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A Proof of Gromov’s Algebraic Lemma

David Burguet

September 13, 2005

Abstract : Following the analysis of differentiable mappings of Y. Yomdin, M. Gromov
has stated a very elegant “Algebraic Lemma” which says that the “differentiable size” of
an algebraic subset may be bounded in terms only of its dimension, degree and diameter -
regardless of the size of the underlying coefficients! We give a complete and elementary proof
of Gromov’s result using the ideas presented in his Bourbaki talk as well as other necessary
ingredients.

1 Introduction

Several problems in, e.g., Analysis and Dynamical Systems, requires estimating the differen-
tiable size of semi-algebraic subsets. Y. Yomdin developped many tools to this end [7]. M.
Gromov observed that one of this tools could be refined to give the following very elegant
statement :

Theorem 1 Let r ≥ 1, d ≥ 0, δ ≥ 0 be integers, there exists M < ∞ with the following
properties. For all semi-algebraic compact A ⊂ [0, 1]d of maximum dimension l and of degree
≤ δ, there exist an integer N , integers 0 ≤ l1, ...lN ≤ l and maps (φi : [0, 1]li 7→ [0, 1]d)i=1...N

satisfaying ‖φi/]0,1[li‖r := maxβ:|β|≤r ‖∂
βφi‖∞ ≤ 1, such that

⋃N
i=0 φi([0, 1]

li ) = A, where
N ≤M and deg(φi) ≤M . Furthermore, φi/]0,1[li is a diffeomorphism onto its image and the

semi-algebraic sets (φi(]0, 1[
li ))1≤i≤N are disjoint.

In his Seminaire Bourbaki [10], M. Gromov gives many ideas but stops short of a complete
proof which has never been given. On the other hand, this result has been put to much use,
especially in Dynamical System Theory. Y. Yomdin [13],[14] used it to compare the topo-
logical entropy and the “homological size” for Cr maps (in particular, Y. Yomdin shows in
[13] Shub’s conjecture in the case of C∞ maps). S. Newhouse [11] then showed, using Pesin’s
theory, how this gives, for C∞ smooth maps, upper-semicontinuity of the metric entropy and
therefore the existence of invariant measures with maximum entropy. J. Buzzi [5] observed
that in fact Y. Yomdin’s estimates give an even more uniform result called assymptotic h-
expansiveness, which was in turn used by M. Boyle, D. Fiebig and U. Fiebig [3] to prove
existence of symbolic extensions. This theory, the dynamical consequence of the above theo-
rem, is still developping in the works of M. Boyle, T. Downarowicz [2], S. Newhouse and others.

The proof of this theorem is trivial for the dimension 1 and easy for the dimension 2 (See
part 6). To prove the theorem in higher dimensions, we introduce the notion of triangular
(Cα,K)-Nash maps : it is the subject of the part 3. The fourth part is devoted to the structure
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of semi-algebraic sets. In the fifth part, by taking the limit of “good” parametrizations,
we reduce the main theorem to a proposition about the parametrization of semi-algebraic
”smooth” maps in order to avoid the singularities. The other difficulties are dealt with as
suggested by M. Gromov. The proof by induction of this proposition will be dealt with in
the last section.

As I was completing the submission of this paper, I learnt that A. Wilkie had written a
proof of the same theorem [12]. I am grateful to M. Coste for this reference.

2 Semi-algebraic sets and maps

First recall some basic results concerning semi-algebraic sets. We borrow from [8]. For
completeness, other references are [1],[6],[7].

Definition 1 A ⊂ R
d is a semi-algebraic set, if it can be written as the union of sets of the

form {x ∈ R
d | P1(x) > 0, ...Pr(x) > 0, Pr+1(x) = 0, ...Pr+s(x) = 0}, where r, s ∈ N and

P1, ...Pr+s ∈ R[X1...Xd] . Such a formula is called a presentation of A.
The degree of a presentation is the sum of the total degrees of the polynomials involved with

multiplicities. The degree of a semi-algebraic set is the minimum degree of its presentations.

Definition 2 f : A ⊂ R
d → R

n is a semi-algebraic map if the graph of f is a semi-algebraic
set.

Definition 3 A Nash manifold is an analytic submanifold of R
d, wich is a semi-algebraic

set.
A Nash map is a map defined on a Nash manifold, which is analytic and semi-algebraic.

We have the following description of a semi-algebraic set (See [8], Prop 3.5 p 124 and see
[7] Prop 4.4 p 48) :

Theorem 2 Let A ⊂ R
n be a semi-algebraic set, there exist a minimal integer N (bounded

by a function of deg(A)) and connected Nash manifolds (Ai)i=1...N such that A =
∐N
i=1Ai

and ∀j 6= i (Ai
⋂
adh(Aj) 6= ∅) ⇒ (Ai ⊂ adh(Aj) et dim(Ai) < dim(Aj)). (

∐
: disjoint

union).

Definition 4 (with the notations of the previous proposition) The maximum dimension of A
is the maximum dimension of the Nash manifolds A1, ...AN .

3 (Cα, K)-Nash maps and triangular maps

Definition 5 N
d is provided with a total order �, defined as follows :

For α = (α1, ...αd), β = (β1, ...βd) ∈ N
d

α � β iff (|α| :=
∑

i αi < |β|) or (|α| = |β| et αk ≤ βk, where k := max{l ≤ n : αl 6= βl})

Notations 1 α+ 1(resp α− 1) represents the following element (resp. preceding) α for the
order �.
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Definition 6 Let K ∈ R
+, d ∈ N, α ∈ N

d − {0}. Let A ⊂ [0, 1]d a semi-algebraic open set
of R

d. A map f : A → [0, 1]d is a C0-Nash map, if f := (f1, ...fd) is a Nash-map, which can
be continuously extending to adh(A) (we call again f this single extension). A map f : A→
[0, 1]d is a (Cα,K)-Nash map, if f is a C0-Nash map and if ‖f‖α := maxβ�α,1≤i≤d‖∂

βfi‖∞ ≤
K. If α = (0, 0..., r), we write (Cr,K) instead of (Cα,K) and we note ‖f‖r := ‖f‖α.

The two following lemmas are dealing with the composition of (Cα, 1)-Nash maps.

Lemma 1 For all d, r ∈ N
∗, there exists K < +∞, such that if ψ, φ : [0, 1]d → [0, 1]d are two

(Cr, 1)-Nash maps, then ψ ◦ φ is a (Cr,K)-Nash map.

Proof : Immediate. �

One of the key points of the proof of Yomdin-Gromov theorem is the idea of triangular
maps, which allows us to control the derivatives one after one.

Definition 7 We say that a map ψ : [0, 1]l → [0, 1]d is triangular if l ≤ d and if there exists
a family of maps (ψi : [0, 1]min(l,d+1−i) → [0, 1])i=1...d, such that

ψ = (ψ1(x1...xl), ...ψd−l+1(x1...xl), ψd−l+2(x2...xl), ...ψd−l+k(xk...xl), ...ψd(xl))

Remark 1 If ψ : [0, 1]n → [0, 1]m and φ : [0, 1]m → [0, 1]p are two triangular maps, then
φ ◦ ψ : [0, 1]n → [0, 1]p is triangular.

In the case of triangular maps, we give the following version of the lemma 1, allowing an
induction on α ∈ N

d rather than r ∈ N, in the proof of the proposition 4.

Lemma 2 For all d, r ∈ N
∗, there exists K < +∞ such that if ψ, φ : [0, 1]d → [0, 1]d are two

triangular (Cα, 1)-Nash maps with |α| = r, then ψ ◦ φ is a (Cα,K)-Nash map.

Proof : Immediate. �

Definition 8 (resolution of a semi-algebraic set) Let M : N
3 → R

+ and let K ∈ R
+, d ∈ N

∗,
A ⊂ [0, 1]d a Nash submanifold od dimension l and α ∈ N

d − {0}. The family of maps
(φi : [0, 1]l → [0, 1]d)i=1...N is a (C0,M)-resolution [resp. (Cα,K,M)-resolution] of A if :

• each φi is triangular ;

• each φi is a C0-Nash map [resp. a (Cα,K)-Nash map] ;

• adh(A) =
⋃N
i=1 φi([0, 1]

l) and each φi/]0,1[l is a diffeomorphism onto its image ;

• N , deg(φi) are less than M(0, d, deg(A)) [resp. M(|α|, d, deg(A))].

Definition 9 (resolution of a family of maps) Let M : N
4 → R

+, K ∈ R
+, d ∈ N

∗, α ∈
N
d − {0} and let f1, ...fk : A → [0, 1] be k C0-Nash maps on A ⊂ [0, 1]d, a semi-algebraic

open set of R
d. The family of maps (φi : [0, 1]d → [0, 1]d)i=1...N is a (C0,M)-resolution [resp.

(Cα,K,M)-resolution] of (fi)i=1...k if :

• each φi is triangular ;
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• each φi, fj ◦ φi is a C0-Nash map [resp. (Cα,K)-Nash] ;

• adh(A) =
⋃N
i=1 φi([0, 1]

d) and each φi/]0,1[d is a diffeomorphism onto its image ;

• N , deg(φi), deg(fj◦φi) are less than M(0, d, k,maxj(deg(fj))) [resp. M(|α|, d, k,maxj(deg(fj)))].

Eventually the functionM can be chosen independently of the semi-algebraic datas (above
A or f1, ..., fk). We often imply such a function ; we note C0 [resp. (Cα,K)] instead of (C0,M)
[resp. (Cα,K,M))] and we will say ”N , deg(φi)... are bounded by a function of |α|, d, ...”.

The following remark is very useful later on :

Lemma 3 For all M : N
2 → R

+, there exists M ′ : N
2 → R

+ such that we have the following
property.

Let d ∈ N
∗, α ∈ N

d − {0}, and f : [0, 1]d → [0, 1] a (Cα,M(|α|, d))-Nash map, then f
admits a (Cα, 1,M ′)-resolution.

Proof : Linear reparametrizations. �

4 Tarski’s Principle and ”saucissonnage”

Proposition 1 (Tarski’s principle) Let A a semi-algebraic set of R
d+1 and π : R

d+1 → R
d

the projection defined by π(x1, ..., xd+1) = (x1, ...xd) then π(A) is a semi-algebraic set and
deg(π(A)) is bounded by a fonction of deg(A) and d.

Proof : See [6] Thm 2.2.1, p 26 and [7] Prop 4.3 p 48 �

Corollary 1 Any formula combining sign conditions on semi-algebraic functions by conjonc-
tion, disjunction, negation and universal and existential quantifiers defines a semi-algebraic
set.

Corollary 2 Let f : A ⊂ R
k → R

l be a semi-algebraic fonction, then A is a semi-algebraic
set and deg(A) is bounded by a function of deg(f), k and l.

Corollary 3 Any linear expression or composition of semi-algebraic maps is semi-algebraic.
Furthermore, if φ and ψ are two semi-algebraic maps, such that the composition φ ◦ψ is well
defined, then deg(φ ◦ ψ) is bounded by a function of deg(φ) and deg(ψ).

Proof : See [6] Prop 2.2.6 p 28 �

Proposition 2 (Cohen) For all P1, ...Ps ∈ R[X1...Xd+1], there exist a partition of [0, 1]d into
Nash manifolds {A1, ...Am}, a finite family of C0-Nash maps 1, ζi,1 < ... < ζi,qi

2 : Ai → [0, 1],
for all 1 ≤ i ≤ m, such that :

• for each i and each k, the sign Pk(x1, y), with x1 ∈ [0, 1] et y := (x2, ..., xd+1) ∈ Ai,
only depends on the signs of x1 − ζi,j(y), j = 1, ...qi ;

1in [8], M.Coste prove the result for Nash maps, but not necessarily C
0-Nash, but the maps ζi are onto

[0, 1], and adapting easily the lemma 2.5.6 in [6], we can assume that ζi extends continuously on adh(Ai)
2we can have ζi,k(x) = ζi,k+1(x) for x ∈ adh(Ai)
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• the zeros’ set of Pk coincide with the graphs of ζi,j ;

• m, qi, deg(Ai), deg(ζi,j) are bounded by a function of
∑

k deg(Pk) and d.

Proof : [8] Thm 2.3 p 112. �

From the above we deduce easily the following proposition :

Proposition 3 For all semi-algebraic A ⊂ [0, 1]d+1 , there exist integers m, q1, ..., qm, a
partition of [0, 1]d in Nash manifolds A1, ...Am and C0-Nash maps, ζi,1 < ... < ζi,qi : Ai →
[0, 1], for all 1 ≤ i ≤ m, such that :

• adh(A) coincide with an union of slices of the following form {(x1, y) ∈ [0, 1]×adh(Ai) :
ζi,k(y) ≤ x1 ≤ ζi,k+1(y)} ;

• m, qi, deg(Ai), deg(ζi,j) are bounded by a function of deg(A) and d.

Corollary 4 For all A ⊂ [0, 1]d+1 semi-algebraic open set of R
d+1, there exist integers m,

q1, ..., qm, disjoint semi-algebraic open sets A1, ...Am and C0-Nash maps, ζi,1 < ... < ζi,qi :
Ai → [0, 1], for all 1 ≤ i ≤ m, such that :

• adh(A) coincide with the union of slices of the following form {(x1, y) ∈ [0, 1]×adh(Ai) :
ζi,k(y) ≤ x1 ≤ ζi,k+1(y)} = adh({(x1, y) ∈ [0, 1] ×Ai : ζi,k(y) < x1 < ζi,k+1(y)}) ;

• m, qi, deg(Ai), deg(ζi,j) are bounded by a function of deg(A) and d.

Proof : Name A′
i the Nash manifolds as in the proposition 3, tiing up A like a sausage in

the direction of x1. Then π(A) being open, we have according to the Thm 2, the following
options for each i : either A′

i is open, or else ∃j such that A′
j is open and A′

i ⊂ adh(A′
j). In

the last case, if A contains a slice Ti = {(x1, y1) ∈ [0, 1] ×A′
i : ζi,1(y1) < x1 < ζi,2(y1)}, then

A contains a slice of the following form Tj = {(x1, y1) ∈ [0, 1] ×A′
j : ζj,1(y1) < x1 < ζj,2(y1)}

such that Ti ⊂ {(x1, y1) ∈ [0, 1]×adh(A′
j) : ζj,1(y1) < x1 < ζj,2(y1)}, because A is open. From

this fact we deduce the corollary, where Ai are the semi-algebraic sets A′
i, which are open. �

In the following corollary, we reparametrize a semi-algebraic set with C0-Nash maps of
bounded degree. In this way a first step is achieved. But in order to show the Yomdin-Gromov
theorem the main difficulty is the control of the derivatives of the reparametrizations.

Corollary 5 There exists M : N
3 → R

+, such that all Nash manifold A ⊂ [0, 1]d admits a
(C0,M)-resolution.

Proof : We argue by induction on d. We note P (d) the claim of the above corollary. P (0)
is trivial. Assume P (d).

Let A ⊂ [0, 1]d+1 be a Nash manifold of dimension l. The proposition 4 gives us integers
m, q1, ...qm, Nash manifolds A1, ...Am ⊂ [0, 1]d and C0-Nash map, ζi,1 < ... < ζi,qi : Ai → [0, 1]
such that :

• adh(A)coincide with a union of slices of the following form {(x1, y) ∈ [0, 1] × adh(Ai) :
ζi,k(y) ≤ x1 ≤ ζi,k+1(y)} ;

• m, qi, deg(Ai) are bounded by a function of deg(A) and d.
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Let 1 ≤ i ≤ m. We apply the induction hypothesis to Ai ⊂ [0, 1]d : there exists a
C0-resolution of Ai, ie an integer Ni (bounded by a function of deg(Ai) and d, therefore
by a function of deg(A) and d) and C0-Nash maps φi,1, ..., φi,Ni

: [0, 1]l → [0, 1]d, such

that adh(Ai) =
⋃Ni

p=1 φi,p([0, 1]
l). Then we define ψi,k,p : [0, 1]l → [0, 1]d+1 as follows :

ψi,k,p(x1, y) := (x1(ζi,k+1(y) − ζi,k(y)) ◦ φi,p(x1, ...xl) + ζi,k ◦ φi,p(x1, ...xl), φi,p(x1, ...xl)).

The ψi,k,p are C0-Nash triangular maps, such that

• the number of these parametrizations are bounded by
∑m

i=1 qiNi

• adh(A) =
⋃
i,k,pψi,k,p([0, 1]

l)

• deg(ψi,k,p) is bounded by a function of deg(A) and d (See Corollaire 3)

Thus these maps form a C0-resolution of A. �

The following lemma is another application of the Tarski’s principle :

Lemma 4 Let A ⊂ R
d be a semi-algebraic open set, f : A → R

n a Nash map defined on A.
The partial derivatives of f of all orders are also semi-algebraic maps of degree bounded by a
function of deg(f), d and n.

Proof : Apply the corollary 1. �

5 Yomdin-Gromov Theorem

First we show the following technical proposition, in which we work with “smooth” functions.
Finally we explain how we reduce the proof of the main theorem to this proposition.

Proposition 4 Let (fi : A → [0, 1])i=1...k be C0-Nash maps, where A ⊂ [0, 1]d is an open
semi-algebraic set of R

d and let α ∈ N
d. There exists a sequence (An)n∈N ⊂ AN of semi-

algebraic open sets of R
d, such that

• an := supx∈A d(x,An) −−−−−→
n→+∞

0, where d(x,An) is the distance between x and An ;

• deg(An) is bounded by a function of deg(A) and |α| ;

• fi is analytic in a neighborhood of adh(An) ;

• (fi/An
)i=1...k admits a (Cα, 1)-resolution.

We will say that such a sequence (An)n∈N is α-adapted to (fi)i=1...k.

The following corollary follows from the above proposition :

Corollary 6 There exists M : N
4 → R

+, such that all family (fi : A → [0, 1])i=1...k of
C0-Nash maps, where A ⊂ [0, 1]d is a semi-algebraic open set of R

d, admits a (Cα, 1,M)-
resolution.
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Now we show how the proposition 4, the corollary 6 and the Yomdin-Gromov theorem
deduce from the case k = 1 of the proposition 4. In fact we show stongers results, which are
very useful for the proof by induction in the last section.

Notations 2 We consider the set E of pairs (α, d), where d ∈ N
∗ and α ∈ N

d. The set E is
provided with the following order ≪, :

(β, e) ≪ (α, d) iff (e < d) or (e = d and β � α)

We will write :
P4(α, d) the claim of the proposition 4 for all pair (β, e) with (β, e) ≪ (α, d).
C6(α, d) the claim of the corollary 6 for all pair (β, e) with (β, e) ≪ (α, d).
Y G(α, d) the existence of a (Cβ , 1) resolution for all Nash manifold A ⊂ [0, 1]e, and for all
pair (β, e) ≪ (α, d), so that : theorem 1 ⇐⇒ Y G(α, d) ∀(α, d) ∈ E.

Lemma 5 The claim C6(α, d) [resp. P4(α, d)] for k = 1 implies the claim C6(α, d) [resp.
P4(α, d)] for all k ∈ N

∗.

Proof :
We argue by induction on k.
Assume that for all k-family g1, ...gk : B → [0, 1] of C0-Nash maps, with B ⊂ [0, 1]d a

semi-algebraic open set of R
d, admits a (Cα, 1)-resolution.

Let f1, ...fk+1 : A → [0, 1] k + 1 be C0-Nash maps, with A ⊂ [0, 1]d a semi-algebraic
open set of R

d. According to the induction hypothesis for the maps (f1, ...fk), there exists
(φi)i=1...N a (Cα, 1)-resolution of (f1, ...fk).

Moreover, according to C6(α, d) for k = 1, there exists for each i : (ψi,j)j=1...Ni
a (Cα, 1)-

resolution of fk+1 ◦ φi.
According to the lemma, the maps φi ◦ ψi,j, of wich the number is

∑N
i=1Ni, are (Cα,K)-

Nash triangular maps, as well as the maps fp ◦φi ◦ψi,j for all 1 ≤ p ≤ k (with K = K(|α|, d)).
Finally, for each i, (ψi,j)j=1...Ni

being a (Cα, 1)-resolution of fk+1 ◦φi, the maps fk+1 ◦φi ◦ψi,j
are (Cα, 1)-Nash maps. Moreover, we have in a trivial way : adh(A) =

⋃
i,j φi ◦ ψj([0, 1]

d).
We conclude the proof, thanks to the lemma 3, amounting to a (Cα, 1)-resolution.

We adapt the above proof for P4(α, d) as follows. Let (An)n∈N be a sequence α-adapted
to (fi)i=1...k. For all n ∈ N, we consider (φnj )j=1...Nn a (Cα, 1) resolution of (fi/An

)i=1...k

and (An,jp )p∈N a sequence α-adpated to fk+1 ◦ φnj . By uniform continuity of φnj on [0, 1]d,

∃δj,n > 0 ∀x, y ∈ [0, 1]d d(x, y) < δj,n ⇒ d(φnj (x), φ
n
j (y)) < 1/n. Choose pj,n ∈ N, such that

an,jpj,n < δnj . Now, let show that Bn :=
⋃Nn

j=1 φ
n
j (A

n,j
pj,n) is a sequence α-adapted to (fi)i=1...k+1.

Bn is open, because, for p ∈ N, An,jp ⊂ [0, 1]d is an open subset of R
d and φn

j/]0,1[d
is

a diffeomorphism. Furthermore, Bn is a semi-algebraic set because φnj is a semi-algebraic

map and An,jp are semi-algebraic sets and deg(Bn) is bounded by a function of deg(A) and
|α|, as it is so for Nn, deg(φ

n
j ) and deg(An,jpj,n). Check the “density”condition. Let x ∈ A,

∃xn ∈ An such that d(x, xn) < max(2an, 1/n). ∃1 ≤ i ≤ Nn and ∃yn ∈ [0, 1]d such that
φni (yn) = xn. But (An,ip )p∈N is adapted to fk+1◦φ

n
i , thus there exists a sequence zn ∈ An,ipi,n such

that d(zn, yn) < δi,n. Therefore d(φni (zn), x) < max(2an, 1/n) + 1/n and supy∈A d(y,Bn) <
max(2an, 1/n) + 1/n −−−−−→

n→+∞
0. �
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Proof of Corollary 6 (from P4((0, ...0, r + 1), d) we deduce C6((0, ...0, r), d).) :
Let (φki )i≤Nk

be a (Cr+1, 1)-resolution of f/Ak
. By hypothesis, Nk is bounded by a function

of deg(Ak) and r and thus by a function of deg(A) and r ; consequently (Nk)k∈N is a bounded
sequence. By extracting a subsequence, we can assume Nk = N , for all k ∈ N. According
to the Ascoli theorem,

∏
i=1...2N B(r + 1) is a compact set in

∏
i=1...2N B(r), where B(r) is

the closed unit ball of Cr(]0, 1[d) (set of Cr maps on ]0, 1[d onto R). By extracting again a
subsequence, we can assume that (φni )n∈N converge in norm ‖.‖r on ]0, 1[l to a (Cr, 1)-Nash
map, ψi, such that f ◦ ψi is a (Cr, 1)-Nash map, for each i = 1...N . One only needs to see⋃
i=1...N ψi([0, 1]

d) = adh(A). It’s enough to show that A ⊂
⋃
i=1...N ψi([0, 1]

d). Actually, by
convergence of φni to ψi, we have ψi([0, 1]

d) ⊂ adh(A), for all i. Let y ∈ A, recording to
the density condition, there exists a sequence xn ∈ An, such that xn → y. By extracting
a subsequence, we can assume that there exist 1 ≤ i ≤ N and a sequence (yn ∈ [0, 1]d)n∈N

such that xn = φni (yn). By uniform convergence of φni to ψi, we have ψi(yn) → y. Now
extracting a convergent subsequence we easily conclude that

⋃
i=1...N ψi([0, 1]

d) = adh(A).
Finally (ψi)i≤N is a (Cr, 1)-resolution of f . �

Now we show that the corollary 6 for the dimension d implies the Yomdin-Gromov theo-
rem for the dimension d+ 1. More precisely, we will show C6(α, d) ⇒ Y G(α, d + 1).

Proof of Theorem 1 (we assume C6(α, d) and from it we deduce Y G(α, d + 1)) :
Consider first the case, where A ⊂ [0, 1]d+1 is a semi-algebraic open set of R

d+1. According
to the corollary 4, we can asume that adh(A) is a slice of the form adh(A) = {(x, y) ∈
[0, 1] × A′ | η(y) ≤ x ≤ ζ(y)}, where A′ ⊂ [0, 1]d is a semi-algebraic open set of R

d and
η, ζ : A′ → [0, 1] C0-Nash maps, where deg(η), deg(ζ), deg(A′) depend only on deg(A) and on
d. Aplying C6(α, d) to (ζ, η), there exists (φi)i=1...N a (Cα, 1)-resolution of (ζ, η).

For each i, we define ψi : [0, 1] × [0, 1]d → [0, 1]d+1 par ψi(x, y) = (x(ζ ◦ φi − η ◦ φi)(y) +
η ◦ φi(y), φi(y)). Then (ψi)i=1...N is a (Cα, 2)-resolution of A. We conclude the proof thanks
to the lemma 3.

If A is a Nash manifold of dimension l < d + 1, A admits a C0-résolution (φi : [0, 1]l →
[0, 1]d+1)i=1...N , according to the corollary 5. We conclude the proof, using for each i, C6(α, d)
on the coordinates of φi/]0,1[l .� �

6 Proof of Corollary 6 in dimension 1

First we study the case of dimension 1, where we can prove right away Corollary 6. The case
of dimension 1 allows us to introduce simple ideas of parametrizations, which will be adapted
in higher dimensions.

The semi-algebraic sets of [0, 1] are the finite union of open intervals and points. So it’s
enough to prove the Corollary 6 for A of the form ]a, b[⊂ [0, 1].

Proof of C6(1, 1) (Case of the first derivative) : : Let f :]a, b[→ [0, 1] be a C0-Nash
map. We cut up the interval ]a, b[ into a minimal number N of subintervals (Jk)k=1...N , such
that ∀x ∈ Jk, |f

′(x)| ≥ 1 or ∀x ∈ Jk, |f
′(x)| ≤ 1.

The assertion on N results from Tarski principle.
On each interval Jk, we consider the following parametrization of adh(Jk) = [c, d] ⊂ [0, 1], φ:
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• φ(t) = c+ t(d− c) if |f ′| ≤ 1 and then we have deg(φ) = 1, deg(f ◦ φ) = deg(f)

• φ(t) = f−1
|[c,d](f(c)+ t(f(d)−f(c))) if |f ′| ≥ 1 and then we have deg(φ) = deg(f) (indeed

deg(f−1) = deg(f)) and deg(f ◦ φ) = 1

�

Proof of C6(r, 1) (Case of higher derivatives) : : we argue by induction on r : assume
C6(r, 1), with r ≥ 1 and prove C6(r + 1, d).

Let f :]a, b[⊂ [0, 1] → [0, 1] be a C0-Nash map. By considering (f ◦ φi)i=1...N , where
(φi)i=1...N is a (Cr, 1)-resolution of f , we can assume that f is a (Cr, 1)-Nash map.

We divide the interval ]a, b[ into a minimal number ni of subintervals on which |f (r+1)|
is either increasing or decreasing, ie the sign of f (r+1)f (r+2) is constant. Consider the case
where |f (r+1)| is decreasing, the creasing case is sinilar : we have just to do the following
change of variable x 7→ 1 − x. We reparametrize those intervals from [0, 1] with linear maps
φ̃i. We define fi = f ◦ φ̃i, noted g in the following computations.

Define h(x) = x2 ; we compute :

(g ◦ h)(r+1)(x) = (2x)r+1g(r+1)(x2) +R(x, f(x), ...f (r)(x))

where R is a polynomial depending only on r. Therefore

∀x ∈ [0, 1] |(g ◦ h)(r+1)(x)| ≤ |(2x)r+1g(r+1)(x2)| +C(r),

where C(r) is a function of r.
Furthermore, we have

x|g(r+1)(x)| =

∫ x

0
|g(r+1)(x)|dt ≤ |

∫ x

0
g(r+1)(t)dt| = |g(r)(x) − g(r)(0)| ≤ 2 (1)

thus

|(g ◦ h)(r+1)(x)| ≤ C(r) + 2
(2x)r+1

x2
≤ C(r) + 2r+2

Enfin deg(φ̃i ◦ h) = 2 and deg(g ◦ h) = 2deg(f). The claim concerning the integers ni results
from the Tarski’s principle. We conclude the proof of C6(r + 1, d) thanks to the lemma 3.

�

7 Proof of Proposition 4

Let us fix two integers r ≥ 2, c ≥ 1. In this section we show P4((0, ...0, r − 1), c) for k = 1,
the general case deducing from it (See section 4).

We argue by induction on the set Erc of pairs (α, d), where d ∈ N
∗, d ≤ c and α ∈ N

d, |α| ≤
r + c− d. Erc is provided with the order ≪.
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We assume now that P4(α, d) is checked and we distinguish three cases depending on the
values of the pair (α, d) :

Increase of the dimension : P4((0...0, r + c− d), d) ⇒ P4((1, 0..., 0), d + 1)

Proof : Let f : A ⊂ [0, 1]d+1 → [0, 1] a C0-Nash map, defined on a semi-algebraic open set of
R
d+1. We consider the following semi-algebraic open sets : A+ = int({x ∈ A, |∂x1f(x)| > 1})

et A− = int({x ∈ A, |∂x1f(x)| ≤ 1}). We have adh(A) = adh(A+)
⋃
adh(A−). Actually,

we see easily that adh(A+)
⋃
adh(A−) ⊂ adh(A). Let show A ⊂ adh(A+)

⋃
adh(A−). Let

x ∈ A. If d(x,A+) = 0, then x ∈ adh(A+) ; if not, as A is an open set, there exists r > 0,
such that the ball B(x, r) ⊂ A

⋂
Ac+ ⊂ {x ∈ A, |∂x1f(x)| ≤ 1} and thus x ∈ A−.

According to P4((0, ...0, r+c−d), d) ⇒ P4((0, ...0, 2), d) ⇒ C6((0, ...0, 1, d)) ⇒ Y G((1, ...0), d+
1), there exist (C(1,0,...0), 1)-Nash triangular maps (φj)1≤j≤N such that adh(A−) =

⋃
1≤j≤N

−

φj([0, 1]
d)

and such that N−, deg(φj) are bounded by a function of deg(A−), and thus by a function of
deg(f) (according to the lemma 4 and the corollary 6). We have |∂x1(f ◦ φj)| ≤ 1. The maps
φi can be used to build a resolution of f .

For A+, we consider the inverse of f . Observe first, that according to the corollary 4, we
can assume that A+ is a slice of the following form {(x1, y) ∈ [0, 1]×A′

+ : ζ(y) < x1 < η(y)},
où A′

+ ⊂ [0, 1]d is a semi-algebraic open set of R
d and ζ, η : A′

+ → [0, 1] are C0-Nash maps.
Define D+ = {(f(x1, y), y) : (x1, y) ∈ A+}. We define g : A+ → D+, g(x1, y1) =

(f(x1, y), y)). This map g is a local diffeomorphism, by the local inversion theorem. Moreover,
g is one to one, because g(x1, y) = g(x′1, y

′) implies y = y′, and f(x1, y) = f(x′1, y) implies
x1 = x′1, because |∂x1f(x)| ≥ 1 for x ∈ A+. Therefore g extends to g : adh(A+) → adh(D+),
a one to one bicontinous map.

We see that D+ is a semi-algebraic open set of R
d+1. On D+ we define φ : φ(t, u) :=

g−1(t, u) = (f(., u)−1(t), u). Observe that φ is a C0-Nash triangular map and deg(φ) = deg(f).
Define φ(t, u) = (x1, y). We compute :

Dφ(t, u) =

(
1

∂x1f(x1,y)
− 1
∂x1f

∇yf(x1, y)

0 Id

)

As (x1, y) ∈ A+, we have |∂x1φ| ≤ 1. Furthermore, we check

f ◦ φ(t, u) = t.

Therefore, φ and f ◦ φ are (C(1,0,...,0), 1)-Nash triangular maps. In order to obtain a reso-
lution, we apply again Y G((1, 0..., 0), d+ 1) to D+. That gives (C(1,0....0), 1) -Nash triangular
parametrization ψj : [0, 1]d+1 → adh(D+), j ≤ N+, such that N+, deg(ψj) are bounded by a
function of deg(D+), thus by a function of deg(f). Moreover

|∂x1(φ ◦ ψj)| = |∂x1(φ)|.|∂x1(ψ
1
j )| ≤ 1

because ψj is triangular and

|∂x1(f ◦ φ ◦ ψj)| = |∂x1ψ
1
j | ≤ 1,

where ψj := (ψ1
j , ..., ψ

d+1
j ). The following parametrizations φ ◦ ψj : [0, 1]d+1 7→ [0, 1]d+1 are

therefore (C(1,0,...0), 1)-Nash triangular maps such that :
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• adh(A+) =
⋃N+

j=1 φ ◦ ψj([0, 1]
d+1) ;

• each f ◦ φ ◦ ψj is a (C(1,0...0), 1)-Nash map ;

• deg(φ◦ψj), deg(f ◦φ◦ψj) are bounded by a function of |α|, d, and deg(f) (See Corollary
3) ;

• φ ◦ ψj/]0,1[d+1 is a diffeomorphism, because φ and ψj/]0,1[d+1 are also diffeomorphism.

Finally, we combine the maps φ1, ..., φN
−

with the maps φ ◦ ψ1, ..., φ ◦ ψN+ , so that we
obtain a (C(1,0...0), 1)-resolution of f . The bound on the number of parametrizations is the
result of the bounds on N− and N+ from the Yomdin-Gromov theorem and of the bounds
from the proposition 4.

�

Increase of the derivation order : P4((0...0, s), d) ⇒ P4((s + 1, 0..., 0), d) pour s < r + c− d
(untill the end, C(|α|, d) are functions of |α| and d)

Proof :

Remark 2 By applying induction hypothesis to f , we obtain a (Cs, 1)-resolution (φi,n)i=1...Nn

of f/An
, with An an adapted sequence. Replacing f with the family of maps (f ◦φi,n, φi,n), and

by applying lemma 5, we observe that it is enough to show the result for (Cs, 1)-Nash maps.

Let A ⊂ [0, 1]d be a semi-algebraic open set of R
d and let f : A→ [0, 1] be a (Cs, 1)-Nash

map. In this case, we adapt the proof in dimension 1.

We cut up A according to the sign ∂s+1f

∂xs+1
1

∂s+2f

∂xs+2
1

, and we can assume (See corollary 4) that A

is a slice of the following form {(x1, y) ∈ [0, 1] ×A′ : ζ(y) < x1 < η(y)}, where A′ ⊂ [0, 1]d−1

is a semi-algebraic open set of R
d and ζ, η : A′ → [0, 1] are C0-Nash maps.

Applying the estimate (1) obtained in section 6 to the following function x1 7→ ∂s+1f

∂xs+1
1

(x1, y)

(we fix y), we get

|
∂s+1f

∂xs+1
1

(x1, y)| ≤
2

|x1 − ζ(y)|
(2)

ou

|
∂s+1f

∂xs+1
1

(x1, y)| ≤
2

|x1 − η(y)
|, (3)

suivant le signe de ∂s+1f

∂xs+1
1

∂s+2f

∂xs+2
1

.

The induction hypothesis P4((0...0, s), d) implies the claim P4((0, ...0, s+2), d−1), because
(0...0, s+2), d−1) ≪ ((0...0, s), d)) and the claim P4((0, ..., s+2), d−1) implies C6((0, ..., 0, s+
1), d− 1). Apply C6((0, ...0, s + 1), d− 1) to (ζ, η) : there exist (Cs+1, d− 1)-Nash triangular
maps h : [0, 1]d−1 → [0, 1]d−1, of which the images cover adh(A′), such that ζ ◦ h and η ◦ h
are (Cs+1, d− 1)-Nash maps. Define ψ : [0, 1] × [0, 1]d−1 → adh(A),

ψ(v1, w) = (ζ ◦ h(w).(1 − v2
1) + η ◦ h(w).v2

1 , h(w))

ψ is triangular, ψ/]0, 1[d is a diffeomorphisme and ‖ψ‖s+1 ≤ 2.
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In the new coordinates (v1, v2...vd), the previous estimates (2) and (3) become, with
w = (v2, ..., vd) :

|
∂s+1f

∂xs+1
1

(ψ(v1, w))| ≤
2

v2
1 |η ◦ h(w) − ζ ◦ h(w)|

Moreover, ∂s+1(f◦ψ)

∂vs+1
1

(v1, w) = (2v1)
s+1(η ◦ h(w) − ζ ◦ h(w))∂

s+1f

∂xs+1
1

(ψ(v1, w)) +R(η ◦ h(w) −

ζ ◦h(w), v1, (
∂kf
∂xk

1
(ψ(v1, w)))k≤s), where R is a polynomial, which depends only on s. The first

part is less than 2s−1. Consider the second part. The map f is a (Cs, 1)-Nash map, thus

|∂
kf
∂xk

1
| ≤ 1, for k ≤ s ; thus |R(η ◦ h(w) − ζ ◦ h(w), v1, (

∂kf
∂xk

1
(ψ(v1, w)))k≤s)| is bounded by a

function of s, and therefore |∂
s+1(f◦ψ)

∂vs+1
1

| ≤ C(s, d). The derivatives of lower order than s of

f ◦ ψ are also bounded by a function of s. Thanks to the lemma 3, we can assume that ψ is
a (Cs+1, 1)-Nash map and f ◦ ψ is a (C(s+1,0...0), 1)-Nash map.

We check with the lemma 4 and the proposition 2 that the number of cuttings is bounded
by a function of d and deg(f). Then by C6((0, ...0, s+1), d−1) the number of parametrizations
h and their degree are also bounded by such a function. It follows that the total number of
parametrizations ψ is bounded by a function of d and of deg(f). At last, we conclude thanks
to the corollary 3, that the same holds for the degree of the parametrizations ψ.

�

Control of the following derivative : P4(α, d) ⇒ P4(α+ 1, d) with α 6= (0, ..., 0, s + 1)

Proof : According to the remark 2, we can assume that f :]0, 1[d→ [0, 1] is a (Cα, 1)-Nash
map.

Define An =]1/n, 1 − 1/n[d and bn = 1 − 2/n.

According to the Tarski’s principle (See Corollary 1), B = {(x1, y) ∈ adh(An) : |∂
α+1f
∂xα+1 (x1, y)| =

supt∈[0,1](|
∂α+1f
∂xα+1 (t, y)|)} is a emi-algebraic set. We have introduce the concept of adapted

sequence, so that the sup above is bounded and attained (recall that f is not supposed
analytic near the boundary of A). According to the corollary 4), B is covered by sets
(Bi)i=1...N , Bi = {(x1, y) ∈ [0, 1] × adh(B′

i) : γi(y) ≤ x1 ≤ σi(y)}, where B′
i ⊂ [0, 1]d−1

are semi-algebraic open sets of R
d−1, such that

⋃N
i=1 adh(B

′
i) = [1/n, 1 − 1/n]d−1 and where

σi, γi : B′
i → [0, 1] are C0-Nash maps. Moreover, we check thanks to the Tarski’s principle

and the proposition 4 that N and the degree of σi are bounded by a function of deg(f) and

s. Define gi(y) = ∂(α+1)1f

∂x
(α+1)1
1

(σi(y), y) with y1 ∈ adh(B′
i), where (α + 1)i represent the ieme

coordinate of α + 1. The induction hypothesis P4(α, d) implies P4((0, ...0, |α| + 1), d − 1)
and thus C6((0...0, |α|), d − 1), which aplied to σi et gi gives (C|α|, 1)-Nash triangular maps
hi,k : [0, 1]d−1 → [0, 1]d−1, such that gi ◦ hi,k and σi ◦ hi,k are (C|α|, 1)-Nash and such that⋃
k hi,k([0, 1]

d−1) = adh(B′
i).

Then,

∂((α+1)2 ,...(α+1)d)(gi ◦ hi,k)

∂x((α+1)2 ,...(α+1)d)
(y) =

∂α+1f

∂xα+1
(σi ◦hi,k(y), hi,k(y))× (

∂hi,k
∂x2

)(α+1)2 ...(
∂hi,k
∂xd

)(α+1)d +R

where R is a polynomial of derivatives of order � α, and of the derivatives of hi,k and
σi ◦ hi,k of order less than |α|, R depending only on α. The map hi,k is a (C|α|, 1)-Nash map
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and by hypothesis f is a (Cα, 1)-Nash map, so that we have |R| < C(|α|, d).
After all gi ◦ hi,k is a (C|α|, 1)-Nash map. Hence we have

|
∂α+1f

∂xα+1
(σi◦hi,k(y), hi,k(y))(

∂hi,k
∂x2

)(α+1)2...(
∂hi,k
∂xd

)(α+1)d | ≤ |
∂((α+1)2 ,...(α+1)d)(gi ◦ hi,k)

∂x((α+1)2 ,...(α+1)d
|+|R| < C(|α|, d)

Define φi,k : [0, 1]d → [0, 1]d,

φi,k(x1, y) = (1/n + bnx1, hi,k(y))

.
φi,k is a (Cα+1, 1)-Nash triangular map and φi,k/]0,1[d is a diffeomorphism onto its image.

We check the two following points :

•
∂α+1(f◦φi,k)

∂xα+1 = ∂α+1f
∂xα+1 (1/n+bnx1, hi,k(y))×(bn)

(α+1)1(
∂hi,k

∂x2
)(α+1)2...(

∂hi,k

∂xd
)(α+1)d +S where

S is a polynomial of the derivatives of f of order β � α (because hi,k is triangular) and
of the derivatives of hi,k of order less than |α|, S depending only on α. From above we
deduce that |S| < C(|α|, d).

Moreover by definition of σi, |
∂α+1f
∂xα+1 (1/n+ bnx1, hi,k(y))× (

∂hi,k

∂x2
)(α+1)2 ...(

∂hi,k

∂xd
)(α+1)d | ≤

|∂
α+1f
∂xα+1 (σi ◦ hi,k(y), hi,k(y)) × (

∂hi,k

∂x2
)(α+1)2...(

∂hi,k

∂xd
)(α+1)d | < C(|α|, d),

thus |
∂α+1(f◦φi,k)

∂xα+1 | ≤ |∂
α+1f
∂xα+1 (1/n + bnx1, hi,k(y)) × (

∂hi,k

∂x2
)(α+1)2 ...(

∂hi,k

∂xd
)(α+1)d | + |S| <

C(|α|, d)

• finally for β � α, in the expression
∂β(f◦φi,k)

∂xβ take part only the derivatives of f of order

� α, still because of the triangularity of hi,k. Hence |
∂β(f◦φi,k)

∂xβ | < C(|α|, d).

The lemma 3 gives us a (Cα, 1)-resolution of f/An
.

�

This work is part of the author’s Master thesis (Master at Universite Paris-Sud) with the
supervision of J. Buzzi.
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