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APPROXIMATION OF ROUGH PATHS
OF FRACTIONAL BROWNIAN MOTION

ANNIE MILLET *T AND MARTA SANZ-SOLE *

ABSTRACT. We consider a geometric rough path associated with a frac-
tional Brownian motion with Hurst parameter H 6]%,% . We give an
approximation result in a modulus type distance, up to the second or-
der, by means of a sequence of rough paths lying above elements of the

reproducing kernel Hilbert space.

1. INTRODUCTION

Consider a d-dimensional fractional Brownian motion W with Hurst
parameter H €]1, 1[U]3, 1] and integral representation

1
wH = / KH(t, s)dBs, (1.1)
0
where K (t,5) =0, if s >t and for 0 < s < ,
KH(t,s)=cy(t—s)H 2457 2R <3> (1.2)
S

with

z—1

Fi(z) =cy <%—H>/ w2 (1—(u+1)H_%) du, (1.3)
0

for z > 1 (see for instance [, equation (42)). In ([.1)), B denotes a standard

d—dimensional Brownian motion and in ([.), ([.3), ¢y denotes a positive

real constant depending on H.

Let p €]1,4[ be such that pH > 1. In [[], it is proved that the sequence of
smooth rough paths based on linear interpolations of W# converges in the p—
variation distance. The limit defines a geometric rough path with roughness
p lying above WH. We will call this object the enhanced fractional Brownian
motion.
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2 A. MILLET AND M. SANZ-SOLE

In the recent papers [§], [[], the p—variation distance on rough paths is
replaced by a strictly stronger, modulus type distance defined as follows:

[p] () (4)
7 "Ts ys ,t
dyle.y) = sup ; ..
In [f], it is proved that the enhanced fractional Brownian motion can actually
be obtained by means of the Jp distance and also that linear interpolations
of WH define stochastic processes with values in H*?, the reproducing kernel
Hilbert space associated with W# (see Theorem 3.3 in [ for a description
of this space). Then, the authors state a characterization of the topological
support of the enhanced fractional Brownian motion among other results.

Our aim in this work is to give a new approximation of the enhanced
fractional Brownian motion by means of a sequence of geometric rough paths
which, unlike those based on linear interpolations, are not smooth, but also
belong to HH . For the sake of simplicity, we restrict to [p] = 2. We are pretty
confident that our results extend to [p] = 3; however, dealing with higher
generality would most likely produce a very technical paper. Our result, as
is stated in Theorem R.1|, provides in particular a new approximation of the
Lévy area of the fractional Brownian motion.

For any m € N, we consider the dyadic grid (¢} = k27", k =0,1,...,2™)
and set A7* =]t}" |, t7"] and A'B = Btm — By . Define B(m)o = 0 and for
te A, B(m), = By |+ Qm( v )Am B. Our approximation sequence
is defined by

n_ [ gem s)B(m), ds
—/OK(t, )B(m)s ds, (1.4)

m € N, where B (m)s denotes the derivative with respect to s of the path
s+ B(m)s. Notice that W (m)? ¢ HH.

Let K be the orthogonal projection of K*(t,-) on the o-field generated
by (A, k=1,--- ,m). That is, forany 0 < s <t <1,

2 m

KH(t,s) Z om (/ KH(t,u) du> Lam(s). (1.5)
A7 ]0,¢]

We clearly have

1
= / KH(t s)dB,. (1.6)
0
For H €]3,1], we set W = (W, = ( 5(?,0 <s<t<1), Wm) =
(W(m),, = (W(m )212,0 < s <t < 1), while for H €]3,3[ we set W =

(W, _ W W,
0<s<t<1)and W(m) = (W(m),, = (W(m)\},wm)?,0<s <
t<1),m> 1.
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The main result of the paper states the convergence of W(m) to W in
the d,— metric for p €]1,3[. For p €]1,2[, the result is an almost trivial con-
sequence of Lemma .9 which establishes Hélder continuity in the L2[0, 1]
norm of the kernels K7, K respectively, and a control of the quadratic
mean error in the approx1mat10n of KH by K> T Forpe [2, 3], the approx-
imation of the Lévy area relies on representation formulas for the second
order multiple integrals by means of the operator K* given in (2.d) and in-
troduced in [ (see also [B]). There are two fundamental ingredients. Firstly,
Proposition R.3, giving the rate of convergence of the approximation at the
second order level in the L4(£2)-modulus norm; secondly, Lemma .5, an ex-
tension of the Garsia-Rademich-Rumsey Lemma for geometric rough paths
of any roughness p. Other technical results used in the proofs, mainly on
the kernels K and Kg , are given in the Appendix.

For simplicity, in general we shall not write explicitly the dependence on
H; thus W stands for WH, K (t,s) for K (t,s), etc. For any ¢ € [1, 00[, we
denote by || - ||, the LI(Q2)-norm. We make the convention ZZ:CL xp =0 if
b < a and denote by C positive constants with possibly different values. For
additional notions and notation on rough paths, we refer the reader to [f].

2. APPROXIMATION RESULT

For p €]1,+oo[ we set d, = dppa, that is

; L2 al) = o)
dp(z,y) = sup | Y S
0<s<t<1 \ = (t — S)P

The purpose of this section is to prove the following approximation result.

Theorem 2.1. Let H €)%, 1[, p €]2,4] (resp. H €]3,1], p €]1,2]), be
such that pH > 1 and q € [1,4+00[. The sequence (dp (W(m),W),m >
1), converges to 0 in LI() and a.s. Thus for H €]3,1[ and p €]1,2], if
G, denotes the set of dyadic geometric rough paths endowed with the norm
d~p(0,.) and PH denotes the law of the fractional Brownian motion WH,
then the triple (X, H", P is an abstract Wiener space.

The next Proposition provides the auxiliary result to state the approxi-
mation of the first component of the enhanced fractional Brownian motion.

Proposition 2.2. Let 0 <s<t <1, g€ [l,00].
(i) For any H €0, 3[, A € [0, H|,

[ — w8

(ii) For any H €]%,1], € € [O,H[, u €]0

g 027\t — s[H A, (2.1)

3]
) H2ZH+1) [

| Wi =Wl <oz — st (2.2)
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Proof. By the hypercontractivity inequality, it suffices to prove the results
for ¢ = 2. In this case, it is an easy consequence of the identity

B (Wl = won ") = [ 106600 = ) - (o) = Ko, )
and of Lemma B.3. Indeed, by (B.14), we have

2
> < C|t — s|?H.

B (s - wom!)

Hence, if t —s < 27™ , We easily obtain (B.)) and (£.9).
Assume now H €]0,3[ and t — s > 27™. By (B17), for € € [0, H],

B ([ - wom)

Hence, (.1)) follows.
Let H €]3,1[ and t — s > 27™. Let a €]0,1] ; then (B:14) and (B-16)
imply

2> < C2—2mH < C2—2m5’t _ 8‘2(H_6).

Wl = wm))

‘ < C’t - S’H(l—a)2—m)\a7
with A\ €]0, ﬁ[ By taking o = &, we obtain (R.9) with p = A5. O

Throughout the rest of this section, H €], 1[. Following [fl], let Hx

denote the set of functions ¢ : [0, 1] — R such that

lellie = [ torcspas+ [ as ([ o0 - ots) rK\<dt,s>)2 < +oo.

For any ¢ € Hy, 0 < s < , set
K (1) (. = 90)) 0 = ) [ (o0 = ) K(ar)
1) (K (a— o)+ [ (=) Klrw) . @3
Following [P,
w = /OlK* (1 () (W. — W2)) (u)dB,, + %\t— 2 (24)

Moreover, by Theorem 9 in [ff], for W (m) defined in ([.4) we have

1
W(m)?) = /0 K* (115 (-) (W(m). — W(m)s)) (w) B(m)ydu. (2.5)
Proposition 2.3. For eachm e N, 0 < s <t <1, q€[l,00[,

WS —wm)?)|, < c2mm)t — 21, (2.6)

for some positive constants C and any ¢ €]0,2H — %[ and p €]0, 5[.
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Before proving this proposition, we give an equivalent expression for
W (m)2,, as follows. The integration by parts formula of Malliavin calculus
(see e.g. [}, Equation (1.49)) and ([[.6) yield W(m)gzt) = Al (m)+ A2, (m),
with

gm
ALim) =3 [ ansp e (1]8,t]<-> L 3OV o) = W), >> (u),
(2.7)
A2 (m Z/ dulap (u)2" K* (1]”]( )/ dr (K (-, r ) (u).
(2.8)
By definition, for r € AJ*, Ky (t,7) = 2™ fAZln]O,t] K(t,u)du =2"K(1ap)(t).
Since h := K (IAZL) € Hk, the duality relation given in [ff], equation (58)

and Lemma B.J yield

A2, (m Z / drap (r)2°m / dulap (@K (g (OK (Lap), ) (1)

0
2 m

-3 / dr1ap (r)22" / K (1ap) (du) (K (1ap) (u) — K (1ap) ()

k10

¥ o (B () (0~ K (1) (5))°

dlm
'I"A 9

k=170
=z th - K 2—1W ()2
— 5 [ i) = Knls )P = SIW )Y
Thus, since E|W; — W,|? = |t — 5|/, Schwarz’s inequality, (B.14), (B.1H)

imply

1
Ait(m) — §|t —s|?H| < c2 ™|t — s|?H e, (2.9)

for some positive constant C' and ¢ €]0, H|.
Hence, in order to establish (.§) it suffices to prove that for any small

parameter ¢ €]0,4H — 1] and p €]0, ],
2
> < C27MB|E — M

d
(2.10)

for all m > 1. We devote the next lemmas to the proof of this convergence,
using the expression of the operator K* given in (P.3).

1
/0 K* (1, () (W, = W,)) (w)dB, — AL, (m)

Lemma 2.4. Forany 0 <s<t<1, m>1, we set

i)~ [Can, ([ Wy~ W) K (dr, w).
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Ti(s,t,m) = é/? B, 2™ </Azlﬂ}0,s} du </:(W(m)v — W(m)s) K(dv,u))) )

Then for any € €]0,2H| and u €0, €[, there exists C > 0 such that
E <|T1(s,t,m) - Tl(s,t)|2> < Cgmmip g (2.11)

Proof. Assume s € AT', I > 1; we consider the decomposition

3
E (’Tl(37tam) - Tl(S,t)P) < CZTl,j(S7tam)7

j=1
with

T11(s,t,m) = Z E(

ke{1,1-1,I}
M

x </Amrﬂ05} du </:(W(m)v — W(m)s)K(dva’U)))
b (2.12)

fom [ )

(2.13)

;z&j&WAQM([MWW—WWMKWW)

dB, 2™

AR

2

T172(S,t,m) = Z FE (

ke{1,1-1,I}

7173(3,t,m) = E<

2
t
_/ (W, —WS)K(dv,T))‘ ) (2.14)
By Lemma B4, (B.4), Schwarz’s inequality and (B.14), any term in the

right hand-side of (2.13) is bounded as follows. Let e €]0, 2H], A G]%, s
then 2H —3+2XA < —1,1 -2\ — (2H —¢) <0 and
2)

E ( » dB, 2™ (/MWQS} du (/:(W(m)v - W(m)s)K(dv,u)>>
2

1 t
<ol @ / dp |2m / du / (Km0, ) — Ko (5, p)) K (dv, )
AP 0 ATN]0,s] s

1 t
<C dr/ dp2m/ du </ dv |v — u]2H_3+2>‘>
AP 0 AN]0,s] s

X </: v | K (v, p) — Km(s, p)[*|v — u|_2)‘>
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<C du (s — u)2H—2+2)\’t _ S’2H <]t _ u‘1—2,\ s — u‘1—2)\>
A?O}O,s}

<C du (S _ u)2H—2+2)\|t _ 8|2H |7f _ 8|2H—€ |8 _ u|1—2)\—(2H—5)
ATN]0,s]

<Clt— 3\4H—6/ duls — uf~t < C2me|t — st <.
ATA0,5]

Each term of the right hand-side of (R.13) can be studied using a similar
strategy. Thus we obtain for ¢ €]0,2H] :

(s, t,m) 4+ Tra(s, t,m) < C27™ |t — 5|, (2.15)
Set for s > 3-27™, and hence I > 4,

X, ZlAm 2m/ du(/st(W(m)U—W(m)s)K(dv,u)

- /st(wv WK (dv.r)).

Notice that X, fo r,p) dB,, with
Zlm o [ (K () Kot )

B / K (dv.r) (K (v, p) ~ K(s.0)) ).

Hence, by Lemma B.4 and Schwarz’s inequality, 71 3(s,t,m) < C(71,3,1(s, ¢, m)+
T1,3,2(s,t,m)), with

-2 1
T1,3,1(8,t,m) =Z2m/ dr/ du/ dp
77L 77L 0

=2

d / Kn(s,p)) (K (dv, u) — K(dv,r))

-2 1 '
T1,3,2(8,t,m) :Z/ dr/ dp‘/ K(dv,r)
k=27 A 0 s

X (Km(v,,o) - Km(s,p) - K(’U,p) + K(S,p))
Owing to (B-4), (B-7), we have for A €]0,1[, u,r € A,

2

)

1-A

+ |5
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<C2 ™o — (v [wAar) T + o —(vr) ]t (2.16)

Thus, taking A := H yields 7131(s,t,m) < C272m# Z?:l T13,1,5(8,t,m),
with

-2 1 t
nanastom) =32 [ dr [ du [Cdp( [ dolKonto,p) = Kn(s.)
= Jap JapJo TN
2

o — (u V)3 (A r)_H) ,

1-2
7'1,371,2(3,t,m) = ZQm/ d?”/
k=2 AR
3

<o~ (v 3

u [ ol [ el )~ Kot )

m
k

Let a = 2 — ¢, with € €]0,2H[. Schwarz’s inequality along with (B.14) yield

-2 t
T131,1(s,t,m) < CZ 2m/ dr/ du </ dvlv — (u Vv r)\‘“dv)
k=2 K K s

t
X </ dv\v—s]4H_3+“]u/\T]_2H>
S

i,
< Cft — o[t / du(s — )L (u, )22
i

< C|t _ 8|4H—e se—2H < |t o 8|4H—e 2—m(e—2H)‘ (217)

Indeed, fst dv|v — (uV 7r)|72¢ < C(s —Up,) ! for 1y, defined by (B.13). Let
€ €]0,2H[ using Schwarz’s inequality and (B.14), we obtain

1-2 .
T1,31,2(5,t,m) < CZQ’”/ dr/ du(/ dolv — (uV T)‘—2—2H+a>
k=2 4 e s
t
< ([ dolo = fwv )Pt 1)

tm t
< Ot — 3]4H_5/ du/ dv(v — Ty, ) 2 72HTE
" s

s
< C|t _ s|4H—a/ du(s _ Um)_1_2H+E
o
< Ot — s[*H—eg—m(e=2H) (2.18)
From (2.17), (B.1§) we deduce that for e €]0,2H],
T131(s,t,m) < Ot — s 7c27me, (2.19)

Let 6 €]0,2H[, o €]0,2H[, A €]0,1[ and p €]%,1— H[. Notice that for these
choices, —2p+1—2H + 6 < 0. Holder’s inequality together with (B.14) and
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(B-19) yield for any A €]0, 1],
T132(8,t,m) < CT1321(5,t,m)* T1.390(5,t,m)1 ™,

where
t’!?L

T1,321(8,t,m) = /tm </ dv(v —r)*~ 3+2“> (/ dv(v — 1) (v — )2H> ,
T1,32,2(8,t,m) = /t: ? dr </8 dv(v — )2H—3+2u> (/8 dv(v — T)—2u2—2mH> '

1

For the first term we have

17y
iao1(s,t,m) < Clt — S’4H—6/ dr(s — r)2H-242 (g _ ) ~2t1-20 5
o

while for the second one, we obtain

m

-2
’7'1,372,2(8,15,771,) < 02—2mH|t_8|2H—a/ d?"(S—T’)2H_2+2'u(8—7")_2“+1_2H+a.
"

Consequently,
1.3 2(8 ¢ m) <C |7f o s|(4H—6)>\+(2H—o¢)(1—)\) 2—2mH(1—>\) )

Take «,d arbitrarily small and 1 — A = Iii Then for 8 < € < 2H, we
have proved that

T132(s,t,m) < C|t — s|4H_62_m5.
This inequality, together with (B.15) and (R.19) yields (.11)). O
Lemma 2.5. For any 0 < s <t <1, set

Ty(s, 1) /dB Kt u)(W, — W) |

(s, t,m) Z/ dB, 2™ / duK (t,u) (W (m), — W(m)s) | .
AT]s,1]
Then, for b €]0,2H|, there exists a constant C' > 0 such that for each m > 1

E (\TQ(s,t,m) . Tg(s,t)\2> < C9mbjp — g[AHD, (2.20)
Proof. Let s € AT, t € A, We have
E<|T2(s,t,m) Ts(s,t)] > < CZTQJ (s,t,m),

7j=1
with for Z={I,I+1,J —2,J — 1J}

T1(s,t,m) E dBTZm duK (t,u) (W (m), — W(m)s
witstom) = 3£ (| [ o 0 OV O = W ),

3
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2
).

Ty 3(s,t,m) E Z / dB 2m/ duK (t,u) (W(m), — W(m)s)

k=I+2 ARNls,t]

Tya(s,t,m) = ZE(/ dB, K(t,r)(W, — W,)
keT Amﬂst

K () (W — Ws)} ‘ ).

Owing to Lemma .4 applied to the Gaussian process

1
X, = IA?(T)/O dB, <2m /Amﬁ]st] duK (t,u) (K (u, p) —Km(s,p))>

)

and Schwarz’s inequality, we have for any k =1,--- ,2™,

/ dB, 2m/ duK (t,u) (W(m), — W(m)s)
m AT)s,8]

T(s,t,m,k):=F (

1
< C’22m/ dr/ dp </ duK2(t,u))
™ 0 AP]s,8]
X </ du |Km(u7p) - Km(S,p)|2> :
AN st

Let k = I, I + 1; since fAmn]s q duK?(t,u) < f}s q duK?%(t,u) < C|t — s|*H,
k ’ )
we have for any b €]0,2H|,

T(s,t,m, k) < C2™|t — s> (/ dulu — S|2H>
A

< oMt — s|4H—b/ dulu — s|P < Ca~mb|p — s[4,
AN]s,t]

K Nls)t]

Let k =J —2,J —1,J with J —2 > I + 1 then for u € A", (B.F) implies
|K(t,u)]? < Clt — w1 and |t — u| < C27™; we obtain for b €]0, 2H],

T(s,t,m,k) < C2™ / dult — u|#—1=bg=mbgy, / dulu — s|?H
A ]s,t] A N]sst]

We therefore have proved that for b €]0,2H],

Ty (s, t,m) < C270m|t — s|1H0, (2.21)
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The analysis of the term T5 2(s,t,m) is easier. Indeed, the isometry prop-
erty of the stochastic integral yields for any k =1,--- ,2™,

E =C dr K2(t,r)|r — s|*H.

AN s,t]

/ dB, K (t,r)(W, — W)
AN s,t]

(2.22)
For the particular values of k € Z, the right hand-side of (R.29) can be

analyzed following similar ideas as for T5i(s,t,m), which yields for b €
J0,2H]

Ty (s, t,m) < C27™0|t — s~ (2.23)
We now study 75 3(s,t,m) and note that 75 3(s,t,m) = 0 if [t — s| < 27™.

Thus, we may assume that ¢t — s > 27, First, we apply Lemma B.4 and
obtain

Ty 3(s,t,m) < C(Ta31(s,t,m) + To32(s,t,m)),
where

t _217m

=m 1 ?m
Tr31(s,t,m) = / dr/ d,o‘2m/ du(K(t,u) — K(t,r))
0 T

Sm

)

x (Km(u,p) - Km(s,p)> i

Em_217m 1 Tm
15 32(s,t,m) :/ dr/ dp‘Zm duK (t,r)
Sm 0 T

2
% ([l p) = Kon(s,0)] = [K(r.p) = K(s,0)] )| -
By Schwarz’s inequality and (B.14), for b €]0,2H],
Em_217m Tm
Thai(s,t,m) < / dr2m/ dulK (£, 1) — K(t,r)[2[u — o[22
Em_2;7m Fn
< Cli— s|2H/ dr2’”/ dulK (tu) — K (1,12

where the last inequalities follow from (B.19) and [t — s| > 27™.
Owing to (B.19), we have for u € [r,,, 7]

1
/ dpl Ko, p) — K (s, p)> <C272mH
0

1 1
/ dplKom(u, p) — K(r, p)|2 <C / Ao (| En(u.p) — K (. p)?
0 0

+ K (u,p) = K(r,p)?) < 02721,
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Schwarz’s inequality, along with (B.H) and the above estimates yield

1-m
L —2

T2,372(8,t,m) S C d?"2_2mH (|T’|2H_1 + |t — T’|2H_1)
E’UL

for b €]0,2H[. Indeed, for each H €]0,1[, and s < ¢, t* — 21 < (t — 5)2H
and we are assuming that 2™ < |t — s|. Thus, (R.20) is proved. O

Lemma 2.6. For any 0 < s <t <1, set

Tg(s,t):/tdBu /tK(dr,u)(Wr—Wu)
5(s,t,m) Z2m/mdB /Amn]st]du/Kdvu m)y — W(m)y).

There exists a positive constant C such that, for any € €]0,4H — 1]
E <|T3(s,t,m) - Tg(s,t)|2) < C27™e|t — s4H, (2.24)
for each m > 1.

Proof. Assume s € AT', t € A'}'; we consider the upper bound

E (|T5(s,t,m) — Ts(s, 1)) < CZT?’J (s,t,m),
7j=1

where for 7 ={I,1+1,J —1,J}

T31(s,t,m) = ‘Qm/ dB/ du/Kdvu
kej w AN]s,t]

wwm»4wmm), (2.25)

Tyo(s,t,m) = ) ‘/AmmstdB / K (dv,r)(W, — W;)[). (2.26)

kE

T33(s,t,m) = E‘ZT”/ dB, du
k=I+2 K

LRWWMWWM4WMJ—[KWMW%—MDD-

Lemma B.4 along with Schwarz’s inequality yield for each term of the sum
in the right hand side of (.2) the upper bound

1 t 2
C dr/ dp2m/ du </ K (dv,u)(Kp (v, p) — Km(u,p))> .
AP 0 AN st] u
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Fix a €]2 — 4H,1]. From Schwarz’s inequality, (B.4) and (B.14) we deduce
the following estimates for this integral:

t t
C dr2m/ du </ dv|v — u|_“> </ lv — u|4H_3+a>
AV ATN]s,t] u u

SCERMAt—s|)|t— s[4
A similar analysis yields the same result for each term in the right hand-side
of (2:24). Consequently,
T3 (s, t,m) + Tsa(s,t,m) < C (27" At —s|) |t — |41 (2.27)
If [t—s| < 27™ then T3 3(s,t,m) = 0. Hence, let us assume that t —s > 27"
in this case T3 3(s,t,m) is equal to E (fol dBTXT>2, with X, = fol dB,g(r, p),
and

J—2
g(r,p) Z Iap (r)2™ /Am du / K(dv,u)(Kp,(v,p) — Kn(u, p))

k=I+2
- [ K 0.~ 50, )

We at first study the contribution to T3 3(s,t,m) of the integrands

Z Lap (r 2m/mdu/ K (dv, 0) (Ko (0, p) — Ko(w, p),

k=142

Z 1ap (r 2m/mdu/ K (dv,r)(K (v, p) — K(r, p)),

k=I1+2

which we denote by T3 3 ;(s,t,m), j = 1,2. Actually, both are similar and
therefore we only study the first one. Lemma@ (B4), (B.14) and Schwarz’s
inequality imply, for each a €]2 — 4H, 1],

T331(s,t,m) <C Z Zm/ dr/ du/ dvlv — u|~ a/ dvlv — u|H—3+a

k=I+2
< o2 mUH=D|E ), (2.28)
We end the analysis of the term T3,3(8,t,m) by studying the contribution
of T3 33((s,t,m) defined in terms of the integrand
J 2

ga(r, p) = dram / du / K (dv, u)(Eom (0, p) — Ko (1, p))
A’!?L m

k= I+2
— K(dv.7)(K(v,p) = K(r.p)|.

Notice that g3(r,p) is the sum of two analogous terms where the set A}
of the integral with respect to the variable w is replaced by [r,,,7[, [r,Tm],
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respectively. Again, the contribution of both terms is similar, so that we
concentrate on the first one. That is, we consider

T333(stm —E ZZm/ dB/ du/ K (dv,u)

k=I+2 "
X (W (m), = W(m),) — K(dv,r)(W, — W,)] ‘ ).
As before, all the arguments rely on Lemma B.4, (B4), (B.14), a suitable

factorization of the integrands along with Schwarz’s inequality. In order to
deal with the singularity at v=r, we first replace the integral with respect

to the variable v by f T2 Given a €]2 — 4H,1[, the corresponding
contribution to 75" 3.3(s,t,m) is bounded by

1 Tm+27"
C Z Zm/ dr/ du/ dp(‘/ K(dv,u)
s [rr[ 0 r

k=142

< Bntes) = K| | [ K000 - K00

J=2 Tmt+27™ Fm42"™
oS [ [T e [ s
Bl Iy r

k=I+2
< Q27mUH) g, (2.29)

Let us finally consider the range |r,, + 27", ¢[ for the variable v. We have
to study two terms:

1 t
1(s,t,m) ZZm/ dr/rrdu/odp</F+2mdv

k=I1+2
|G e = G-t

)
" 1 t oK
(s, t,m) Z 2 /mdr/r p du/0 dp</Fm+2mdv‘%(v,r)‘

k=I1+2
< [(En(0,p) — Kon(un. ) — (K (v.0) ~ K(r.0)] )

For M;(s,t,m), we proceed in a similar way as for the term 7 31(s,t,m)
in Lemma P.4, as follows. By means of (B.1q) we obtain for A €]0,1]
M (s,t,m) < C272m> (My 1(s,t,m) + My.o(s,t,m)), with

¢
Mia(s,t,m) = ZZm/ dr/ _2’\/dp</ dv
r r Tm—+2—™

k=142

X | K (v, p) = K (u, p

2
Ko (v, p) = Ko, p)Jw = |72,
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1 ¢
M o(s,t,m) = ZQm/ dr/ du/ d,o(/ dv
77L ,r. ,r. 0 ?m+2*77l

k=1+2 —m?
2
(Ko (0,p) = o (u, )0 — |75

Let a €]2 — 4H,1[, A €]0, 3[. Since t —s > 2™, for u € [r,,, r[, we have

t
/ d’U|’U—’r’|2H_3+a|’U—u|2H < C|t—7‘|4H+a_2.
Tm+2—m
Consequently, since 7 > u > r,, > t;1 implies u > 5
t
M (s, t,m) <C’Z2m/ dr/ _2)‘ / dv|v—r|_“)
k=142 Tm+2—™
t
% (/ dv‘U_T’2H—3+a‘U_u‘2H>
T2
t
< C/r_2’\|t — s|Mtar < Ot — s[MTT2, (2.30)
S

Analogously, for b €]2 + 2\ —4H, 1], A €]0,2H — l[ and [t —s| >27™

M o(s,t,m) < C’Z Zm/ dr/ du / dv|v—r|_b>
k=I+2 [ Tm 27
t
% (/ dvfv — r[PH=3=224b), u’2H)
Tm+27mM
t
< c/ [t — P[220 gy — O — g2, (2.31)
S

Finally, if we additionally use (B.13), we obtain for a €]2 — 4H,1]

a2(s,t,m) < C Z Zm/ dr/ du /dv|v—7‘|_“)

k=I+2

t
% (/ d’U”U . T‘2H—3+a2—2mH)
£7n+277n

t
< C’/ |t — p|imagmm@H=24a) g < Combl _ gD (2 39)
S

forb €]0,4H — 1[. We easily check that (R.24) follows from (R.27)-(R.32). O

Proof of Proposition [.J: We remark that Lemmas P.4 to P.g yield the upper

bound (R.10). Therefore, for ¢ = 2, (R.6) follows from (R.9) and (.10). The
hypercontractivity inequality yields the validity of the same inequality for
any q €]2,00. O

Proof of Theorem [2.1:
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Let H €]%,1[ and p €]%,2[. The convergence of dp(W (m), W) to zero
in LI(Q) is a consequence of (2.3) and the usual version of the Garsia-
Rademich-Rumsey lemma (see e.g. B, Theorem 2.1.3).

Consider the metric space (Qp, »). The canonical embedding HT G,
is contlnuous Indeed, let h;, @ = 1,2, belong to L*([0,1]). Then for h;(.) =
fo r)drand 0 < s <t <1,

. . 1
r<h1>§,2 — () < [t — sy — halla < [t — s[7|[h1 — ol

Consequently, the preceding convergence shows that (G, HH, pH ) is an ab-
stract Wiener space.

Let now H €)%, 1[. We follow the outline of the proof of Lemma 3 in [,

but refer to the extension of the Garsia-Rademich-Rumsey lemma stated in
the Lemma B.5.

Fix p €]2,4] such that pH > 1. We shall prove that there exists § > 0
such that for every ¢ € [1, o0],
E <‘JP(W,W(m))‘q> < C,27 ™0, (2.33)

Indeed, for a fixed ¢q € [1,00[, let M > g and N = 2M satisfy N >
Leta,ﬁ>0deﬁnedbyoz:5+M,ﬁ—5+N.
By virtue of (.I]) and (R.4), we easily check that the random variables

Wi =W (m)) P
Ai(m) : / / dsdtl{s<t} b —S|2Nﬁ’ ,

w® (2)12m
Wi —W(m) |
/ / det1{8<t} ! ’ — S’zMa ! )

E(Ai(m)) < c27m™2N | B(Ay(m)) < 027 mH2M (2.34)
for some p > 0.

Furthermore, the hypercontractivity property and the inequality (B.14)
imply that for 0 < s <t <1 and ¢ € [1, 0],

sup (| W, g+ 1w <ot — s

(Hp N

satisfy

This yields
sup E(n(m)) < C, (2.35)

1 1
oy oe [ [ asarsy,y e Y+ IW ) 2
nim) = 0 0 S {S<t} |t — S|2N’6.
By Lemma B.5, we deduce that for any 0 < s <t < 1,
W =W (m)()| <C Ai(m)a |t — 57, (2.36)
WD = Wm)E)| <C [Ax(m)2hr + Ay (m)av n(m)av | [t = sl>.  (2.37)

where
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Finally, Schwarz’s and Hélder’s inequalities together with (R.34)-(R.37) con-
clude the proof of the theorem. O

3. APPENDIX

Let WH = (WH t € [0,1]) be a d-dimensional fractional Brownian mo-
tion with Hurst parameter H €0, %[U]%, 1] and integral representation given
in ([L.1).

Assume H E]%, 1[; by computing the integral of the right hand-side of
([L.3), we obtain the following expression for the kernel K defined in ([.9):

1 t
K9t s) =cy (H - 5) sf-2 | <;> , (3.1)
where for z > 1,
z—1
Fy(z) = /O W3 (w4 1) du, (3.2)
From ([.9), it follows that
OKH 1 s\s—H _3
(ts) = e (H - 5) (Z) 2 (4 — )H3, (3.3)

holds for any H €]0,3[U]3,1[ and 0 < s < ¢t < 1. Consequently, for H €

10, 5[,
oKH

o ¥

The next Lemma collects some technical estimates on the kernel K*(t,s).

<C|t—s/H 3. (3.4)

Lemma 3.1. Let 0 < s <t < 1.

(1) Assume H €0, 3[. Then,

IKH(t,5) < C (SH—% Lo, ¢(s) + (t — )17 1[%7“(3)) , (3.5)
%(7&, s)| < (sH—% Lo, 1(s) + (t — )13 1[%7“(5)) , (3.6)
%(zﬁ, s)|<Ct—s)H 2 (3_1 Lo ¢((s) + (t = s)7! 1z 4 )) . (37

(2) For H €]1,1],

K (t,5)] < C <(t — )15 1y 1 (5) + 5718 1[%,t[(s)) , (3.8)
‘%{—SH@, s)| < Ot — s)2H1 (s—<H+%> Lo, ((s) + (t = s)~(H+3) 1[%,“(8)) .

(3.9)
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Proof. Assume first H €]0, %[ It is easy to check that, for any u > 0,
0<1—(u+1)H 3 < <<%—H> u> AL
Hence, for 0 < s <t, 0 <u ﬁ—l,
uf=3 (1 —(u+1) H_%) < Ccul -3 ]0 ne 1)[(u)

=31 L) Loy (W)- (3.10)

+Cu
Thus, from ([.3), (B-10), it follows that

L1
m <3>'§c/ wH=3du < C,
§ 0

for%§8<t,whilefor0<8<1

1
F1<£>‘§C/ zdu+0/ Sau<c
0

F <§>‘ <C (3.11)

Consequently

sup
0<s<t

and the identity ([[.3) yields (B.5).
By differentiating with respect to the variable s in ([.) and using (B.1T)),
we obtain

OKH
99 ——(t,5)

which yields (B.6). The inequality (B.7) follows by differentiating with re-
spect to the variable s in (B.3).

Suppose now H E]%, 1[. Consider the function F» given in (B.2). Clearly,
if £ —1<1, that is, if £ < s <,

o ()<

Assume ﬁ—l > 1. For any u €]1, é—l[, (1—|—u)H_% < Cuf—3, Consequently,

t Uops o AN
F <—>‘ <C / uH_2du+/ w1 2dy §C<—> .
S 0 1 S

The previous upper bounds, together with the representation of the kernel
K given in (B.]), imply

Y g1 [t 2H-1 Ho1
‘K (t,s)\SC S 2 ; 1]0’%[(8)4-8 21[37“(8)

_1 _ 1 _1
< (5731 )+ 57— 9 g (5) 4 57 R 1y ()

<cC <\t— s|H=2 4 H5 4 g1t — syH—%> ,




APPROXIMATION OF ROUGH PATHS OF FRACTIONAL BROWNIAN MOTION 19

and (B.§) follows.
Differentiating with respect to the variable s in (B.1]) yields

H H-—3 H—1
o (oin () it () ()
S S S S

S
3 ([t 2H-1 1 1 3
< C(sH‘i <—> Lo ei(s) + s~ 2t Fa(p — g)H =2

(t,5)

s 2
_3
+s73 l[g,t[(s))a

where in the last inequality we have applied the upper bounds for F5 ob-
tained before. Replacing in the last expression /=1 by C(s?=1 4 (¢ —

$)2H-1) and HH+35 by C(SHJF% +(t— 3)H+%), respectively, yields

H
\aK (t,s)

- <C <sH_% F(t— )8 s HFR)(f - s)QH—1> . (3.12)

If 0 < s <% then, s <t—sand (t— S)H_% <sf=3 < s_(H+%)(t — 5)2H-1
while for % < s < t, the previous inequalities are reversed accordingly. Hence

(B.9) clearly follows from (B.1). O
We introduce the notation
t =272 and %, =t +2°", (3.13)

for any m € N. Notice that, KX given in (L) satisfies K/I(¢,s) = 0 if
5>t

In the next result, we give a bound for the approximation in quadratic
mean of the kernel K by its projection K.

Lemma 3.2. (1) Let H €]0,1[U]3,1[. There exists a positive constant C
such that for any 0 < s <t <1,

1
sup [ (|82 (0) = K2 + (K7t 0) = K7 (s du < Cle—s,
m>1J0

(3.14)
(2) For H €]0, %[,
! 2 2H
/ |K(t,u) — K (tw)|" du< C(EA27™)7 (3.15)
0
(3) For H €]3,1] and any X €]0, Wlﬂ[,
1
/ |KH (t,u) — KH(t,u)|? du < 0272 2(H-Y), (3.16)
0

Proof. The operator 7, is a contraction on L?[0,1]. Thus,

1
sup/0 (‘Kﬁ(t,u)—Kﬁ(s,u)‘z—k‘KH(t,u)—KH(s,u)‘2> du

m>1
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1
< 2/ !KH(t,u) - KH(s,u)|2 du =2F (\WtH - WSHF) =2t — s|?H,
0

proving(B.14).

By the same argument,
1 1
/ K () — K2 (1, 0)|? du < 4/ K ()2 du = 425 (3.17)
0 0
Therefore (B.15) holds for t < C27™.

Fix t € AT with I > 7. We assume first H €]0, 1[. Consider the decom-
position

5
/1\KH('5=U)—K§(M)|2 du < C Y Ti(t), (3.18)
0

=1
T:(t) :/0

Tg(t):/I |KH(t,u)—Kg(t,u)|2du,

with
t’UL

TR () — K2 (8 w)) du,

m
I-3

[2m—1q]
Ty(t)= Y |KH (t,u) — K2 (t,w)| du,
k=3 YA

-3

Tt = Y / K (8 u) — K (t,0) du,
k=[2m—1g 427 Ak

T5(t) = |KH(t,u) — K2 (t,u)]” du.

Af;m71t]+1

Schwarz’s inequality and (B.H) imply

t’!?L t’!?L

2 2
Ti(t) < 4/ K5 (t,u)|? du < C / W=t dy = ¢ 272mH
0 0
Similarly,
tm t
Th(t) < 4/ KA w)2du<C [ [t — 2P du= Co-2mH,
e s

Let A €]H, 1[and k = 3,..., [2™'t], which implies A" C]0, £[. By Schwarz’s
inequality, the mean value theorem and (B.5), (B.4), we obtain

/ !KH(t,u)—Kg(t,u)|2du§2m/ du/ dv|KH(t,u)—KH(t,v)‘2
AR 1S 1S

gzm/ du/ dv | K7 () — K (8, 0) [P K (8 )| + 1K (80|20
po Jap
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< C2~mA-1) / du / dv ((u/\v)2H_1_2)‘) )
k' k'

For w,v € AT, u Av > u — 27", thus,

m
t[2m7 14

T3(7f) < 02—2m)\/ du (’LL _ 2—m)2H—1—2)\ < C2—2mH.

m
t2

Fix now k = 2"~ 1] +2,...,1 — 3, so that A" C [%,¢[. In this case

/ | K7 (t,u) — KH(t,u)]” du < 027D
ap

X / du dv (t — (uVv))?H 1724
NG Am

Since for u,v € A", t — (uVwv) >t —u—2"" >t , — u, the previous
estimate implies
7 s
T4(7f) < C2—2m)\ du (t}n ) 2H—1-2\ < C2—2mH‘

tgmflt]
We study the term T5(t) using the same method as for T5(t), Ty(t), as
follows:

T5(t)§2m/ du/ alv‘KH(t,u)—KH(t,v)|2
f2m1e11 2111
—m(2A—1) H-32 -3\
<C2 ldu dv((u/\v) 2 4 (t— (u Vo) 2)
f2m—1e11 Alam—1411
2(1-2)
X ((um)H—% +(t—(uvv)H—%) .
For u,v € Agmﬂt}ﬂv uAv > %—2‘””, uVo < %+2_m and t — (u Vv) >

% — 27™. Thus, the last integral is bounded by

¢ 2H—1-2)\
/ du/ dv <§ — 2_m> .

[2m—Le]+1 [2m—Le]+1
Moreover, since we are assuming that t € A7, with I > 7, %—2_’” > 27 mHL
Thus, we finally obtain for A = %,
Ts(t) < c272mH
Then (B.15) follows from the upper bounds obtained so far for T;(t), i =
1,....5.
Notice that we have also proved that for H €]0, 3/,

I-3

Z2m/ du/ Q| KT (t0) — KA )2 < 0221 (3.19)
k=3 k' k'
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Assume now H €]3,1[ and fix A €]0, ﬁ[, so that H — A > 0. Since

the inequality (B-I7) holds for any H €0, 1[N]3, 1[, (B-16) holds for any
t < C27™. Let now t € AT, with I > 7. We apply a similar method as we
used in the case H €]0, %[, using the decomposition (B.1§). In fact, owing

8
Ti(t) < C/ (t — )~ qu < C27m2H 1
0
'
Ty(t) < C/ Wy < o2
s

Fix k = 3,...,[2™ 't]. Schwarz’s inequality, along with the mean value
theorem and (B-§), (B.9), imply

/ !KH(t,u) - Kg(t,uﬂ2 du < 2m/ du / dv |KH(t,u) - KH(t,v)f/\
AR k' k'
21-))
< I (,u)| + K (2 0)]|
< C2—m(2)\—1)/ Ju / dv ((t = (u A v)) MFICHD (4 7 =A@+
k' k'
< C2—2m)\ 75()\-1-1)(2H—1) du (’LL _ 2—m)—)\(2H+1)‘
< A
Since A < ﬁ, we have
Let now k = [2™71¢] +2,...,1 — 3. With similar arguments as before, we
deduce
2

/ !KH(t,u) - Kf,{(t,u)!2 du < 2m/ du / dv |KH(t,u) - KH(t,v)‘
AR e k'
2(1-\
<[ )+ K (o)
< C2~mA-1) / du / dv(t — (uV fu)))‘(zH_g) (uV fu)(l_)‘)(QH_l)
k' k'
< 02~ 2mA y(1-N)(2H-1) du (t — u — 27 MPNCH=3),
AR
For A < ﬁ, A(2H —3)+ 1 > 0. Hence,
tm
Tu(t) < 02~ 2mA (=N @H-1) / 173(15 C oy 27 MACH=3) < g=2mA2(H-N)
t

2

Finally, we study the contribution of T5(¢) as follows.

T5(t) §2m/m du/m alv‘KH(t,u)—KH(t,v)|2

[2m—1¢]41 [2m—1¢41
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< 027D / du/ dv((t — (uAv))?HL

[2m—1¢)41 [2m—1¢41
x ((w A U)_(HJF%) +(t—(uV U))_(HJF%)))L\

X ((t - (u/\v))H_% + (u\/v)H_%)2(1_)\).

For u,v € Agm,lt]ﬂ, uNv > Cit, uVo < Cot, t — (uAv) < Cst and

t— (uVwv) > Cyt. Thus,
T5(t) < O2—m(2)\—1)2—2mt2(H—)\)—1 < C2—2m)\ t2(H—)\)

The estimates obtained so far imply (B.16). O

In the next Lemma we prove a simple extension of a well-known integra-
tion formula for bounded variation functions.

Lemma 3.3. For any h € H,t >0,

/ h(u)h(du) = " 2@, (3.20)
0

where the integral is understood in the sense of Proposition 5 in [.

Proof. Let n > 1 and let h(n) be the function obtained by linear inter-
polation on the n-th dyadic grid of h. We have proved in [ff], Theorem 9
that

lim [ h(n)(u)h(n)(du) = /0 h(u)h(du),

n—oo 0

for any ¢ > 0. Since (B.2(]) is true with h replaced by h(n), the result
follows. Ol

The following result gives an upper bound for the L? norm of a Skorohod
integral of a Gaussian process.

Lemma 3.4. Let X; = fol g(t,s)dBs, t € [0,1], with g a deterministic func-
tion belonging to L?([0,1]?). Then, the Skorohod integral fol XsdB; satisfies

1 2 1 1
E </ XsdB5> < C/ ds/ drlg(s,r)|. (3.21)
0 0 0

Proof. The isometry property of the Skorohod integral ([§], Equation (1.48))
yields

1 2 1 1 1
E(/ XSdBS> gc/ E(XS)2ds+/ ds/ drE(|D,X,|?).
0 0 0 0

Since E(X;)? = fol lg(s,7)|?dr and the Malliavin derivative D, X, is equal
to g(s,r), (B.21) follows. O
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We conclude this section by proving an extension of the Garsia-Rademich-
Rumsey lemma used to estimate dp(X,Y) when X and Y are geometric
rough paths with roughness p € [2, 00 (see [[f], Definition 3.3.3).

Lemma 3.5. Let X andY be geometric rough paths with the same roughness
p E€[2,+o0[. Setk=[p]. Fori=1,--- k,let M; > 1, o; = %—i—Mii. Suppose
that

)

e XOPM PP
) o S tl{sgt} ‘t — 3’2Mi0li ~ iy 1 ST s k‘ — 1, (322)

1,1 |X(it) _ Y(?|2Mi
87 s7 .
/0 /0 dsdtl{sgt} ‘t — 3’2Miai § Bi, 1 § 1 S k. (323)
Then, there exists a constant C' > 0 such that for any 0 < s <t <1,
X+ Y@ <CFRlt-slp, 1<i<k-1, (3.24)

X -y <cci—sp, 1<i<h (3.25)

where F; and G; are defined recursively by
i-1

1
Fy =AD"+ "FF;, 1<i<k-1, (3.26)
j=1
i1
Gi=B" +) G;F_;, 1<i<k (3.27)
7j=1

Remark: For rough paths X, Y of roughness p € [1,00], X;lt) — XS) =
)

(X— Y)St . The usual version of the Garsia-Rademich-Rumsey lemma yields

the following. If
1 1
/1 /1 NE o e i S
0 0 {SSt} |t _ 8|2M1a1 - L

1
then |X§,1t) - Ys%)| <CBM|t - s|% Similarly, if

1 1
/1 /ldsdﬂ XGPM  YP
0 0 {s<t} ‘t _ SPMlal = 41

_1
then |X |+ v D] < c AP — o5,

Proof of Lemma [B-J: Throughout the proof, the constants Fj, 1 <i <k —1
and G;, 1 < i < k are defined by ([3:26), (B-27), respectively. We introduce
the following assumption:

(H;)
b eV
sdt {s<t} |t_3|2Miai >~ Dy,
0 0
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XD+ YD <CoFlt—sp, 1<j<i-1,
XS -y <o, 1<j<i-1,
i €{2,...,k}, and we prove that (H;) implies
XD v <ot - s (3.28)

For this, we use an argument similar to the proof of Theorem 2.1.3 in [
Indeed, for every t € [0, 1], set

|X (i) |2MZ- 1 |Xt(l) _ Y;(i) |2MZ-
d t) = o e du .
/ t — S’2M10‘1 s, J(t) /t |u — t[2Micx u

Then fo fo t)dt < B; and there exists ty > 0 such that I(tg) +
J(tg) < 2A We construct by induction a decreasing sequence (t,, n > 0)
such that lim,t, = 0 and an increasing sequence (s, n > 0) such that
so = tg, lim, s, = 1, and such that there exists C' > 0 such that for every
n>1,

i—1

‘Xt(n),to Yt(Z fur N du+C ZF Gi—j, (3.29)
7=1
i—1

‘Xso’sn —Y(ls ‘ <0/ 8 B; |2M1 wr Vdu + C ZF Gi—j. (3.30)
7j=1

Then Chen’s identity implies as n — 400,

X5 — Yé?| < IX§) =Y 4 1xD -y

+ Z (160, = YE X e+ v lxi ) = Vi) . 3.31)
7=1
With the hypothesis (H;), we obtain (B.2§) with s =0 and ¢ = 1.
To construct (t,), we suppose that ¢,_; has been chosen. Let d,_; be
defined by d;’ | = %tgi_l. Then there exists ¢,, €]0,d,,—1[ such that

(@) (%) 2M;
4 B; Xt = Yoo, | 21 (tn—1)
= an 2Ma; < :
dn 1 ‘tn—l _tn‘ v dn—l

Indeed, the sets where each one of these inequalities may fail has Lebesgue
measure less that d";. Furthermore, for every n > 0, 2dn Y = t%ﬁH <
doi = Lt% and [t, — 1| < 31 = 2d% < 4(dY — diy,). Hence there
exists a €]0, 1[ such that t,,+1 < aty, so that lim, ¢, = 0 and more precisely,

I(tn) <

tn < ato, (3.32)
while for any n > 1,

‘X(Z) _ Y(Z

tn+1,tn tnt1,ln

| < [21(t,)[* dy P [t =t |
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1 1 .
< [BBi[*Mi|dy dn—1| > 4 |dyyt — dy 4|

dn S S S |
§4ai/ I8 B;|?Mi w M du. (3.33)

dn+1
Let b= ar < 1; Chen’s identity, (H;) and (B-33) imply that for any n > 1,
‘ x @ y @

tnt1to tn+1 ,to

< X0, -7,

+ | X2 4 - Y

7L+17tn tn+17tn

+ Z (XD, 4 = YO L NIXE D1+ D) 1XE0 = v ))

. . dn 1 i
= ‘Xt(:b),to - Yt(nl,)to ’8Bl‘m u;—l du
dn+1
i_l J i—j
+ CZ (GiFij + FjGij) |ty — tug1|P|to — tn| 7
j=1

. 1
i < . .

Since supy<j<;—q |[tn — tat1l? < ¢ < CB" < 1, an easy induction on n

implies that for any n > 1,

i—1 n—2
‘Xfito—iﬁito <C/ 18 B;| 7w du + C > GiF; <Zbl>

j=1 =0

which implies (B:29). To prove (B.30), we proceed in a similar way, exchang-
ing the endpoints of the interval [0,1]. Recall that sy = to; suppose that
Sn—1 has been defined and let d,,_1 be such that |1 —,—1|* = %|1 — Sp—1|™
There exists s, €]d,_1, 1] such that

J(s ) < i and |XL§7;L 1:8n YS(’,t),l,sn|2Ml < 2J(Sn_1)
n) —= 1 —-5n__1 |Sn _-ST%—1|ai — 1___5n_4

Then for every n > 1, 2|1 — §,41|% = |1 — spp1|* < |1 =6, |% = %|1 —tn|,
so that s, <8, < sp41 < dpy1 and for some a €]0, 1]

1—s, <a"(1—ty), (3.34)
so that lim,, s,, = 1 and computations similar to those proving (B.33) yield
5n+1 1 1
i 55, Tl
|X§:z)78n+1 - Ys(i,st <da /5 |8 B;| M u M du.

Thus if b = ar < 1, Chen’s identity and (H;) imply

Sn L i—1 n-1_
<C | 8B|®5urtdu+C | FiGi <Zbl>,

to j=1 1=0

X0y

to,Sn to,Sn

which completes the proof of (B.30) and hence that of (B.2§) for s =0, ¢t = 1.
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To deduce (B.29), for any s,t € [0,1] with s < ¢, define X,, = Xt (t—s)yus
Yu = Yo (1 for u € [0,1]. Then X and Y are geometric rough paths
with the same roughness p. Moreover, for 0 < u < v < 1,5 =1,---,k,
7(]) Xii)(t s+ (t—s)o" In fact, by a change of variables, we see that
thls identity is obvious for smooth rough paths and therefore it is trivially
extended to geometric rough paths.

Furthermore,

1 pl LX@) JQPAQ
/ / dudvl{u@} | — u|2Miai
0 0

—2+420; M; |)( Q)PNQ
= (t v / / dudvl{u<v} |U — u|2Mzaz

< (t _ S) 2+2a1M1 (t B S)2M PB

Hence, if the pair (X,Y) satisfies (H;) then (X,Y) satisfies a similar
property with constants A4; = (t — 3)2MJP Aj, Fj =t — S\PF 1<j<i-—1,
(Bj = (t — )2MJPB], Gj=|t— s] 1 < j <. This finishes the proof of

5.29).

Taking in the preceding arguments first X = 0 and then Y = 0, we see
recursively that (B.29) implies (H;) for any i = 1,...,k — 1, with B; = A;.
Hence we obtain (B.24). Moreover, we also see that (H;) holds true for

any i = 1,...,k, whenever (B.29), (B-2J) are satisfied. This concludes the
proof. O
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