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ABSTRACT 

We studied the elastic properties of bone to analyze its mechanical behavior. The basic 

principles of ultrasonic methods are now well established for varying isotropic media, 

particularly in the field of biomedical engineering. However, little progress has been made in 

its application to anisotropic materials. This is largely due to the complex nature of wave 

propagation in these media. In the present study, the theory of elastic waves is essential 

because it relates the elastic moduli of a material to the velocity of propagation of these waves 

along arbitrary directions in a solid. Transducers are generally placed in contact with the 

samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic 

method used here is original, a rough preparation of the bone is sufficient and the sample is in 

rotation. Moreover, to analyze heterogeneity of the structure we measure velocities in 

different points on the sample. The aim of the present study was to determine in vitro the 

anisotropic elastic properties of cortical bones. For this purpose, our method allowed 

measuring longitudinal and transversal velocities (CL and CT) in longitudinal (fiber direction) 

and radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E 

and Poisson's ratio ν, were then deduced from the velocities measured considering the 

compact bone as transversely isotropic or orthotropic. The results are in line with those of 

other methods. 

 

Keywords: Compact bone, Ultrasonic methods, Elastic properties, Longitudinal and 

transversal velocities, Transverse isotropic and orthotropic. 

 

INTRODUCTION 

The present study develops a new experimental ultrasonic procedure for measuring in vitro 

the elastic characteristics of compact bones. Methods of this kind have been used to study 

compact bones (Ashman et al., 1984; Bonfield and Tully, 1982; Fung, 1981; Hobatho et al., 

1998; Lowet and Van der Perre, 1996; Mehta, et al., 1999; Sedlin, 1966; Viano, 1995). The 

ultrasonic method used here is original; the previous techniques used transducers in contact 

with the samples; and samples are often cubes with parallel faces that are difficult to prepare. 

In this case, it is difficult to cut cubes parallel to the fibers which are oriented at different 

angles in comparison with the principal axis of the bone. In our case, a rough preparation of 

the bone is sufficient, the form of the samples is that of the bones and the sample is in 

rotation. Herein, waves propagating both longitudinally and transversally in all the plane 

directions of bovine femoral bones were used to characterize their mechanical properties. The 
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applications of the ultrasonic control system first developed at the Laboratoire de Mécanique 

et d’Acoustique (LMA) for ultrasonic medical imaging (Lefebvre, 1988; Lasaygues and 

Lefebvre, 2001) were extended to include the elastic properties of biological systems. To 

determine the elastic properties of a solid, the theory of elastic waves is essential because it 

relates the elastic moduli of a material to the speed of propagation of these waves along 

arbitrary directions in a solid. The aim of this work is to describe the inversion of ultrasonic 

wavespeed measurements on a bovine bone to represent its elastic properties using a rapid 

and precise method.  

This experimental method based on theoretical works (Castagnede et al., 1990; Sachse 

et al., 1998), was adapted to the problem of a transversely isotropic material such as 

unidirectional fiber-reinforced composites (Lasaygues, 1992) and more recently to the 

problem of bone quantitative imaging (Lasaygues et al., 2001).  

The bench was designed for performing both reflection and transmission 

measurements. Our mechanical acoustic device allows various degrees of freedom, since the 

position of both the target and the transducers can be adjusted. In particular, one can prescribe 

rotation on the target, and the transducer receiver can be moved laterally. This makes it 

possible to monitor the wave propagation in a system that obeys Snell-Descartes laws. The 

mechanical parameters of each specimen were determined at various points on specimen 

bones to determine the heterogeneity of the samples. 

 

1. THEORETICAL APPROACH: IDENTIFICATION OF ELASTIC CONSTANTS 

In this study, we focused on bovine bones, considered an elastic medium. Bovine bones have 

a lamellar structure and are generally considered orthotropic. However, we propose in the 

future to investigate human bones, which are mainly Haversian, and which are usually 

considered to be transversely isotropic (Ashman et al., 1984; Yoon and Katz, 1976). We will, 

therefore, investigate bovine bone using theory appropriate for both symmetries. 

 

1.1 Elastic constants considering the bone as transversely isotropic or orthotropic. 

For generally anisotropic media, Hooke law is written: 

{ }( )3,2,1l,k,j,i    where)x()x(C)x( klijklij ∈ε=σ  (1) 
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In (1) σij denotes the ij component of the stress tensor, and εkl represents the components of 

the strain infinitesimal tensor. The 21 coefficients Cijkl in (1) characterize the stiffness matrix 

elastic constants. Only five or nine independent elements were determined, however, because 

cortical bone microstructure has a hexagonal symmetry.  

 

1.1.1 Material considered as transversely isotropic 

Axis (0X3) was taken to be the fiber axis. The material was assumed isotropic in the (0X1X2) 

plane (perpendicular to the fibers). By determining the propagation in a direction in the plane 

(0X1X2), we can therefore measure the longitudinal and transversal velocities in this plane 

and deduce constants C11, C66, (Rose, 1999) such as: 

2
L11 CC ρ=  

2
T66 CC ρ=  

C12 is then given by C12 = C11-2C66 

In the plane (0X1X3), which contains fibers, and for any direction ( )rsin,0,rcosp =
�

, let D be 

the symmetric matrix whose coefficients are given by: 
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In (2), r is the known refraction angle of the transmitted wave. The eigenvalues of D are given 

by 2Cρ=λ . We then make the following change of variables: X1=C33; X2=C44; X3=C13; 

a=C11 
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To measure k, { }N,..,1k ∈ , with N the total number of measurements, angle rk, longitudinal or 

transversal velocity kC  we write: αk = cos
2
rk and 2

kk Cb ρ=  

And after making some calculations, we have: 

0AXXA2XXAXAXAXA)X,X,X(f)Ddet( 5323214
2
332211321kk =+++++==  (3) 

with 
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Equation (3) is a system of N equations with three unknowns. To solve the problem, we 

choose an Euclidean norm and the functional: 

( )2
k

kk )X(f)X(F ∑β= where 10 k ≤β≤  

βk is a weighting factor for increasing or decreasing the influence of k. X is the vector of the 

unknown, minimized using a Newton method.  

 

1.1.2 Material considered as orthotropic: 

When the compact bone is considered as orthotropic, the plane (0X1X3), contains fibers, for 

any direction ( )rsin,0,rcosp =
�

. We have D, which becomes: 

( )
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With 0(D) det = . We then make the following change of variables X1=C33; X2=C55; X3=C13; 

a = C11 



 

5

Once these coefficients are determined, we can deduce the others. If we determine the 

propagation in a direction (0X1) (resp (0X2)), we can measure longitudinal and transversal 

velocities and deduce constants C11, C66, (resp C22, C44) such as : 

2
L11 CC ρ=  in (0X1) (5) 

2
T66 CC ρ=  in (0X1)  (6) 

2
L22 CC ρ=  in (0X2)  (7) 

2
T44 CC ρ=  in (0X2)  (8) 

Finally, coefficients C12 (resp C23) were deduced when the samples were at an angle of 45° in 

the plane (0X1X2) (resp (0X2X3)).  

The Xi determined are good approximations of the zeros of the functional F. From all the 

calculations, we obtain 11
i

3i
10)X(Fmax −

≤
≤ . 

 

2.MATERIALS - METHODS 

2.1 Experiments 

 

It is clear from the theory presented before that wavespeed data should be collected over a 

broad range of arbitrary directions in a specimen in order to recover the whole set of elastic 

constants. 

The general architecture (Fig. 1) of the mechanical system is composed of a main symmetric 

arm holding two transverse arms that move two transducers in parallel. Angular scanning is 

carried out by rotating either the main arm or the object holder. The transducers can also be 

positioned and oriented precisely; such precision allows for both linear and sectorial 

scanning. All the movements are produced by six stepping motors sequentially driven by a 

programmable translator-indexer device fitted with a power multiplexer. The translator-
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indexer and the power multiplexer are integrated in a control rack with other remote controls, 

such as that for adjusting the distance traveled by the transverse arms, or for the out-of-water 

setting. The increments are multiples of 0.75 10
-2
 millimeters for translations and of 1 10

-2
 

degrees for rotations (Lasaygues and Lefebvre, 2001). 3 mm focused transducers were used 

with a central frequency of 1 MHz.  

Ten fresh bovine femoral bones were studied. The bones were frozen prior to the 

experiments. The epiphyses were cut off so that we could concentrate our attention only on 

compact bone. The method does not require the use of samples with precise dimensions and 

perfectly parallel faces: rough preparations of the specimen are sufficient. The area under 

investigation must have interfaces, which are approximately parallel (focus of the 

transducers). 

Two test-pieces were obtained by first cutting bones in the axial direction and then removing 

the marrow from each part (Fig. 5.a-e). The sample, set in water at room temperature, was 

held by the robot in either the horizontal or vertical position, depending on the type of 

experiment. Four series of measurements were performed on each sample: two reflection 

series (one on each longitudinal side) to determine the acoustical thickness, and two 

transmission series (one with the target motionless and one with it rotating) to determine the 

longitudinal and transversal velocity.  

 

2.2 Acoustic measurement of the bone thickness. 

The bone thickness was first calculated using the echo technique with transducers used as 

both the transmitter and receiver. Let d be the distance between the two transducers, t1 and t2 

be the time taken by the reflected echo to travel between each of the bone surfaces, and Cw be 

the water velocity (Fig. 2.a). 

The acoustical thickness x is then given by the following relation: 
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w  (9) 

 

2.3. Calculating the longitudinal and transversal velocity 

We investigated the transmission mode to determine the longitudinal and transversal 

velocities. For this purpose, pure compression waves were emitted. The longitudinal and 

transversal waves in the test-piece were then determined versus the incidence angle i. First, a 

reference measurement was obtained without any bone sample to determine Cw, tw. Then with 

the bone sample the longitudinal and transversal velocities were determined by rotating the 

bone around the clamp axis so as to change the incidence of the acoustic beam. The emitter 

was fixed and the receiver could be moved laterally (Fig. 2.b). We define ic as the critical 

angle such that: 

L

w
c

C

C
arcsini =  (10) 

When i < ic, we can observe the longitudinal waves and when i > ic, we can see the transversal 

ones. 

The analyzed zone corresponds to the lateral resolution of the focused transducers (3 mm) and 

we assume that locally the input-output interfaces of the wave are parallel (Fig. 3). We can 

therefore apply Snell-Descartes laws. 

According to the Snell Descartes laws, the refraction index is given by 
rsin

isin

C

C
n w ==  (11) 

where i is the angle of incidence of the emitted wave and r the refraction angle of the 

transmitted wave. 

And 





 −−=∆ isinnicos

C

x
t 22

w
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where x is the sample thickness. For every angle, ∆t is obtained by cross correlation between 

the reference signal without the sample and the signal obtained at the angle of incidence with 

the sample (Fig. 4). The image was constructed with all transmission signals through a 

sample. The amplitude of each signal is grey scale coding. 

From (11) and (12), 








 −
∆∆

+

=

icos2
x

tC

x

tC
1

C
C

ww

w  (13) 

where C is the longitudinal or transversal bone velocity, depending on the experimental 

situation; CL and CT are therefore determined for several angles i. 

 

3. RESULTS 

The results are presented considering compact bone as transversely isotropic or orthotropic. 

 

3.1. Transversal and longitudinal velocities in two bone directions (transversely isotropic 

structure). 

To obtain accurate results by taking bone heterogeneity into account, we used a 1 MHz 

frequency with focused transducers. Focused transducers made it possible to focus on small 

surfaces and to perform measurements at different points (Fig. 5) on the bone sample. In this 

case, CT was measured in the two radial directions of the bone. To be able to observe 

transversal and longitudinal waves separately and because the critical angle ci  was between 

°≤≤° 40i25 c , we prescribed series of one-degree rotation on the bone samples with a total 

angular rotation of 60°. First, to accurately describe the bone heterogeneity, we took 

ultrasonic measurements in various points, brought closer to each other (Fig. 5), so the 

heterogeneity of the medium could be taken rigorously into account. Two examples of results 

are presented with samples in the vertical and horizontal positions (Table 1). In parallel to 

this, we measured CL and CT of the two samples positioned in radial axes (Table 1). 
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Considering the CT, compact zone of the bovine bones was weakly heterogeneous (for 

example, we obtained the same values for three points of the bone 2 in horizontal position). 

In another experimental setup, we measured the velocities CL and CT in radial axes and in the 

longitudinal axis of two other fresh bovine bones (bone 3 and 4) (Table 2). The transversely 

isotropic hypothesis was adopted in this case. The results are summarized in the first column 

of the tables 2 and 3. 

 

3.2. Transversal and longitudinal velocities in three bone directions (orthotropic structure). 

Here both CL and CT were measured in the two radial and the longitudinal axes of the bone. In 

this case, the orthotropic hypothesis was adopted. Measurements were made in bones 3 and 4. 

The results are summarized in the second column of the tables 2 and 3. The matrix rigidity 

values in 3.1 and 3.2 were found to be similar and reproducible. The radial values showed low 

variability, as those in 3.1. When we considered the compact bone as transversely isotropic or 

orthotropic, the longitudinal velocities in the direction of the fibers (between 4000 m/s and 

4400 m/s) were greater than those in the radial direction (between 3000 m/s and 3600 m/s). 

On the contrary, we had a similar variation of the transversal velocities in the radial direction 

(between 1700 m/s and 2100 m/s) and in the direction of the fibres (between 1900 m/s and 

2100 m/s). 

 

4. DISCUSSION AND CONCLUSION 

In the literature (Ashman, et al., 1984; Bonfield and Tully, 1982; Fung, 1981; Katz et al., 

1979, 1984; Lipson et al., 1984; Reilly and Burstein, 1975; Viano, 1995, Yoon and Katz, 

1976), the coefficients of matrix rigidity and longitudinal velocity values for compact bone 

vary widely. The longitudinal velocity values have varied between 2700 m/s and 4200 m/s, 
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ours ranged between 2900 m/s and 4400 m/s. The elastic constants were also compared with 

those in the literature (Table 4).  

In the experiments, only a few measurement points were used so it was difficult to finely 

analyze the distribution of the bone characteristics in different regions of the samples. To 

overcome this problem, one approach consists in making a map of longitudinal and 

transversal velocities of the sample.  

We did not study the viscosity of the sample. To determine whether any dispersion occurs in 

bones, such a study should determine the velocities and attenuation at various frequencies. 

Until now, the elastic characteristics of bones have been measured by mechanical tests 

(compression, tension, flexion, torsion). With these tests, there is a risk of damaging the 

sample, rendering it unsuitable for tests in other directions or for other measurements. In this 

study, the elastic characteristics of compact bone were measured using an ultrasonic method. 

One of the advantages of the present method is that it gives fast accurate results. Moreover it 

does not require that samples have precise dimensions and perfectly parallel faces. Rough 

preparations of the specimen are sufficient. The only requirement is for the area under 

investigation to have interfaces that are approximately parallel. We consistently used the 

same experimental procedure on bone samples from animals of the same age (about five 

years), sex (female), and weight (about 4 hundred kilos). The ultrasonic method proposed 

here is an original approach to the study of bone characteristics because the bone is free to 

rotate around the clamp axis. This makes it possible to monitor the wave propagation, to 

measure shear waves, and to determine the velocities of these waves (CT) in all the 

longitudinal and radial directions and for all the angles of rotation of the samples. The latter 

point is an original feature that classical ultrasonic methods do not provide. 

The longitudinal velocity and coefficients of matrix rigidity obtained here are in line with 

those in the literature.  
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We also intend to apply these results to construct quantitative images of compact, cancellous 

bones and osteoporosis bones (Lasaygues and Lefebvre, 2001). Lastly, the results of this 

study may be used in a numerical model of bones that was developed to analyze failure in this 

structure (Pithioux, 2000). 
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List of captions 

Fig. 1: Schematic diagram of the ultrasonic scanner. The relative displacements between the 

probe and the object were applied along the X, Y, and Z axes. 

Fig. 2: Principle of the wave recording in the echo (a) and transmission modes (b) 

Fig. 3: (a) Qualitative ultrasonic image of the sample. Horizontal section at the height z. 

 (b) Shape of the samples studied. 

Fig. 4: Set of transmission signals versus incidence angle obtained with one example of 

sample at 1MHz. The image was constructed with all transmission signals through a sample. 

The amplitude of each signal is grey scale coding. 

Fig. 5: Samples (a: Sample in vertical position; b: Sample in horizontal position; c: Study in 

the radial direction (vertical position); d: Study in the radial direction (horizontal position); e: 

Study in the longitudinal direction (axis 0x)). Measurements were carried out at several points 

called A, B, 1-6. 

Table 1: Transversal and longitudinal measurements of velocities traveling in radial bone 

directions. A logarithmic differential of equation (13) was apply to calculate the error. 

Table 2: Transversal and longitudinal measurements considering compact bone as 

transversely isotropic or orthotropic. . A logarithmic differential of equation (13) was apply to 

calculate the error. 

Table 3: Elastic constants considering the compact bone as transversely isotropic or 

orthotropic. 

Table 4: Comparison with data in the literature on the elastic constants. The results taken in 

the literature are all obtained with the same species (bovine bones), but the age, sex, and 

weight of the bovine bones were not given in all the papers. 
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List of tables 

 

Table 1 

Experiments CL (m/s) CT (m/s) 

Bone 1: 

(horizontal 

position)  

Point 1 

Point 2 

Point 3 

3315±20 

3655±23 

3191±22 

2002±34 

1888±28 

2026±38 

Bone 1: 

(vertical 

position) 

Point A 

Point B 
3055±18 

3460±21 

1767±29 

1773±25 

Bone 2: 

(vertical 

position) 

Point A 

Point B 
3414±16 

3430±16 

1822±25 

1833±26 

Bone 2: 

(horizontal 

position) 

Point 1 

Point 2 

Point 3 

3352±16 

3347±16 

3317±16 

1953±24 

1953±50 

1953±41 

Bone 2: 

(horizontal 

position) 

Point 4 

Point 5 

Point 6 

3487±21 

3352±20 

3583±21 

2067±44 

1949±40 

1997±36 

 

 

Table 2 

 Transverse isotropic Orthotropic 

Experiments CL (m/s) CT (m/s) CL (m/s) CT (m/s) 

Bone 3 (longitudinal direction, axis 0x) 4340±20 2062±45 4271±20 2065±50 

Bone 3 (radial direction, vertical position, plane 0xz) 3308±15 1717±24 3235±15 1686±20 

Bone 3 (radial direction, horizontal position, plane 

0xy) 
3244±15 1991±46 3321±15 1981±31 

Bone 3 (radial direction, axis 0y)   3515±16 2082±40 

Bone 4 (longitudinal direction, axis 

0x) :  

Point 1 

Point 2 

Point 3 

4100±19 

4326±20 

4042±19 

1976±40 

2094±58 

1991±52 

4027±13 1981±35 

Bone 4 (radial direction, vertical position, plane 0xz) 3388±16 1747±27 3349±11 1730±20 

Bone 4 (radial direction, horizontal 

position, plane 0xy) : 

Point A 

Point B 
3429±16 

3350±16 

1918±46 

1917±46 

3350±11 1976±37 

Bone 4 (radial direction (axis 0y))   3472±11 1973±40 
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Table 3 

 Transverse isotropic Orthotropic 

 Bone 3 Bone 4 Bone 3 Bone 4 

C11(GPa) 23.3 22.4 23.5 22 

C22(GPa)   26 23.5 

C12(GPa) 6.28 7.54 6.55 7.6 

C13(GPa) 8.4 7.2 8.35 7.5 

C23(GPa)   8.2 7.7 

C33(GPa) 31 31 34.6 31.7 

C44(GPa) 9 7 9.2 7.6 

C55(GPa)   6 5.6 

C66(GPa) 6.28 5.96 6.05 5.8 

E1 (GPa) 20 19 20.6 18.7 

E2 (GPa)   23.4 20 

E3 (GPa) 26.2 27.5 30.2 28 

G12 (GPa) 3.14 3 3 2.9 

G13 (GPa) 4.5 3.5 3 2.8 

G23 (GPa)   4.6 3.7 

νννν12 0.2 0.28 0.12 0.26 

νννν13 0.22 0.16 0.2 0.17 

νννν21   0.21 0.28 

νννν23   0.18 0.17 

νννν31   0.29 0.26 

νννν32   0.24 0.25 

 

 

Table 4 

 Pithioux, et al. Katz et al, 1984 Yoon, et al. 1976 Ashman, et al., 1984 

C11(GPa) 21 ≤ C11 ≤ 24  21.2 (±0.5) 23.4 (±0.0031) 18.0 

C22(GPa) 23 ≤ C22 ≤ 27  21 (±1.4) 24.1 (±0.0035) 20.2 

C33(GPa) 28 ≤ C33 ≤ 39  29 (±1) 32.5 (±0.0044) 27.6 

C44(GPa) 7 ≤ C44 ≤ 9  6.3 (±0.4) 8.71 (±0.0013) 6.23 

C55(GPa) 5 ≤ C55 ≤ 6  6.3 (±0.2) 6.9 (±0.0012) 5.61 

C66(GPa) 5 ≤ C66 ≤ 7  5.4 (±0.2) 7.17 (±0.0011) 4.52 

C12(GPa) 6 ≤ C12 ≤ 11 11.7 (±0.7) 9.06 (±0.0038) 9.98 

C13(GPa) 7 ≤ C13 ≤ 15 11.1 (±0.8) 9.11 (±0.0055) 10.1 

C23(GPa) 6 ≤ C23 ≤ 8 12.7 (±0.8) 9.23 (±0.0055) 10.7 

 


