the error valid under
the assumption

0 < lim inf
T→∞

J0

J
≤ lim sup

T→∞

J0

J
< 1.

Optimizing J0 in this decomposition will then give the result. We use the same notation
as in the proof of Theorem 4.1 with J1 = J . We first give a first rough rate of convergence
for α̂ by adapting the proof of Theorem 4.1. Under the present assumptions, L0(z) = c,
which implies W ′

0(α) = 0, and r∗(z) = O(z−β) as z → ∞. Then, (4.10), (4.12), (4.14)
and (4.15) yield:

(α̂− α)2 = OP (2−ξJ + 2−βJ0).(4.20)

Since α̂ is consistent and α is an interior point of the parameter set, the first derivative
of the contrast function vanishes at α̂ with probability tending to one. Hence

0 =

∑

(j,k)∈∆ j 2(α̂−2)jd2
j,k

∑

(j,k)∈∆ 2(α̂−2)jd2
j,k

− δ log(2) .
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By definition of δ, this yields

0 =
∑

(j,k)∈∆

(j − δ) 2(α̂−2)jd2
j,k

=
∑

(j,k)∈∆

(j − δ) 2(α−2)jd2
j,k + log(2)(α̂− α)

∑

(j,k)∈∆

j(j − δ)2(α̃−2)jd2
j,k

for a random α̃ between α and α̂. By definition of Λj, the last display implies

α̂− α = −
∑

j(j − δ)2−jL(2j)(1 + Λj)

log 2
∑

j j(j − δ)2(α̃−α−1)jL(2j)(1 + Λj)
.

Denote the sum in the denominator of the last expression by D, and write

D =
∑

j
j(j − δ)2−jL(2j) +

∑

j
j(j − δ)L(2j)2−j(2(α̃−α)j − 1)(1 + Λj)

+
∑

j
j(j − δ)2−jL(2j)Λj =: S +R1 +R2 .

Using Lemma 5.13 and (4.9), one easily gets that S ∼ 21−J0 as J → ∞.

Using Lemma 5.10, and the fact that |α̃−α| ≤ |α̂−α| = oP (J−2), one gets similarly R1 =
oP (2−J0). To bound R2, we proceed as for bounding E(α′) in the proof of Theorem 4.1

(here with α′ = α > 1): we write
∑

j =
∑J2

j=J0+1 +
∑J

j=J2+1 and apply Lemmas 5.10

and 5.11 to obtain R2 = oP (2−J0). Hence, we finally get

α̂− α =
2J0

2 log 2

{

∑

j
(j − δ)2−jL(2j) +

∑

j
(j − δ)2−jL(2j)Λj

}

{1 + op(1)} .(4.21)

In (4.21), the terms inside the curly brackets are interpreted as a deterministic bias term
and a stochastic fluctuation term. The bias is bounded as follows:

(4.22) 2J0

∑

j
(j − δ)2−jL(2j) = 2J0

∑

j
(j − δ)2−j(L(2j) − c) = O(2−βJ0) .

In the case of continuous time observations, i.e. dj,k = dS
j,k or dj,k = dj,k, we have

(4.23)
∑

j
(j − δ)2−jL(2j)Λj = OP (2−J/2+(α/2−1)J0) .

Gathering this bound with (4.21) and (4.22), and setting J0 = J/(2β + α) yields the
first claim of Theorem 4.2, i.e. α̂ − α = OP (2−β/(2β+α)). We now prove (4.23). Define

βj = n−1
j

∑nj−1
k=0 {v−1

j (dS
j,k)

2 − 1}. Then βj = Λj if dj,k = dS
j,k. Since α > 1, Lemmas 3.1

and 5.2 yield, for some positive constant C,

E[β2
j ] = var(βj) ≤ C

L4(2
j)

L2(2j)
2αj−J .(4.24)
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Since L is bounded away from zero and L4 is bounded by assumption, the ratio L4/L2 is
also bounded. The Minkowski inequality then yields, for some constant C > 0,

E

[

(

∑

j
(j − δ)2−jL(2j)βj

)2
]1/2

≤ C 2−J/2
∑

j
|j − δ| 2(α/2−1)j = O(2−J/2+(α/2−1)J0) .

If dj,k = dj,k, we use (5.40) in Lemma 5.10, and obtain E[|Λj − βj|] ≤ C n
−1/2
j for some

constant C > 0. Hence, in this case, since −1/2 < α/2 − 1,

E

[∣

∣

∣

∑

j
(j − δ)2−jL(2j) (Λj − βj)

∣

∣

∣

]

≤ C 2−J/2
∑

j
|j−δ| L(2j) 2−j/2 = o(2−J/2+(α/2−1)J0) .

The last two displays imply (4.23).

We now briefly adapt the previous proof to the case of discrete observations. Define
vD

j = E[(dSD
j,k )2]. Lemma 5.6 [iii] implies vD

j = vj +O(1). Thus we have vD
j = LD(2j)2(2−α)j

and
LD(z) = L(z) +O(zα−2) = c+O(z−γ) ,

with γ = β ∧ (2 − α). Then, defining

ΛD
j = n−1

j

nj
∑

k=1

{(vD
j )−1d2

j,k − 1} ,

we obtain that (4.21) still holds with LD and ΛD replacing L and Λ, respectively. Lemma 5.12
implies that ΛD

j has the same order of magnitude as Λj , so that the stochastic fulctuation
term has the same order of magnitude as in the previous case. The difference comes
from the bias term, which is O(2−γJ0). Thus, α̂ − α = OP (2−γJ0 + 2−γJ0), and setting
J0 = J/(2γ + α) yields the second claim of Theorem 4.2.

�

5. Concluding remarks

In this work, we have proved the validiy of a wavelet method for the estimation of the
long memory parameter of an infinite source Poisson traffic model, both in a stable or in
an unstable state, that is, when it does or does not converge to a stationary process. We
have shown that a suitable choice of the scales in the estimator (see Remark 4.1) yields
a consistent estimator in both situations and we checked that the estimator is robust to
discrete data sampling.

However the study of the rates raises some questions concerning the optimality of
this estimator. To draw a comparison, suppose that one directly observes the durations
η1, . . . , ηn of the clients arrived at times t1, . . . , tn in [0, T ]. Then one can use the Hill
estimator for estimating the tail index α. Since T and n are asymptotically proportional
and η1, . . . , ηn are iid, the rates of this estimator are those derived in Hall and Welsh
(1984). In particular, if η has a Pareto distribution, then a parametric rate

√
T can be
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obtained. On the other hand, in the same situation, our wavelet estimator defined on the
observations {X(t), t ∈ [0, T ]} has a dramatically deteriorating rate for α close to 2. It
remains to find out whether this discrepancy comes from the choice of the estimator or
from the fact that the durations ηk are not directly observed.

Finally, let us draw a practical conclusion from our study. Some precaution should be
made on the choice of the scales used in the estimation as shown by the conditions on
J0 and J1. In particular, if only discrete observations are available, the best possible rate
of convergence is obtained for a much bigger value of J0 than if continous observations
are available. Too small a value of J0 will induce an important bias for finite samples.
Practitioners should be aware of this restriction and be careful in the interpretation of
the results. Those questions will be tackled numerically in a future work.

Appendix: Technical results

Lemma 5.1. Let Assumption 1 hold. Let f be a bounded measurable compactly supported
function such that

∫

f(s) ds = 0. Define

f̃(t, v, w) = w

∫ t+v

t

f(s) ds .

Then
∫

|f̃(t, v, w)|p dt ν(dv, dw) <∞,

E[NS(f̃)] = 0 and
∫∞

0
X(s)f(s) ds = NS(f̃1R+×R+×R). If moreover E[η] < ∞, then

NS(f̃) =
∫

XS(s) f(s) ds.

Proof. Assume that f has compact support in [0,M ]. Then
∫ t+v

t
f(s) ds = 0 if t+ v < 0

or t > M . If moreover
∫M

0
f(s) ds = 0, then the former integral also vanishes if t < 0 and

t+ v > M . Then, denoting ‖f‖1 =
∫

|f(s)| ds, we have
∫ ∞

−∞

∣

∣

∣

∣

∫ t+v

t

f(s) ds

∣

∣

∣

∣

p

dt ≤ ‖f‖p
1

∫ ∞

−∞

{1[0,M ](t) + 1[0,M ](t+ v)}p dt = 2pM‖f‖p
1 .

Thus
∫

|f̃(t, v, w)|p dt ν(dv, dw) ≤ 2pM‖f‖p
1E[|U |p]. The fact that E[NS(f̃)] = 0 is then

a straightforward application of Fubini’s Theorem. The other properties follow directly
from the definition of NS. �

For p = 1, . . . , p∗, define the signed measures

νp(dv) :=

∫

upν(dv, du) .(5.1)

Proof of Lemma 3.1. Using the above notation, we have dS
j,k = NS(ψ̃j,k), since (3.1) im-

plies that
∫

ψj,k(s) ds = 0 for all j, k, hence the wavelet coefficients have zero mean by
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Lemma 5.1. To compute the variance, we apply the cumulant formula (2.5) and a change
of variable.

var(dS
j,k) =

∫ ∞

0

ν2(dv)

∫ ∞

−∞

{
∫ t+v

t

ψj,k(s) ds

}2

dt

= 22j

∫ ∞

0

ν2(dv)

∫ ∞

−∞

{

∫ t+2−jv

t

ψ(s) ds

}2

dt = 2(2−α)jL(2j) ,

by definition of L, see (3.6). To conclude the proof, we show (3.7). For p = 2, . . . , define

Kp(y) :=

∫ ∞

−∞

{∫ t+y

t

ψ(u) du

}p

dt =

∫ ∞

−∞

(Ψ(t+ y) − Ψ(t))p dt ,(5.2)

where Ψ(u) :=
∫ u

0
ψ(y) dy. By (3.1), Ψ has compact support in [0,M ] and,

(5.3) |Kp(y)| ≤
∫ M

−M

|Ψ(t+ y) − Ψ(t)|p dt ≤ 2M ‖ψ‖p
∞ |y|p, y ∈ R .

If |y| ≥M , either Ψ(t+ y) or Ψ(t) vanishes for any t, hence

Kp(y) = (1 + (−1)p)‖Ψ‖p
p, |y| ≥ M .(5.4)

From (5.2), the two first derivatives of Kp can be expressed as

K ′
p(y) = p

∫ M

0

ψ(u)(Ψ(u) − Ψ(u− y))p−1 du ,(5.5)

K ′′
p (y) = p(p− 1)

∫ M

0

ψ(u)ψ(u− y)(Ψ(u) − Ψ(u− y))p−2 du ,(5.6)

which are continuous by continuity of Ψ, and with support in [−M,M ] by (5.4). Inserting

K2(v/z) =
∫ v/z

0
K ′

2(t)dt in (3.6) and inverting the integrals yield

L(z) = zα

∫ M

0

K ′
2(t)H2(z t) dt = L2(z)

∫ M

0

L2(zt)

L2(z)
K ′

2(t)t
−α dt ∼z→∞ CL L2(z) ,(5.7)

Indeed, for any ǫ ∈ (0,M)

L2(z)

∫ M

ǫ

L2(zt)

L2(z)
K ′

2(t)t
−α dt ∼ L2(z)

∫ M

ǫ

K ′
2(t)t

−α dt

as z → ∞, by the Uniform Convergence Theorem for slowly varying functions. Since
|K ′

2(y)| ≤ c|y|, we have for z ≥ 1/ǫ
∫ ǫ

0

L2(zt)K
′
2(t)t

−α dt = zα−1

∫ zǫ

0

L2(u)K
′
2(u/z)u

−αdu

≤ Czα−2{
∫ 1

0

L2(u)u
−α+1du+

∫ zǫ

1

L2(u)u
−α+1du}
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Using u−αL2(u) = H2(u) → E|U |2 as u → 0, Karamata’s Theorem and Potter’s bound
(see Resnick, 1987), we obtain the bound

L2(z)
−1

∫ ǫ

0

L2(zt)K
′
2(t)t

−α dt ≤ C{L2(z)
−1zα−2 + ǫ2−αL2(zǫ)

L2(z)
} ≤ Cǫ(2−α)/2 .

(5.7) follows by letting ǫ go to zero and noting that sinceK ′
2(0) = 0, CL :=

∫M

0
K ′

2(t)t
−α dt =

α
∫M

0
K2(t)t

−α−1 dt is a positive constant. �

Proof of Lemma 4.3. From (5.7), we have

L(z) =

∫ M

0

K ′
2(t) t

−α {c+ r(zt)} dt = c′ +

∫ M

0

K ′
2(t) t

−α r(zt) dt ,

where L2(t) = c+ r(t). Since r(t) = O(t−β) as t→ ∞ and r(t) = H2(t)t
α − c, there exists

C > 0 such that |r(t)| ≤ Ct−β. By (5.5) and (5.6), we have K ′
2(t) ∼ ‖K2‖2 t as t→ 0. If

β < 2 − α, Eq (4.16) follows immediately. For β ≥ 2 − α, let us write
∣

∣

∣

∣

∫ M

0

K ′
2(t) t

−α r(zt) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ z−1

0

K ′
2(t) t

−α r(zt) dt+

∫ M

z−1

K ′
2(t) t

−α r(zt) dt

∣

∣

∣

∣

∣

≤ C1

∫ z−1

0

t1−α dt+ C2 z
−β

∫ M

z−1

t1−α−β dt ,

where we used that r(zt) = H2(zt)(zt)
α − c is bounded for zt ≤ 1 for the first integral,

and |r(t)| ≤ Ct−β for the second one. This yields (4.16).

Let us now show (4.17). Recall that ψ∗ denotes the Fourier transform of ψ, see (4.19).
The Sobolev condition (4.18) on ψ and (3.1) imply that

∫

|ξ|α+β−2 |ψ∗(ξ)|2 dξ <∞

so that the lemma is a direct consequence of the following formula; for all z > 0,

(5.8) L(z) =
zα

π

∫ ∞

−∞

ξ−2 |ψ∗(ξ)|2 E[U2 {1 − cos(ηξ/z)}] dξ .

We now prove (5.8). For p = 2, (5.5) gives, since ψΨ integrates to Ψ2/2 and Ψ(0) =
Ψ(M) = 0,

K ′
2(y) = 2

∫ M

0

ψ(u)(Ψ(u)− Ψ(u− y)) du = −2

∫ ∞

−∞

ψ(u) Ψ(u− y) du .

By integration by parts one gets that ψ∗(ξ) =
∫∞

−∞
ψ(t)e−iξtdt = iξ

∫∞

−∞
Ψ(t)e−iξtdt. Then,

by Fubini’s theorem, we obtain
∫ ∞

−∞

K ′
2(y) e−iyξ dy = −2

∫ ∞

−∞

∫ ∞

−∞

ψ(u)e−iuξ Ψ(u− y) ei(u−y)ξ dudy =
2

iξ
|ψ∗(ξ)|2 .
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The function K ′
2 is bounded and compactly supported (see the proof of Lemma 3.1), hence

square integrable. By Parseval’s formula, we find, for all y ≥ 0,

K2(y) =

∫ ∞

−∞

1[0,y](u)K
′
2(u) du = π−1

∫ ∞

ξ=−∞

ξ−2 |ψ∗(ξ)|2 (1 − eiξy) dξ .

From (5.7), we have

L(z) = zα

∫ ∞

0

K ′
2(t)H2(z t) dt = zα

E[U2K2(η/z)] ,

Since ξ−2 |ψ∗(ξ)|2 is integrable, we may replace K2 by the above formula and exchange
expectation and integration signs, giving

L(z) =
zα

π

∫ ∞

ξ=−∞

ξ−2 |ψ∗(ξ)|2 E[U2(1 − eiξt)] dξ .

Observing that ξ−2 |ψ∗(ξ)|2 is an even function of ξ and that the imaginary part of the
expectation is an odd function of ξ, we get (5.8). �

Lemma 5.2. Let Assumption 1 hold with p∗ ≥ 4. Then, there exists a positive constant
C > 0 such that

var

(

n−1
∑

k=0

(dS
j,k)

2

)

≤ Cn
{

L2
2(2

j) 2(4−2α)j + L4(2
j) 2(3−α)j

}

.

Note that the first term dominates for α < 1 and the second one dominates for α > 1.

Proof. Write

var

(

n−1
∑

k=0

(dS
j,k)

2

)

= 2
n−1
∑

k,k′=0

cov2(dS
j,k, d

S
j,k′) +

n−1
∑

k,k′=0

cum(dS
j,k, d

S
j,k, d

S
j,k′, dS

j,k′) .(5.9)

For any positive integer p, k ∈ Z and v ≥ 0, define

Kp(v, k) :=

∫ ∞

−∞

{
∫ t+v

t

ψ(s− k) ds

}p{∫ t+v

t

ψ(s′) ds′
}p

dt .

We have the following properties: Kp(v,−k) = Kp(v, k), by Cauchy Schwarz Inequality,
for all k ∈ Z and v > 0, |Kp(v, k)| ≤ Kp(v, 0) = K2p(v), where we use the notation (5.2);
if k > v + M , then the support [0,M ] of ψ cannot intersect both [t − k, t − k + v] and
[t, t + M ] so that Kp(v, k) = 0; if k > M and v > k + M , then the support of ψ cannot
intersect both [t− k, t − k + v] and [t, t +M ] without being included in one of them, so
that, by (3.1), Kp(v, k) = 0. Gathering the above facts gives, for all k ∈ Z and v > 0,

(5.10) |Kp(v, k)| ≤ K2p(v) {1(|k| ≤ M) + 1(v ∈ [|k| −M, |k| +M ]) .
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Recall that dS
j,k = NS(ψ̃j,k). Thus Formula (2.5) implies

cov(dS
j,k, d

S
j,k′) = 22j

∫ ∞

0

K1(v, |k − k′|) ν2(2
jdv) ,(5.11)

cum(dS
j,k, d

S
j,k, d

S
j,k′, dS

j,k′) = 23j

∫ ∞

0

K2(v, |k − k′|) ν4(2
jdv) .(5.12)

Thus, separating the cases |k−k′| ≤M and |k−k′| > M in the sums of the RHS in (5.9)
and using (5.10), we get

n−1var

(

n−1
∑

k=0

(dS
j,k)

2

)

≤ 4 (2M + 1) 24j

(
∫ ∞

0

K2(v) ν2(2
jdv)

)2

(5.13)

+ 4 24j
n−1
∑

l=M+1

(
∫ l+M

l−M

K2(v) ν2(2
jdv)

)2

(5.14)

+ 2 (2M + 1) 23j

∫ ∞

0

K4(v) ν4(2
jdv)(5.15)

+ 2 23j

n−1
∑

l=M+1

∫ l+M

l−M

K4(v) ν4(2
jdv)(5.16)

The RHS in (5.13) is 4 (2M + 1) (var(dS
j,k), cf. the proof of Lemma 3.1. In this proof,

the properties of K4 are similar to those of K2 (see (5.3) and (5.5)) and this yields
similarly that (5.15) is asymptotically equivalent to 2(2M+1)L4(2

j)2(3−α). By elementary
computations, the term (5.16) is less than

2 23j (2M + 1)

∫ n+M−1

1

K4(v) ν4(2
jdv)

which is less than (5.15). The term (5.14) is treated similarly by noting that

n−1
∑

l=M+1

(
∫ l+M

l−M

K2(v) ν2(2
jdv)

)2

≤
∫ ∞

0

K2(v) ν2(2
jdv)

n−1
∑

l=M+1

∫ l+M

l−M

K2(v) ν2(2
jdv)

≤ (2M + 1)

(
∫ ∞

0

K2(v) ν2(2
jdv)

)2

so that it is of the same order as (5.13). This concludes the proof. �

Lemma 5.3. Let Assumption 1 hold with p∗ ≥ 2. Then the following assertions hold.

(i) If α ∈ (1/2, 2), there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

(E[dj,k])
2 ≤ C2(3−2α)jL2

1(2
j) .(5.17)
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(ii) If α ∈ (1, 2), there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

var(dj,k − dS
j,k) ≤ C 2(2−α)j L2(2

j) .(5.18)

(iii) If α ∈ (0, 1], for all ǫ > 0, there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

var(dj,k − dS
j,k) ≤ C 2(2−α)j L2(2

j)n1−α+ǫ .(5.19)

(iv) If (4.4) hold then, there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

(E[dj,k])
2 ≤ C2(3−2α)jL2

1(2
j) .(5.20)

Proof. By Lemma 5.1 we have that dj,k = NS(ψ̃j,k1R+×R+×R). Thus

E[dj,k] =

∫ ∞

0

ν1(dv)

∫ ∞

0

du

∫ u+v

u

ψj,k(w) dw

= −
∫ ∞

0

ν1(dv)

∫ 0

−∞

du

∫ u+v

u

ψj,k(w) dw ,(5.21)

since (3.1) implies that
∫∞

−∞
du
∫ u+v

u
ψj,k(w) dw = 0. Define Ψ(t) =

∫ t

0
ψ(s) ds. Again,

(3.1) implies that Ψ also has compact support in [0,M ]. Thus
∫ 0

−∞

du

∫ u+v

u

ψj,k(w) dw = 23j/2

∫ −k

−∞

(Ψ(x+ 2−jv) − Ψ(x)) dx

= 23j/2

∫ (2−jv−k)+∧M

0

Ψ(x) dx ,(5.22)

Inserting (5.22) in (5.21) and exchanging the two integrals give that

|E[dj,k]| ≤ 23j/2

∫ M

0

|Ψ(x)|H1(2
j(x+ k)) dx

= 2(3/2−α)j L1(2
j)

∫ M

0

|Ψ(x)| (x+ k)−α L1(2
j(x+ k))

L1(2j)
dx .

Along the lines that lead to (5.7), we get |E[dj,0]| ≤ C2(3/2−α)j L1(2
j)
∫M

0
|Ψ(x)| x−α dx .

The integral in this RHS is finite for since Ψ(x) = O(x) at x = 0. Note now that for any
ǫ > 0, there exists some constant Cǫ such that ∀j, t ≥ 1, L1(tx)/L1(t) ≤ Cǫx

ǫ. Then, for
k ≥ 0

|E[dj,k]| ≤ C 2(3/2−α)j L1(2
j)

∫ M

0

|Ψ(x)| (x+ k)ǫ−α dx ≤ C2(3/2−α)jL1(2
j)(k ∨ 1)ǫ−α.

(5.23)
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Hence (5.17) for α > 1/2 by choosing ǫ small enough.

We now prove (5.18) and (5.19). By Lemma 5.1, dS
j,k − dj,k = NS(ψ̃j,k1R−×R+×R).

Applying (2.5) yields

var(dS
j,k − dj,k) =

∫ ∞

0

ν2(dv)

∫ 0

−∞

du

(
∫ u+v

u

ψj,k(w) dw

)2

.(5.24)

Proceeding as for (5.22), one obtains
∫ 0

−∞

du

(
∫ u+v

u

ψj,k(w) dw

)2

= 22j

∫ −k

−∞

(Ψ(x+ 2−jv) − Ψ(x))2 dx

= 22j

∫ (2−jv−k)+∧M

0

Ψ2(y) dy .(5.25)

The case α > 1 is then similar as for establishing (5.17) from (5.22) and (5.21). The case
α ∈ (0, 1] is also similar except that the sum

∑n−1
k=0 is no longer bounded independently

of n.

We now show (5.20). If the function ψ satisfies (4.4) then
∫M

0
Ψ(s) ds = 0. In (5.22),

it gives

(5.26)

∣

∣

∣

∣

∫ 0

−∞

du

∫ u+v

u

ψj,k(w) dw

∣

∣

∣

∣

≤M ‖Ψ‖∞ 1(v ∈ [k2j , (k +M)2j ]) .

Hence, by inserting this in (5.21), for k ≥ 1

(5.27) |E[dj,k]| ≤ C 2(3/2−α)j L1(2
j){H̃1(k, j) − H̃1(k +M, j)} ,

where

H̃1(k, j) :=
2αjH1(k2

j)

L1(2j)
= k−αL1(k2

j)

L1(2j)
.

Since L1(k2
j)/L1(2

j) is less than any positive power of k, there exists K > 0 such that,

for all k ≥ K and j ≥ 0, H̃1(k, j) ≤ 1. Note also that by definition of H̃1(k, j), it is
nonincreasing with respect to k. Thus, for all n > K +M ,

n−1
∑

k=K

{H̃1(k, j) − H̃1(k +M, j)}2 ≤
n−1
∑

k=K

{H̃1(k, j) − H̃1(k +M, j)}

=

K+M−1
∑

k=K

H̃1(k, j) −
n+M−1
∑

k=n

H̃1(k, j) ≤ M .

Inserting this in (5.27) and using (5.23) for bounding
∑M−1

k=0 (E[dj,k])
2 yield (5.20). �

Lemma 5.4. Define, for all t ∈ R and v > 0,

gt,v = Iφ[1[t,t+v)] and ht,v = 1[t,t+v) − gt,v.(5.28)

We have the following properties for all t ∈ R and all v > 0.
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(i)
∫

gs,v(t) ds = v,
(ii) ‖gt,v‖∞ ≤M ‖φ‖∞ and the support of gt,v is included in [⌈t⌉ −M + 1, ⌈t+ v⌉],
(iii) the support of 1 − gt,v is included in (−∞, ⌈t⌉] ∪ [⌈t+ v⌉ −M + 1,∞),
(iv) ‖ht,v‖∞ ≤ 1 +M ‖φ‖∞ and the support of ht,v is included in [t −M + 1, ⌈t⌉] ∪ [t +

v −M + 1, ⌈t+ v⌉].

Proof. By definition of gs,v in (5.28), we have, using that φ has a compact support and
then (3.8),

∫

gs,v(t)ds =

∫

∑

k∈Z

1(k−v,k](s)φ(t− k)ds = v
∑

k∈Z

φ(tk) = v .

We have, for all non-integer s ∈ R,

|gt,v(s)| ≤ ‖φ‖∞
∑

k∈Z

1(−M+1,1)(s) ≤M ‖φ‖∞.

Hence the bound ‖ht,v‖∞ ≤ 1 + ‖gt,v‖∞. Denote by ⌈s⌉ the smallest integer larger than
or equal to s. We have

(5.29) gt,v(s) =

⌈t+v⌉−1
∑

k=⌈t⌉

φ(s− k), s ∈ R,

so that gt,v has its support included in the segment [⌈t⌉ −M + 1, ⌈t+ v⌉]. It follows that
the support of ht,v is included in [t−M + 1, ⌈t+ v⌉]. Now, by (3.8), we have

1 − gt,v = Iφ[1 − 1[t,t+v)] = −Iφ[1[t,t+v)c ],

ht,v = 1[t,t+v)c − Iφ[1[t,t+v)c ],

where Ac denotes the complementary set of A in R. The support of Iφ[1[t,t+v)c ] is included
in (−∞, ⌈t⌉] ∪ [⌈t+ v⌉ −M + 1,∞); thus ht,v’s one is in (−∞, ⌈t⌉] ∪ [t+ v −M + 1,∞).
Hence the result. �

Lemma 5.5. Let Assumption 1 hold. Let f be a bounded measurable compactly supported
function such that

∫

f(s) ds = 0. Define

f̂(t, v, w) = w

∫ ∞

−∞

gt,v(s)f(s) ds , f̌(t, v, w) = w

∫ ∞

−∞

ht,v(s)f(s) ds .

Then, for p = 1, . . . , p∗,
∫

|f̂(t, v, w)|p dt ν(dv, dw) < ∞,
∫

|f̌(t, v, w)|p dt ν(dv, dw) < ∞,
∫

Iφ[X](s) f(s) ds = NS(f̂1R+×R+×R), and E[NS(f̂)] = E[NS(f̌)] = 0. If moreover E[η] <

∞, then NS(f̂) =
∫

Iφ[XS](s) f(s) ds.

Proof. Assume that f has compact support in [0,M ]. Applying Lemma 5.4(ii) and pro-
ceeding as in the proof of Lemma 5.1, we have, for some numerical constant C whose face
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value may change upon each appearance,
∣

∣

∣

∣

∫ ∞

−∞

gt,v(s)f(s) ds

∣

∣

∣

∣

≤ C‖f‖1{1[M−1,2M−1](⌈t⌉) + 1[0,M ](⌈t+ v⌉)} ,
∫

|f̂(t, v, w)|p dt ν(dv, dw) ≤ C ‖f‖p
1 E[|U |p] .

Applying Lemma 5.4(iv), we obtain a similar bound for
∫

f̌(t, v, w) dt ν(dv, dw). Thus we
can apply Fubini’s Theorem and Lemma 5.4(i).

E[NS(f̂)] =

∫

R+×R

(
∫ ∞

−∞

{
∫ ∞

−∞

gt,v(s)f(s) ds

}

dt

)

w ν(dv, dw) ,

∫ ∞

−∞

{
∫ ∞

−∞

gt,v(s)f(s) ds

}

dt =

∫ ∞

−∞

{
∫ ∞

−∞

gt,v(s) dt

}

f(s) ds = v

∫ ∞

−∞

f(s) ds = 0 .

Finally, f̌ = f̃ − f̂ , thus E[NS(f̌)] = E[NS(f̃)] − E[NS(f̂)] = 0. �

Applying Lemma 5.5, we can extend the definition of dSD
j,k in (3.10) to the case E[η] = ∞

by

dSD
j,k = NS(ψ̂j,k) .(5.30)

Lemma 5.6. (i) Let Assumption 1 hold with p∗ ≥ 1 and α ∈ (0, 2). Then E[dSD
j,k ] = 0

for all j ≥ 0 and k ∈ Z.
(ii) Let Assumption 1 hold with p∗ ≥ 2 and α ∈ (0, 2). Then var(dS

j,k − dSD
j,k ) is bounded

uniformly for j ∈ N and k ∈ Z.
(iii) Let Assumption 1 hold with p∗ ≥ 2 and α ∈ (1, 2). Then |var(dS

j,k) − var(dSD
j,k )| is

bounded uniformly for j ∈ N and k ∈ Z.

Proof. The first claim is given by Lemma 5.5. By Lemma 5.5, we have dS
j,k − dSD

j,k =

NS(ψ̌j,k). Hence, applying (2.5),

var(dS
j,k − dSD

j,k ) =

∫ ∞

0

ν2(dv)

∫ ∞

−∞

(
∫ ∞

−∞

ht,v(s)ψj,k(s) ds

)2

dt.

By Lemma 5.4 (iv) and since the support of ψ is in [0,M ], we have, for all t ∈ R and
v ≥ 0,

(5.31)

∣

∣

∣

∣

∫ ∞

−∞

ht,v(s)ψj,k(s) ds

∣

∣

∣

∣

≤ 2−j/2 (1 +M ‖φ‖∞) ‖ψ‖∞ (B(t+ 1) +B(t+ v + 1)) ,

where, for all u ∈ R,

B(u) = Leb([u−M,u] ∩ 2j [k, k +M ]) ≤M 1{2jk≤u≤2jk+(2j+1)M} .(5.32)

This implies that
∫

B(u)2 du is bounded by 2j up to a multiplicative constant and it
follows that var(dS

j,k − dSD
j,k ) = O(1). We now suppose that α ∈ (1, 2). Using that



26 GILLES FAŸ, FRANÇOIS ROUEFF, AND PHILIPPE SOULIER

var(dSD
j,k ) = var(dS

j,k)+var(dSD
j,k −dS

j,k)+2cov(dS
j,k, d

SD
j,k −dS

j,k), it only remains to show that

cov(dS
j,k, d

SD
j,k − dS

j,k) = O(1). Applying (2.5), we have

cov(dS
j,k, d

S
j,k − dSD

j,k ) = cov
(

NS(ψj,k), NS(ψ̌j,k)
)

=

∫ ∞

k

ν2(dv)

∫ ∞

−∞

(
∫ ∞

−∞

ht,v(s)ψj,k(s) ds

)(
∫ t+v

t

ψj,k(s) ds

)

dt .

By (5.31), (5.32) and
∣

∣

∣

∣

∫ t+v

t

ψj,k(s) ds

∣

∣

∣

∣

≤ ‖ψ‖∞ 2−j/2 v ;

we get cov(dS
j,k, d

SD
j,k − dS

j,k) = O(1). �

Lemma 5.7. For all α ∈ (1/2, 2), there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

(E[dD
j,k])

2 ≤ C2(3−2α)jL2
1(2

j) .(5.33)

For all α ∈ (1, 2), there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

var(dD
j,k − dSD

j,k ) ≤ C 2(2−α)j L2(2
j) .(5.34)

For all α ∈ (0, 1] and all ǫ > 0, there exists C > 0 such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

var(dD
j,k − dSD

j,k ) ≤ C 2(2−α)j L2(2
j)n1−α+ǫ .(5.35)

If moreover (3.1), (3.8), (4.4) and (4.5) hold, then, for all α ∈ (0, 2), there exists C > 0
such that, for all j ≥ 0 and n ≥ 1,

n−1
∑

k=0

(E[dD
j,k])

2 ≤ C2(3−2α)jL2
1(2

j) .(5.36)

Proof. Using the previous notation, we can write dD
j,k = NS(ψ̂j,k1R+×R+×R). Thus dSD

j,k −
dD

j,k = NS(ψ̂j,k1R−×R+×R) and

E[dD
j,k] = −

∫ ∞

0

ν1(dv)

∫ 0

−∞

{
∫ ∞

−∞

gt,v(s)ψj,k(s) ds

}

dt ,

var(dSD
j,k − dD

j,k) =

∫ ∞

0

ν2(dv)

∫ 0

−∞

(
∫ ∞

−∞

gt,v(s)ψj,k(s) ds

)2

dt.

By (3.1)
∫

gt,v(s)ψj,k(s) ds =
∫

{1 − gt,v(s)}ψj,k(s) ds. Hence this integral vanishes when
the support of ψj,k does not intersect the support of gt,v or when it does not intersect the
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support of 1 − gt,v. The support of ψj,k is included in 2j[k, k +M ] and Lemma 5.4 gives
the supports of gt,v and 1 − gt,v. We thus obtain

2jk > t+ v or 2j(k +M) < t−M + 1 ⇒
∫

gt,v(s)ψj,k(s) ds = 0

2jk > t and 2j(k +M) < t+ v −M + 1 ⇒
∫

gt,v(s)ψj,k(s) ds = 0 .

From Lemma 5.4, we know that ‖gt,v‖∞ ≤M‖φ‖∞; hence
∣

∣

∣

∣

∫

gt,v(s)ψj,k(s) ds

∣

∣

∣

∣

≤M ‖φ‖∞ ‖ψj,k‖1 = M ‖φ‖∞ ‖ψ‖12
j/2 .

The three last displays give that, for all t ≤ 0,
∣

∣

∣

∣

∫

gt,v(s)ψj,k(s) ds

∣

∣

∣

∣

≤ C 2j/2 1(0 < t− 2jk + v < 2jM +M − 1)

and, finally, for all k, j ≥ 0,
∣

∣

∣

∣

∫ 0

−∞

{
∫

gt,v(s)ψj,k(s) ds

}

dt

∣

∣

∣

∣

≤ C 23j/2 {(k − 2−jv)+ ∧ (2M − 1)}(5.37)

∫ 0

−∞

{
∫

gt,v(s)ψj,k(s) ds

}2

dt ≤ C 22j {(k − 2−jv)+ ∧ (2M − 1)} ,

which are similar bounds as those given by (5.22) and (5.25). The proofs of (5.33), (5.34)
and (5.35) then follow as in the proof of Lemma 5.3. It only remains to show (5.36).
Again the proof is similar to the proof of (5.20) in Lemma 5.3. One only needs to provide
a bound similar as (5.26), namely,

∣

∣

∣

∣

∫ 0

−∞

{
∫

gt,v(s)ψj,k(s) ds

}

dt

∣

∣

∣

∣

≤ C 23j/2 1(v ∈ [2j k, 2j(k +M ′)]) ,

for some constant M ′. As we already have (5.37) at hand, it is now sufficient to show
that, for all v ≥ 2j(k +M) +M − 1,

(5.38)

∫ 0

−∞

{
∫

gt,v(s)ψj,k(s) ds

}

dt = −
∫ ∞

0

{
∫

gt,v(s)ψj,k(s) ds

}

dt = 0 .

Since by Lemma 5.4 gt+v,∞ has support in [⌈t + v⌉ −M + 1,∞), we have, for all v ≥
2j(k +M) +M − 1 and t > 0,

∫

gt+v,∞(s)ψj,k(s) ds = 0 .

By (5.29), we have gt,v + gt+v,∞ = gt,∞, hence we only need to show that (5.38) holds for
v = ∞. Observe that, by (5.29) and (4.5),

∫ ∞

0

gt,∞(s) dt =

∫ ∞

0

∑

k∈Z

1(k ≥ t)φ(t− k) dt =
∑

k∈Z

k φ(t− k)
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is linear in t. By Fubini’s theorem and using (3.1) and (4.4), we obtain (5.38) with v = ∞,
which concludes the proof. �

Lemma 5.8. Let Assumption 1 hold with p∗ ≥ 2 and α > 1. Then, there exists C > 0
such that, for all n ≥ 1 and j ≥ 0,

n−1
∑

k=0

E[(dj,k − dS
j,k)

2] ≤ Cvj ;

n−1
∑

k=0

E[(dj,k − dS
j,k)

2] ≤ C(vj + n) .

Lemma 5.9. Let Assumption 1 hold with p∗ ≥ 2 and α ∈ (0, 1]. Assume that φ and ψ
satisfy (4.4) and (4.5). Then, for all ǫ > 0, then there exists C > 0 such that, for all
n ≥ 1 and j ≥ 0,

n−1
∑

k=0

E[(dj,k − dS
j,k)

2] ≤ C(L2
1(2

j) 2(3−2α)j + vjn
1−α+ǫ + n) ,

Proof of Lemmas 5.8 and 5.9. Write E[(dj,k − dS
j,k)

2] = (E[dj,k])
2 + var(dj,k − dS

j,k) and
apply Lemmas 3.1, 5.3, 5.6 and 5.7. �

Lemma 5.10. Let Assumption 1 hold with α ∈ (1, 2) and p∗ ≥ 2. Then

sup
0≤j≤J

E|Λj| = O(1) ;(5.39)

sup
n≥1,j≥0

n−1/2
E

[∣

∣

∣

∣

∣

v−1
j

n−1
∑

k=0

{(dS
j,k)

2 − d2
j,k}
∣

∣

∣

∣

∣

]

<∞ .(5.40)

Lemma 5.11. Let Assumption 1 hold with α ∈ (0, 2) and p∗ ≥ 4. If α ≤ 1/2, assume
moreover (4.4) and (4.5).

Let J∗ be a sequence depending on J such that lim sup J∗/J < (1/α) ∧ (1/(2 − α)).
Then, there exists ǫ > 0 such that

sup
u∈S

∣

∣

∣

∣

∣

J∗

∑

j=J0+1

ujΛj

∣

∣

∣

∣

∣

= OP (2−ǫJ)(5.41)

where S is the set of sequences u = (u0, . . . ) satisfying
∑

j∈N
|uj| ≤ 1.

Proof of Lemmas 5.10 and 5.11. Recall that dS
j,k is always well defined, though unobserv-

able in the case E[η] = ∞. As previously, we denote βj = n−1
j

∑nj−1
k=0 {v−1

j (dS
j,k)

2 − 1} and
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rj = Λj − βj. By Jensen’s inequality, we have

sup
u∈S

∣

∣

∣

∣

∣

J∗

∑

j=J0+1

ujβj

∣

∣

∣

∣

∣

2

≤
J∗

∑

j=J0+1

β2
j ,

hence, applying Lemma 5.2, we obtain, for some slowly varying function L̃,

E



sup
u∈S

∣

∣

∣

∣

∣

J∗

∑

j=J0+1

ujβj

∣

∣

∣

∣

∣

2


 ≤ 2−J

J∗

∑

j=J0+1

L̃(2j) 2(α∨1)j ≤ CL̃(2J∗

)2(α∨1)J∗−J = o(1) .

To bound the remainder terms, the cases α > 1 and α ≤ 1 must be considered separately.

E[|rj |] ≤ (njvj)
−1

nj−1
∑

k=0

E[|(dS
j,k)

2 − d2
j,k|]

≤ (njvj)
−1

nj−1
∑

k=0

E[(dS
j,k − dj,k)

2] + 2(njvj)
−1/2

{

nj−1
∑

k=0

E[(dS
j,k − dj,k)

2]

}1/2

.

If α > 1, we can apply Lemma 5.8 and obtain

E[|rj |] = O
(

1/
√
nj + 1/

√
vj

)

.(5.42)

Since E[βj ] = 0, this proves (5.39). In Lemma 5.8, for dj,k = dj,k, (5.42) can be made
more precise, giving (5.40). Now, noting that α > 1 implies J∗ < J/α, we obtain

E

[

sup
u∈S

∣

∣

∣

∣

∣

J∗

∑

j=J0+1

ujrj

∣

∣

∣

∣

∣

]

≤
J∗

∑

j=J0+1

E[|rj |] = O(2(α/2−1)J0) .

If α ≤ 1, we apply Lemma 5.9 and obtain, for some arbitrarily small ǫ > 0,

E[|rj |] ≤ C
(

2(1−α/2)j−J/2 + n
(ǫ−α)/2
j + 1/

√
vj

)

,(5.43)

E

[

sup
u∈SJ

∣

∣

∣

∑

j
ujrj

∣

∣

∣

]

= O
(

2{(2−α)J∗−J}/2 + 2(J∗−J)(ǫ−α)/2 + 2(α/2−1)J0
)

.

�

Lemma 5.12. Let Assumption 1 hold with p∗ ≥ 4 and α ∈ (1, 2). Then, there exists a
positive constant C > 0,

var

(

n−1
∑

k=0

(dSD
j,k )2

)

≤ CL4(2
j)n2(3−α)j .(5.44)
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Proof. The proof is along the same line as the proof of Lemma 5.2 except that (5.11)
and (5.12) are replaced by

cov(dSD
j,k , d

SD
j,k′) =

∫ ∞

0

K1(v, j, |k − k′|) ν2(dv) ,(5.45)

cum(dSD
j,k , d

SD
j,k , d

SD
j,k′, dSD

j,k′) =

∫ ∞

0

K2(v, j, |k − k′|) ν4(dv) .(5.46)

where

KD
p (v, j, k) := 2−jp

∫ ∞

−∞

{
∫ ∞

−∞

gt,v(s)ψ(2−js− k) ds

}p{∫ ∞

−∞

gt,v(s
′)ψ(2−js′) ds′

}p

dt

Denote

KD
p (v, j) := 2−jp/2

∫ ∞

−∞

{
∫ ∞

−∞

gt,v(u)ψ(2−ju) du

}p

dt

It first check that KD
p (v, j, k) and KD

p (v, j) satisfy similar properties as the ones needed

for Kp(v, k) and Kp(v) in the proof of Lemma 5.2. Since, for any integer k, gt,v(s+k2j) =
gt−k2j ,v(s), we have KD

p (v, j, k) = KD
p (v, j,−k) and, by Cauchy Schwartz Inequality,

|KD
p (v, j, k)| ≤ |KD

2p(v, j)|. Recall that Lemma 5.4 implies that the support of gt,v is

included in [t−M + 1, t+ v+ 1]. We thus have that, if 2jk > v+M(1 + 2j), the support
of ψ(2−j·) being included in [0, 2jM ] cannot intersect the one of gt−2jk,v and the one of
gt,v at the same time, implying KD

p (v, k) = 0. If k > M and v > 2jk + M(2j − 1), the
support of ψ cannot intersect both the one of gt−2jk,v and the one of gt,v without being
included in one of them, so that, by (3.1), KD

p (v, j, k) = 0. Hence we obtain the property
corresponding to (5.10)
(5.47)
|KD

p (v, j, k)| ≤ KD
2p(v, j) {1(|k| ≤M) + 1(v ∈ [2j|k| −M(1 + 2j), 2j|k| +M(2j − 1)]) .

Proceeding as in the proof of Lemma 5.2, this bound yields

(5.48) n−1var

(

n−1
∑

k=0

(dSD
j,k )2

)

≤ C

{

(
∫ ∞

0

KD
2 (v, j) ν2(dv)

)2

+

∫ ∞

0

KD
4 (v, j) ν4(dv)

}

.

From (5.28), we have

∫ ∞

−∞

gt,v(u)ψ(2−ju) du =

∫ t+v

t

ψ(2−ju) du−R(t, v, j),

where

R(t, v, j) :=

∫ ∞

−∞

ht,v(u)ψ(2−ju) du = 2j/2

∫ ∞

−∞

ht,v(u)ψj,0(u) du .
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Hence, since
∫ t+v

t
ψ(2−ju) du ≤ M (v ∧ 2j) ‖ψ‖∞, using that, for any real numbers a and

b,|(a + b)p − ap| ≤ p |b| (|b|p−1 ∨ |a|p−1), we find

KD
p (v, j) = 2j(1+p/2)Kp(2

−jv) +O

(

2−jp/2

∫ ∞

t=−∞

|R(t, v, j)| (|R(t, v, j)|p−1 ∨ v(p−1)) dt

)

.

Using (5.31) and (5.32) gives that R(t, v, j) = O(1) and that
∫

R(t, v, j)dt = O(2j);

hence the above O-term is bounded by 2j(1−p/2)(v∧ 2j)p−1 up to a multiplicative constant
independent of v. This in turn gives
∫ ∞

0

KD
p (v, j) νp(dv) = 2j(1+p/2)

∫ ∞

0

Kp(2
−jv) νp(dv)+O

(

2j(1−p/2)

∫ ∞

0

(v ∧ 2j)p−1 νp(dv)

)

.

We know that (5.3) and (5.5) yield
∫∞

0
Kp(v) ν2(2

jdv) ∼ Lp(2
j) 2−αj; hence, since |KD

p (v)−
Kp(v)| is bounded independently of v,

∫ ∞

0

KD
p (v) ν2(2

jdv) ∼ Lp(2
j) 2−αj

Applying the two last displays to the cases p = 2 and p = 4 with α > 1 successively yield
∫ ∞

0

KD
2 (v, j) ν2(dv) ≤ C (L2(2

j) 2(2−α)j + 1) ,

∫ ∞

0

KD
4 (v, j) ν4(dv) ≤ C (L4(2

j) 2(3−α)j + L4(2
j) 2(2−α)j .

This, with (5.48) concludes the result. �

Lemma 5.13. Let ρ be a positive real and ρ′ := (2ρ − 1)−1. Let ℓ∗ be a non increasing
function on [1,∞) such that lims→∞ ℓ∗(s) = 0, and let ℓ be a function on [1,∞) such that
|ℓ(s)| ≤ ℓ∗(s) for all s ∈ [1,∞). Define

L(x) = c exp

{
∫ x

1

ℓ(s)

s
ds

}

and ωj =
2−ρjL(2j)

∑J1

j′=J0+1 2−ρj′L(2j′)
.

Then, as J0 → ∞ and for any ǫ > 0

J1
∑

j=J0+1

ωjj = J0 + 1 + ρ′(1 +O(ℓ∗(2J0))) +O(J1(2 − ǫ)J0−J1))(5.49)

J1
∑

j=J0+1

ωjj
2 = J2

0 + 2J0(1 + ρ′) + 2ρ′2 + 3ρ′ + 1 + ρ′O(ℓ∗(2J0)) +O(J2
1 (2 − ǫ)J0−J1))

(5.50)
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Proof. Denote Sk =
∑∞

j=k+1 2−ρjL(2j). Then,

S−1
k

∞
∑

j=k+1

jL(2j)2−ρj = k + S−1
k

∞
∑

j=k+1

(j − k)L(2j)2−ρj = k + 1 + S−1
k

∞
∑

j=k+1

Sj .(5.51)

Note now that 2−ρj = ρ′(2−ρ(j−1) − 2−ρj). Hence

Sj = ρ′
∞
∑

j′=j+1

(2−ρ(j′−1) − 2−ρj′)L(2j′) = ρ′2−ρjL(2j+1) +Rj ,

with

Rj = ρ′
∞
∑

j′=j+1

2−ρj′{L(2j′+1) − L(2j′)} = ρ′
∞
∑

j′=j+1

2−ρj′L(2j′)

{

exp

∫ 2j′+1

2j′

ℓ(s)

s
ds− 1

}

.

Thus Sj = 2−ρjL(2j+1){1 −Rj/Sj}−1. Since |ℓ| ≤ ℓ∗ and ℓ∗ is non increasing, we obtain:

∣

∣

∣

∣

L(2j+1)

L(2j)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

exp

∫ 2j+1

2j

ℓ(s)

s
ds− 1

∣

∣

∣

∣

∣

≤ Cℓ∗(2j) .

Hence |Rj| ≤ Cρ′Sjℓ
∗(2j) and for any j ≥ k,

Sj = ρ′2−ρjL(2j+1){1 +O(ℓ∗(2j))} = ρ′2−ρjL(2j){1 +O(ℓ∗(2k))}.(5.52)

Using this expression in (5.51) yields

S−1
k

∞
∑

j=k+1

jL(2j)2−ρj = k + 1 + ρ′(1 +O(ℓ∗(2k)) .(5.53)

The left-hand side of (5.49) writes

SJ0

−1
∑

j>J0

j2−ρjL(2j) +
U

1 − U
{SJ0

−1
∑

j>J0

j2−ρjL(2j) − SJ1

−1
∑

j>J1

j2−ρjL(2j)}.

with U := SJ1
/SJ0

. By (5.52), U = 2J0−J1
L(2J1 )

L(2J0 )
{1 + O(ℓ∗(2J0))}. Noting that |L(2J1 )

L(2J0 )
| ≤

exp{l∗(2J0)(J1 − J0)}, we have U ≤ (2eℓ∗(2J0 ))J0−J1{1 + O(ℓ∗(2J0))}. Eq. (5.49) follows.
Similarly to (5.53), we have

S−1
k

∞
∑

j=k+1

j2L(2j)2−ρj = k2 + 2k(1 + ρ′) + 2(1 + ρ′)2 − (1 + ρ′) + ρ′O(ℓ∗(2k)) .

and (5.50) is derived along the same lines.

�
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