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75252 Paris Cedex 05, France

e-mail: dalalyan@ccr.jussieu.fr

Université Paris VI

Abstract: The problem of estimating the centre of symmetry of an
unknown periodic function observed in Gaussian white noise is consid-
ered. Using the penalized blockwise James-Stein method, a smoothing
filter allowing to define the penalized profile likelihood is proposed. The
estimator of the centre of symmetry is then the maximizer of this penal-
ized profile likelihood. This estimator is shown to be semiparametrically
adaptive and efficient. Moreover, the second order term of its risk ex-
pansion is proved to behave at least as well as the second order term
for the best possible estimator using monotone smoothing filter. Under
mild assumptions, this estimator is shown to be second order minimax
sharp adaptive over the whole scale of Sobolev balls with smoothness
β > 1. Thus, these results improve on Dalalyan, Golubev and Tsybakov
(2003), where β ≥ 2 is required.
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1. Introduction

Extensive development of semiparametric models in recent years is in a great
part explained by the compromise they offer between the flexibility of non-
parametric modeling and the relative simplicity of theoretical treatment of
parametric models. In a regular semiparametric model, though the ignorance
of an infinite dimensional nuisance parameter, the finite-dimensional param-
eter of interest can be estimated as well as if the nuisance parameter were
known. More precisely, there are estimators not exploiting the value of the
nuisance parameter that have asymptotically the same quadratic risk as the
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2 A. S. Dalalyan

efficient estimators in the associated parametric model where the nuisance
parameter is known.

One of the most popular general methods allowing to construct efficient
estimators in a semiparametric model is perhaps the profile likelihood max-
imization. The asymptotic properties of this method are studied by Severini
and Wong (1992) and, in a more general fashion, by Murphy and van der
Vaart (2000). Profile likelihood techniques are effectively applied in a num-
ber of contexts such as laser vibrometry signals (Lavielle and Lévy-Leduc,
2004), varying coefficient partially linear models (Fan and Huang, 2005),
and so forth.

If the parameter of interest is partitioned as (ϑ, f), with ϑ being a low-
dimensional parameter of interest and f a higher dimensional nuisance pa-
rameter, and ln(ϑ, f) is the log-likelihood of the model, then the profile like-
lihood for ϑ is defined as pln(ϑ) = supf∈F ln(ϑ, f) and the Profile Likelihood
Estimator (PLE) is ϑPLE = arg maxϑ pln(ϑ). Thus, the nuisance parameter
f is eliminated by taking the sup over all possible values of f in some a
priori chosen class F (typically a set of two times differentiable functions
with somehow bounded second order derivative).

A natural question arises: what is the best way of choosing the class F and
what is the impact of this choice on the accuracy of the PLE. The theory
fails to answer this question as long as only the first order term of the risk is
considered. It appears that the most appealing way to study the dependence
on F of the accuracy of the PLE is to consider the second order term of the
quadratic risk. This approach is developed in Golubev and Härdle (2000)
for partial linear models and in Dalalyan et al. (2003) for a nonlinear model
with a shift parameter. It is shown there that the penalized PLE is second
order asymptotically efficient among all possible estimators of ϑ, whenever f
ranges over a ball in a Sobolev space. Analogous results for scaling parameter
estimation are obtained by Castillo (2005).

These results grant an increasing importance to the second order terms in
that they show that in a semiparametric estimation problem the second order
term is not dramatically smaller than the first order term, especially when
the nuisance parameter is not very smooth (or not very sparse). Thus, to
find a procedure minimizing the second order term is not only a challenging
theoretical problem, but also is of high practical interest.

Note that the study of second order term of the risk is important for other
methods (one-step procedure, invariance principle, etc.) of semiparametric
estimation as well. See Härdle and Tsybakov (1993), Mammen and Park
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Semiparametric Shift Estimation 3

(1997), Kang et al. (2000) for details. Interestingly, the investigation of sec-
ond order properties of semiparametric estimators contributes to the emer-
gence of the nonparametric techniques in semiparametrics.

In Golubev and Härdle (2000), Dalalyan et al. (2003) an estimator of ϑ min-
imizing asymptotically the second order term of the risk among all possible
estimators of ϑ is proposed. The parameter f is then assumed to belong to
a Sobolev ball with known smoothness and radius. In practice, the Statisti-
cian does not know the smoothness and the radius of the nuisance param-
eter exactly. Therefore, he should base his strategy on the worst possible
smoothness of f . The obvious drawback of this method is that the accuracy
of estimating ϑ will not be better for very smooth functions f than for func-
tions of low smoothness. This indicates that the adaptation to the unknown
smoothness widely investigated in nonparametrics can be of substantial use
in semiparametrics.

The main goal of the present paper is to define an estimator of ϑ which
adapts automatically to the smoothness of f and is simultaneously second
order efficient over a large variety of Sobolev balls. For linear models, such
a procedure has been proposed by Golubev and Härdle (2002). They use
the well known method of unbiased risk minimization in order to determine
the data driven filter. However, their procedure is provably second order
efficient only when the data driven filter is based on a relatively small part
of the sample. This sample-splitting technique is frequently used in theory
(cf. Bickel (1982), Pfanzagl (1990), p. 19), but it is rather unattractive from
the practical point of view.

In this paper, we use the celebrated blockwise shrinkage introduced by James
and Stein (1961) for estimating the mean of a multivariate normal distri-
bution. The efficiency of this method in nonparametric estimation has been
proven by Donoho and Johnstone (1995), Cai (1999), Cai and Low (2005)
for wavelets, by Cavalier and Tsybakov (2001,2002) for inverse problems and
by Rigollet (2004) for density estimation. The construction we use is closer
to the one of Cavalier and Tsybakov (2002) in that a penalized version of
the James-Stein estimator with weakly geometrically increasing blocks is
considered. We believe that, unlike in nonparametric inference, in semipara-
metric inference the penalization of the filter is crucial for the second order
efficiency.

To avoid technical difficulties, we focus here on a simple semiparametric
model previously considered in Dalalyan et al. (2003), namely the “signal in
Gaussian white noise” model with symmetric periodic signal. The shape of
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4 A. S. Dalalyan

the signal is unknown but only the centre of symmetry is to be estimated.
Our results improve on Dalalyan et al. (2003) in that the second order effi-
ciency is proven for smoothness β > 1 instead of β ≥ 2. A further key point
is that, unlike in Golubev and Härdle (2002), our procedure is not based on
the sample-splitting technique.

The paper is organized as follows. Section 2 describes the model and the
Penalized Maximum Likelihood Estimator (PMLE) based on a filtering se-
quence h. In Section 3, the local concavity of the penalized profile likelihood
is proven and the PMLE based on a data dependent choice of h is intro-
duced. Oracle inequalities for adaptive PMLE and its second order efficiency
over Sobolev balls are stated and proven in Section 4. Some numerical re-
sults are presented in Section 5. Finally, Section 6 contains the definition of
a preliminary estimator and the technical details of the proofs.

2. A simple semiparametric model

Consider the “signal in Gaussian white noise model”, that is the observations

dxε(t) = fϑ(t) dt + εdW (t), t ∈ [−1/2, 1/2], (1)

are available, where W (t) is a Brownian motion. Assume that the signal has
the form fϑ(t) = f(t− ϑ) where f : R → R is a symmetric periodic function
with period 1, that is f ∈ F0 with

F0 =
{
f ∈ L2([−1/2, 1/2]) : f(x) = f(−x), f(x) = f(x + 1), ∀x ∈ R

}
.

The goal is to estimate the parameter ϑ ∈ Θ ⊂] − T, T ] with T < 1/4.
The unknown function f is considered as an infinite dimensional nuisance
parameter.

For any integer k ≥ 1, let us denote

xk =
√

2

∫ 1/2

−1/2
cos(2πkt) dxε(t), x∗

k =
√

2

∫ 1/2

−1/2
sin(2πkt) dxε(t). (2)

Clearly,

{
xk = fk cos(2πkϑ) + εξk,

x∗
k = fk sin(2πkϑ) + εξ∗k,

(3)
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Semiparametric Shift Estimation 5

where fk =
√

2
∫ 1/2
−1/2 cos(2πkt) f(t) dt and (ξk, ξ

∗
k, k = 1, 2, . . .) are indepen-

dent standard Gaussian random variables. The first order asymptotic prop-
erties of estimators in closely related models have been studied by Golubev
(1990), Härdle and Marron (1990), Schick (1998,1999). This model is an
idealized version of the symmetric location model (Stone (1975), Mammen
and Park (1997)) and the shifted curves model (Gamboa et al. (2005) ).

Note that, the laws of likelihood processes (indexed by (ϑ, f) ∈ R × F0)
of the models (1) and (3) coincide implying thus the equivalence of these
models. The Fisher information when estimating ϑ in these models is Iε(f) =

ε−2
∫ 1/2
−1/2 f ′(x)2 dx = ε−2∑

k∈N(2πk)2f2
k .

In this paper, we estimate the parameter ϑ by a version of the well known
method of profile likelihood maximization (cf. van der Vaart (2001), p. 106),
namely the penalized maximum likelihood estimator such as it is defined
in Dalalyan, Golubev and Tsybakov (2003) ([DGT] hereafter). We recall
briefly its definition. Write Pϑ,f (resp. Eϑ,f ) for probability measure (resp.
expectation) induced by xε on the canonical space C([−1/2, 1/2]) equipped
with the Wiener measure. As no confusion is possible, we use the same
notation in the “sequence model” given by (3). The Radon density Lε(τ, f, ·)
of Pτ,f with respect to P0,0 is given by

Lε(τ, f, xε) = exp

(
ε−2

∫ 1/2

−1/2
f(t − τ) dxε(t) − ε−2

2

∫ 1/2

−1/2
f2(t) dt

)

= exp

(√
2

ε2

∞∑

k=1

fk

∫ 1/2

−1/2
cos[2πk(t − τ)] dxε(t) − 1

2ε2

∞∑

k=1

f2
k

)
.

Easy algebra yields

max
(fk)k∈RN

Lε(τ, f, xε) = exp

{
ε−2

∞∑

k=1

(∫ 1/2

−1/2
cos[2πk(t − τ)] dxε(t)

)2}
. (4)

For any τ ∈ R, this expression is equal to infinity for almost all paths xε.
Thus, some restrictions on the nuisance parameter f are necessary. How-
ever, the profile likelihood over suitable subsets of RN cannot be written
explicitly. To overcome this difficulty, we apply the profiling technique to
the penalized likelihood, where the penalization corresponds to ellipsoids in
ℓ2. More details on this method can be found in [DGT], we here content
ourselves with giving the final definition.

We call filtering sequence or filter any sequence h = (hk)k∈N ∈ [0, 1]N such
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6 A. S. Dalalyan

that only a finite number of hk are non-zero. Define the functional

Φε(τ, h) =
∞∑

k=1

hk

(∫ 1/2

−1/2
cos[2πk(t − τ)] dxε(t)

)2

. (5)

The PMLE of ϑ is then ϑ̂AD = arg maxτ Φε(τ, h). The role of the sequence
h is thus to filter out the irrelevant terms in the right side of (4), that is
to assign a value hk close to zero to the terms corresponding to a small
signal-to-noise ratio |fk|/ε.
For deterministic filters h, the asymptotic behavior of the estimator ϑ̂AD

has been studied in [DGT]. Under some smoothness assumptions on f , for
a broad choice of filters h, the first order asymptotic efficiency of ϑ̂AD is
proven. Moreover, it is shown that the second order term of its risk expansion
is ε2Rε[f, h]/‖f ′‖4, where

Rε[f, h] =
∞∑

k=1

(2πk)2
[
(1 − hk)

2f2
k + ε2h2

k

]
.

This result suggests to use the filter hopt = arg minh Rε[f, h] for defining
the PMLE of ϑ. However, this minimizer is inapplicable since it depends
on f . To get rid of this dependence, the minimax approach recommends
the utilization of the filter hF = arg infh supf∈F Rε[f, h]. If F is a ball in
a Sobolev space, a solution of this minimization problem is given by the
Pinsker filter (cf. Pinsker (1980)). Although this filter leads to a second
order minimax estimator of ϑ ([DGT], Thm. 2 and 3), it suffers from the well
known drawbacks of the minimax theory: the obtained estimator is rather
pessimistic and requires a quite precise information on the smoothness of
the unknown function.

The aim of the present paper is to propose a data-driven filter ĥ so that the
resulting PMLE of ϑ circumvents these drawbacks, more precisely, it mimics
well the behavior of the oracles related to some interesting and possibly
vast classes of estimators (for a fixed function f) and is second order sharp
adaptive over a broad scale of Sobolev balls.
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3. PMLE based on a data-driven filter

3.1. Local properties of Φε(τ, h)

Let us introduce some auxiliary notation:

yk(τ) = xk(τ) + ix∗
k(τ) =

√
2

∫ 1/2

−1/2
e2iπk(t−τ)dxε(t),

zk(τ) = ξk(τ) + iξ∗k(τ) =
√

2

∫ 1/2

−1/2
e2iπk(t−τ)dW (t).

We will write xk = xk(0), x∗
k = x∗

k(0) and similarly for ξk and ξ∗k. The sym-
metry of f implies that xk(ϑ) = fk + εξk(ϑ) and x∗

k(ϑ) = εξ∗k(ϑ). Moreover,
for all τ ∈ R, the random variables {ξi(τ), ξ∗i (τ); i ∈ N} are i.i.d. standard
Gaussian. Using these notation, the functional Φε can be rewritten as follows

Φε(τ, h) =
1

2

∞∑

k=1

hk

(
xk(ϑ) cos[2πk(τ − ϑ)] + x∗

k(ϑ) sin[2πk(τ − ϑ)]

)2

.

Our aim is to show that under some assumptions on h, the function Φε(·, h)
has, with a probability close to one, a local maximum in a neighborhood of
ϑ. Note that the derivative of the function τ 7→ Φε(τ, h) is given by

Φ′
ε(τ, h) = −

∞∑

k=1

hkπk(xk(ϑ)2 − x∗
k(ϑ)2) sin[4πk(τ − ϑ)]

+
∞∑

k=1

2hkπkxk(ϑ)x∗
k(ϑ) cos[4πk(τ − ϑ)]. (6)

Proposition 1. Let ‖f (β∗)‖2 =
∑

k(2πk)2β∗f2
k < ∞ for some β∗ > 1.5

and set β̂∗ = β∗ ∧ 1, Nε = [(ε2 log ε−5)−
1

2β∗+1 ]. Let h ∈ [0, 1]N be a random
vector depending on (xk, x

∗
k) only via x2

k +x∗
k
2. For any ε < 1, there exists an

event Aε such that Pϑ,f (Ac
ε) ≤ 2ε4 and on Aε ∩

{∑∞
k=1(1 − hk)(2πk)2f2

k ≤
‖f ′‖2/4

}
, for all ε verifying

N1−β̂∗

ε ≤ ‖f ′‖
2‖f (β∗)‖ + 6π

, (7)

the function τ 7→ Φε(τ, h) is strictly concave and admits a unique maximum
ϑ̂ε in the interval [ϑ − (4πNε)

−1, ϑ + (4πNε)
−1], satisfying

|ϑ̂ε − ϑ| ≤ 8ε
√

log ε−5 ‖f ′‖−1. (8)
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8 A. S. Dalalyan

Proof. Set Θε = [ϑ − (4πNε)
−1, ϑ + (4πNε)

−1]. Assume that (7) is fulfilled
and

∑∞
k=1(1− hk)(2πk)2f2

k ≤ ‖f ′‖2/4. On the one hand, the first inequality
of Proposition 4 (see Section 6.2 below) implies that, on Aε,

Φ′′
ε(τ, h) ≤ −‖f ′‖2 +

∞∑

k=1

(1 − hk)(2πk)2f2
k + ‖f ′‖2/4 ≤ −‖f ′‖2/2,

for all τ ∈ Θε and for ε small enough. Therefore, Φε(·, h) is strictly concave.
On the other hand, the second inequality of Proposition 4 implies that

Φ′
ε(τ, h)

τ − ϑ
≤ −‖f ′‖2

2
+

2ε(‖f ′‖
√

log ε−5 + 2πN1−β̂∗

ε )

|τ − ϑ|

≤ −‖f ′‖2

2
+

4ε
√

log ε−5 ‖f ′‖
|τ − ϑ| (9)

for sufficiently small values of ε. Therefore, ±Φε(ϑ±(4πNε)
−1, h) < 0, which

guarantees that the maximum ϑ̂ε of Φε(·, h) is attained in the interior of Θε

and Φ′
ε(ϑ̂ε, h) = 0. Applying (9) to τ = ϑ̂ε we get (8).

Remark 1. The choice Nε = [(ε2 log ε−5)
− 1

2β∗+1 ] has a simple interpreta-
tion. If f2

k ≤ ε2 for some k ∈ N, then the kth observation in (3) is not
relevant for estimating the parameter ϑ. Let K = {k ∈ N : f2

k > ε2} and
K = #K. Then

∑

k∈K

(2πk)2β∗f2
k ≥ ε2

∑

k∈K

(2πk)2β∗ ≥ ε2
K∑

k=1

(2πk)2β∗ ≥ ε2(2π)2β∗K2β∗+1

2β∗ + 1
.

Thus, the number K of Fourier coefficients fk larger than ε is at most

O(ε
− 2

2β∗+1 ). Thus, for ε small enough, all observations relevant for estimat-
ing ϑ lie in {y1, . . . , yN}.
Remark 2. In [DGT], the estimator ϑ̂AD is defined as the maximizer of
Φε(·, h) over the whole interval Θ. Instead, we define it as the local maxi-
mizer in the neighborhood of a preliminary estimator. This modification is
explained by the fact that the function τ 7→ Φε(τ, h) is only locally concave
when β∗ < 2. Furthermore, the computation of the local minimum is faster
than the computation of the global minimum.

Remark 3. Elaborating on the arguments of Proposition 1, it can be shown
that Thm. 1 from [DGT] remains true for β > 1, provided that ϑAD is defined
as the local maximizer of Φε(·, h) and condition B2 is replaced by hk = 0
for any k > Nε.
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Semiparametric Shift Estimation 9

3.2. Blockwise constant James-Stein filter with penalization

Let J be a positive integer and κ1, . . . , κJ+1 ∈ {1, . . . , Nε} be a strictly
increasing sequence such that κ1 = 1. Set Bj = {k ∈ N : κj ≤ k < κj+1}.
Let H∗(B) be the set of all filters h ∈ [0, 1]N that are constant on the blocks
B = {Bj}J

j=1:

h ∈ H∗(B) ⇐⇒ hk = hk′ , ∀ k, k′ ∈ Bj.

If the function f is known, we can choose the best possible filter h∗ ∈ H∗(B)
by minimizing Rε[f, h] over H∗(B). We call h∗ “oracle”. Simple computa-
tions show that

h∗
k =

‖f ′‖2
(j)

‖f ′‖2
(j) + ε2σ2

j

, k ∈ Bj , j = 1, . . . , J,

where ‖f ′‖2
(j) =

∑
k∈Bj

(2πk)2f2
k and σ2

j =
∑

k∈Bj
(2πk)2.

Since the oracle h∗ is unusable, we replace it by a suitable estimator. De-
note Rε

j [f, a] = (1 − a)2‖f ′‖2
(j) + ε2a2σ2

j so that Rε[f, h] =
∑

j Rε
j [f, hκj

] +
∑

k>Nε
(2πk)2f2

k . Then h∗
κj

is the minimizer of Rε
j [f, a] over a ∈ R. For small

values of h∗
κj

, the minimizer of

R̂ε
j [a] := (1 − a)2(‖y′‖2

(j) − 2ε2σ2
j )+ + ε2a2σ2

j ,

which is an estimator of Rε
j [f, a], can be large with respect to h∗

k. To avoid
such a configuration, we penalize the large values of a and define the esti-
mator ĥJS of h∗ as the minimum over [0, 1] of the function:

a 7→ R̂ε
j [a] + 2ϕjε

2σ2
j a,

where ϕj > 0 is a factor of penalization tending to zero. This leads us to the
penalized James-Stein filter

ĥJS
k =

(
1 −

ε2σ2
j (1 + ϕj)

(‖y′‖2
(j) − 2ε2σ2

j )+ + ε2σ2
j

)

+

, ∀k ∈ Bj, (10)

with ‖y′‖2
(j) =

∑
k∈Bj

(2πk)2|yk|2 and yk = xk + ix∗
k.
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10 A. S. Dalalyan

3.3. Weakly geometrically increasing blocks

The aim of this section is to propose a concrete scheme for defining the block-
wise constant data-driven filter. We use the weakly geometrically increasing
blocks introduced by Cavalier and Tsybakov (2001,2002). These blocks have
the advantage of being simple (the construction is driven by only one pa-
rameter) and of having good approximation properties with respect to the
class of monotone filters (cf. Cavalier and Tsybakov (2002), Lemma 1).

Let ν = νε be a positive integer that increases as ε decreases. Set ρε = ν
−1/3
ε

and define

κj =

{
(1 + νε)

j−1, j = 1, 2,

κj−1 + ⌊νερε(1 + ρε)
j−2⌋, j = 3, 4, . . . ,

(11)

where ⌊x⌋ stands for the largest integer strictly smaller than x. Let J be the
smallest integer j such that κj ≥ Nε + 1. We redefine κJ+1 = Nε + 1 and
set Bj = {κj , . . . , κj+1 − 1} for all j = 1, . . . , J .

3.4. Brief description of the procedure

The outlined scheme can be implemented as follows.

1. Choose a real number β∗ > 1 and set Nε = 5 ∨ [(ε2 log ε−5)
− 1

2β∗+1 ],

νε = e
√

log Nε and ρε = ν
−1/3
ε .

2. Define the sequence (κj)j by (11).
3. Set ϕj =

√
24 log ε−5/(κj+1 − κj), σ2

j =
∑

κj≤k<κj+1
(2πk)2 and define

the data-dependent filter ĥJS by (10).
4. Compute the preliminary estimator ϑ̄ε and set Θ̄ε = [ϑ̄ε − δ, ϑ̄ε + δ]

with δε = ε log(ε−2).
5. Define ϑ̂ε as the minimum in Θ̄ε of Φε(·, ĥJS) (see (5)).

Note that the only “free” parameter in this procedure is β∗. In practice, if
no information on the regularity of f is available, it appears plausible to
assume that f has Sobolev smoothness β∗ = 2. This is the value we use in
simulations.

Motivated by Remark 1, we recommend to replace Nε in practice by Nε ∧
[3ε−

2
3 ‖̂f ′‖

2
3 /(4π2)], where ‖̂f ′‖2 is a rate optimal estimator of ‖f ′‖2 (see, for

example, Fan (1991), Efromovich and Samarov (2000)). Additionally, it may
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Semiparametric Shift Estimation 11

be useful to multiply δε by the estimated standard deviation of ϑ̄ε. These
changes do not affect the rates of Nε and δε, therefore our theoretical results
remain true after these modifications.

4. Main theoretical results

4.1. Comparison with the blockwise constant oracle

In this section, ĥJS denotes the blockwise constant filter defined by (10), ϕj

is the penalization we use on the block Bj and ϕε = maxj ϕj . We emphasize
that in this section no condition on the blocks Bj is required. Let Tj be the
length of the block Bj and Tε = infj Tj. The oracle choice of h in the class
H∗(B) of all filters constant on the blocks B = {Bj}j is denoted by h∗.
Define

ϑ̂JS
ε = arg max

τ∈Θ̄ε

Φε(τ, ĥ
JS), (12)

where Θ̄ε = [ϑ̄ε − δε, ϑ̄ε + δε] and ϑ̄ε is a rate optimal initial estimator of ϑ
(cf. Section 6.1). Introduce the functional class

F(β∗, L∗, ρ) =

{
f ∈ F0 → R : f(x) = f(−x), ‖f (β∗)‖ ≤ L∗, |f1| ≥ ρ

}
,

where β∗ > 1, ρ > 0, L∗ > 0 are some constants.

Theorem 1. Let ϑ̂JS
ε be defined by (12) with blocks Bj verifying log ε−1 =

o(Tε) as ε → 0. If the penalty ϕj is equal to
√

24T−1
j log ε−5, then

ε−2‖f ′‖2Eϑ,f [(ϑ̂JS
ε − ϑ)2] ≤ 1 + (1 + αε)

Rε[f, h∗]

‖f ′‖2
,

where αε → 0 as ε → 0 uniformly in f ∈ F(β∗, L∗, ρ).

Remark 4. If the block Bj is large, then more observations (xk, x
∗
k) are

used for estimating the value of the oracle h∗
κj

. Hence, it is natural to expect
that αε decreases as Tε increases. A thorough inspection of the proof allows
to describe this feature with the help of the order relation α2

ε ≍ T−1
ε log ε−1.

Proof. Let us denote E = {ĥJS
k ∈ [h∗

k−
√

8ϕj(k)(1−h∗
k), h∗

k], ∀k = 1, . . . , Nε}
and h̃ = ĥJS1lE , where j(k) is the number of the block containing k. Lemma 5
implies that Pϑ,f (Ec) ≤ 2ε4. For ε small enough, we have (1−h̃k) ≤ 2(1−h∗

k)

and the inequality
∑

k(1 − ĥk)(2πk)2f2
k ≤ ‖f ′‖2/4 is fulfilled on E .
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By virtue of Proposition 3, for sufficiently small values of ε, the event A0 ={
|ϑ̄ε−ϑ| ≤ ( 1

4πNε
− δε

)∧ (δε − 8ε
√

log ε−5

‖f ′‖

)}
verifies Pϑ,f (Ac

0) = O(ε4). It can

be checked that on A0,
[
ϑ ± 8ε

√
log ε−5

‖f ′‖

]
⊂ [ϑ̄ε ± δε] ⊂

[
ϑ ± 1

4πNε

]
, where we

have used the notation [ϑ ± δ] := [ϑ − δ, ϑ + δ].

According to Proposition 1, on the event A1 = A0 ∩ Aε ∩ E , the function
Φε(·, ĥ) is strictly concave and has a unique maximum in [ϑ̄ε±δε]. Hence the
estimator ϑ̂JS

ε verifies Φ′
ε(ϑ̂

JS
ε , h̃) = 0 on the event A1. By Taylor’s formula,

there exits a point ϑ̃ ∈ [ϑ, ϑ̂JS
ε ] such that

0 = Φ′
ε(ϑ̂

JS
ε , h̃) = Φ′

ε(ϑ, h̃) + (ϑ̂JS
ε − ϑ)Φ′′

ε(ϑ, h̃) +
(ϑ̂JS

ε − ϑ)2

2
Φ′′′

ε (ϑ̃, h̃).

Therefore, on A1,

ϑ̂JS
ε − ϑ = − Φ′

ε(ϑ, h̃)

Φ′′
ε(ϑ, h̃) + 1

2(ϑ̂JS
ε − ϑ)Φ′′′

ε (ϑ̃, h̃)
.

Using (6), one checks that

Φ′′
ε(ϑ, h̃) = −

∞∑

k=1

hk(2πk)2[(fk + εξk(ϑ))2 − ε2ξ∗k(ϑ)2].

In the sequel, we write ξk, ξ
∗
k instead of ξk(ϑ), ξ∗k(ϑ). On the one hand, Lem-

mas 6, 7 (with x2 = log ε−5) and 8 combined with (22) imply that, on an
event A2 of probability higher than 1 − 4ε4, we have

Φ′′
ε(ϑ, h̃) = −‖f ′‖2 +

∞∑

k=1

(1 − h∗
k)(2πk)2f2

k − 2ε
N∑

k=1

h∗
k(2πk)2fkξk + o(Rε)

= −‖f ′‖2(1 − ‖f ′‖−2Rε[f, h∗] − ζ − o(Rε[f, h∗])),

where ζ = 2ε‖f ′‖−2∑
k h∗

k(2πk)2fkξk is a zero mean Gaussian random vari-
able. By virtue of (16), its variance verifies

4ε2
N∑

k=1

h∗
k
2(2πk)4f2

k ≤ 12ε2

minj Tj

J∑

j=1

h∗
κj

2σ2
j‖f ′‖2

(j) ≤
12‖f ′‖2Rε[f, h∗]

Tε
. (13)

Therefore, Eϑ,f [ζ2p]1/p = o(Rε[f, h∗]) for any p > 0. On the other hand, in
view of Lemma 9, there is an event A3 such that Pϑ,f (Ac

3) = O(ε4) and

(ϑ̂JS
ε − ϑ)Φ′′′

ε (ϑ̃, h̃) = o(Rε)
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on this event. Using the inequality (1 − x)−2 ≤ 1 + 2x + 16x2 for all x ∈
[−1/2, 1/2], we get

‖f ′‖4(ϑ̂JS
ε − ϑ)2 =

Φ′
ε(ϑ, h̃)2

(
1 − ‖f ′‖−2Rε[f, h∗] − ζ − o(Rε)

)2

≤ Φ′
ε(ϑ, h̃)2 + 2Φ′

ε(ϑ, h̃)2(‖f ′‖−2Rε[f, h∗] + ζ) + o(ε2Rε),

on the event A4 = A1 ∩ A2 ∩ A3. Using Lemma 3, we infer that

Eϑ,f [Φ′
ε(ϑ, h̃)2] ≤ ε2‖f ′‖2 + ε2

∞∑

k=1

(2πk)2[(h∗
k
2 − 1)f2

k + h∗
k
2ε2]

= ε2(‖f ′‖2 − Rε[f, h∗]).

Combining these relations with Lemmas 10 and 11, we get an event A such
that Pϑ,f (Ac) = O(ε4) and

‖f ′‖4Eϑ,f [(ϑ̂JS
ε − ϑ)21lA] ≤ Eϑ,f [Φ′

ε(ϑ, h̃)2]

(
1 +

2Rε[f, h∗]

‖f ′‖2

)
+ o(ε2Rε[f, h∗])

≤ ε2‖f ′‖2 + ε2Rε[f, h∗] + o(ε2Rε[f, h∗]).

Since |ϑ̂JS
ε − ϑ| ≤ 1, we have Eϑ,f [(ϑ̂JS

ε − ϑ)21lAc ] ≤ Pϑ,f (Ac) = O(ε4). In

view of (23), ε2 = o(Rε[f, h∗]). Therefore Eϑ,f [(ϑ̂JS
ε − ϑ)21lAc ] = O(ε4) =

o(ε2Rε[f, h∗]) and the assertion of the theorem follows.

4.2. Comparison with the monotone oracle

Now we consider the class Hmon of filters having decreasing components,
that is

Hmon =
{
h ∈ [0, 1]N : hk ≥ hk+1, 1 ≤ k ≤ Nε − 1

}
.

The class Hmon is of high interest in statistics because it contains the most
common filters such as the projection filter, the Pinsker filter, the Tikhonov
or smoothing spline filter and so forth. See Efromovich (1997), Ch. 7 for a
comprehensive overview on adaptive filtering.

Proposition 2. Set γε = max1≤j≤J−1(σ
2
j+1/σ

2
j ). Then

Rε[f, h∗] ≤ γε inf
h∈Hmon

Rε[f, h] + ε2σ2
1.
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14 A. S. Dalalyan

A more general version of this result is Lemma 1 in Cavalier and Tsybakov
(2002). Since the proof in our setting is simple, we give it below.

Proof. Let h be a filter from Hmon. Define h̄ by h̄k = hκj
if k ∈ Bj for some

j and h̄k = 0 if k > Nε. Since the components of h are decreasing, we have
1 − h̄k ≤ 1 − hk and therefore

Rε[f, h̄] ≤
N∑

k=1

(1 − hk)2(2πk)2f2
k + ε2

J∑

j=1

h2
κj

σ2
j . (14)

Again by monotonicity of h, we have hκj
≤ hk for all k ∈ Bj−1. Hence,

J∑

j=2

h2
κj

σ2
j ≤ γε

J∑

j=2

h2
κj

σ2
j−1 ≤ γε

N∑

k=1

h2
k(2πk)2.

Combining this inequality with (14) and bounding h1 by 1, we get Rε[f, h̄] ≤
γεR

ε[f, h] + σ2
1. Since h̄ ∈ H∗ and h∗ minimizes Rε[f, h] over all h ∈ H∗, we

have Rε[f, h∗] ≤ γεR
ε[f, h]+ε2σ2

1 . This inequality holds for every h ∈ Hmon,
therefore the assertion of the proposition follows.

Combining this proposition with Theorem 1 we get the following result.

Corollary 1. Assume that the conditions of Theorem 1 are fulfilled, then

ε−2‖f ′‖2Eϑ,f [(ϑ̂JS
ε − ϑ)2] ≤ 1 + γε(1 + αε)

minh∈Hmon Rε[f, h]

‖f ′‖2
,

where αε → 0 as ε → 0 uniformly in f ∈ F(β∗, L∗, ρ).

Remark 5. For the blocks defined by (11), we have Tε = νερε(1 + ρε),
σ2

1 ≤ 4π2ν3
ε and −νερε+νε(1+ρε)

j ≤ κj+1 ≤ 1+νε(1+ρε)
j . One also checks

that γε = maxj σ2
j+1/σ

2
j is asymptotically equivalent to (1 + ρε)

3 ∼ 1 + 3ρε

as ε → 0. Therefore the factor in the oracle inequality of Corollary 1 is of
order (1 + 3ρε + αε). We have already mentioned that α2

ε = O(T−1
ε log ε−1).

The trade-off between αε and ρε leads us to ρε ≍ ν
−1/3
ε . This clarifies our

choice of ρε slightly differing from the one of Cavalier and Tsybakov (2002).

4.3. Second order minimax sharp adaptation

To complete the theoretical analysis, we show below that the estimator ϑ̂JS
ε

corresponding to the blocks (11) enjoys minimax properties over a large scale
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of Sobolev balls. Assume that f̄ ∈ F(β∗, L∗, ρ) and define

Fδ,β,L(f̄) =
{
f = f̄ + v : ‖v‖ ≤ δ, ‖v(β)‖ ≤ L

}
.

Theorem 2. Assume that νε verifies ε
2

2β+1 νε → 0 as ε → 0 and the condi-
tions of Theorem 1 are fulfilled. If δ is small enough and f̄ ∈ F(β∗, L∗, ρ)
with β∗ > β ≥ β∗, then the estimator ϑ̂JS

ε defined in Section 3.4 satisfies

sup
ϑ∈Θ,f∈Fδ,β,L(f̄)

ε−2‖f ′‖2Eϑ,f [(ϑ̂JS
ε − ϑ)2] ≤ 1 + (1 + o(1))

C(β,L)ε
4β−4
2β+1

‖f̄ ′‖2
,

when ε → 0, with C(β,L) = 1
3

( β−1
2π(β+2)

) 2β−2
2β+1 (L(2β + 1))

3
2β+1 . Moreover, the

following lower bound holds:

inf
ϑ̄ε

sup
ϑ∈Θ,f∈Fδ,β,L(f̄)

ε−2‖f ′‖2Eϑ,f [(ϑ̃ε − ϑ)2] ≥ 1 + (1 + o(1))
C(β,L)ε

4β−4
2β+1

‖f̄ ′‖2
,

where the inf is taken over all possible estimators ϑ̃ε.

Proof. According to Lemma 12, there exists a filter λ∗ ∈ Hmon such that

supf∈Fδ,β,L(f̄) Rε[f, λ∗]/‖f ′‖2 ≤ (1 + o(1))C(β,L)ε
4β−4
2β+1‖f̄ ′‖−2. Combining

this result with Corollary 1, we get the first inequality. The second inequality
is Theorem 2 of [DGT]. Although the latter is stated for β ≥ 2, a thorough
inspection of its proof shows that the same claim is true for any β > 1.

5. Numerical results

We now assess the finite-sample performance of the estimator ϑ̂JS
ε via Monte

Carlo simulations. The main aim is to illustrate that (a) the second order
efficiency is important even for moderate sample sizes, (b) the penalization
used in the James-Stein filter improves the quality of estimation.

Example 1. The first example deals with a very smooth function. Set

g(t) = sin[1 + cos(2πt) − cos(4πt) − cos(6πt)] + sin2(2πt),

f(t) = 10g(t(1 − t)) and ϑ = 0. The curve of this function is given in
Figure 1. We draw 50000 random samples of size n = ε−2 = 2k · 50 for
k = 1, . . . , 14. Table 1 contains the Means of the Squared Errors (MSE) of
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16 A. S. Dalalyan

Table 1: MSE with 50000 replications for Example 1.

n ϑ̄ ϑPr ϑ̂JS ϑ̃JS

100 7.6686 1.0161 1.0200 1.0195
200 7.6586 1.0310 1.0242 1.0243
400 7.6892 1.0217 1.0070 1.0096
800 7.6911 1.0276 1.0083 1.0111

1600 7.7292 1.0348 1.0120 1.0146
3200 7.6115 1.0251 1.0036 1.0057
6400 7.7707 1.0307 1.0097 1.0112

12800 7.7878 1.0276 1.0068 1.0083
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Figure 1. The function of Ex. 1. Figure 2. The function of Ex. 2.

different estimators normalized by the Fisher information ε−2‖f ′‖2. Here ϑ̄ is
the preliminary estimator of Section 6.1, ϑ̂JS is the estimator we recommend
(Section 3.4), ϑ̃JS is the same estimator without penalization (ϕj = 0) and
ϑPr is the PMLE based on the projection filter hk = 1l(k ≤ 2ν). Note that
ϑPr is asymptotically efficient according to [DGT], Thm. 1.

Example 2. The second example deals with a less regular function (cf.
Figure 2). It is given by f(t) = 2 sin2(πt) − cos3(16πt) − cos4(10πt). The
true value of the parameter ϑ is 0. The number of replications is 50000. We
see from Table 2 that in this example, as in the previous one, the estimator
ϑ̂JS almost always outperforms the other procedures.
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Table 2: MSE with 50000 replications for Example 2.

n ϑ̄ ϑPr ϑ̂JS ϑ̃JS

200 105.2159 31.4007 31.4208 31.4696
400 104.5065 3.8246 3.8245 3.8221
800 105.0829 1.6813 1.6581 1.6597

1600 104.7602 1.0514 1.0443 1.0436
3200 103.6639 1.0280 1.0324 1.0295
6400 103.3527 1.0282 1.0106 1.0126

12800 103.9512 1.0204 1.0011 1.0028
25600 104.8528 1.0268 1.0009 1.0029
51200 104.2793 1.0339 1.0071 1.0092

102400 104.9999 1.0268 1.0027 1.0040

The MatLab code of this procedure is available on request. It is also down-
loadable from http://proba.jussieu.fr/pageperso/dalalyan/Eng/research.html.

6. Preliminary estimator and technical lemmas

6.1. Preliminary estimator

Having the observation (xε(t), |t| ≤ 1/2), we can compute x1, x
∗
1 by (2).

Then we have x1 = f1 cos(2πϑ) + εξ1 and x∗
1 = f1 sin(2πϑ) + εξ∗1 , where ξ1,

ξ∗1 are independent standard Gaussian random variables. We define

ϑ̄ε =
1

2π
arctan

(
x∗

1

x1

)
,

if x1 6= 0 and ϑ̄ε = 1/4 if x1 = 0. One easily checks that ϑ̄ε is the max-
imum likelihood estimator in the model induced by observations (x1, x

∗
1).

The following result describes its asymptotic behavior.

Proposition 3. If ε is sufficiently small, then

sup
|ϑ|≤T

Pϑ,f

(|ϑ̄ε − ϑ| ≥ x
) ≤ exp

(
− x2f2

1 cos2(2πT )

2π2ε2

)
,

for all x ∈ [0, 1/2] and for all T < 1/4.
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18 A. S. Dalalyan

Proof. Let us introduce X =
√

ξ2
1 + ξ∗1

2. One checks that sin[2π(ϑ̄ε − ϑ)] =

ε(ξ1 sin(2πϑ̄ε) − ξ∗1 cos(2πϑ̄ε))f
−1
1 . The Cauchy-Schwarz inequality yields

| sin[2π(ϑ̄ε − ϑ)]| ≤ εX|f−1
1 |. Since ϑ ∈ [−1/4, 1/4] and ϑ̄ε ∈ [−T, T ], we

have sin[2π(ϑ̄ε−ϑ)]
2π(ϑ̄ε−ϑ)

≥ sin(2π(T+1/4))
4πT ≥ cos(2πT )

π . Therefore,

Pϑ,f

(|ϑ̄ε − ϑ| ≥ x
) ≤ Pϑ,f

(
π| sin[2π(ϑ̄ε − ϑ)]|

cos(2πT )
≥ x

)

≤ Pϑ,f

(
X ≥ x(πε)−1|f1| cos(2πT )

)
,

and the fact that X2/2 follows the law E (1) completes the proof.

6.2. Proofs of Lemmas used in Proposition 1

Let us start with some basic facts that will be often used in the proofs. For
any n,m, p ∈ N, we have

np(n − m) ≥
n∑

k=m+1

kp ≥ np(n − m)

p + 1
. (15)

Applying this inequality to p = 2, we get

max
k∈Bj

(2πk)2 ≤ 3σ2
j /Tj . (16)

Assume now that ξ is a random variable of law N (0, 1). For any σ2 ≤ 1/4,
we have (1 − 2σ2)−1 ≤ 2 and (1 − 2σ2)−1/2 ≤ e2σ2

, therefore

E[e(µ+σξ)2 ] =
e

µ2

(1−2σ2)

√
1 − 2σ2

≤ e
µ2

(1−2σ2)
+σ2

≤ exp
(
2µ2 + 2σ2). (17)

Using the more precise inequalities (1 − 2σ2)−1 ≤ 1 + 4σ2 and log(1 −
2σ2)−1 ≤ 2σ2 + 4σ4, we get E[e(µ+σξ)2 ] ≤ exp(µ2 + σ2 + 2σ2(2µ2 + σ2)) or
equivalently,

E[e2µσξ+σ2(ξ2−1)] ≤ e2σ2(2µ2+σ2). (18)

Throughout this section, we assume that ‖f (β∗)‖2 =
∑

k(2πk)2β∗f2
k < ∞ for

some β∗ > 1, Nε = [(ε2 log ε−5)−
1

2β∗+1 ] and h ∈ [0, 1]Nε is a random vector
depending on (xk, x

∗
k) only via x2

k + x∗
k
2. Without loss of generality, we give

the proofs in the case ϑ = 0.
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Lemma 1. Set β̂∗ = β∗ ∧ 1.5. For all τ such that 4π|τ − ϑ| ≤ N−1
ε ,

∣∣∣∣Φ′′
ε(τ, h) +

N∑

k=1

(2πk)2hkf
2
k

∣∣∣∣ ≤ N2−2β̂∗

ε

(
‖f (β∗)‖ + 2πX̂/

√
log ε−5

)2
,

where X̂ = max1≤k≤Nε

√
ξ2
k + ξ∗k

2.

Proof. One easily checks that

Φ′′
ε(ϑ + τ, h) = −

N∑

k=1

(2πk)2hkf
2
k cos[4πkτ ]

− 2ε
N∑

k=1

(2πk)2hkfk(ξk cos[4πkτ ] + ξ∗k sin[4πkτ ])

− ε2
N∑

k=1

(2πk)2hk

[
(ξ2

k − ξ∗k
2) cos[4πkτ ] + 2ξ∗kξk sin[4πkτ ]

]
.

On the one hand, thanks to inequality |1 − cos x| ≤ |x|,
∣∣∣∣

N∑

k=1

(2πk)2hkf
2
k (1 − cos[4πkτ ])

∣∣∣∣ ≤ 2τ
N∑

k=1

(2πk)3f2
k

≤ 2τ(2πNε)
3−2β̂∗‖f (β∗)‖2

≤ N2−2β̂∗

ε ‖f (β∗)‖2.

On the other hand, the Cauchy-Schwarz inequality yields ξk cos[4πkτ ] +
ξ∗k sin[4πkτ ] ≤ X̂ and (ξ2

k−ξ∗k
2) cos[4πkτ ]+2ξ∗kξk sin[4πkτ ] ≤ X̂2. Therefore,

it holds

∣∣∣∣
N∑

k=1

(2πk)2hkfk(ξk cos[4πkτ ] + ξ∗k sin[4πkτ ])

∣∣∣∣ ≤ X̂
N∑

k=1

(2πk)2|fk|

≤ X̂‖f (β∗)‖

√√√√
N∑

k=1

(2πk)4−2β∗ ≤ 2πX̂N
5
2
−β̂∗

ε ‖f (β∗)‖,

and

∣∣∣∣
N∑

k=1

(2πk)2hk

[
(ξ2

k − ξ∗k
2) cos[4πkτ ] + 2ξ∗kξk sin[4πkτ ]

]∣∣∣∣ ≤ 4π2N3
ε X̂2.
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Taking into account the identity ε2N3
ε = N2−2β∗

ε / log(ε−5), for all τ verifying
|τ | ≤ (4πNε)

−1, we get

∣∣∣∣Φ
′′
ε(ϑ + τ, h) +

N∑

k=1

hk(2πk)2f2
k

∣∣∣∣ ≤ N2−2β̂∗

ε (‖f (β∗)‖2 + 2πX̂/
√

log ε−5)2

and the assertion of the lemma follows.

Lemma 2. Let h ∈ [0, 1]N be a random vector depending on (xk, x
∗
k) only

via x2
k + x∗

k
2. For any x ∈ [0,

√
Nε/6], it holds

Pϑ,f

(
|Φ′

ε(ϑ, h)| > 2xε(‖f ′‖ + 2πεN3/2
ε )

)
≤ 2e−x2

Proof. The random variables Xk = (2πk)(fk + εξk)ξ
∗
k, k = 1, . . . , Nε and

h1, . . . , hN fulfill the conditions of Lemma 14 with ̺∗k = 1, Tk = 1/(2
√

2πkε),
g2
k = (2πk)2(f2

k + ε2), since due to (17),

E[etXk ] = E[e(2πkt)2(fk+εξk)2/2] ≤ e(2πkt)2(f2
k
+ε2). (19)

By definition, Φ′
ε(ϑ, h) = ε

∑Nε

k=1 hkXk, and therefore,

Pϑ,f

(
|Φ′

ε(ϑ, h)| ≥ 2xε
( N∑

k=1

(2πk)2(f2
k + ε2)

)1/2)
≤ 2e−x2

for all x ∈ [0, (
∑

k(2πk)2(f2
k + ε2))1/2/(2

√
2πNεε)]. To complete the proof,

it suffices to remark that
∑N

k=1(2πk)2(f2
k + ε2)

8π2N2
ε ε2

≥
∑N

k=1 k2

2N2
ε

≥ Nε

6

and
∑N

k=1(2πk)2(f2
k + ε2) ≤ (‖f ′‖ + ε(2π)N

3/2
ε )2.

Proposition 4. Assume that ‖f (β∗‖ < ∞ for some β∗ > 1 and set β̂∗ = β∗∧
1.5. There exists an event Aε such that for every ε < 1/2, Pϑ,f (Aε) ≥ 1−2ε4

and on Aε it holds:

Φ′′
ε(τ, h) ≤ −

N∑

k=1

hk(2πk)2f2
k + N2−2β̂∗

ε

(‖f (β∗)‖ + 3π
)2

(20)

Φ′
ε(τ, h)

τ − ϑ
≤ −

N∑

k=1

hk(2πk)2f2
k + N2−2β̂∗

ε

(‖f (β∗)‖ + 3π
)2

+
2ε(‖f ′‖

√
log ε−5 + 2πN1−β∗

ε )

|τ − ϑ| . (21)

for all τ ∈ [ϑ − (4πNε)
−1, ϑ + (4πNε)

−1].
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Proof. According to Lemma 1, we have

Φ′′
ε(τ, h) ≤ −

N∑

k=1

hk(2πk)2f2
k + N2−2β̂∗

ε

(‖f (β∗)‖ + 2πX̂/
√

log ε−5
)2

.

Since for every k, X2
k/2 = (ξ2

k + ξ∗k
2)/2 follows the exponential law with

mean 1, we have

P
(
4X̂2 > 9 log ε−5) ≤ NεP(X2

1/2 > log ε−5) ≤ Nεε
5 ≤ ε4.

This inequality completes the proof of (20).

To prove (21), note that for some τ̃ ∈ [ϑ, τ ], we have Φ′
ε(τ, h) = Φ′

ε(ϑ, h) +
(τ − ϑ)Φ′′

ε(τ̃ , h). Lemma 2 and (20) yield (21).

6.3. Lemmas used in Theorem 1

Let us start with some simple algebra allowing to obtain a rough evaluation
of Rε[f, h∗], where h∗ is the ideal filter an oracle would choose in the class
of blockwise constant filters. For this filter h∗, it holds

Rε[f, h∗] =
J∑

j=1

ε2σ2
j ‖f ′‖2

(j)

‖f ′‖2
(j) + ε2σ2

j

+
∑

k>Nε

(2πk)2f2
k .

Using the explicit form of h∗
k, we get

Rε[f, h∗] =
∞∑

k=1

(1 − h∗
k)(2πk)2f2

k ≥ ε2
N∑

k=1

h∗
k(2πk)2. (22)

Since ε2N3
ε → 0 as ε → 0, we have Rε[f, h∗] ≤ (2π)2ε2N3

ε → 0 as ε → 0.
In view of ‖f ′‖2

(1) ≥ 4π2ρ2 and ε2σ2
1 ≤ 4π2ε2N3

ε → 0 as ε → 0, for ε small

enough the inequality ε2σ2
1 ≤ ‖f ′‖2

(1) holds. Therefore,

Rε[f, h∗] ≥
ε2σ2

1‖f ′‖2
(1)

‖f ′‖2
(1) + ε2σ2

1

≥ ε2σ2
1

2
. (23)

Hence, for every function f , the quantity Rε[f, h∗] tends to zero as ε → 0
slower than ε2 and faster than ε2N3

ε .

Lemma 3. It holds E[Φ′
ε(ϑ, h̃)2] ≤ ε2

N∑

k=1

h∗
k
2(2πk)2(f2

k + ε2).
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Proof. Using (6), one checks that

Φ′
ε(ϑ, h̃) = ε

N∑

k=1

h̃k(2πk)(fk + εξk(ϑ))ξ∗k(ϑ). (24)

In the sequel, we write ξk, ξ
∗
k instead of ξk(ϑ), ξ∗k(ϑ). For any k′ 6= k, the

random variable h̃k(fk + εξk)ξ
∗
kh̃k′(fk′ + εξk′)ξ∗k′ is symmetric. Therefore it

has zero mean and

E[Φ′
ε(ϑ, h̃)2] = ε2

N∑

k=1

(2πk)2E
[
h̃2

k(fk + εξk)
2ξ∗k

2]

≤ ε2
N∑

k=1

(2πk)2h∗
k
2E
[
(fk + εξk)

2ξ∗k
2],

and the assertion of the lemma follows.

Lemma 4. Let us denote

ηj =
2ε
∑

k∈Bj
(2πk)2fkξk + ε2∑

k∈Bj
(2πk)2(ξ2

k + ξ∗k
2 − 2)

‖f ′‖2
(j) + ε2σ2

j

.

For any positive x such that x2 ≤ Tj/10, it holds

P

(
|ηj | > x

√
24(1 − h∗

κj
)T−1

j

)
≤ 2e−x2

.

Proof. Set Yk = 2ε(2πk)2fkξk + ε2(2πk)2(ξ2
k + ξ∗k

2 − 2), σ = ε(2πk)
√

t and
µ = (2πk)fk

√
t. Using (18) we infer that

E[etYk ] = E[e2µσξk+σ2(ξ2
k
−1)]E[eσ2(ξ∗

k
2−1)] ≤ e4σ2(µ2+σ2)

= e4ε2(2πk)4t2(f2
k
+ε2)

as soon as σ = ε(2πk)
√

t ≤ 1/2, or equivalently t ≤ 1/4ε2(2πk)2. By [27,
Thm. 2.7], for any x > 0, we get

P

(∣∣∣∣
∑

k∈Bj

Yj

∣∣∣∣ ≥ x
(
2
∑

k∈Bj

4ε2(2πk)4(f2
k + ε2)

)1/2
)
≤ 2e−x2(1∧Qεx−1)

where

Qε =
(8ε2∑

k∈Bj
(2πk)4(f2

k + ε2))1/2

4(2επκj+1)2
.
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It is clear that

Qε ≥
(8
∑

k∈Bj
(2πk)4)1/2

4(2πκj+1)2
≥

(8(2π)4κ4
j+1Tj/5)

1/2

4(2πκj+1)2
≥
√

Tj/10

∑

k∈Bj

(2πk)4(f2
k + ε2) ≤ (2πκj+1)

2(‖f ′‖2
(j) + ε2σ2

j ) ≤ 3T−1
j σ2

j (‖f ′‖2
(j) + ε2σ2

j )

≤
3(1 − h∗

κj
)(‖f ′‖2

(j) + ε2σ2
j )

2

Tjε2
.

These inequalities combined with the identity ηj =
∑

k∈Bj
Yj/(‖f ′‖2

(j)+ε2σ2
j )

yield the desired result.

Lemma 5. Assume that ϕ2
jTj ≥ 24 log ε−5. Then

P

(
ĥJS

k ∈
[
h∗

k − 2(1 − h∗
k)ϕj

(1 − ϕj)
, h∗

k

])
≥ 1 − 2ε5.

Proof. Note that

ĥJS
k =

(
1 − (1 − h∗

k)(1 + ϕj)

1 + ηj

)
1l{ηj>−h∗

k
+ϕj(1−h∗

k
)}. (25)

One checks that ĥJS
k > h∗

k if and only if ηj > ϕj . Therefore, P(ĥJS
k > h∗

k) =
P(ηj > ϕj) ≤ ε4. Similarly,

P

(
ĥJS

k < h∗
k − 2(1 − h∗

k)ϕj

(1 − ϕj)

)
= P

(
ϕj − (1 + ϕj)h

∗
k ≤ ηj ≤ −ϕj

)

+ P(ηj < ϕj − (1 + ϕj)h
∗
k)1l

{h∗

k
>

2(1−h∗

k
)ϕj

(1−ϕj )
}

≤ P
(
ηj ≤ −ϕj

)
,

since h∗
k >

2(1−h∗

k
)ϕj

(1−ϕj)
if and only if ϕj − (1 + ϕj)h

∗
k < −ϕj . Therefore

P

(
ĥJS

k ∈
[
h∗

k − 2(1 − h∗
k)ϕj

(1 − ϕj)
, h∗

k

])
≥ P

(|ηj| ≤ ϕj
) ≥ 1 − 2ε5

and the assertion of the lemma follows.

Lemma 6. For any positive x verifying x2 ≤ Tε/5 it holds

P

(∣∣∣∣
N∑

k=1

h̃k(2πk)2(ξ2
k − ξ∗k

2)

∣∣∣∣ ≥
12
√

2x√
Tε

Rε[f, h∗]

)
≤ 2Je−x2

.
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Proof. Using (16), we get (
∑

k∈Bj
(2πk)4

)1/2 ≤ 3σ2
j /
√

Tj. This inequality
combined with the fact that hk ≤ h∗

k on E , allows us to bound the probability
of the event of interest by

P

(∣∣∣∣
N∑

k=1

h̃k(2πk)2(ξ2
k − ξ∗k

2)

∣∣∣∣ ≥
√

32 x
J∑

j=1

h∗
κj

( ∑

k∈Bj

(2πk)4
) 1

2

)

≤
J∑

j=1

P

(
h̃κj

∣∣∣∣
∑

k∈Bj

(2πk)2(ξ2
k − ξ∗k

2)

∣∣∣∣ ≥
√

32 xh∗
κj

( ∑

k∈Bj

(2πk)4
)1/2

)

≤
J∑

j=1

P

(∣∣∣∣
∑

k∈Bj

(2πk)2(ξ2
k − ξ∗k

2)

∣∣∣∣ ≥
√

32 x
( ∑

k∈Bj

(2πk)4
)1/2

)
.

The desired result follows now from Lemma 13 and (15).

Lemma 7. For any x > 0,

P

(
ε

∣∣∣∣
N∑

k=1

(h̃k − h∗
k)(2πk)2ξkfk

∣∣∣∣ ≥ 5x

√
ϕε

Tε
Rε[f, h∗]

)
≤ 2Je−x2

.

Proof. Remark first that

(h̃κj
− h∗

κj
)2 ≤ h∗

κj

2 ∧ 8(1 − h∗
κj

)2ϕ2
j ≤

√
8ϕjh

∗
κj

(1 − h∗
κj

)

for all j = 1, . . . , J . Set Yj = ε
∑

k∈Bj
(2πk)2ξkfk. The random variables

Y1, . . . , YJ are independent zero mean Gaussian with variance

E[Y 2
j ] = ε2

∑

k∈Bj

(2πk)4f2
k ≤ 3ε2σ2

j T
−1
j

∑

k∈Bj

(2πk)2f2
k .

Therefore, P(|Yj | ≥
√

6/Tj xεσj‖f ′‖(j)) ≤ 2e−x2
and consequently,

P

( n∑

j=1

|(h̃κj
− h∗

κj
)Yj | ≥

√
6

Tε
xε

J∑

j=1

√
4ϕjh∗

κj
(1 − h∗

κj
)σj‖f ′‖(j)

)
≤ 2Je−x2

.

To complete the proof, note that by the Cauchy-Schwarz inequality,

ε
J∑

j=1

√
h∗

κj
(1 − h∗

κj
) σj‖f ′‖(j) ≤

1

2

J∑

j=1

(1 − h∗
κj

)‖f ′‖2
(j) +

1

2

J∑

j=1

h∗
κj

(εσj)
2

and the right side is bounded by Rε[f, h∗].
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Lemma 8. We have
N∑

k=1

(h̃k − h∗
k)(2πk)2f2

k ≤ 4ϕεR
ε[f, h∗].

Proof. Since 0 ≤ h∗
k − h̃k ≤ 4ϕε(1 − h∗

k), ∀k ∈ Bj , we have
∞∑

k=1

|h̃k − h∗
k|(2πk)2f2

k ≤ 4ϕε

N∑

k=1

(1 − h∗
k)(2πk)2f2

k ≤ 4ϕεR
ε[f, h∗].

Lemma 9. Set X̂ = max1≤k≤Nε

√
ξ2
k(ϑ) + ξ∗k

2(ϑ). There exists an event of

probability at least 1 − 2ε4 such that on this event, for all τ ∈ R, we have

|Φ′′′
ε (τ, h̃)|

Rε[f, h∗]
≤ 12|τ − ϑ| · ‖f ′‖2

ε2Tε
+

12‖f ′‖
√

log ε−8

εTε

+
16
√

3 πNε|τ − ϑ|X̂‖f ′‖
ε
√

Tε
+ 4πNεX̂

2.

Proof. Using (6), one checks that

Φ′′′
ε (τ, h) = 2

∞∑

k=1

hk(2πk)3[(fk + εξk(ϑ))2 − ε2ξ∗k(ϑ)2] sin[4πk(τ − ϑ)]

− 4ε
∞∑

k=1

hk(2πk)3(fk + εξk(ϑ))ξ∗k(ϑ) cos[4πk(τ − ϑ)].

Without loss of generality, we assume in the sequel that ϑ = 0. Then

∣∣Φ′′′
ε (τ, h̃)

∣∣ ≤ 2
N∑

k=1

h̃k(2πk)3f2
k | sin(4πkτ)| + 4ε

N∑

k=1

h̃k(2πk)3fkξ
∗
k

+ 4ε
N∑

k=1

h̃k(2πk)3fk

[
ξk sin(4πkτ) + ξ∗k(cos(4πkτ) − 1)

]

+ 2ε2
N∑

k=1

h̃k(2πk)3
[
(ξ2

k − ξ∗k
2) sin(4πkτ) − 2ξkξ

∗
k cos(4πkτ)

]
.

Using the inequalities | sin(4πkτ)| ≤ 4πk|τ | and

N∑

k=1

h̃k(2πk)4f2
k ≤

J∑

j=1

h∗
κj
‖f ′‖2

(j)(2πκj+1)
2 ≤ 3‖f ′‖2

Tε

J∑

j=1

h∗
κj

σ2
j ,

as well as the inequality ε2∑J
j=1 h∗

κj
σ2

j ≤ Rε[f, h∗], we get the desired bound
for the first sum. The bound on the second term is obtained using Lemma 14,
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the well known bound on the Laplace transform of a Gaussian distribution
and the inequality

N∑

k=1

h∗
k
2(2πk)6f2

k ≤
J∑

j=1

h∗
κj

2(2πκj+1)
4‖f ′‖2

(j) ≤
9

T 2
ε

J∑

j=1

h∗
κj

2σ4
j ‖f ′‖2

(j)

≤ 9‖f ′‖2

T 2
ε

max
j

h∗
κj

2σ4
j ≤ 9‖f ′‖2Rε[f, h∗]2

ε4T 2
ε

.

The bounds on the two remaining sums are obtained by combining the
inequalities

|ξk sin(4πkτ) + ξ∗k(cos(4πkτ) − 1)| ≤ |4πkτ | · |ξk cos(4πkτ̃ ) − ξ∗k sin(4πkτ̃ )|
≤ 4πk|τ |X̂,

|(ξ2
k − ξ∗k

2) sin(4πkτ) − 2ξkξ
∗
k cos(4πkτ)| ≤ X̂2

with arguments similar to those used to bound the first two sums.

Lemma 10. For any x > 0, it holds

P

(∣∣∣Φ′
ε(ϑ, h̃) − Φ′

ε(ϑ, h∗)
∣∣∣
2
≥ 12ε2x2ϕεR

ε[f, h∗]

)
≤ 2e−x2(1∧

√
Tε/8x2).

Proof. Let us denote Xk = (2πk)(fk + εξk)ξ
∗
k. According to (24),

Φ′
ε(ϑ, h̃) − Φ′

ε(ϑ, h∗) = ε
k∑

j=1

(h̃k − h∗
k)Xk.

According to (19), for all t ≤ 1/(2
√

2πkε), we have E[etXk ] ≤ et2(2πk)2(f2
k
+ε2).

Thus the conditions of Lemma 14 are fulfilled with ̺k = h̃k − h∗
k, ̺∗k =

3
√

h∗
kϕj(1 − h∗

k), Tk = 1/(
√

8 πkε) and g2
k = (2πk)2(f2

k + ε2). Therefore,

P

(∣∣∣Φ′
ε(ϑ, h̃)−Φ′

ε(ϑ, h∗)
∣∣∣
2
≥ 12ε2x2ϕε

N∑

k=1

(2πk)2h∗
k(1−h∗

k)(f
2
k +ε2)

)
≤ 2e−x2

for any x > 0 verifying

x2 ≤ 3
∑N

k=1 ϕj(k)(2πk)2h∗
k(1 − h∗

k)(f
2
k + ε2)

8ε2 maxj ϕjh∗
κj

(1 − h∗
κj

)(2πκj+1)2
.

To complete the proof, it suffices to remark that

N∑

k=1

(2πk)2h∗
k(1 − h∗

k)(f
2
k + ε2) =

J∑

j=1

h∗
κj

(1 − h∗
κj

)[‖f ′‖2
(j) + ε2σ2

j ] ≤ Rε[f, h∗]
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and

3
∑N

k=1 ϕj(k)(2πk)2h∗
k(1 − h∗

k)(f
2
k + ε2)

8ε2 maxj ϕjh∗
κj

(1 − h∗
κj

)(2πκj+1)2
≥

3maxj ϕjh
∗
κj

(1 − h∗
κj

)σ2
j

8maxj ϕjh∗
κj

(1 − h∗
κj

)(2πκj+1)2
.

Since σ2
j ≥ Tj(2πκj+1)

2/3, the assertion of the lemma follows.

Lemma 11. For any event A verifying P(Ac) = O(ε4), we have

E[Φ′
ε(ϑ, h∗)2ζ1lA] = o(ε2Rε[f, h∗]).

Proof. We have

E[Φ′
ε(ϑ, h∗)2ζ] = ε2E

[ N∑

k=1

(2πk)2h∗
k
2(fk + εξk(ϑ))2ξ∗k(ϑ)2ζ

]

= 2ε3E

[ N∑

k=1

(2πk)2h∗
k
2fkξkζ

]
= 4ε4

N∑

k=1

(2πk)4h∗
k
3f2

k

≤ 12‖f ′‖2T−1
ε ε4

J∑

j=1

h∗
κj

3σ2
j ≤ 12‖f ′‖2T−1

ε ε2Rε[f, h∗].

Using the Rosenthal inequality, one checks that E[Φ′
ε(ϑ, h∗)2p] = O(ε2p) and

E[ζ2p] = o(Rε[f, h∗]p) for any integer p > 0. Therefore, the Cauchy-Schwarz
inequality yields,

∣∣E[Φ′
ε(ϑ, h∗)2ζ1lAc ]

∣∣ ≤ o
(
ε2
√

Rε[f, h∗]
)√

P(Ac) = o
(
ε4
√

Rε[f, h∗]
)

and the assertion of the lemma follows.

6.4. Lemma used in Theorem 2

We assume that f ∈ Fδ,β,L(f̄) with f̄ ∈ F(β∗, L∗, ρ) and β∗ > β ≥ β∗. For
seek of completeness we give below a suitable version of the Pinsker theorem
(cf. Pinsker (1980)).

Lemma 12. Set γε = 1/ log ε−2, Wε =
( L

ε2
(β+2)(2β+1)
(2π)2β (β−1)

)1/(2β+1)
and define

λ∗
k =





1, k ≤ γεWε,[
1 −

( k

Wε

)β−1
]

+

, k > γεWε.
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The filter λ∗
k satisfies

sup
f∈Fδ,β,L

Rε[f, λ∗] ≤ (1 + o(1))C(β,L) ε
4β−4
2β+1 ,

where the inf is taken over all possible sequences h = (hk)k∈N
.

Proof. Set v = f − f̄ . Using the inequality (f̄k + vk)
2 ≤ 2z−1f̄2

k + (1 + z)v2
k,

∀z ∈ [0, 1], we obtain

Rε[f, λ∗] =
∑

k>γεWε

(2πk)2(1 − λ∗
k)

2(f̄k + vk)
2 + ε2

∞∑

k=1

(2πk)2λ∗
k
2

≤ 2z−1
∑

k>γεWε

(2πk)2(1 − λ∗
k)

2f̄2
k + (1 + z)Rε[v, λ∗].

Since f̄ ∈ F(β∗, L∗, ρ), we have
∑

k>γεWε

(2πk)2(1 − λ∗
k)

2f̄2
k ≤ L∗(γεWε)

2−2β∗

= o(W 2−2β
ε ). (26)

On the other hand, setting λ̃∗
k = (1 − (k/Wε)

β−1)+,

Rε[v, λ∗] − Rε[v, λ̃∗] ≤ ε2
∑

k≤γεWε

(2πk)2 ≤ 4π2ε2(γεWε)
3 = o(ε2W 3

ε ).

Using the relation W 2−2β
ε = O(ε2W 3

ε ) and choosing z = zε appropriately,
we get

sup
f∈Fδ,β,L(f̄)

Rε[f, λ∗] ≤ (1 + o(1)) sup
v∈W(β,L)

Rε[v, λ̃∗] + o(ε2W 3
ε ),

where W(β,L) is the Sobolev ball {v :
∑

k≥1(2πk)2βf2
k ≤ L}. It then follows

from Belitser and Levit (1995), Thm. 1 and Example 1, p. 265 (with α = β−1

and δ = 3) that supv∈W(β,L) Rε[v, λ̃∗] = C(β,L) ε
4β−4
2β+1 (1+o(1)). To conclude,

it suffices to remark that o(ε2W 3
ε ) = o(ε

4β−4
2β+1 ).

6.5. General results

Lemma 13. Assume that a1, a2, . . . , an ∈ R and ς =
∑n

k=1 ak(ξ
2
k − ξ∗k

2),
where (ξ1, . . . , ξn, ξ∗1 , . . . , ξ∗n) is a zero mean Gaussian vector with identity
covariance matrix. For any y ∈ [0, ‖a‖/maxk ak], it holds

P

(
ς2 ≥ 32y2

n∑

k=1

a2
k

)
≤ 2e−y2

.
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Proof. Using the formula of the Laplace transform of a chi-squared distri-
bution, for any t ∈ [−(

√
8ak)

−1, (
√

8ak)
−1], we get

E[eakt(ξ2
k
−ξ∗

k
2)] =

1

1 − 4a2
kt

2
≤ e8a2

k
t2 .

Applying [27, Thm. 2.7] with gk = 16a2
k and x =

√
32y‖a‖, we get the

desired result.

Lemma 14. Let X1, . . . ,Xn be independent symmetric random variables.
Let ̺ = (̺1, . . . , ̺n) be a random vector satisfying |̺j | ≤ ̺∗j , ∀j = 1, . . . , n
with some deterministic sequence (̺∗j )

n
j=1 and L (̺|Xj = x) = L (̺|Xj =

−x) for all j ∈ {1, . . . , n}. If

E[etXj ] ≤ et2g2
j

for some sequence (gj)j=1,...,n and for |t| ≤ Tj , then

P

(∣∣∣∣
n∑

j=1

̺jXj

∣∣∣∣
2

≥ 4x2
n∑

j=1

̺∗j
2g2

j

)
≤ 2e−x2(1∧Qnx−1), ∀x > 0

where Qn = (
∑n

j=1 ̺∗j
2g2

j )
1/2 minj(Tj/̺

∗
j ).

Proof. Set Yj = ̺jXj and Ȳj = ̺∗jXj . For any p1, . . . , pn ∈ Nn, the ex-
pectation E[Y p1

1 · . . . · Y pn
n ] vanishes if at least one pj is odd. Therefore,

E[(
∑

j Yj)
k] = 0 if k is odd and E[(

∑
j Yj)

k] ≤ E[(
∑

j Ȳj)
k] if k is even.

Hence

E
[
exp

(
t
∑

j

Yj

)]
=

∞∑

k=0

tkE[(
∑

j Yj)
k]

k!
=

∞∑

k=0

t2kE[(
∑

j Ȳj)
2k]

(2k)!

= E[e
t
∑

j
̺∗j Xj ] ≤ e

t2
∑

j
̺∗j

2g2
j , ∀ |t| ≤ min

j
(Tj/̺

∗
j ).

According to the Markov inequality,

P

(∣∣∣∣
n∑

j=1

̺jXj

∣∣∣∣ ≥ y

)
≤ 2e−tyE[e

t
∑

j
Yj ] ≤ 2 exp

(
− ty + t2

n∑

j=1

̺∗j
2g2

j

)
.

Setting t = x∧Qn√∑
j

̺∗j
2g2

j

and y2 = 4x2∑
j ̺∗j

2g2
j we get the desired result.
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