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COUNTING INTEGER POINTS BY TEICHM ULLER DISCS IN QM(2).

SAMUEL LELIEVRE AND EMMANUEL ROYER

AsstracT. We prove formulae for the countings by orbit of squaredtderfaces
of genus two with one singularity. These formulae were atinjed by Hubert &
Lelievre. We show that these countings admit quasimodatans as generating

functions.
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1. INTRODUCTION
The main result of this paper is the proof of a conjecture dbétti& Lelievre.

Theorem 1. For odd n, the countings by orbit of primitive square-tiladfaces of
the stratumQ AM(2) tiled with n squares are the following. Orbit A contains

3 1
P_ 2 (n_1)2 i
ah = 150- 1| [a- )
pin
primitive surfaces with n squares and orbit B contains

3 1
p_ — 392 .
bh = -3’ | Ja-)
pin
primitive surfaces with n squares.

A square-tiled (translation) surface is a translationaeefthat can be tiled by
unit squares. It is therefore a collection of unit squardh wairwise identifications
of parallel sides[[Mas(5]. Because of the identificatioms can associate to each
vertex an angle which is a multiple ofr2 If there is only one vertex with angle
equal to @, all the other vertices having angle,2hen the surface is said to belong
to the stratunQM(2). Figure[]L is an example of square-tiled surface, with@0 u
squares, belonging to the stratut(2). The only one vertex with anglefterent
from 2r is the dotted one. A square-tiled surface is said to be puienit it cannot
be tiled with a pattern made of several unit squares, whateed identifications
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2 SAMUEL LELIEVRE AND EMMANUEL ROYER

would produce a torus.¢.a parallelogram with parallel sides indentified). Figdre 1
exhibits a primitive surface while figuf¢ 2 exhibits a nomgitive one. In this last

example, a pattern responsible for the non primitivity i®etangle made of two
unit squares.

Ficure 1. A primitive square-tiled surface RAM(2)
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Ficure 2. A non primitive square-tiled surface §aM(2)

It is immediate that a square-tiled surface of genus at [24st particular, a
square-tiled surface i@ M(2)) with a prime number of unit squares is primitive.
By cutting and gluing, using identifications, a squarestisirface may be viewed
as made of squares and triangles (see fifjure 3). This is weleéu considering the
action of SL(22Z) we describe now. For any integerthe linear action of SL(Z)
induces an action of primitive square-tiled surfaces witlgquares. For an example
of transform byT = ({ 1), see figurd]3.

An equivalent definition is that a square-tiled surface i@ (X, w) where X
is a Riemann surface which is a ramified cover of the stanaatsT2 = C/72,
ramified only over the origin, and is the pull-back by the covering map of the
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Ficure 3. Action of T

1-form dz on T2 induced by the 1-formzion C. They are in the stratufM(2)
whenX of genus 2 and) has a double zero.

Square-tiled surfaces are the integer points of moduliespat translation sur-
faces. On these moduli spaces, there is a natural action (@ BLwhose orbits
are called Teichmdller discs. The SLE-action induces the SL(Z)-action on
square-tiled surfaces mentioned above.

In this paper, we consider this action on surfaces in théustr& M(2). Hubert
& Leliévre [HCO5H] and McMullen [McMOp] have shown that,ifany oddn > 5,
there are two types of surfaces, called A and B. We brieflyarplsee[[HLOTb]
for the details) how to determine the type of the surfaces matrix—I induces
an application of any surfaceX{w) € QM(2) to itself which admits 6 fix points,
called Weierstrass points. These points have half-integadinates in the squares.
If the number of squares is odd, then the number of Weiessfrasits with integer
coordinates is either 1 (an&,(w) is then said to be of type A) or 3 (an¥,(w) is
then said to be of type B). liis odd> 5, the set of primitive square-tiled surfaces
with n squares splits into 2 orbits under SLZ3: one of the orbits consists in the
surfaces of type A, the other one consists in the surfacegoefB. Our aim is to
compute the respective cardinalitigdsandb}, of these orbits. We shall also count
the total number of square-tiled surfaces of each type {pveror not),a, andb,.

Eskin, Masur and Schmo[JEMS03] give two formulae for thener of prim-
itive square-tiled surfaces tiled by a given number of sgaanQAM(2), one under
the form of sums over several parameters and the other othesed:form. Hubert
and Leliévre [HLO5b] suggest as a conjecture a closed faiion the countings by
orbit when there are two orbits (called orbit A and orbit Bur@heoren{]L asserts
the validity of this conjecture.

We concentrate og}, sinceb? can be deduced by the formula (consequence of
the one of Eskin, Masur & Schmoll):

3 1
p p_ 2 | |
an+bn—§n (n—2) pln(l—a).

The numbersy, anda are related by the formula
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whereo1(K) is the sum of divisors dk.

Remark.One has
1—[ (l ) Z u(d)
pin din

with u the Mobius function. Here and in the following, a producepp means a
product over prime numbersand a sum over divisors means a sum over positive
divisors.

Theoren]L can also be expressed in terms of quasimoduldite @enerating
functions of the countings. More precisely:

Corollary 2. Assume n> 5is an odd integer. The number of non necessarily
primitive square-tiled surfaces ©2M(2) of type A tiled with n unit squares is the
nth cogficient of the quasimodular form

E4(Z) +10

Z 2 exp(drn2) = E2

1280 2in

of weight4, depth2 on SL(2 Z).

Remark. FunctionskE, and E4 are the usual Eisenstein series of weight 2 and 4
respectively. They are precisely defined in equatiphs (@)(am).

Since the cofficientsa, have no geometric meaning for evenit makes sense
to consider only the odd part of the Fourier series. Consigeghe odd part is the
same as considering the Fourier series twisted by a Ditichigracter of modulus
2 (see sectiop 3.4). It is then natural to expect that, sityita the case of modular
forms (see 7, Theorem 7.4]), the odd part of the Fowseies is a quasi-
modular form on the congruence subgrdty§4). Actually, we will prove this is
the case. Le®, and®d4 be the two modular forms of respective weights 2 and 4,
defined orTy(4) as in [1R) and[(13).

Theorem 3. The Fourier series

Z anexp(dnzn2)

ne2Zso+1

is the quasimodular form of weightand depthl onT'o(4) defined by

E4(Z) 9E4(ZZ) + 8E4(4Z) - 152 d (DQ(Z) + 15— (I)4(Z) .

d
1280 2indz
Remark. This theorem will be proved in sectigh 5. It is interestingniate that
forgetting the artificial terms of even order leads to a dasirgy of the depth, that is
to a simplification of the modular situation (since a modiédam is a quasimodular

form of depth 0, the depth may be seen as a measure of conyplexit

In particular, one obtains

ni 5|79 |11|13]| 15| 17| 19 21 | 23 25 | 27
a | 18| 54| 108| 225|378 504 | 864 | 1215| 1440| 2178] 2700| 3159
a, | 18| 54| 120| 225| 378 | 594 | 864 | 1215| 1680| 2178 | 2808 | 3630
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The main lines of the proof of theorefh 1 are the following. étton[2, we
evaluate the numbet) in terms of sums over sets defined by complicated arith-
metic conditions. In sectiofj 4, we relate theseftoentsa to sums of sums of
divisors of the form

>, ai@oib).

(a,b)eZ§0
ka+b=n

For the computation of these sums, we use, in sefftion 3, tiennaf quasimodular
forms on congruence subgroups (introduced by Kaneko & ZagifKZ95]) and
we take advantage of the fact that the spaces of quasimofdutas have finite
dimension to linearize the above sums. Here, linearizingmaexpressing them
as linear combinations of sums of powers of divisors. Hawbtpined a series
whose odd cda@icients are the numbeg,, we introduce the notion of twist of a
quasimodular form by a Dirichlet character, to construcea quasimodular form
generating series without artificial Fourier ¢ogents.

Remark.We learned that Matt Bainbridge was also able to prove thgectire,
using diferent methods.

2. SUM-TYPE FORMULAE FOR THE ORBITWISE COUNTINGS

2.1. Primitive square-tiled surfaces. The lattice of periods Pear of a square-
tiled surface X, w) in QM(2) is the module oveZ generated by the geodesic
segments (for the flat metric) @with both endpoints at therGpoint.

The condition for a square-tiled surface, () to be primitive is the assumption
that its lattice of periods Pep] is Z? (the surface is tiled by a fundamental paral-
lelogram of Perg)). In other words, the surface is primitive if the coveringym
(X, w) — (T2, dz) does not factor through a square-tiled torus bigger THat

Consider a square-tiled surfack¥, {), then its lattice of periods Pes] is a
sublattice ofz? and the covering map: (X,w) — (T2 dz2), whose degrea is
the number of square tiles & can be factored ax(w) — (Rz/Per@) ,dz) —
(T2, d2), wheren, is the isogeny whose degree is the index of Bpin Z2.

Now, calling P a fundamental domain for the lattice Rey(the surface X, w)
is a “primitive P-tiled surface”. If Perg) has indexd in Z?, thend is a divisor of
n, P has areal, andS is tiled byn/d copies ofP.

The number ofd-square-tiled tori is the number of indeksublattices ofz?.
Such a lattice can always be given a basisQ) (t, h)) wherer, h, t are integers
satisfyingrh = d and 0< t < r. Such a basis is of course unique. Each choice
of r (a divisor ofd) determines and leaves choices fort, whence the number of
d-square-tiled tori igri(d) = >.;,qr. Note that ifd is odd, then so areandh.

This leads to the following relation between countirigsof square-tiled sur-
faces inQM(2) and counting$® of primitive surfaces ifAM(2):

1) hn = Z (A .
din
We find it convenient to introduce an intermediate class oésettiled surfaces,
which we call “primitive in height”. Square-tiled surfac#sat are primitive in
height are those for which the basis, (), (t, h)) of Perw) hash = 1. (Primitive
surfaces are those for which= h = 1.)
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The relation between general countings and height-prueitbuntings is now:

®) o= hP0
dn
(given a height-primitive surface withyd squares, associate to it the surface built
by replacing each square by a rectangle of dimensionsl)1
Equation [R) can be inverted h%h = Ydn#(d)hn/g.
From (1), [2) and the relatigm«c; = id, we have the following relation between
height-primitive and primitive countings:

hﬁh = Z dhﬁ/d

din

. : h
which can be inverted d% = Yqp, dy(d)hﬁ/d.

2.2. Orbitwise countings of square-tiled surfaces inQM(2). In [HLO54], for
oddn, A, and B, were used to denote the SL-orbits of primitive n-square-
tiled surfaces iM2M(2), anda, andb, were used to denote their cardinalitfes.

We change the notation a little bit with respect to the notatif [HLO54]. Here,
for oddn, we denote b, (resp.by) the total number ofi-square-tiled surfaces in
QM(2) (primitive or not) with 1 (resp. 3) integer Weierstrassrs, and bya) and
bh the number of primitive such surfaces. So #heandby, of [HLO53] are nowaf,
andb. We also usef" andbP" for the corresponding countings of height-primitive
surfaces.

Assumen is odd. The invariant “number of integer Weierstrass poiistsvell-
behaved. Write Pet() = aZ & wZ wherea = (r,0) andw = (t,h). Then a
Weierstrass point modulo Per)is one of the four following points:

0 1a+w a+lw 1a+ lw
’ 2 ’ 27 2 2

and either one or three of the Weierstrass points are 0. $iandh are odd, only
0 is 0 modulaz?.

Therefore the formulae relatirgy,, hﬁh andhf also hold when we repladeby
eitheraorb.

Lemma 4. For any odd n> 5,

=D @ a= A, A=) dd,

din dn dn

Square-tiled surfaces MAM(2) can have either one or two horizontal cylinders,
and there is a corresponding parametrization by heightjvadd twist parameters
of the cylinders (sed JZorp2] and figure 4).

As analyzed in[[HLO5ob§ 5.1], for oddn > 5, the parities of the parameters
determine whether a given surface is of type A or B, as follo{®y the remark
about parallelograms of odd area, this remains valid ngtfonlprimitive surfaces,
but also for all surfaces, or for height-primitive surfage®ne-cylinder surfaces
with horizontal sides of lengtha, b, ¢ are of type A ifa, b, c are all odd, of
type B otherwise; for eacha(b, c) up to cyclic permutation, there arepossible

Lin terms of the notations iSHn is the set of square-tiled surfacesti\°, andB, the
set of those IW,.
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Ficure 4. Parametrization of a surface

twists. For two-cylinder surfaces with parametbis hy, ui, U, t1, tp, such that
hlul + h2U2 =N (Odd)

¢ all such surfaces with; andh, odd are of type A;

¢ all such surfaces with; andu, odd are of type B;

e exactly half of the remaining surfaces (withfférent parity foru; andu,

and forh; andhy) are of type A, and half are of type B;

for each by, hy, ug, Uy), there areuiu, possible twists (if we had required prim-
itivity instead of height-primitivity, some of them wouldohbe admissible). In
the case of dferent parities foh; andh, and foru; andu,, the productuiu; is
even and exactly half of the possible twists correspondsith &/pe. The height-
primitivity condition is just that the heights of the cylias have greatest common
divisor equal to one, so we obtain the following sum-typerfolae foraﬁh:

(3) abh = % Z n+ Z Uil + % Z Uz Us.

(ab,0)e(2Z50+1)° hy,hz,U1,Up€Z50 hy,ho,U1,UpeZ50
a+b+c=n hiui+haup=n hiuz+houo=n
(hg,h2)=1 (h1.h2)=1
hy,h odd hyzh; (mod 2)
Ui <up Ui <up
Uil even

From there we obtaig, = g daﬁ;‘d and

@) ah = du(d)aly,.

din
3. QUASIMODULAR FORMS

3.1. Motivation. Let¢ be a positive integer. The functiary is defined by

(5) oe(n) = {de d’ ifneZ.g

0 otherwise.

The aim of this part is the computation of sums of type

(6) Sk = ), cu@eb)

(a,b)ezio
kat+b=n

with k € Z.o. We shall study only the casé&se {1, 2, 4} but the method should
apply to every other value &
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Useful to the study of these sums is the weight 2 Eisensteiesse

(7) E2(d) =1-24)" o(n)e(n?)
n=1
where
e(1) = exp(drT) (Omt > 0).
Defining
Hk(2) = E2(9E2(k2),
one gets

8  H@=1- 24§ |10 + o ()| etnd) + 576§ Sk(Me(n?.
n=1 n=1

We shall achieve the linearization bfi using the theory of quasimodular forms,
developed by Kaneko & Zagier. The computationS{n) will be deduced for
eachn.

3.2. Definition. Let us therefore begin by surveying our needs on quasimodula
forms, referring to[[MR05§17] for the details. Define

d

for all integersN > 1. In particularI'o(1) is SL(2Z). Denote byH the Poincaré
upper half plane:

ro(N)={(‘z1 b) . (ab,c,d)eZ% ad—bc=1, Nlc}

H={zeC: Imz> 0}.
Definition 5. Let N € Z.q, k € Z>g and se Z-g. A holomorphic function
frH->C

is a quasimodular form of weight k, depth s B§(N) if there exist holomorphic
functions §, f1, ..., fson % such that

g f(aztb) o c
© (cz+d) f(cz+d)_ £ f'(z)(cz+d)

for all (2 g) € I'o(N) and such that fis holomorphic at the cusps and not identi-
cally vanishing. By convention, tlefunction is a quasimodular form of depth
for each weight.

Here is what is meant by the requirement fgto be holomorphic at the cusps.
One can show [MR05, Lemme 119] thafisatisfies the quasimodularity condition
(@), thenf satisfies the modularity condition
az+b
cz+d

(cz+ d)" k29 fs( ) = f4(2)

for all (2 3) € I'o(N). Asking fs to be holomorphic at the cusps is asking that, for
all M = (9%) € Io(1), the function

i (yz+ 6) 291, (ﬂ)

vZ+ 6
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has a Fourier expansion of the form
+00
-~ nz
> fSM(n)e(u—)
n=0 M

Um = inf{u € Zsg: TV € Mo(N)M}.
In other words,fs is automatically a modular function and is required to beanor
than that, a modular form of weight — 2s on I'g(N). It follows that if f is a
quasimodular form of weighk and depths, non identically vanishing, thek is
even ands < k/2.

where

Remark. Let y be a Dirichlet character (sefB.4). If f satisfies all of what is
needed to be a quasimodular form excgpt (9) being replaced by

(cz+d)” kf(a“b) X(d)z.(z)(cz d)i

then, one says thdtis a quasimodular form of weigh, depths and charactey
onTo(N).

The Eisenstein serids, transforms as

> (az+b c
(cz+d)” Ez( cz+d ) Ea2) + |7rcz+d

under the action of an2 3) € I'o(1). HenceE; is a quasimodular form of weight
2 and depth 1 ofip(1). Defining

En2(2) = E2(N2,

one has

az+b

2 C
(cz+d)“Eny2 (cz

+d) Ena(2) + i ch+d

forall (2 g) € I'p(N). Hence En 2 is a quasimodular form of weight 2 and depth 1
onTo(N). One denotes byl [Io(N)]<S the space of quasimodular forms of weight
k and depth less than or equals@nI'o(N). The spac& [To(N)]=0 is the space
M[T'o(N)] of modular forms of weighk on T'o(N). A recurrence on the depth
implies [MR0%, Corollaire 121] the equality

(10) MTo(N)]** = (D) Mica[To(N)]E;.

It is known that M[I'o(1)] = {0}. However, ifN > 1, one deduces from
CEz® CEn2 € M2[To(N)]<" = M2[To(N)] @ CE>

that dim Mp[T'o(N)] > 1. By the way, for every familydy)qn such that
3o
diN

one has

€ M2[I'o(N)].

lz - > CiEa(d2)

diN



10 SAMUEL LELIEVRE AND EMMANUEL ROYER

Denote byD the diferential operator
C1d
= 5
It defines a linear application fromdl [To(N)]=S to My.2[Co(N)]<S*L. This appli-

cation is injective and strictly increases the deptk if 0. This property allows to
linearize the basis given if (10).

Lemma 6. Let k> 2 even. Then,
N k-1
MiTo(N)]¥/2 = 5 D'Mi 2i[[o(N)] @ CDM2'Ep,
i=0
3.3. Sums of sums of divisors.Lemma[p allows to reach our goal by expressing
the sumsSy, S, andS, introduced in [(6) as follows.

Proposition 7. Let n> 1. Then,

S1() = () — D) + —=oa(n).

12 2 12
1 1 n 1 1 n 1 1 n
Sz(n) = 1—20'3(n) + :—30'3(5) — énO']_(n) — ZnO']_(E) + ﬂO’l(n) + ﬂO’l(z)
and
1 1 n 1 n 1 1 n
Salf) = 757500 + 3503 (3) + 373(3) ~ g - s (3]
+ ! (n) + ! (n)
2471 T 5271\ 1)

Proof. We detail the proof for the expression 8§. The functionHy, introduced
in @), is a quasimodular form of weight 4 and depth 2Zlg(¥). Lemmdp gives

Ma[To(4)]5% = M4[T'o(4)] & DM2[I'o(4)] & CDEx.

The space M[T'9(4)] has dimension 3 and contains the linearly independamt-f
tions

(11) Es2) =1+ 24oi o3(n)e(n2)
n=1

E24(2) = Ea(22)
E44(2) = E4(42).
The space M[T'o(4)] has dimension 2 and is generated by

(12) D2(2) = 2E2(22) - E2(2)
4 1
(13) 04(2) = 5E2(42) - SF2(2).
Hence, by the computations of the first seven Fourieffaents, one gets
1 3 4 9
Hs= —=E4+ —E —E —D®,4 + 3DEo.
4= 55 4+20 2,4+5 4,4+2 4+ 2

The computation 084 is then obtained by comparison of the FourierfGo&nts
of this equality. The computation &, is obtained along the same lines via the
equality

1

4
H2 = §E4 + §E2’4 + 3D(Dg + 6DE2
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between forms oM4[I'o(2)]<2. At last, the expression @& is deduced from the
equality

EZ = E4+ 12DE,
between forms oM4[[o(1)]52. O

Remark.The computation oH,, which lies in the dimension 6 vector space with
basis|E4, Ez4, E44, DD2, D4, DE5}, required working oiseverconsecutive Fourier
codficients. We briefly explain why, mentioning that any sequersfo@ consecu-
tive codficients is not sfiicient. For any function

+00
@ =) fnen?
n=0
and any integer > 0, define

c(fi) = (), i + 1), F(i + 2), F(i + 3), (i + 4). (i + 5)),
and let

vi(i) = c(Ea, i) V2(i) = c(E24,1) v3(i) = c(E44,1)

V(i) = c(DDs, i) Vs(i) = c(Dda4, i) Ve(i) = ¢(DE, i).
Then, for each, there exists an explicitly computable linear relationisnv,(i),
va(i), va(i), vs(i) andvg(i). One could think of using a basis & 4[[o(I'g(4))]52
echelonized by increasing powerseaff). However the same phenomenon would

appear when changing to such a basis and expressing the s&asvebaments in
terms of the original basis.

3.4. Twist by a Dirichlet character. Recall that a Dirichlet charactgris a char-
acter of a multiplicative grou()Z/qz)>< extended to a function of by defining

) = P (moda) if (n.c) =1
0 otherwise
(seee.qg.[[KO4|, Chapter 3]).
A quasimodular form admits a Fourier expansion

+00
(14) t@ =), fe(na.

n=0
Since we shall need to compute the odd part of a quasimodriar, fve introduces
the notion of twist of a quasimodular form by a Dirichlet cheter.

Definition 8. Let y be a Dirichlet character. Let f be a function having Fourier
expansion of the forrfl4). The twist of f by is the function f® y defined by the
Fourier expansion

+00
fex@ =) xmfnen.
n=0
The interest of this definition is that it allows to build newagimodular forms,

as stated in the next proposition.

Proposition 9. Lety be a primitive Dirichlet character of conductor m. Let f be a
guasimodular form of weight k and depth sIyiN). Then f®y is a quasimodular
form of weight k, depth less than or equal s and charagfeon Fo(lcm(N, rr12)).



12 SAMUEL LELIEVRE AND EMMANUEL ROYER

Proof. The proof is an adaptation of the corresponding result foduter forms
(seee.g. [[wa97, Theorem 7.4]). We consider for eaktthe following action of
SL»(R) on holomorphic functions ofi{:

(f1(3 0@ = (cz+d)*f (

Let 7(x) be the Gauss sum

W= Y. xue(=).

az+b
cz+d/’

u (modm)

Sincey is primitive, this sum is not zero. One has

(15) gex= ). xW@E"M)
v (modm) k

as soon ag has a Fourier expansion of the form](14). Defe= Icm(N, m?). Let
(55) € To(M). The matrix

1 v/m\fa B\(1 v&?/m\"
o 1)y s/lo 1

being inCo(N), one deduces from the levil quasimodularity off and [15) that

s |

r@)(f@xl(zfé»(z):Z > RUCHNERIE

i=0 v (modm)

Y

52v y82v
)’(Z+ ﬁ) +06— m

Since the functiond; are themselves quasimodular forms (§ee [MRO5, Lemme
119]), they admit a Fourier expansion. Hence, frgnh (15),

" 8x|(35)@ = <) Y fex@ (ﬂﬁ 5) |
i=0

It follows that f ® y satisfies the quasimodularity condition. There remainsdgg
the holomorphy at the cusps, which is quite delicate sifyce y may be 0 even
though fs is not. Actually, lemmd]6 and the fact that the twist of a maddbrm
onTp(N) by a primitive Dirichlet character of conductaris a modular form on
I'o(M) show that the proposition is proved as soon as it is proved fo DK2-1E,.
In that cases = k/2 andfs® y is not 0 (see[[MRQ5, Lemma 118], henégbeing
a modular form implies thats ® y is also one.

m]

4. PROOF OF HUBERT & L ELIEVRE CONJECTURE

The aim of this part is the proof of theordin 1. In all this paris assumed to be
odd. Define

amn= )
(hg,ug,hz,up)eA(n.r)
1
az(n,r) = > Uil
(hy,uz.hz,up)eA(nr)
n
a’3(n, I’) = § l

(ug,up,uz)eA3(n,r)



COUNTING INTEGER POINTS BY TEICHMILLER DISCS IN QM(2). 13

with
Ag(n.r) =
| (h,hp) =1, n
{(hl, u, hp, Up) € 24, hy andhy odd, < Y2 hiug + houp = T
Az(n,r) =
(hy,h) =1, Up < U,

h; or hy even,

hy, Ug, hp, Up) € Z24,:
{( 1, Uz, hp, Wp) € Z3, Uy Or Up even,

hlul + h2U2 = ?}
and
n
Az(n,r) = {(Ul, Uz, Ug) € (2Z>0 + 1)%: Uy + Up + U3 = F}'
By equations|{4) and](3), our goal is the computation of

(16) ah = > u(r) [raa(n,r) + raz(n,r) + as(n .

rin

4.1. Two cylinders and odd heights. Here, we compute the sum

Z ru(nas(n,r).

rin

Write
(17) a1(n,r) = y1(n,r) - @(n,r)
with
Yl(na r) = Z U1U2
(hy,uz,hz,uz)eC(n,r)
and
ay(n,r) = Z UiUz
(he.ughp.up)eAr(n,r)
where

n
c(nr) = {(hl, ug, ho, Up) € 2450 (hy,hp) = 1, ug < U, hyug + hpup = F}

and (recalling thah is odd)

(hy,hp) =1,

7 _ 4 .
ﬂl(”; r) - {(hla Ul, h25 U2) € Z>O - hl or h2 even’

n
Ui < Uy, hlul + h2U2 = F} .

Note that the sum

D ruyyan,r)

rin

is the total number of primitive surfaces with two cylinders
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4.1.1. Surfaces with two cylinderdJsing Mobius inversion formula, one obtains

nnn=>p@d D ww

din/r (i1.Uniz,Up)eZ2,
U <uz
i1U1+i2U2:n/(rd)
(18) =7y11(n,1) = y12(n,1)
with
y11(n,r) = Z p(d) Z Uzt
d|n/r (in. .z, Up)eZ?,
i1U1+i2U2:n/(rd)
and
yia(nr) = Z pd W
d|n/r (iviz,u)ezd,
(iy+i2)u=n/(rd)
One has

ya(nn) = 3 Su Y S w Y w,

din/r (V1,V2)eZ2, Wilva  Walvz
Vi+Vo= n/(rd)
n/(rd)-1
=SS Y i (o - vi).
d|n/r vi=1

By propositior[]7, this can be linearized to

1a(n) = 55 Z “(d)‘”(rd) e w (1)

din/r dl /r
+ o > o ()
din/r
S0 as to obtain
ARNN0)
(19) |Z u(ry1a(nr) = ( -3 ) 22

thanks to the following lemmds]10 ahd 11.

Lemma 10. Letn> 1.

Do) Y u@yor () =t > A0

rin din/r rin

Proof. The left-hand side is

e = Y e Y ui@ = 3 ) (1) =t 3 A0,

dern ern din/(er) rin rin

Lemma 11.

50 3, M0 (1) 0 540

rin din/r
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Proof. The left-hand side is

Z (r)’u()e Z’“(d)_ Z (r)_zﬂ(d)n Zﬂ(d)‘

redn ddn rin/(de din din

Next, one has

yiamn) =5 > u@ 3 (1)

d|n/r vin/(rd)

so that
rzml rﬂ(r)Yl,Z(n, r) rzlnl ( )dlzn/l /ﬂ o1 (rrc]i)
"3 Z () > ﬂ(d)o'g( )
rin din/r
) ) Z u) E e(n)

rin

by lemmaq70 an[}.l.
Finally, reporting [(20) and (19) il (.8) leads to

@) ) = - 512) 325 + et
rin

rin

4.1.2. Even heights.Let us now compute the contribution @f(n, r). Write

(22) a/dl(n’ r) = a'1,1(n’ r) - a/'l,Z(n’ r)

with, recalling again that is odd,

aga(n,r) = Z u(d) Z UpUp

d|n/r (i1,UnizUp)eAL1(nr)
and
T =3 Y ud YW
0"”/r (i1.i2.U)eAL 2(n.r)
where
~ . ) ) ) ) ) n
Al = {(Il, Uy, i, W) € Zﬁo: i1 Orio even iqug + islp = E}
and

~ .. , . L n
A1 = {(Il,lz, u) € Zio: i1 0ripeven (ip +iz)u = a}.

Sincei, andi, are not simultaneously even, one has

aunn =Y ud >, > Dl

din/r (V1vo)ez2, ialvi ialv
i1 even
Vi+vo=n/(dr) 't

15
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the sumS, having been defined ifi](6). Using proposit{dn 7 and lemiasaifia,
one obtains

(23) Z ru(r)ayi(n,r) = (—n ;nz)z ﬁ%

rin

Next,
Tann) =3 Y ud) Y (1)

d|n/r uln/(dr)

LemmagT0 anfl]L1 give

24 e = 5 3D L,
Reporting [24) a:Zmas) i (22) leads torIn

25) D) = (357 - 8] 2 + St

Finally (25), (21) and[(17) give

(26) Z ru(t)ai(nr) = (— )Z —2)
rn

rin
4.2. Two cylinders with even product of heights. Compute at last the sum
2, tHDaz(n.).
rin

Sincenis odd, one has

az(nr) = 3 Zu(d) D Uyl

d|n/r (i1.uni2,Up)eAL2(n,r,d)
with
i1 andu; even

. . n
or i1U +iolp = — }.

Arz2(n,r,d) = § (i, Un, iz, W) € ZE51 | d
i andu, even,

Hence,

=3 Y ud Y, u

; 4
d'”/ r (iz.urizup)ezs,
i1 andu; even
i1u1+i2u2:n/(rd)

- d;/ru(d)szl( )

the sumS,4 having been defined iff] (6). Finally, propositign 7 and lemfithand TjL
give

@27 Zry(r)az(n,r):(% = )Z“(r).

rin
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4.3. One cylinder. The counting in that case is more direct. One actually has

Yu@esn =3 u(z) Y1

3
rn rin (V1,V2,V3)€Z3
V1 +Vo+v3=(r-3)/2

n nré-1
—5%“(?) 5

(28) = 2—14n3 > ‘%
rin

4.4. Conclusion and computation of a generating seriesReporting [2B),[(37)
and [2b) in [16), one gets the number of primitive surfaceypé A:

3 u(r)
p_ 2(n — US4
an = 16n (n-1) ;m o

This ends the proof of theorefh 1.
The number of non necessarily primitive surfaces with an pdchbern of
squares of type A is given by

n
=2 ()
din

Even though this does not have any geometric sense, one fina dambersa))
and a, by these formulae for even > 2. We will compute the Fourier series
attached to the resulting sequer{eg),.z_,- Corollary[2 follows directly from the
following proposition.

Proposition 12. Let n> 1. Then

a0 = 2elos(0) ~ oy ()]

Proof. One has

a = %(an_ﬁn)
where 0
= n d3 )
@n dzmo-l(d) rlzd r2
and 0
n u(r
po= 2 (g) 27

Openingo gives
an =) 0q%u(r) = ) s> D u(r) = oa(n)
frgin sn ds ris/q
and

Pn= ) faPulr) = no(n).

frqgin
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5. THE ASSOCIATED FOURIER SERIES

Recall that the two weight 2 modular fornds and®4 onT'g(2) andI'p(4) re-
spectively have been defined [n](12) ahd (13). In this secti@prove theorerf 3.
Since we want to eliminate the dfieients of even order, it is natural to consider
the Fourier series obtained by twisting all @g@ents by a modulus 2 character.
By proposition[P, one obtains a quasimodular form of weightigpth less than
or equal to 2 orTp(4), hence a linear combination &, Ez 4, E44, D®2, DOy
andDE; (see the proof of propositiof} 7). The ¢heients of this combination are
found by computation of the first seven Fourier fméents.
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