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Nucleation and growth of single wall carbon nanotubes

F. Beuneu
Laboratoire des Solides Irradiés, CNRS-CEA, École Polytechnique, F-91128 Palaiseau, France

The nucleation and growth of single wall carbon nanotubes from a carbon-saturated catalytic
particle surrounded by a single sheet of graphene is described qualitatively by using a very restricted
number of elementary processes, namely Stone-Wales defects and carbon bi-interstitials. Energies
of the different configurations are estimated by using a Tersoff energy minimization scheme. Such a
description is compatible with a broad variety of size or helicity of the tubes. Several mechanisms of
growth of the embryos are considered: one of them is made more favourable when the tubes embryos
are arranged in an hexagonal network in the graphene plane. All the proposed mechanisms can be
indefinitely repeated for the growth of the nanotubes.

I. INTRODUCTION

Since their discovery nearly fifteen years ago, sin-
gle wall carbon nanotubes (SWNT) have received con-
siderable interest from scientists: they are quite sim-
ple nanoscopic objects, with fascinating physical proper-
ties; moreover, their potential applications, in the field
of nanosciences and nanotechnology, are very promis-
ing. But one major challenge is to control the growth
of SWNTs, in particular concerning their diameter and
helicity. This is the reason why a lot of literature was
recently devoted to the understanding of the catalytic
nucleation and growth of these tubes.

A typical situation is the high-temperature catalytic
growth of SWNTs: small metallic particles of Ni or Co
are heated in the presence of carbon, by arc discharge,
laser heating or CVD, which causes growth of bundles
of SWNTs perpendicular to the surface of the particles.
Maiti et al.1 suggest a general model which seems to get a
broad agreement: the metallic particles are oversaturated
in carbon, and a graphene layer wraps their surface. Em-
bryos of SWNTs, looking like half-fullerenes, can form on
this layer, and subsequently grow from their foot. These
authors present molecular-dynamics computations, using
a Tersoff-Brener potential, on (11,3) tubes taken as ex-
amples.

More recently, other reports on the same subject were
published. Gavillet et al.2 presented a high-resolution
transmission electron microscopy study of such a root-
growth mechanism, completed by a computer-simulation
work using quantum molecular dynamics. The paper by
Kanzow et al.3 is another example of a growth model
“in which precipitated graphene sheets detach from the
surface of a liquid catalyst particle, forming fullerene-
like caps”. Gavillet et al.4 gave an interesting review
of experimental and theoretical results on SWNT nu-
cleation and growth; in particular, they stated that “a
natural process is to imagine that carbon atoms are in-
corporated at the root or at the tip where ‘defects’ nec-
essarily occur: heptagons at the root and pentagons at
the tip and/or metal–carbon bonds”; these authors also
addressed the role of the catalyst. Recently, Ding et al.5

presented molecular dynamics calculations on very small
iron particles oversaturated with carbon, giving rise to

very irregular SWNTs.
The purpose of the present paper is to propose quali-

tative ideas towards a better understanding of the nucle-
ation and growth of SWNTs. We show that a very small
number of elementary defect types are required to build
SWNTs from a graphene surface. We also address the
case where tubes grow inside a bundle.

II. GENERAL IDEAS AND TOOLS

Our starting point consists in a graphene plane, on
which an embryo of SWNT will grow. In order to check
the stability and energy of the proposed defect geome-
tries, we performed energy minimizations by using the
Tersoff model6. We worked mainly with a nearly square
portion of the graphene plane of 240 carbon atoms, with
periodic boundary conditions in both directions of the
plane. We also considered the case of a network of em-
bryos, using for that purpose a diamond-shaped unit cell
with suitable periodic boundary conditions. Our energy
computations do not pretend to be very precise; they
intend to give some indications for comparing different
possible configurations.

We consider three elementary defects in the graphene
plane:

a) the Stone-Wales defect7 is the simplest possible
point defect, which consists in a 90◦ rotation of a pair of
C atoms, with some rearrangement of the C-C bounds:
the net result is the transformation of four hexagons into
two heptagons and two pentagons. In our configuration,
it corresponds to an extra energy of 9.1 eV. This estimate
is quite large compared to more precise calculations from
ab initio approaches8,9 which give energy values for the
Stone-Wales (SW) defect in the 5 to 6 eV range. We use
however the Tersoff potential, due to its high simplicity;
in spite of its lack of accuracy, we believe that it can be
useful for comparing different growth scenarii.

b) the bi-interstitial enables to add extra C atoms to
the graphene without generating dangling bonds (which
would be the case with single interstitials). Our model
for the bi-interstitial consists in adding atoms onto two
opposite sides of an hexagon. The net result is again two
heptagons and two pentagons, with a different topology
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compared to the SW defect. It corresponds to an extra
energy of 11.9 eV (this energy is taken as the difference
with that of the same number of atoms if they were in a
perfect graphene sheet).

c) the last defect is the dislocation. It is composed of a
pentagon-heptagon pair10, the Burgers vector (BV) being
perpendicular to the pentagon-heptagon axis. It is quite
amusing to note that, in the very different framework of
grain growth, Cahn and Padawer pointed out the exis-
tence of this defect in a honeycomb network many years
ago11. Like any dislocation, it is topologically impossible
to create ex nihilo such a defect. It can only be created
as a pair of dislocations of opposite BV, or (we shall give
examples in the following) as a side effect of the evolution
of other defects. The energy of an isolated dislocation is
known to diverge logarithmically with distance in an infi-
nite crystal; however, in practice, such a divergence being
slow, and for a finite size of samples or a finite distance
between dislocations, an energy value estimate can often
be given. Building two dislocations from such a disloca-
tion pair in our finite graphene sample, we estimate the
individual dislocation energy to be about 11 eV.

Elementary dislocation theory teaches that disloca-
tions can glide, along a line in the present 2D config-
uration: this line is parallel to the Burgers vector, i.e.
perpendicular to the pentagon-heptagon axis. It is in-
teresting to note that Fig. 2(a) and (b) of Ref.12 is an
example of the creation and glide of two such disloca-
tions, evidenced in a numerical simulation. In fact, it
is quite straightforward that a dislocation can glide by
one polygon with a single SW made on one edge of the
heptagon. It is worth mentioning that like classical 3D
dislocations, two dislocations with opposite BV must at-
tract themselves.

The other defects mentioned before, the SW and the
bi-interstials, can also glide: both these defects can be
seen as made from two dislocations with opposite BV,
which can glide individually.

III. NUCLEATION OF AN EMBRYO

Our model lies on the fact that an embryo is nucleated
in the graphene plane, so that it can grow from the foot,
perpendicularly to the plane. The cap of the embryo
looks like a half-sphere, which means, as many authors
remarked, that – from Euler’s theorem – it contains ex-
actly 6 pentagons (in reality, topology only dictates that,
when the polygons are forced to be heptagons, hexagons
or pentagons, the difference between the number of hep-
tagons and pentagons must be 6). As a consequence,
there must be exactly 6 heptagons around the foot of the
embryo.

We have constructed some embryos by adding bi-
interstitials in the graphene plane. For instance, a (12,0)
zig-zag embryo could be built by adding 24 interstitials
(12 bi-interstitials), which generated 12 new polygons.
Such an embryo is shown in Fig. 1. The Tersoff energy

FIG. 1: Embryo of a (12,0) zig-zag SWNT. The heptagons in
the foot of the embryo are hatched. We get an extra energy
of 28.1 eV.

FIG. 2: 24 carbon interstitials are added on the foot of the
embryo of a (12,0) SWNT. The heptagons in the foot of the
embryo are hatched. The pentagons and octagons are grayed.
We get an extra energy of 72.0 eV.

minimization gives an energy of 28.1 eV for this embryo.

IV. GROWTH

In order to make the (12,0) embryo grow one row, it
is necessary to add 12 hexagons, that is 24 interstitials.
There are several possibilities for adding these intersti-
tials.

If the 12 bi-interstitials are added in the 12 polygons
(6 hexagons and 6 heptagons) which form the first ring
of the embryo, the net result is the growth of the tube
without creating any supplementary defect. The final
energy of the tube is about 30 eV, which is only slightly
more than that of the embryo. Adding the bi-interstitials
not at once, but one after the other, the energy increases
much more, passing through a maximum of 9 eV above.
It is clear that this growing process can be repeated ad

libitum, making the tube grow indefinitely.
The fact that, in this process, interstitials are not

added in the basal graphene plane, but on the side of
the embryo, can be questionable if the C atoms come
from the inside of the supersaturated metallic particle.
We wish thus to suggest here a second possible process.



3

FIG. 3: 6 Stone-Wales transforms are made on the pattern
shown in Fig. 2. The heptagons in the foot of the embryo are
hatched. The dislocations (pentagons plus heptagons) are
grayed. We get an extra energy of 52.7 eV.

FIG. 4: 6 more Stone-Wales transforms are made on the
pattern shown in Fig. 3. The embryo of Fig. 1 has grown of
one row. The heptagons in the foot of the embryo are hatched.
We get an extra energy of 30.4 eV.

Adding the 12 bi-interstitials in the closest ring of
hexagons next to the foot of the embryo gives the ar-
rangement shown in Fig. 2, with an energy of 72.0 eV,
which is a much higher value; we discuss this value be-
low. Now, near the foot of the tube, a lot of defects are
present: 6 octagons and 12 pentagons (they are grayed
in Fig. 2). These defects have to be eliminated by some
kind of glide movement in order to get a realistic defect-
free growing process. This can be done quite easily, in
two steps:

a) the first one is required by the fact that the hep-
tagons, shown hatched in Fig. 2, have to go down back
to the foot of the tube. For doing that, 6 SW processes
on the bounds between heptagons and octagons are done,
which suppress also six of the pentagons and replace the 6
octagons by 6 heptagons: this is clearly shown in Fig. 3.
The energy is now 52.7 eV. The net result is a (12,0)
tube, grown by one row, plus, near its foot, 6 pentagon-
heptagon pairs which are 6 dislocations, with the 6 pos-
sible BV values (the sum of these BV is, of course, zero).

b) the second step must be performed in order to anni-
hilate these dislocations. This can be done quite simply
by 6 new SW processes, which are done on the 6 bounds

FIG. 5: Embryos of (12,0) SWNTs, seen from above, ar-
ranged in an hexagonal network. In this case, the growth is
possible without creation of dislocations (see text).

common to two heptagons. After doing this, we are left
with a perfect (12,0) tube, with an energy of 30.4 eV
(Fig. 4).

It is interesting to address more in detail the problem
of the energy values, which seem to be much higher in the
second process described above. Reality is more complex:
Fig. 2 to 4 show quite clearly what are the steps involved
in the tube growth, but they are certainly not the most
economical path for this growth. It is much better to do
things like the following, from the embryo of Fig. 1:

— introducing 4 interstitials near the foot of the em-
bryo, giving birth to one octagon and two pentagons.

— making a first SW to transform these defects into
one dislocation.

— making a second SW to annihilate the dislocation.
— repeating 5 more times these 3 steps, which gives

finally the situation depicted in Fig. 4.
We have done this step-to-step process and monitored

the energy, whose maximum proved to be of the order
of 16 eV above the energy of the perfect embryo. This
is a collar energy, substantially higher than the one we
have to pass in the first defect-free process (however, the
total energy is then about 44 eV, much lower than that
of the configuration in Fig. 2). But the second process
has the advantage of enabling the addition of carbon in-
terstitials in the graphene basal plane, not on the sides
of the embryo.

We finally tried to figure out what can be gained from
considering a network of embryos instead of an isolated
one. We found that when putting embryos in an suit-
able hexagonal network (see Fig. 5), the second process
described above could be made a little simpler: after ad-
dition of 24 interstitials per embryo, step a) described
above has to be done in order to bring down the hep-
tagons. But step b), with its 6 SW, is no longer needed:
dislocations annihilate 3 by 3, between neighbouring em-
bryos. This simplification corresponds to an interesting
gain in energy, the collar value being about 10 eV above
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the embryo energy. This is of the same order of magni-
tude as the first defect-free process. We can also remark
that this process of growth of SWNT bundles does not
require that all tubes have the same helicity: it is suf-
ficient that the geometry of the 6 created dislocations
near the foot of each tube is the same, which is much less
restricting.

We point out that it would be interesting to get val-
ues for the energy barriers, which the present calcula-
tions, taken at equilibrium, do not enable. However, it
remains difficult to understand how these growth pro-
cesses involving very large energies can be efficient in
quasi-equilibrium processes. An interesting possibility,
considered by several authors4,9, is that catalytic effects
can reduce the energies involved.

V. CONCLUSION

We have shown that the nucleation and growth of car-
bon nanotubes from a graphene basal plane can be quali-
tatively described with a small number of elementary pro-
cesses, each of them corresponding to a moderate amount
of energy. Such a description does not depend on the size
or helicity of the tubes. Several mechanisms can be con-
sidered: one of them is made more favourable when the
tubes embryos are arranged in an hexagonal network in
the plane. All the proposed mechanisms can be indefi-
nitely repeated, giving rise to a possible endless growth
of the nanotubes.
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