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N-FREE EXTENSIONS OF POSETS. NOTE ON A

THEOREM OF P.A.GRILLET.

MAURICE POUZET* AND NEJIB ZAGUIA

Abstract. Let SN (P ) be the poset obtained by adding a dummy vertex
on each diagonal edge of the N ’s of a finite poset P . We show that
SN (SN (P )) is N-free. It follows that this poset is the smallest N-free
barycentric subdivision of the diagram of P , poset whose existence was
proved by P.A. Grillet. This is also the poset obtained by the algorithm
starting with P0 := P and consisting at step m of adding a dummy
vertex on a diagonal edge of some N in Pm, proving that the result
of this algorithm does not depend upon the particular choice of the
diagonal edge choosen at each step. These results are linked to drawing
of posets.

Keywords: posets, drawing, N -free posets, barycentric subdivision.
AMS subject classification [2000] Partially ordered sets and lattices
(06A, 06B)

1. Introduction

An N is a poset made of four vertices labeled a, b, c, d such that a <

c, b < c, b < d, b incomparable to a, a incomparable to d and d incomparable
to c (see Figure 1(a)). This simple poset plays an important role in the
algorithmic of posets [3]. It can be contained in a poset P in essentially
two ways, leading to the characterization of two basic types of posets, the
series-parallel posets and the chain-antichain complete (or C.A.C) posets.

The first way is related to the comparability graph of P . An N can be
contained in P as an induced poset, that is P contains four vertices on
which the comparabilities are those indicated above. Finite posets with no
induced N are called series-parallel. Indeed, since their comparability graph
contains no induced P4 (a four vertices path ) they can obtained from the
one element poset by direct and complete sums (a result which goes back
to Sumner [5], see also [6]). The second way is related to the (oriented)
diagram of P . This is the object of this note.

In order to describe this other way, let us recall that a covering pair in
a poset P is a pair (x, y) such that x < y and there is no z ∈ P such that
x < z < y. The (directed)diagram of P is the directed graph, denoted by
Diag(P ), whose vertex set is P and edges are the covering pairs of P . If
(x, y) is a covering pair, we say that x is covered by y, or y covers x, a
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fact that we denote x ≺P y, or x ≺ y if there is no risk of confusion, or
(x, y) ∈ Diag(P ). We denote by Inc(P ) the set of pairs (x, y) formed of
incomparable elements.

Definition 1.1. Let a, b, c, and d four elements of P , we say that these
elements form:

(1) an N in P if b ≺ c, a ≺ c, b ≺ d, and (a, d) ∈ Inc(P );
(2) an N ′ in P if b ≺ c, a < c, b < d, and (a, d) ∈ Inc(P );
(3) an N in Diag(P ) if b ≺ c, a ≺ c, b ≺ d, and a 6≺ d;

An N in P is also an N ′ in P ′ and, provided that P is finite, an N ′ in
P yields an N {a′, b, c, d′}in P . An N in P induces an N in Diag(P ); the
converse is false: if {a, b, c, d} is an N in Diag(P ) as above, then a < d is
possible, but -provided that P is finite- the 4 element subset a′, a, c, b, where
a ≺ a′ ≤ d, is an N in P . Thus, if P is finite, it contains an N under one
of these three forms if it contains all. We say that P is N -free if it contains
no N . It was proved by P.A.Grillet [1] that a finite poset P is N -free if and
only if P is chain-antichain complete (or C.A.C) that is if every maximal
chain of P meets every maximal antichain of P (the formulation N -free in
terms of the N defined in 1) is due to Leclerc and Monjardet [2]).

Figure 1. Examples of posets containing an N .

Figure 2. Examples of N -free posets

A barycentric subdivision of the diagram of a poset P consists to add
finitely many vertices, possibly none, on each edge of the diagram of P .
These vertices added to those of P provides a new poset in which P is
embedded. We denote by S(P ) the poset obtained by adding just one vertex
on each edge of the diagram of P . As it is immediate to see, this poset is
N -free. In his embedding theorem (Theorem 7 [1]) P.A.Grillet proves that
among the N -free posets obtained as barycentric subdivisions of a finite
poset P there is one, denoted P , which is minimal. In this note, we provide
a simple description of P and give some consequences.
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If A := {a, b, c, d} is an N in P (resp. a N in Diag(P )), as in Definition
1.1, we say that the pair (b, c) is the diagonal edge of this N . Let Ndiag(P )
be the set of diagonal edges of all the N ’s in P and let SN (P ) be the poset
obtained by adding a dummy vertex on each edge in Ndiag(P ).

Theorem 1.2. Let P be a finite poset. Then SN(SN (P )) is N -free. In
fact this is the smallest N -free poset P which comes from a barycentric
subdivision of Diag(P ).

This result translates to an algorithm which transforms a poset into an
N -free poset: execute twice the algorithm consisting to add simultaneously
a vertex on each N of a poset. Figure 3 shows an execution of this algo-
rithm. Two dummy elements 6 and 7 are created during the first execution.
Another two, 8 and 9, are produced during the second execution. After the
second execution, the resulting poset does not contain an N . Instead of

Figure 3. Execution of the algorithm

adding simultaneously the dummy vertices, we may add them successively.

Theorem 1.3. The algorithm starting with P0 := P and adding at step m

a dummy vertex on a diagonal edge of some N in Pm stops on P . Hence the
result and the number of steps does not depends upon the particular choice
of the diagonal edges choosen at each step.

Remarks 1.4. (1) If instead of the diagonal edges of P we consider
those of Diag(P ), one get the same conclusion as in Theorem 1.2
and Theorem 1.3 (see Remark 2.6 below ).

(2) A poset P can be embedded into an N -free poset which does not come
from a barycentric extension of its diagram, but a minimal one is
not necessarily isomorphic to P or to a quotient of P . The posets
represented in (b) and (d) of Figure 4 are minimal N -free extensions
of A and B; the first one is a quotient of A represented in (a) the
second is not a quotient of B represented in (c).

(3) P.A. Grillet considered infinite posets satisfying some regularity con-
dition. We restricted ourselves to finite posets. How our results
translate to the infinite?
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Figure 4. Minimal N -free extensions

The motivation for this research came from drawing of posets. A good
drawing solution that works for all posets is clearly out of reach. However, if
every poset can be embedded into another with a particular structure, and
at the same time these particular structures can be nicely drawn, then this
can lead to an interesting approximation of general ordered set drawing. In
[4] was presented an approach for drawing N -free posets. The algorithm,
called LR-drawing (LR for left-right), consists of three steps: The first step
is to convert P into an N -free poset Q. The second step is to apply the LR-
drawing to Q. The third and last step is to retrieve P from the drawing of Q.
The first part of the algorithm requiring to look at the possible extensions of
a poset into an N -free one, this suggested an other look at the barycentric
extensions of a poset and lead to the present results.

2. Proofs

In this section, we consider a finite poset P . A basic ingredient of the
proofs is the set A(P ) of (b, c) ∈ Diag(P )\Ndiag(P ) such that there are two
vertices a, d ∈ P such that a < c, b < d, (a, b), (c, d) ∈ Inc(P ), and either
(a, c) ∈ Ndiag(P ) or (b, d) ∈ Ndiag(P ). In our definition of members of A(P ),
we could have supposed a ≺ c and b ≺ d. The definition we choose is closer
to the one considered in Lemma 11 of Grillet’s paper.

An important feature of a barycentric subdivision is that each new element
has a unique upper cover and a unique lower cover. This fact is at the root
of the following lemma.

Lemma 2.1. Let P ′ be a barycentric subdivision of P and a, b, c, d ∈ P ′. If
a < c, b < d, (b, c) ∈ Diag(P ′) and (a, b), (d, c) ∈ Inc(P ′) then b, c ∈ P ; if,
moreover, (a, c), (b, d) ∈ Diag(P ′) and a < d then a, d ∈ P .

Proof. If b or c is not in P then (b, c) is a new edge, hence either b, or
c, is a dummy vertex. If b is a dummy vertex, we have c < d, whereas
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if c is a dummy vertex we have a < b, contradicting our hypothesis. If
a 6∈ P then (a, c) is a new edge and thus a is a dummy vertex on some edge
(a′, c) ∈ Diag(P ); from a < d, we get c < d, a contradiction. Applying this
to the dual poset P dual we get d ∈ P .

Lemma 2.2. Let {a, b, c, d} four elements of P such that (a, c), (b, d) ∈
Diag(P ), (b, c) ∈ Diag(P ) \ Ndiag(P ).

(1) a < d and if (a, d) 6∈ Diag(P ) then (a, c), (b, d) ∈ Ndiag(P );
(2) If (a, c) ∈ Ndiag(P ) then

(a) (x, b) ∈ Inc(P ) for every x ∈ P such that (a, x) ∈Diag (P) and
{a, c, x, y} witnesses the fact that (a, c) ∈ Ndiag(P ) for some
y ∈ P ;

(b) (a, d) ∈ Ndiag(P ) iff (a, d) ∈ Diag(P ).
(3) (a, c) ∈ Ndiag(P ) if and only if there is some x ∈ P such that (a, x) ∈

Diag(P ) and (x, b) ∈ Inc(P ).

Proof. (1) If a 6< d then {a, b, c, d} is an N in P hence (b, c) ∈ Ndiag(P )
contradicting the fact that (b, c) ∈ Diag(P )\Ndiag(P ). Let x ∈ P such that
a ≺ x ≤ d. Then {x, a, c, b} is an N in P hence (a, c) ∈ Ndiag(P ). With this

argument applied to P dual we get (b, d) ∈ Ndiag(P ).
(2) Suppose (a, c) ∈ Ndiag(P ). (i). Let x, y such that (a, x), (y, c) ∈

Diag(P ) such that {x, a, c, y} witnesses that (a, c) ∈ Ndiag(P ). If (x, b) 6∈
Inc(P ) then b < x. Let b′ ∈ P such that b ≺ b′ ≤ x. Then {y, c, b′, d} is an
N in P thus (b, c) ∈ Ndiag(P ) contradicting our hypothesis. (ii). Suppose
(a, d) ∈ Diag(P ). Let x, y as above. Since (x, b) ∈ Inc(P ), {x, a, d, b} is an
N in P , hence (a, d) ∈ Ndiag(P ). The converse is obvious.

(3) follows immediately from (2 − a).

Lemma 2.3. Ndiag(SN (P )) = A(P )

Proof. Set P ′ := SN (P ).
(a) Ndiag(P

′) ⊆ A(P ). Let (b, c) ∈ Ndiag(P
′).

Claim 1 (b, c) ∈ Diag(P ) \ Ndiag(P ). Moreover, if A := {a, b, c, d} is an
N in P ′ with a ≺P ′ c and b ≺P ′ d then a or d are in P ′ \ P .

Proof of Claim 1 According to Lemma 2.1 we have b, c ∈ P . Since
(b, c) ∈ Diag(P ′), it follows (b, c) ∈ Diag(P ) \ Ndiag(P ). Since b, c ∈ P ,
if a and d are in P then {a, b, c, d} is an N in P and thus (b, c) has been
subdivided, hence (b, c) 6∈ Diag(P ′) a contradiction.

Let A as above.
Case 1. a ∈ P ′ \ P . In this case a is a dummy vertex on some edge

(a′, c) ∈ Ndiag(P ). Since (b, d) ∈ Diag(P ′) there is some d′ ∈ P such that
b ≺P d′ and d ≤ d′ (d′ = d if d ∈ P , otherwise (b, d) ∈ Diag(P ′) in which
case d is a dummy vertex on (b, d′)). Thus A′ := {a′, b, c, d′} witnesses the
fact that (b, c) ∈ A(P ).

Case 2. d ∈ P ′ \ P . This case reduces to Case (1) above by considering
the dual poset P dual. From Claim 1 there is no other case. The proof of (a)
is complete.
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(b) A(P ) ⊆ Ndiag(P
′). Let (b, c) ∈ A(P ). Let {a, b, c, d}, with (a, c), (b, d) ∈

Diag(P ), witnessing it. If (a, c) ∈ Ndiag(P ), let u be a dummy vertex
on (a, c) then {u, c, b, d′}, where d′ := d if (b, d) 6∈ Ndiag(P ) and d′ is a
dummy vertex on (b, d) otherwise, is an N in P ′ hence (b, c) ∈ Ndiag(P

′). If

(b, d) ∈ Ndiag(P ), apply the above case to P dual.

Lemma 2.4. A(SN (P )) = ∅

Proof. Suppose the contrary. Set P ′ := SN (P ) and let (b, c) ∈ A(P ′).
Let A := {a, b, c, d}, with (a, c), (b, d) ∈ Diag(P ′), witnessing the fact that
(b, c) ∈ A(P ′). According to (1) of Lemma 2.2 applied to P ′, we have a < d.
Thus from Lemma 2.1, we have a, b, c, d ∈ P .

Case 1. (a, c) ∈ Ndiag(P
′). According to (3) of Lemma 2.2 applied to P ′

there is some x ∈ P ′ such that (a, x) ∈ Diag(P ′) and (x, b) ∈ Inc(P ′).
Next, x ∈ P ′ \P . Indeed, {x, a, c, b} is an N in P ′. Thus, if x ∈ P , this is

an N in P and (a, c) ∈ Ndiag(P ), hence a dummy vertex is added on (a, c)
in P ′ contradicting (a, c) ∈ Diag(P ′). Finally, we consider two subcases:

Subcase 1.1. (a, d) ∈ Diag(P ′). In this case, (x, d) ∈ Inc(P ) and,
since x 6∈ P , (a, x) ∈ Diag(P ′) \ Diag(P ). Hence, there is x′ ∈ P such
that x is a dummy vertex of (a, x′) ∈ Ndiag(P ). Let A′ := {x′, a, c, b}.
We have (a, c), (b, c) ∈ Diag(P ) \ Ndiag(P ) and (a, x′) ∈ Ndiag(P ). Thus
(a, c) ∈ A(P ). According to (1) of Lemma 2.2 (b, x′) ∈ Diag(P ). Next,
according to (3) of Lemma 2.2, there is some v ∈ P such that (v, x′) ∈
Diag(P ) and (v, c) ∈ Inc(P ). It follows that {v, x′, b, c} is an N in P hence
(b, x′) ∈ Ndiag(P ). If b′ is a dummy vertex on (b, x′) then {b′, b, c, a} is an
N in P ′ hence (b, c) ∈ Ndiag(P

′) contradicting (b, c) ∈ A(P ′). Thus this
subcase leads to a contradiction.

Subcase 2.2. (a, d) 6∈ Diag(P ′). In this case, we may suppose x < d.
In fact (x, d) ∈ Diag(P ′). Indeed, if (x, d) 6∈ Diag(P ′) then there is d′ ∈ P

such that x <P ′ d′ ≺P d. But, then {d′, d, c, b} is an N in P , thus (a, c) ∈
Ndiag(P ) proving that (a, c) 6∈ Diag(P ′) a contradiction. It follows that x

is a dummy vertex added on (a, d) ∈ Ndiag(P ). Since (a, d) ∈ Ndiag(P ),
(b, d) ∈ Diag(P ) \ Ndiag(P ) and (b, c) ∈ Diag(P ), (b, d) ∈ A(P ). Since
(a, c) ∈ Diag(P ) it follows from (2− b) of Lemma 2.2 that (a, c) ∈ Ndiag(P )
contradicting (a, c) ∈ Diag(P ′). This subcase leads to a contradiction too.

Case 2. (b, d) ∈ Ndiag(P
′). This case reduces to the previous one by

considering the dual poset P dual. Hence, it leads to a contradiction.
Consequently A(P ′) = ∅. The proof is complete.
Proof of Theorem 1.2. Let P ′ := SN (SN (P )). According to Lemma

2.3 and Lemma 2, Ndiag(P
′) = A(SN (P )) = ∅. Clearly, an N -free poset Q

associated with a barycentric subdivision of Diag(P ) must include SN (P ).
This applied to SN (P ) gives that Q contains P ′. Hence P ′ is the smallest
N -free poset coming from a barycentric subdivision of Diag(P ), thus it
coincides with the poset P constructed by P.A.Grillet.

Lemma 2.5. Let P ′ with P ⊆ P ′ ⊆ SN (SN (P )); then Ndiag(P
′) ⊆ Ndiag(P )∪

A(P ).
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Proof. Let (b, c) ∈ Ndiag(P
′). Suppose (b, c) 6∈ Ndiag(P ) ∪ A(P ). Let

Q := SN (SN (P )). We claim that (b, c) ∈ Ndiag(Q). Let A := {a, b, c, d}
be an N of P ′ witnessing the fact that (b, c) ∈ Ndiag(P

′). Since, from
Lemma 2.3 (b, c) 6∈ Ndiag(P ) ∪ Ndiag(SN (P )), (b, c) ∈ Diag(Q) thus A′ :=
{a′, b, c, d′} where a ≤ a′ ≺Q c and b ≺Q d′ is an N in Q proving our claim.
Next, with (b, c) ∈ Ndiag(Q) and Q := SN (SN (P )), we get from Lemma
2.3 that (b, c) ∈ A(SN (P )). Since, from Lemma , A(SN (P )) = ∅, we get a
contradiction. This proves the lemma.

Proof of Theorem 1.3 An immediate induction using Lemma 2.5 shows
that each Pm is a subset of Q := SN (SN (P )). Since Q is the least N -free
subset of S(P ) containing P the algorithm stops on Q. The number of steps
is the size of Ndiag(P ) ∪ A(P ).

Remarks 2.6. (1) Let NDdiag(P ) be the set of diagonal edges of the
N ’s in D(P ). Clearly, ND(P ) ⊆ Ndiag(P ) ∪ A(P ). Thus, with
the same proof as for Theorem 1.3, we obtain that the algorithm
consisting to add at step m a dummy vertex on an edge of some
N in D(Pm) ends on P . Similarly, with Lemma 2.5 we get that
NDdiag(NDdiag(P )) = P ;

(2) The fact that the algorithm given in Theorem 1.3 stops is obvious:
at each step, Pm is a subset of S(P ). The fact that the number of
steps in independent of the choosen edges is more significant. This
suggests a deepest investigation. We just note that if Pm contains
just one N then Pm+1 is N -free (we leave the proof to the reader).
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