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ORBITWISE COUNTINGS IN H(2) AND QUASIMODULAR

FORMS

SAMUEL LELIÈVRE AND EMMANUEL ROYER

Abstract. We prove formulae for the countings by orbit of square-
tiled surfaces of genus two with one singularity. These formulae were
conjectured by Hubert & Lelièvre. We show that these countings admit
quasimodular forms as generating functions.
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1. Introduction

The main result of this paper is the proof of a conjecture of Hubert &
Lelièvre.

Theorem 1. For odd n, the countings by orbit of primitive square-tiled

surfaces of the stratum H(2) tiled with n squares are the following. Orbit

An contains

ap
n =

3

16
(n − 1)n2

∏

p|n

(
1 −

1

p2

)

primitive surfaces with n squares and orbit Bn contains

bp
n =

3

16
(n − 3)n2

∏

p|n

(
1 −

1

p2

)

primitive surfaces with n ≥ 3 squares and 0 for n = 1 square.

Remark. The notation
∏

p|n indicates a product over prime divisors of n.

The superscript p is here to emphasize primitivity.

Theorem 1 can also be expressed in terms of quasimodularity of the gen-
erating functions of the countings. More precisely:
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Corollary 2. For any odd positive integer n, the number an of n-square-

tiled surfaces of type A in H(2), primitive or not, is the nth coefficient of

the quasimodular form

+∞∑

n=0

an exp(2iπnz) =
1

1280

[
E4(z) + 10

d

2iπ dz
E2(z)

]

of weight 4, depth 2 on SL(2, Z).

Remark. Functions E2 and E4 are the usual Eisenstein series of weight 2
and 4 respectively. They are precisely defined in equations (3) and (7).

Since the coefficients an have no geometric meaning for even n, it makes
sense to consider only the odd part of the Fourier series. Considering the
odd part is the same as considering the Fourier series twisted by a Dirichlet
character of modulus 2 (see section 4.4). It is then natural to expect that,
similarly to the case of modular forms (see [Iwa97, Theorem 7.4]), the odd
part of the Fourier series is a quasimodular form on the congruence subgroup
Γ0(4). Actually, we will prove this is the case. Let Φ2 and Φ4 be the two
modular forms of respective weights 2 and 4, defined on Γ0(4) as in (8) and
(9).

Theorem 3. The Fourier series
∑

n∈2Z≥0+1

an exp(2iπnz)

is the quasimodular form of weight 4 and depth 1 on Γ0(4) defined by

1

1280

[
E4(z) − 9E4(2z) + 8E4(4z) − 15

d

2iπ dz
Φ2(z) + 15

d

2iπ dz
Φ4(z)

]
.

Remark. This theorem will be proved in section 6. It is interesting to note
that forgetting the artificial terms of even order results in a lesser depth, that
is, in a simplified modular situation. (A modular form is a quasimodular
form of depth 0 so the depth may be seen as a measure of complexity.)

n 5 7 9 11 13 15 17 19 21 23 25 27
ap

n 18 54 108 225 378 504 864 1215 1440 2178 2700 3159
an 18 54 120 225 378 594 864 1215 1680 2178 2808 3630

Table 1. Number of surfaces of type A.

Our results may be interpreted in terms of counting genus 2 covers of
the torus T = C/Z + iZ with one double ramification point (see §2). The
general problem of counting covers with fixed ramification type of a given
Riemann surface was posed in 1891 by Hurwitz who precisely counted the
covers of the sphere. In 1995, Dijkgraaf [Dij95] computed the generating
series of the countings of degree n and genus g covers of T with simple
ramification over distinct points, weighted by the inverse of the number of
automorphisms. Kaneko & Zagier [KZ95] introduced the notion of quasi-
modular forms and proved that the generating series computed by Dijkgraaf
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was quasimodular of weight 6g − 6 on SL(2, Z). The case of arbitrary rami-
fication over a single point was studied by Bloch & Okounkov [BO00]. They
proved that the countings lead to linear combinations of quasimodular forms
of weight less than or equal to 6g − 6. This was used by Eskin & Okounkov
[EO01] to compute volumes of the strata of moduli spaces of translation
surfaces (see also [Zor02]). The SL(2, Z) orbits of square-tiled surfaces were
studied by Hubert & Lelièvre in the case of a prime number of squares
[HL06] and by McMullen [McM05] in the general case.

Up to a multiplicative constant factor, our counting functions are the
orbifold Euler characteristics of Teichmüller curves. Matt Bainbridge inde-
pendently obtained results similar to ours in this setting.

The moduli space of holomorphic 1-forms on complex curves of a fixed
genus g can be considered as a family of flat structures of a special type
on a surface of genus g. The group GL(2, R) acts naturally on the moduli
space; its orbits, called Teichmüller discs, project to the moduli space of
curves as complex geodesics for the Teichmüller metric. A typical flat surface
has no symmetry; its stabilizer in GL(2, R) is trivial; the corresponding
Teichmüller disc is dense in the moduli space. For some flat surfaces (called
Veech surfaces) the stabiliser is big (a lattice) so that the corresponding
Teichmüller disc is closed. Projections of such Teichmüller discs, called
Teichmüller curves, play the role of “closed complex geodesics”.

The main lines of the proof of theorem 1 are the following. In section 3,
we evaluate the number ap

n in terms of sums over sets defined by complicated
arithmetic conditions. In section 5, we relate these coefficients ap

n to sums
of sums of divisors of the form∑

(a,b)∈Z
2

>0

ka+b=n

σ1(a)σ1(b).

For the computation of these sums, we use, in section 4, the notion of quasi-
modular forms on congruence subgroups (introduced by Kaneko & Zagier in
[KZ95]) and we take advantage of the fact that the spaces of quasimodular
forms have finite dimension to linearise the above sums. Here, linearising
means expressing them as linear combinations of sums of powers of divisors.
Having obtained a series whose odd coefficients are the numbers an, we in-
troduce the notion of twist of a quasimodular form by a Dirichlet character,
to construct a new quasimodular form generating series without artificial
Fourier coefficients.
Thanks A first version of this text was written as both authors were vis-
iting the Centre de Recherches Mathématiques de Montréal, and circulated
under the title “Counting integer points by Teichmüller discs in ΩM(2)”.
This version was written as the second author was visiting the Warwick
Mathematics Institute. We thank both institutions for the good working
conditions.

2. Geometric background

2.1. Square-tiled surfaces. A square-tiled surface is a collection of unit
squares endowed with identifications of opposite sides: each top side is iden-
tified to a bottom side and each right side is identified to a left side. In
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addition, the resulting surface is required to be connected. A square-tiled
surface tiled by n squares is also a degree n (connected) branched cover of
the standard torus C/Z + iZ with a single branch point.

Given a square-tiled surface, to each vertex can be associated an angle
which is a multiple of 2π (four or a multiple of four squares can abutt at each
vertex). If (ki + 1)2π is the angle at vertex i, the Gauss–Bonnet formula
implies that

s∑

i=1

ki = 2g − 2

where g is the genus of the surface and s the total number of vertices.

Figure 1. Surface with one angle of 6π

Surfaces can be sorted according to strata H(k1, . . . , ks). Square-tiled
surfaces are integer points of these strata. In this paper we are concerned
with surfaces in H(2), that is, with a single ramification point of angle 6π.
A surface tiled by n squares in H(2) is a degree n branched cover of the
torus C/Z + iZ with one double ramification point.

2.2. Cylinder decompositions. Given any square-tiled surface, each hor-
izontal line on the surface through the interior of a square is closed, and
neighbouring horizontal lines are also closed. Thus closed horizontal lines
come in families forming cylinders and the surface decomposes into such
cylinders bounded by horizontal saddle connections (segments joining coni-
cal singularities).

Here we explain how to enumerate square-tiled surfaces in H(2) with a
given number of squares, by giving a system of coordinates for them. We
include this discussion for the sake of completeness, although these coordi-
nates have already been used in [Zor02], [EMS03], [HL06].

We represent surfaces according to their cylinder decompositions. Cylin-
ders of a square-tiled surface are naturally represented as rectangles. One
can cut a triangle from one side of such a rectangle and glue it back on the
other side according to the identifications to produce a parallelogram with
a pair of horizontal sides (each made of one or several saddle connections),
and a pair of identified nonhorizontal parallel sides. A square-tiled surface
in H(2) has one or two cylinders [Zor02] and can always be represented as in
figure 3 or 4. Each cylinder has a height and a width and in addition a twist
parameter corresponding to the possibility of rotating the saddle connections
of the top or bottom of the cylinders before performing the identifications.
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Figure 2. Decomposition of a surface into two cylinders

2.3. One-cylinder surfaces. For one-cylinder surfaces in H(2), we have on
the bottom of the cylinder three horizontal saddle connections, and the same
saddle connections appear on the top of the cylinder in reverse order; we
denote by ℓ the width of the cylinder and ℓ1, ℓ2, ℓ3 the lengths of the saddle
connections, numbered so that they appear in that order on the bottom side
and in reverse order on the top side. See figure 3.

ℓ1 ℓ2 ℓ3

ℓ1ℓ2ℓ3

h

t

Figure 3. One-cylinder surface

For each choice of (ℓ1, ℓ2, ℓ3) with ℓ1 + ℓ2 + ℓ3 = n, if ℓ1, ℓ2, ℓ3 are not
all equal, there are ℓ possible values of the twist t giving different surfaces.
But, the three possible cyclic permutations of (ℓ1, ℓ2, ℓ3) yields the same
set of surfaces. So, to make coordinates uniquely defined, we require that
(ℓ1, ℓ2, ℓ3) has least lexicographic order among its cyclic permutations. For
countings, it is simpler to ignore this point and to divide by 3 at the end.

If ℓ1, ℓ2, ℓ3 are all equal (and thus worth ℓ/3), there is only one cyclic
permutation of (ℓ1, ℓ2, ℓ3) but only ℓ/3 values of the twist t give different
surfaces.

The parameters we have used satisfy:

ℓ | n

ℓ1 + ℓ2 + ℓ3 = ℓ

0 ≤ t < ℓ or ℓ/3.
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Remark. From this description of coordinates, we conclude that the number
of one-cylinder surfaces in H(2) tiled with n squares is (see [EMS03])

1

3

∑

ℓ|n

∑

(ℓ1,ℓ2,ℓ3)∈Z
3

>0

ℓ1+ℓ2+ℓ3=ℓ

ℓ.

2.4. Two-cylinder surfaces. Given a two-cylinder surface in H(2), one of
its cylinders (call it cylinder 1) has one saddle connection on the top and
one saddle connection (of same length) on the bottom, while the other one
(call it cylinder 2) is bounded by two saddle connections on the top and two
saddle connections on the bottom. See figure 4.

u2

h2

t2

u1

h1

t1

Figure 4. Two-cylinder surface

For each of cylinders 1 and 2, there are three parameters: the height hi,
the width ui, the twist ti.

Given two heights h1 and h2, two widths u1 < u2, and two twists t1, t2
with 0 ≤ ti < ui, there exists a unique surface in H(2) with two cylinders
having (h1, h2, u1, u2, t1, t2) as parameters. The number of squares is then
h1u1 + h2u2.

Remark. From this system of coordinates one deduces (see [EMS03]) that
the number of two-cylinder surfaces in H(2) tiled by n squares is

∑

(h1,h2,u1,u2)∈Z
4

>0

u1<u2

h1u1+h2u2=n

u1u2.

2.5. Lattice of periods. The lattice of periods of a square-tiled surface is
the rank two sublattice of Z2 generated by its saddle connections.

Lemma 4. A square-tiled surface is translation-tiled by a parallelogram if

and only if this parallelogram is a fundamental domain for a lattice contain-

ing the surface’s lattice of periods.

Proof. Decompose the surface into polygons with vertices at the conical sin-
gularities. The sides of these polygons are saddle connections and together
generate the lattice of periods. The tiling of the plane by parallelograms
which are a fundamental domain for this lattice (or any rank two lattice
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of the plane containing it) yields a tiling of the translation surface by such
parallelograms. �

Remark. The previous lemma implies that the area of the lattice of periods
divides the area of the surface it comes from.

We will describe the basis of the lattice of periods by use of the following
lemma [Ser77, Chapitre 7].

Lemma 5. Let Λ be a sublattice of Z + iZ of index d. Then there exists a

unique triple of integers (a, t, h) with a ≥ 1, ah = d and 0 ≤ t ≤ a − 1 such

that

Λ = (a, 0)Z ⊕ (t, h)Z.

Remark. Let S be a square-tiled surface in H(2), and let
(

a t
0 h

)
be the matrix

corresponding to its lattice of periods. If S is one cylinder then h is the height
of its unique cylinder ; if S is two-cylinder, with cylinders of height h1 and
h2, then h = (h1, h2).

Definition 6. A square-tiled surface is called primitive if its lattice of pe-

riods is Z2, in other words if
(

a t
0 h

)
=

(
1 0
0 1

)
.

Definition 7. A square-tiled surface is called primitive in height if h = 1.

The linear action of GL(2, Q)+ on R2 induces an action of GL(2, Q)+

on square-tiled surfaces. This action preserves orientation. The action of
SL(2, Z) preserves the number of square tiles, and preserves primitivity.

Hubert & Lelièvre have shown that if n ≥ 5 is prime, the square-tiled
surfaces in H(2) tiled with n squares (necessarily primitive since n is prime)
form into two orbits under SL(2, Z), denoted by An and Bn.

If n is not prime and n ≥ 6, not all surfaces tiled by n squares are primi-
tive, and if n has many divisors these surfaces split into many orbits under
SL(2, Z), most of them lying in orbits under GL(2, Q)+ of primitive square-
tiled surfaces with fewer squares. There can be an arbitrary number of such
“artificial” SL(2, Z)-orbits. Artificial orbits consist only of nonprimitive
square-tiled surfaces, since the action of SL(2, Z) preserves primitivity.

Let n be an odd integer. We can distinguish two types of surfaces among
surfaces tiled by n squares in H(2). These two types are distinguished by
Weierstrass points, as follows (see [HL06]).

On a surface in H(2), the matrix
(
−1 0
0 −1

)
induces an involution which can

be shown to have six fix points, called the Weierstrass points of the surface.
It is easy to show that for a square-tiled surface these points have coordinates
in 1

2Z. The type invariant is determined by the number of Weierstrass points
which have both their coordinates integer:

• a surface is of type A if it has one integer Weierstrass point;
• a surface is of type B if it has three integer Weierstrass points.

Remark. We give an interpretation in terms of orbits. Consider the orbit
under GL(2, Q)+ of a surface S tiled by n squares. Then

• the primitive square-tiled surfaces in this orbit all have the same
number of squares, say d,

• the action of GL(2, Q)+ restricts to an action of SL(2, Z) on these
primitive square-tiled surfaces;
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• these primitive surfaces form an orbit under SL(2, Z);
• McMullen extended the result of Hubert & Lelièvre by showing that

if d ≥ 5 is odd, the set of primitive square-tiled surfaces in H(2) tiled
with d squares is partitioned in two orbits under SL(2, Z) denoted
Ad and Bd;

• the type can be read on these primitive square-tiled surfaces.

3. Sum-type formulae for the orbitwise countings

3.1. From primitive to non primitive countings. In this section, we es-
tablish relations between countings of primitive surfaces, countings of height
primitive surfaces and countings of (non necessarily primitive) surfaces. For
any integer ℓ, the function σℓ is defined by

(1) σℓ(n) =

{∑
d|n dℓ if n ∈ Z>0

0 otherwise.

For n ∈ Z>0, we define En as the set of n squares surfaces in H(2), Ep
n as

its subset of primitive surfaces and Eph
n as its subset of primitive in height

surfaces. For d ∈ Z>0, we note Λd the set of sublattices of Z + iZ of index
d. The description of surfaces by primitive surfaces is given by the following
lemma.

Lemma 8. For n ∈ Z>0, we have the following bijection

En ≃
⋃

d|n

Ep
n/d × Λd.

Proof. Let S ∈ En and d be the index in Z + iZ of its lattice of periods
Per(S). Then d | n and Per(S) ∈ Λd. With the notations of lemma 5, we
write Per(S) = (a, 0)Z ⊕ (t, h)Z. To S we associate a surface tiled by n/d
squares:

S′ =

(
a t
0 h

)−1

S.

The lattice of periods of S′ is Z + iZ so that it is primitive. Conversely,
let S′ ∈ Ep

n/d and Λ ∈ Λd. With the notations of lemma 5, we write Λ =

(a, 0)Z ⊕ (t, h)Z. Then

S =

(
a t
0 h

)
S′

has n = ah squares. �

Corollary 9. For n ∈ Z>0, we have

#En =
∑

d|n

σ1(d)#Ep
n/d.

Proof. By lemma 5, we have

#Λd =
∑

(a,t,h)∈Z
3

≥0

ah=d
0≤t<a

1 = σ1(d).

�
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We recall that a surface S is primitive in height if h = 1 with the notations
of lemma 5. That is, its lattice of periods is Per(S) = (a, 0)Z + (t, 1)Z with
a ≥ 1 and 0 ≤ t ≤ a − 1. We write Λ′

d for the set of these lattices having
index d (implying d = a). We have #Λ′

d = d. Similary to lemma 8 we have

Lemma 10. For n ∈ Z>0, we have the following bijection

En ≃
⋃

d|n

Eph
n/d × Λ′

d.

Corollary 11. For n ∈ Z>0, we have

#En =
∑

d|n

d · #Eph
n .

We deduce the same result for surfaces of type A. For odd n, define A′
n

as the set of n-square-tiled surfaces of type A in H(2), Ap
n as its subset of

primitive surfaces (which coincides with the SL(2, Z)-orbit An) and Aph
n as

its subset of height-primitive surfaces.

Lemma 12. For n ∈ Z odd, we have the following bijection

A′
n ≃

⋃

d|n

Ap
n/d × Λd.

Proof. We recall that the type of a surface is characterized by the number of
its Weierstrass points with integer coordinates. To deduce lemma 12 from
lemma 8 it then suffices to prove that a Weierstrass point P has half-integer
coordinates1 in a basis determined by Per(S) if and only if its image by the
bijection of lemma 8 has half-integer coordinates in the canonical basis of
Z+ iZ. Let S ∈ En, Per(S) = (a, 0)Z⊕ (t, h)Z its lattice of periods with the
notations of lemma 5. We set

M =

(
a t
0 h

)
.

Let P a Weierstrass point in S, we assume that its coordinates in the basis
of Per(S) are (ℓ/2,m/2) with m and n not simultaneously even. The coor-
dinates of P in Z + iZ are therefore (aℓ + mt,mh)/2, hence, those of M−1P
in M−1S are (ℓ/2,m/2) in the standard basis of Z + iZ. �

Corollary 13. For n ∈ Z>0, we have

an =
∑

d|n

σ1(d)ap
n/d.

Lemma 14. For n ∈ Z odd, we have the following bijection

A′
n ≃

⋃

d|n

Aph
n/d × Λ′

d.

Corollary 15. For n ∈ Z>0, we have

an =
∑

d|n

daph
n/d.

1Meaning in 1

2
Z2 but not in Z2
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To express the number of primitive surfaces in terms of the numbers of
primitive in height ones, we recall some basic facts on L-functions. For an
arithmetic function f , we define

L(f, s) =

+∞∑

n=1

f(n)n−s.

If id denotes the identity function, we have

L(idℓ f, s) = L(f, s − ℓ).

For f and g two arithmetic functions with convolution product f ∗ g, we
have

L(f ∗ g, s) = L(f, s)L(g, s).

The constant equal to 1 function is denoted by 1 and, we have

L(1, s) = ζ(s)

the Riemann ζ function. Moreover

L(µ, s) =
1

ζ(s)
and L(σk, s) = ζ(s)ζ(s − k).

Lemma 16. Let n ∈ Z>0. Then

ap
n =

∑

d|n

µ(d)aph
n/d.

Proof. Lemma 14 is then

L(an, s) = ζ(s − 1)L(aph, s)

and lemma 12 is
L(an, s) = ζ(s)ζ(s − 1)L(ap, s).

We deduce

L(ap, s) =
1

ζ(s)
L(aph, s)

hence the result. �

Next, we give sum-type formulae for the number of surfaces in Aph
n .

Proposition 17. Let n ∈ Z>0, the number of height-primitive one-cylinder

surfaces with n squares in H(2) of type A is

1

3

∑

ℓ1,ℓ2,ℓ3 odd

ℓ1+ℓ2+ℓ3=n

n.

Proof. See figure 5. Since the cylinder is primitive in height, it has height
1. As proved in [HL06, §5.1.1], the Weierstrass points are

• the saddle point, which has integer coordinates
• two points lying on the core of the cylinder, which do not have integer

coordinates
• the midpoints of the three saddle connections, each of these points

having integer coordinates if and only if the corresponding saddle
connection has even length.

�
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Figure 5. Weierstrass points of a one-cylinder surface

Proposition 18. Let n ∈ Z>0, the number of height-primitive two-cylinder

surfaces with n squares in H(2) of type A is

∑

h1,h2,u1,u2∈Z≥0

h1u1+h2u2=n
(h1,h2)=1
h1,h2 odd

u1<u2

u1u2 +
1

2

∑

h1,h2,u1,u2∈Z≥0

h1u1+h2u2=n
(h1,h2)=1

h1 6≡h2 (mod 2)
u1<u2

u1u2 even

u1u2.

Proof. Among height-primitive two-cylinder surfaces with parameters h1,
h2, u1, u2, t1, t2, such that h1u1 + h2u2 = n (odd):

• all surfaces with h1 and h2 odd are of type A;
• all surfaces with u1 and u2 odd are of type B;
• exactly half of the remaining surfaces (with different parity for u1

and u2 and for h1 and h2) are of type A, and half are of type B;

for each (h1, h2, u1, u2), there are u1u2 possible twists (if n is not prime some
values of the twists may yield non primitive surfaces which is why we only
require height-primitivity). In the case of different parities for h1 and h2

and for u1 and u2, the product u1u2 is even and exactly half of the possible
twists corresponds to each type. The height-primitivity condition is just
that the heights of the cylinders have greatest common divisor equal to one.

�

Figure 6. Weierstrass points of a two-cylinder surface

4. Quasimodular forms

4.1. Motivation. The aim of this part is the computation of sums of type

(2) Sk(n) =
∑

(a,b)∈Z
2

>0

ka+b=n

σ1(a)σ1(b)



12 SAMUEL LELIÈVRE AND EMMANUEL ROYER

with k ∈ Z>0. Here we study only the cases k ∈ {1, 2, 4} but the method in
fact applies to every k [Roy05].

Useful to the study of these sums is the weight 2 Eisenstein series

(3) E2(z) = 1 − 24
+∞∑

n=1

σ1(n)e(nz)

where

e(τ) = exp(2iπτ) (ℑm τ > 0).

Defining

Hk(z) = E2(z)E2(kz),

one gets

(4) Hk(z) = 1 − 24
+∞∑

n=1

[
σ1(n) + σ1

(n

k

)]
e(nz) + 576

+∞∑

n=1

Sk(n)e(nz).

We shall achieve the linearisation of Hk using the theory of quasimodular
forms, developed by Kaneko & Zagier. The computation of Sk(n) will be
deduced for each n.

4.2. Definition. Let us therefore begin by surveying our prerequisites on
quasimodular forms, referring to [MR05, §17] for the details. Define

Γ0(N) =

{(
a b
c d

)
: (a, b, c, d) ∈ Z4, ad − bc = 1, N | c

}

for all integers N ≥ 1. In particular, Γ0(1) is SL(2, Z). Denote by H the
Poincaré upper half plane:

H = {z ∈ C : ℑm z > 0}.

Definition 19. Let N ∈ Z>0, k ∈ Z≥0 and s ∈ Z≥0. A holomorphic

function

f : H → C

is a quasimodular form of weight k, depth s on Γ0(N) if there exist holo-

morphic functions f0, f1, . . . , fs on H such that

(5) (cz + d)−kf

(
az + b

cz + d

)
=

s∑

i=0

fi(z)

(
c

cz + d

)i

for all
(

a b
c d

)
∈ Γ0(N) and such that fs is holomorphic at the cusps and not

identically vanishing. By convention, the 0 function is a quasimodular form

of depth 0 for each weight.

Here is what is meant by the requirement for fs to be holomorphic at the
cusps. One can show [MR05, Lemme 119] that if f satisfies the quasimod-
ularity condition (5), then fs satisfies the modularity condition

(cz + d)−(k−2s)fs

(
az + b

cz + d

)
= fs(z)
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for all
(

a b
c d

)
∈ Γ0(N). Asking fs to be holomorphic at the cusps is asking

that, for all M =
( α β

γ δ

)
∈ Γ0(1), the function

z 7→ (γz + δ)−(k−2s)fs

(
αz + β

γz + δ

)

has a Fourier expansion of the form
+∞∑

n=0

f̂s,M(n)e

(
nz

uM

)

where
uM = inf{u ∈ Z>0 : T u ∈ M−1Γ0(N)M}.

In other words, fs is automatically a modular function and is required to
be more than that, a modular form of weight k − 2s on Γ0(N). It follows
that if f is a quasimodular form of weight k and depth s, non identically
vanishing, then k is even and s ≤ k/2.

Remark. Let χ be a Dirichlet character (see § 4.4). If f satisfies all of what
is needed to be a quasimodular form except (5) being replaced by

(cz + d)−kf

(
az + b

cz + d

)
= χ(d)

n∑

i=0

fi(z)

(
c

cz + d

)i

,

then, one says that f is a quasimodular form of weight k, depth s and
character χ on Γ0(N).

The Eisenstein series E2 transforms as

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z) +

6

iπ

c

cz + d

under the action of any
(

a b
c d

)
∈ Γ0(1). Hence, E2 is a quasimodular form of

weight 2 and depth 1 on Γ0(1). Defining

EN,2(z) = E2(Nz),

one has

(cz + d)−2EN,2

(
az + b

cz + d

)
= EN,2(z) +

6

iπN

c

cz + d

for all
(

a b
c d

)
∈ Γ0(N). Hence, EN,2 is a quasimodular form of weight 2 and

depth 1 on Γ0(N). One denotes by M̃k[Γ0(N)]≤s the space of quasimodular
forms of weight k and depth less than or equal to s on Γ0(N). The space

M̃k[Γ0(N)]≤0 is the space Mk[Γ0(N)] of modular forms of weight k on Γ0(N).
A recurrence on the depth implies [MR05, Corollaire 121] the equality

(6) M̃k[Γ0(N)]≤s =

s⊕

i=0

Mk−2i[Γ0(N)]Ei
2.

It is known that M2[Γ0(1)] = {0}. However, if N > 1, one deduces from

CE2 ⊕ CEN,2 ⊂ M̃2[Γ0(N)]≤1 = M2[Γ0(N)] ⊕ CE2

that dim M2[Γ0(N)] ≥ 1. By the way, for every family (cd)d|N such that
∑

d|N

cd

d
= 0
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one has 
z 7→

∑

d|N

cdE2(dz)


 ∈ M2[Γ0(N)].

Denote by D the differential operator

D =
1

2iπ

d

dz
.

It defines a linear application from M̃k[Γ0(N)]≤s to M̃k+2[Γ0(N)]≤s+1. This
application is injective and strictly increases the depth if k > 0. This prop-
erty allows to linearise the basis given in (6).

Lemma 20. Let k ≥ 2 even. Then,

M̃k[Γ0(N)]≤k/2 =

k/2−1⊕

i=0

DiMk−2i[Γ0(N)] ⊕ CDk/2−1E2.

4.3. Sums of sums of divisors. Lemma 20 allows to reach our goal by
expressing the sums S1, S2 and S4 introduced in (2) as follows.

Proposition 21. Let n ≥ 1. Then,

S1(n) =
5

12
σ3(n) −

n

2
σ1(n) +

1

12
σ1(n),

S2(n) =
1

12
σ3(n)+

1

3
σ3

(n

2

)
−

1

8
nσ1(n)−

1

4
nσ1

(n

2

)
+

1

24
σ1(n)+

1

24
σ1

(n

2

)

and

S4(n) =
1

48
σ3(n) +

1

16
σ3

(n

2

)
+

1

3
σ3

(n

4

)
−

1

16
nσ1(n) −

1

4
nσ1

(n

4

)

+
1

24
σ1(n) +

1

24
σ1

(n

4

)
.

Proof. We detail the proof for the expression of S4. The function H4, in-
troduced in (4), is a quasimodular form of weight 4 and depth 2 on Γ0(4).
Lemma 20 gives

M̃4[Γ0(4)]
≤2 = M4[Γ0(4)] ⊕ DM2[Γ0(4)] ⊕ CDE2.

The space M4[Γ0(4)] has dimension 3 and contains the linearly independent
functions

E4(z) = 1 + 240
+∞∑

n=1

σ3(n)e(nz)(7)

E2,4(z) = E4(2z)

E4,4(z) = E4(4z).

The space M2[Γ0(4)] has dimension 2 and is generated by

Φ2(z) = 2E2(2z) − E2(z)(8)

Φ4(z) =
4

3
E2(4z) −

1

3
E2(z).(9)

Hence, by the computations of the first seven Fourier coefficients, one gets

H4 =
1

20
E4 +

3

20
E2,4 +

4

5
E4,4 +

9

2
DΦ4 + 3DE2.



ORBITWISE COUNTINGS IN H(2) AND QUASIMODULAR FORMS 15

The computation of S4 is then obtained by comparison of the Fourier coef-
ficients of this equality. The computation of S2 is obtained along the same
lines via the equality

H2 =
1

5
E4 +

4

5
E2,4 + 3DΦ2 + 6DE2

between forms of M̃4[Γ0(2)]
≤2. At last, the expression of S1 is deduced from

the equality

E2
2 = E4 + 12DE2

between forms of M̃4[Γ0(1)]
≤2. �

Remark. The computation of H4, which lies in the dimension 6 vector space
with basis {E4, E2,4, E4,4,DΦ2,DΦ4,DE2}, required working on seven con-
secutive Fourier coefficients. We briefly explain why, mentioning that any
sequence of 6 consecutive coefficients is not sufficient. For any function

f(z) =

+∞∑

n=0

f̂(n)e(nz)

and any integer i ≥ 0, define

c(f, i) =
(
f̂(i), f̂ (i + 1), f̂(i + 2), f̂(i + 3), f̂ (i + 4), f̂(i + 5)

)
,

and let

v1(i) = c(E4, i) v2(i) = c(E2,4, i) v3(i) = c(E4,4, i)

v4(i) = c(DΦ2, i) v5(i) = c(DΦ4, i) v6(i) = c(DE2, i).

Then, for each i, there exists an explicitly computable linear relation be-
tween v2(i), v3(i), v4(i), v5(i) and v6(i). One could think of using a basis of

M̃4[Γ0(1)]
≤2 echelonized by increasing powers of e(z). The same phenom-

enon would however appear when changing to such a basis and expressing
the new basis elements in terms of the original basis.

4.4. Twist by a Dirichlet character. Recall that a Dirichlet character χ
is a character of a multiplicative group (Z/qZ)× extended to a function on
Z by defining

χ(n) =

{
χ (n (mod q)) if (n, q) = 1

0 otherwise

(see e.g. [IK04, Chapter 3]).
A quasimodular form admits a Fourier expansion

(10) f(z) =

+∞∑

n=0

f̂(n)e(nz).

Since we shall need to compute the odd part of a quasimodular form, we
introduce the notion of twist of a quasimodular form by a Dirichlet character.

Definition 22. Let χ be a Dirichlet character. Let f be a function having

Fourier expansion of the form (10). The twist of f by χ is the function f⊗χ
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defined by the Fourier expansion

f ⊗ χ(z) =

+∞∑

n=0

χ(n)f̂(n)e(nz).

The interest of this definition is that it allows to build quasimodular forms,
as stated in the next proposition.

Proposition 23. Let χ be a Dirichlet character of conductor m with non

vanishing Gauss sum. Let f be a quasimodular form of weight k and depth

s on Γ0(N). Then f ⊗χ is a quasimodular form of weight k, depth less than

or equal s and character χ2 on Γ0

(
lcm(N,m2)

)
.

Remark. The Gauss sum of a character χ modulo m is defined by

τ(χ) =
∑

u (mod m)

χ(u)e
( u

m

)
.

Proof. The proof is an adaptation of the corresponding result for modular
forms (see e.g. [Iwa97, Theorem 7.4]). We consider for each k the following
action of SL2(R) on holomorphic functions on H:

(f |
k

(
a b
c d

)
)(z) = (cz + d)−kf

(
az + b

cz + d

)
.

Since χ is primitive, this sum is not zero. One has

(11) τ(χ)g ⊗ χ =
∑

v (mod m)

χ(v)(g |
k

(
1 v/m
0 1

)
)

as soon as g has a Fourier expansion of the form (10). Define M = lcm(N,m2).

Let
( α β

γ δ

)
∈ Γ0(M). The matrix

(
1 v/m
0 1

)(
α β
γ δ

)(
1 vδ2/m
0 1

)−1

being in Γ0(N), one deduces from the level N quasimodularity of f and (11)
that

τ(χ)(f ⊗ χ|
k

( α β
γ δ

)
)(z) =

s∑

i=0

∑

v (mod m)

χ(v)(fi |
k−2i

(
1 δ2v/m
0 1

)
)(z)


 γ

γ
(
z + δ2v

m

)
+ δ − γδ2v

m




i

.

Since the functions fi are themselves quasimodular forms (see [MR05, Lemme
119]), they admit a Fourier expansion. Hence, from (11),

τ(χ)(f ⊗ χ|
k

( α β
γ δ

)
)(z) = τ(χ)χ(δ)2

s∑

i=0

fi ⊗ χ(z)

(
γ

γz + δ

)i

.

It follows that f ⊗χ satisfies the quasimodularity condition. There remains
to prove the holomorphy at the cusps, which is quite delicate since fs ⊗ χ
may be 0 even though fs is not. Actually, lemma 20 and the fact that
the twist of a modular form on Γ0(N) by a primitive Dirichlet character
of conductor m is a modular form on Γ0(M) show that the proposition is
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proved as soon as it is proved for f = Dk/2−1E2. In that case, s = k/2 and
fs ⊗ χ is not 0 (see [MR05, Lemma 118]), hence fs being a modular form
implies that fs ⊗ χ is also one.

�

5. Proof of Hubert & Lelièvre conjecture

The aim of this part is the proof of theorem 1. In all this part, n is
assumed to be odd. Define

α1(n, r) =
∑

(h1,u1,h2,u2)∈A1(n,r)

u1u2

α2(n, r) =
1

2

∑

(h1,u1,h2,u2)∈A2(n,r)

u1u2

α3(n, r) =
n

3

∑

(u1,u2,u3)∈A3(n,r)

1

with

A1(n, r) =
{

(h1, u1, h2, u2) ∈ Z4
>0 :

(h1, h2) = 1,
h1 and h2 odd,

u1 < u2, h1u1 + h2u2 =
n

r

}

A2(n, r) =
{

(h1, u1, h2, u2) ∈ Z4
>0 :

(h1, h2) = 1,
h1 or h2 even,

u1 < u2,
u1 or u2 even,

h1u1 + h2u2 =
n

r

}

and

A3(n, r) =
{
(u1, u2, u3) ∈ (2Z≥0 + 1)3 : u1 + u2 + u3 =

n

r

}
.

By lemma 16 and propositions 17 and 18, our goal is the computation of

(12) ap
n =

∑

r|n

µ(r) [rα1(n, r) + rα2(n, r) + α3(n, r)] .

This, and hence theorem 1 is the consequence of the following lemmas 25,
28 and 29.

5.1. A preliminary arithmetical result. The following lemma will be
useful in the sequel.

Lemma 24. Let n ≥ 1, then

∑

r|n

rµ(r)
∑

d|n/r

µ(d)σk

( n

rd

)
= nk

∑

r|n

µ(r)

rk−1
.

and
∑

r|n

µ(r)
∑

d|n/r

µ(d)

d
σ1

( n

rd

)
= n

∑

d|n

µ(d)

d2
.
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Proof. Consider the function

f = (idℓ µ) ∗ µ ∗ σk.

Then,

L(f, s) =
ζ(s − k)

ζ(s − ℓ)
= L(idℓ µ, s)L(idk, s)

hence

f = (idℓ µ) ∗ idk .

The lemma follows by taking ℓ = 1 for the first equality and ℓ = k = 1 for
the second. �

Remark. Note that
∑

r|n

µ(r)

r2
=

∏

p|n

(
1 −

1

p2

)
.

5.2. Two cylinders and odd heights. Here, we compute the sum
∑

r|n

rµ(r)α1(n, r).

More precisely, we prove the following lemma.

Lemma 25. The number of type A primitive surfaces with n squares and

two cylinders of odd height is

n2(n − 1)

8

∑

r|n

µ(r)

r2
.

Write

(13) α1(n, r) = γ1(n, r) − α̃1(n, r)

with

γ1(n, r) =
∑

(h1,u1,h2,u2)∈C(n,r)

u1u2

and

α̃1(n, r) =
∑

(h1,u1,h2,u2)∈Ã1(n,r)

u1u2

where

C(n, r) =
{

(h1, u1, h2, u2) ∈ Z4
>0 : (h1, h2) = 1, u1 < u2, h1u1 + h2u2 =

n

r

}

and (recalling that n is odd)

Ã1(n, r) =

{
(h1, u1, h2, u2) ∈ Z4

>0 :
(h1, h2) = 1,

h1 or h2 even,
u1 < u2, h1u1 + h2u2 =

n

r

}
.

Note that the sum ∑

r|n

rµ(r)γ1(n, r)

is the total number of primitive surfaces with two cylinders. Lemma 25 is a
consequence of the two following lemmas 26, 27 and of equation (13).
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5.2.1. Surfaces with two cylinders. We prove the following result.

Lemma 26. For n odd, the number of primitive surfaces with n squares

and two cylinders is

n2(5n − 18)

24

∑

r|n

µ(r)

r2
−

n

2
ϕ(n)

where ϕ is the Euler function.

Using Möbius inversion formula, one obtains

γ1(n, r) =
∑

d|n/r

µ(d)
∑

(i1,u1,i2,u2)∈Z
4

>0

u1<u2

i1u1+i2u2=n/(rd)

u1u2

= γ1,1(n, r) − γ1,2(n, r)(14)

with

γ1,1(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(i1,u2,i2,u2)∈Z
4

>0

i1u1+i2u2=n/(rd)

u1u2

and

γ1,2(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(i1,i2,u)∈Z
3

>0

(i1+i2)u=n/(rd)

u2.

One has

γ1,1(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(v1,v2)∈Z
2

>0

v1+v2=n/(rd)

∑

w1|v1

w1

∑

w2|v2

w2 =
1

2

∑

d|n/r

µ(d)S1

( n

rd

)
.

By proposition 21, this can be linearised to

γ1,1(n, r) =
5

24

∑

d|n/r

µ(d)σ3

( n

rd

)
−

n

4r

∑

d|n/r

µ(d)

d
σ1

( n

rd

)

+
1

24

∑

d|n/r

µ(d)σ1

( n

rd

)

so as to obtain

(15)
∑

r|n

rµ(r)γ1,1(n, r) =

(
5

24
n3 −

1

4
n2

)∑

r|n

µ(r)

r2

thanks to lemma 24.
Next, one has

γ1,2(n, r) =
1

2

∑

d|n/r

µ(d)
∑

v|n/(rd)

v2
( n

rdv
− 1

)
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so that
∑

r|n

rµ(r)γ1,2(n, r) =
n

2

∑

r|n

µ(r)
∑

d|n/r

µ(d)

d
σ1

( n

rd

)

−
1

2

∑

r|n

rµ(r)
∑

d|n/r

µ(d)σ2

( n

rd

)

=
n2

2

∑

r|n

µ(r)

r2
−

n

2
ϕ(n)(16)

by lemma 24.
Finally, reporting (16) and (15) in (14) leads to lemma 26.

5.2.2. Even product of heights. Let us now compute the contribution of
α̃1(n, r).

Lemma 27. The number of type A primitive surfaces with n squares and

two cylinders, one having even height is

n2(2n − 15)

24

∑

r|n

µ(r)

r2
+

n

2
ϕ(n).

Write

(17) α̃1(n, r) = α̃1,1(n, r) − α̃1,2(n, r)

with, recalling again that n is odd,

α̃1,1(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(i1,u1,i2,u2)∈Ã1,1(n,r)

u1u2

and

α̃1,2(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(i1,i2,u)∈Ã1,2(n,r)

u2

where

Ã1,1 =
{

(i1, u1, i2, u2) ∈ Z4
>0 : i1 or i2 even, i1u1 + i2u2 =

n

dr

}

and

Ã1,2 =
{
(i1, i2, u) ∈ Z3

>0 : i1 or i2 even, (i1 + i2)u =
n

dr

}
.

Since i1 and i2 are not simultaneously even, one has

α̃1,1(n, r) =
∑

d|n/r

µ(d)
∑

(v1,v2)∈Z
2

>0

v1+v2=n/(dr)

∑

i1|v1

i1 even

∑

i2|v2

i2 =
∑

d|n/r

µ(d)S2

( n

dr

)
.

Using proposition 21 and lemma 24, one obtains

(18)
∑

r|n

rµ(r)α̃1,1(n, r) =

(
1

12
n3 −

1

8
n2

)∑

r|n

µ(r)

r2
.

Next,

α̃1,2(n, r) =
1

2

∑

d|n/r

µ(d)
∑

u|n/(dr)

u2
( n

rdu
− 1

)
.
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Lemma 24 gives

(19)
∑

r|n

rµ(r)α̃1,2(n, r) =
n2

2

∑

r|n

µ(r)

r2
−

n

2
ϕ(n).

Reporting (19) and (18) in (17) leads to lemma 27.

5.3. Two cylinders with even product of heights. Compute at last
the sum

∑

r|n

rµ(r)α2(n, r).

Lemma 28. The number of type A primitive surfaces with n squares and

two cylinders, one having an even height, the other having an even length is

n2(n − 3)

48

∑

r|n

µ(r)

r2
.

Since n is odd, one has

α2(n, r) =
1

4

∑

d|n/r

µ(d)
∑

(i1,u1,i2,u2)∈Â1,2(n,r,d)

u1u2

with

Â1,2(n, r, d) =



(i1, u1, i2, u2) ∈ Z4

>0 :
i1 and u1 even,

or
i2 and u2 even,

i1u1 + i2u2 =
n

rd



 .

Hence,

α2(n, r) =
1

2

∑

d|n/r

µ(d)
∑

(i1,u1,i2,u2)∈Z
4

>0

i1 and u1 even
i1u1+i2u2=n/(rd)

u1u2

=
∑

d|n/r

µ(d)S4

( n

rd

)
.

The result follows from proposition 21 and lemma 24.

5.4. One cylinder. The counting in that case is more direct.

Lemma 29. The number of type A primitive surfaces with n squares and

one cylinder is

n3

24

∑

r|n

µ(r)

r2
.
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One actually has
∑

r|n

µ(r)α3(n, r) =
n

3

∑

r|n

µ
(n

r

)
#

{
(v1, v2, v3) ∈ Z3

≥0 : v1 + v2 + v3 =
r − 3

2

}

=
n

3

∑

r|n

µ
(n

r

) r2 − 1

8

=
1

24
n3

∑

r|n

µ(r)

r2
.

5.5. Computation of a generating series. The number of non necessar-
ily primitive surfaces with an odd number n of squares of type A is given
by

an =
∑

d|n

σ1

(n

d

)
ap

d.

Even though this does not have any geometric sense, one can define numbers
ap

n and an by these formulae for even n ≥ 2. We will compute the Fourier
series attached to the resulting sequence (an)n∈Z>0

. Corollary 2 follows
directly from the following proposition.

Proposition 30. Let n ≥ 1. Then

an =
3

16
[σ3(n) − nσ1(n)].

Proof. We use the basic facts of § 5.1. We have

an =
3

16
[k3(n) − k2(n)]

where, for ℓ ∈ Z, the arithmetical function kℓ is defined by

kℓ = σ1 ∗ (idℓ Ψ)

with

Ψ(n) =
∑

r|n

µ(r)

r2
= 1 ∗ (id Ψ)(n).

We deduce that

L(kℓ, s) =
ζ(s)ζ(s − 1)ζ(s − ℓ)

ζ(s − ℓ + 2)

hence
k3 = σ3 and k2 = id σ1.

�

6. The associated Fourier series

Recall that the two weight 2 modular forms Φ2 and Φ4 on Γ0(2) and
Γ0(4) respectively have been defined in (8) and (9). In this section, we prove
theorem 3. Since we want to eliminate the coefficients of even order, it is
natural to consider the Fourier series obtained by twisting all coefficients by
a modulus 2 character. By proposition 23, one obtains a quasimodular form
of weight 4, depth less than or equal to 2 on Γ0(4), hence a linear combination
of E4, E2,4, E4,4, DΦ2, DΦ4 and DE2 (see the proof of proposition 21). The
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coefficients of this combination are found by computation of the first seven
Fourier coefficients.
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