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Two-photon excitation of a quantum ladder system by an ultrashort chirped pulse leads to interferences in

the excited-state population, between direct and sequential paths. Experimental results have been obtained in

atomic sodium vapor. The presence of several intermediate and final states leads to new phenomena. The

interplay between the two sequential paths leads to strongly contrasted oscillations and a large enhancement of

the transition probability for precise values of the chirp. A cubic spectral phase modifies significantly the

behavior of the quantum interferences and can be used to enhance the two-photon absorption rate.

DOI: 10.1103/PhysRevA.70.053414 PACS number(s): 32.80.Wr, 32.80.Qk, 42.65.Re, 78.47.1p

I. INTRODUCTION

Coherent control of atomic and molecular processes has
been a widely expanding field in the past two decades. One
initial goal was set by chemical physicists to achieve selec-
tivity and enhancement of chemical reactions [1–7]. Many
different schemes have so far been proposed and demon-
strated experimentally, and most of them rely on the intrinsic
coherence properties of lasers. The quantum interferences
between excitation induced by a laser field and by its second
or third harmonics were among the first schemes to achieve
spectacular results: control of an absolute excitation cross
section [8,9], of the branching ratio between two chemical
processes [10], or of the direction of photocurrents [11,12].
Another approach based on stimulated adiabatic passage
(STIRAP) has also been widely developed [13,14].

With ultrashort pulses, the pump-probe [15,16], pump-
dump-probe [17] or pump-control-probe [18] are the sim-
plest approaches which require only “internal” coherence of
the different spectral components contained in each Fourier-
transform-limited pulse. Schemes based on a pair or a se-
quence of identical pulses rely on interferences between the
quantum paths associated with each pulse and which connect
the same initial state with the same final state [19–29]. This
is analogous to Ramsey fringes well studied and used in
high-resolution spectroscopy. Another family of control strat-
egy relies on a “single” coherent pulse whose spectral phase
and/or amplitude is modified with dispersive devices or
shaped [30]. This last approach is often called the optimal
control strategy when it is associated with an optimization
algorithm within a closed loop [31–34]. It was strongly de-
veloped after the technological breakthrough for generating
arbitrarily shaped pulses [35,36]. It can also be used in an
open-loop strategy where the desired pulse shape is chosen
after a theoretical analysis of the interaction [37–44]. This
open-loop approach is well adapted to small systems for
which theoretical predictions are reliable.

Quantum ladder climbing is a particular situation which
finds a straightforward application in the vibrational excita-
tion of molecules [45–52] or in their rotational excitation
through a succession of Raman transitions [53,54]. Ladder
climbing combines multiphoton transitions and sequential
one-photon transitions. It can be performed in the weak-field
as well as in the strong-field regime, with Fourier-limited

pulses, chirped pulses [55–59], or shaped pulses [40]. Alkali
atoms have a natural electronic ladder with three nearly equi-
distant levels. They provide therefore a benchmark system in
which new excitation schemes can be explored. This paper
presents a detailed study of interference effects in ladder
climbing with chirped pulses having quadratic and cubic
spectral phase.

In the low-field regime, Meshulach and Silberberg have
demonstrated that Fourier-transform-limited pulses are opti-
mal for two-photon transitions without intermediate states
[37,38] but not for two-photon transitions with a nearly reso-
nant intermediate state [40]. Furthermore, in such a ladder
system one can observe interferences between sequential and
direct two-photon transitions. Balling et al. have proposed a
scheme using a linearly chirped pulse to excite a two-photon
transition in rubidium [56]. Recently a new analytic ap-
proach of this scheme has been proposed by Chatel et al. and
applied to Nas3s-3p-5sd [59]. In this work two intermediate

states were present, providing new interference paths. In par-
ticular, the interference between two sequential paths has a
chirp-independent contrast and presents analogies with
pump-probe experiments. This paper presents a detailed ac-
count of these results and extends them to the case where
several final states can be reached. Effectively, new interfer-
ence patterns are present. Varying the excitation wavelength
changes their weight but leads also to a qualitatively unex-
pected behavior. Higher-order terms in the phase develop-
ment have to be included to explain these observations.

In this paper, we first recall the basic model of a ladder
climbing excitation by a linearly chirped pulse (Sec. II). In
Sec. III, we detail the role of several intermediate and final
states in the quantum interference pattern. The sodium atom
is chosen to illustrate this scheme. Due to the broad band-
width of the excitation laser pulse, two different two-photon
transitions are excited. The experimental setup and results
are presented in Sec. IV. Finally in the last part the role of the
cubic phase is investigated and explained using the Wigner
representation.

II. BASIC MODEL: ONE INTERMEDIATE

AND ONE FINAL STATE

We first recall the origin of the interferences for the
simple case of a two-photon transition involving three
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atomic levels: the ground state ugl, one intermediate state ukl,
and the excited state uel. vkg= sEk−Egd /" and vek= sEe

−Ekd /" are the corresponding one-photon transition frequen-

cies. veg= sEe−Egd /" is the two-photon transition frequency.

This ladder system is excited by a weak ultrashort pulse Estd,
of Fourier transform Esvd. The carrier frequency is v0 and is

tuned on the two-photon resonance 2v0=veg. The one-
photon detuning d=vkg−v0 is smaller than or comparable to
the spectral bandwidth, but nonzero s0, ud u &dvLd so that

these three levels constitute an approximate ladder. The over-
all pulse duration is assumed here to be considerably shorter
(picosecond scale) than all lifetimes (nanosecond scale) in-
volved. Therefore, damping can be neglected and the
Schrödinger equation can be used. The general expression of
the excited-state amplitude, for a two-photon transition in-
volving a nearly resonant intermediate level, can be written
as [40]

ae = −
mekmkg

"2 F1

2
EsvkgdEsvekd

+
i

2p
PE

−`

+`

dv
EsvdEsveg − vd

v − vkg
G , s1d

where mij is the dipole moment matrix element between
states uil and ujl, P is the principal Cauchy value.

In this section, we focus our study on the particular case
of linearly chirped Gaussian pulses. The spectral phase is

fsvd = f0 + f9sv − v0d2/2, s2d

where f9 is the quadratic phase or second-order dispersion.
Since only one pulse is present, with a duration much longer
than the optical cycle, f0 can be set to zero without loss of
generality. This would not be the case for ultrashort pulses of
a few optical cycles for which carrier envelope phase effects
have been seen to have major effects in strong-field experi-
ments [60–62]. The electric field is thus given by

Esvd = ÎpE0T0e−sv − v0d2T0
2
/4eif9sv − v0d2/2, s3d

where 2T0 is the field-transform-limited temporal width (at
1 /e), dvL=4/T0 the field spectral width, and f9 the qua-
dratic phase dispersion inducing the linear chirp. The corre-
sponding temporal electric field is given (in the rotating-
wave approximation) by

Estd =
1

2
E0Î G

G0

e−Gt2e−iv0t, s4d

with 1/G=1/G0−2if9 and 1/G0=T0
2. The chirped pulse

width is therefore given by

Tp = T0
Î1 + s2f9/T0

2d2. s5d

The instantaneous frequency varies linearly with time during
the pulse:

vstd = v0 + 2at , s6d

where

a =
2f9

T0
4 + s2f9d2 . s7d

Expression (1) can be written using the complex error func-
tion:

ae = −
mekmkg

2"2 EsvkgdEsvekdF1 − erfSi
d

Î2G
DG . s8d

The error function oscillates as a function of its argument.
However, this exact expression does not provide any direct
physical insight. In our previous work [59], it has been
shown that for large chirps suf9 u @T0

2d, Eq. (1) can be sepa-

rated into two distinct contributions: one is due to the direct
two-photon transition while the second one is due to the
sequential process. Two frequency ranges provide major con-
tributions to the second term in Eq. (1), around v0 and vkg,
respectively. The first one results from the stationary-phase
approximation and gives the direct two-photon transition am-
plitude ad. It corresponds to a small range of frequencies
sDv.1/Îuf9ud centered on v0 that can fulfill the two-photon

resonance condition. The second one is due to the pole in the
principal Cauchy value and provides a second significant
contribution, identical to the sequential contribution already
present in Eq. (1), except for its sign which depends on the
sign of f9. Finally one obtains the probability amplitude ae

.as+ad, with

as = −
mekmkg

"2 EsvekdEsvkgd
1 − sgnsf9dd

2
, s9ad

ad = −
mekmkg

"2

E2sv0d

dÎ2pT0Tp

e−isu+pd/2, s9bd

where as and ad are the sequential and direct contributions,
respectively, and tan u=−2f9 /T0

2. Note that ad corresponds
exactly to the nonresonant excited-state amplitude [38,40]

with a far-off-resonance intermediate state. uadu2 is
plotted in Fig. 1 (dashed line). It decreases as .1/Tp or

1/Î1+ s2f9 /T0
2d2 [see Eq. (5)] and has a full width at half

maximum (FWHM) of T0
2Î3. The sequential contribution

probability uasu
2 [Eq. (9a)] is a steplike function (dash-dotted

line in Fig. 1) depending only on the power spectrum at each
one-photon transition. The sharp increase around zero chirp
occurs when the frequencies of the pulse arrive in the intui-
tive order (vkg before vek): excitation of the intermediate
state ukl followed by excitation from ukl to uel.

A chirp-dependent phase factor eif9d2
, arising from the

electric field [see Eq. (3)], is present in the sequential term
[Eq. (9a)]. The phase factor e−isu+pd/2 contained in the direct
contribution varies only for small chirps, uf9 u &T0

2 (from
−3p /4 for f9,−T0

2 to −p /4 for f9.T0
2). This phase differ-

ence accumulated between both paths leads to strong inter-
ferences in the excited-state population uaeu

2 as a function of
the quadratic phase dispersion f9 as shown in Fig. 1 (solid
line). Depending on the sign of the one-photon detuning d,
the interferences occur either for positive or negative chirp.
The period of the corresponding oscillations is thus equal to
f2p9 =2p /d2. In Fig. 1 the analytic approximation of uaeu

2
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[Eq. (9)] is plotted with dots (for d.0 and d /dvL.0.5).
The agreement with the exact expression (solid line) given
by Eq. (8) is excellent, except for the small region around
zero chirp suf9 u &1/d2d where the approximation is not

valid. For f9.0, uaeu
2 has the same behavior as uadu2. On the

other hand, for f9,0 the population oscillates strongly
around uasu

2. The first maximum is reached when both am-
plitudes have nearly the same phase factors—i.e., for f9.
−3p /4d2 [this value is only approximate since the variation
of magnitude of ad is not taken into account and since this is
at the limit of validity of the approximation made to derive
Eq. (9)]. These interferences were first observed experimen-
tally by Balling et al. in Rb [56] with a reduced contrast.

III. QUANTUM LADDER WITH SEVERAL

INTERMEDIATE STATES AND FINAL STATES

We consider in this section the cases of several interme-
diate and final states. Adding new paths leads to multiple
interferences. However, one has to distinguish new interme-
diate states and new final states. The first case provides new
coherent paths sharing the same final state. They interfere
therefore together. The contributions towards different final
states are incoherent and need to be summed separately. Each
case is discussed in the following subsections.

A. Two intermediate states

We consider the case of two intermediate states uk1l, uk2l
contributing to the two-photon transition. The generalization
to more than two levels is immediate. One assumes that the
detunings dskd=vkg−veg /2 sfor k=k1 ,k2d are smaller than or

comparable to the spectral bandwidth and have the same
signs. The expression of the excited-state amplitude is di-
rectly derived from Eq. (8) by summing over the two inter-
mediate levels:

ae = −
1

2"2 o
k=k1,k2

mekmkgEsvekdEsvkgd 3 F1 − erfSi
dskd

Î2G
DG .

s10d

In the case of large chirps suf9 u @T0
2d, we can use the

same approximation as in Sec. II. Two sequential paths as1

and as2
are now present where

asi
= −

meki
mkig

"2 Esveki
dEsvkig

d
1 − sgnsf9dskidd

2
. s11d

Each sequential path can now interfere with the direct path.
Moreover, the two sequential paths can also interfere to-
gether.

These interferences can be easily explained by using the
dressed state picture (see Fig. 2) which takes correctly into
account the coupled evolution of the atom and field, even in
the perturbation regime. The dressed atomic states are ua ,nl
where ual is an atomic state and unl the photon number state.

Their energy is given by Ẽn,a=Ea+ sn+
1

2
d"v+Eint where Eint

is the interaction energy. A given manifold of neighboring
energy consists of ug ,n+1l, uki ,nlsi=1,2d and ue ,n−1l. The

dashed lines in Fig. 2 represent the diabatic states, the solid
lines the quantum paths (which follow the adiabatic states
obtained by including the atom-field coupling).

For a positively (negatively) chirped pulse, the temporal
evolution of the system corresponds to a crossing of the dia-
gram from left to right (from right to left). At each crossing,
the wave packet splits into two components of relative mag-
nitude depending on the coupling strength. Here in the weak-
field regime, the major component remains on the diabatic
curve. The two sequential paths (1) and (2) correspond to
two successive one-photon transitions leading to the state
ue ,n−1l. They can be followed only for negative chirp. Paths

FIG. 1. Population of the excited state as a function of chirp for

d.0, normalized to the population achieved with a FT-limited

pulse sf9=0d. Dash-dotted line: sequential contribution uasu
2.

Dashed line: direct contribution uadu2. Total two-photon contribution

uaeu
2, using the exact expression given by Eq. (8) (solid line) and its

approximation, Eq. (9) (dots). Inset: three-level system, where v0 is

the carrier frequency of the laser and d the detuning with respect to

the intermediate state ukl. The vertical line corresponds to f9=

−3p /4d2.

FIG. 2. Dressed-state picture of a ladder system with two inter-

mediate states. The arrows indicate the different paths. For a nega-

tive chirp, the frequency decreases with time and paths (1)–(3) are

followed as indicated by the arrow of time. The crossing between

states uki ,nl and ug ,n+1l (ue ,n−1l) is reached at time ti sti8d. Time

tc is the apparent creation time of the wave packet, whereas td is the

apparent detection time (see text).
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(3) and (4) are the direct two-photon transitions for negative
and positive chirp, respectively. Each path sjd contributes to

the final-state probability amplitude as ua j uexps−iw jd where

a j depends on the Rabi pulsation and the chirp. w j is the
phase accumulated along the path. As all the path contribu-
tions add coherently together, the population in the final state
can be written as

Pe = P1 + P2 + P3 + 2ÎP1P2 cos Dw21 + 2ÎP2P3 cos Dw32

+ 2ÎP1P3 cos Dw31, s12d

where P j = ua ju
2 and Dw ji=w j −wi. Depending on the value of

the relative phase, the interference term cos Dwij leads to
strong oscillations (see Fig. 5). Pe is the sum of these three
interference patterns. The period of each pattern can be eas-
ily determined in the dressed-state picture. The relative phase

Dwij between paths sid and sjd is given by "Dwij =efẼistd

− Ẽ jstdgdt which is the product of the chirp rate by the en-

closed area delimited by these paths in the dressed-state dia-
gram [55].

When Dwij is a multiple of 2p, then paths sid and sjd are

in phase and result in a maximum contribution to the final
population. In the example given below, the one-photon de-
tunings have close values. Therefore the contributions corre-
sponding to the interferences between paths (1) and (3) and
between path (2) and (3) lead to oscillations with close short
periods inversely proportional to the triangle areas while the
contribution of the interferences between both sequential
paths (1) and (2) has a slow period inversely proportional to
the trapezoid delimited by these paths (Fig. 5).

Note that for small chirps suf9 u .T0
2d, all the frequencies

are simultaneously present. The dressed-level picture with a
slow varying frequency is not appropriate to explain the ob-
servations. Then the distinction between the sequential and
direct two-photon processes is not relevant since all frequen-
cies are “resonant” with the one-photon transitions, within
the uncertainty associated to the pulse duration.

After the one-photon transitions associated with the first
step, the system is in a superposition of the ground state and
the two intermediate states. During the second step, the in-
termediate states are “excited” towards the final state. This
situation is strongly similar to pump-probe experiments.
However, an important difference is that here everything
happens within one single pulse. The first part of the pulse
(the “pump”) creates a wave packet in the intermediate states
which is probed by the second part of the pulse. The evolu-
tion of the wave packet is described by the relative phases
between the states of the superposition. These phase differ-
ences are usually evaluated with the bare states, but this is
only valid for a free evolution of the system between pump
and probe and should thus be avoided here. However, since
here the pump and probe steps are performed within the
same laser pulse whose frequency evolves in time, calcula-
tion of the pump-probe signal should take into account this
phase variation of the pulse. The dressed-state formalism in-
cludes both atomic and field evolution and should therefore
be used.

State ukil is created at time ti and probed at time ti8si
=1,2d. The phase difference between the two paths is given

by the area of the trapezoid delimited by them (see Fig. 2).
This trapezoid has a long basis given by t28− t2 and a small
basis given by t18− t1. Its area is equal to the area of the
rectangle of basis st18+ t28− t1− t2d /2. Thus, the system is

equivalent to a wave packet, coherent superposition of the
two intermediate states, created at tc= st1+ t2d /2= sd1

+d2df9 /2 and detected when the laser frequency reaches the

second sequential transition at td= st18+ t28d /2=−sd1+d2df9 /2.

The accumulated relative phase between the two levels is
std− tcdDE /"= std− tcdsd2−d1d= sd2

2−d1
2df9 as calculated

above. This analogy with pump-probe experiments cannot be
extended to more than two intermediate states since the ef-
fective creation time of the wave packet is not unique and
depends on the pair of intermediate states considered.

B. Several final states

In the experiment described below, the excited-state popu-
lation is indirectly observed through a radiative cascade.
Several excited states can thus contribute to the fluorescence.
This is particularly the case with ultrashort pulses which
have a broad bandwidth. However, unlike the case of several
intermediate levels, these various excited states contribute
incoherently to the signal. So the signal is just proportional
to oC j ua ju

2 where a j are the excited-state ue jl probability
amplitudes (the excited states which lead to emission of a
photon on the fluorescence transition) and C j their detection
probability.

For detunings d
e

skd
and d

e8

skd
of opposite signs, the sequen-

tial contributions associated with each final state uel and ue8l
are present for opposite signs of the chirp (see Figs. 4 and 5).
On the contrary, for detunings with the same sign, the se-
quential contributions and thus the various interference pat-
terns are present for the same sign of the chirp (opposite to

the sign of d
e

skd
).

IV. EXPERIMENT

A. Sodium as a benchmark system

The sodium atom is chosen here to illustrate experimen-
tally these multiple interferences. Two intermediate states are
involved, and due to the broadness of the laser bandwidth,
three final states can be reached. The levels are represented
in Fig. 3. The two-photon transitions of interest are 3s-5s and
3s-4d (2D3/2 and 2D5/2). The intermediate states involved in
the two-photon transitions are 3p (2P1/2 and 2P3/2). The three
excited states decay in part towards the 4p state and the 4p

-3s fluorescence is detected. The detection probability C j of
state ue jl is therefore the product of the two quantum yields
(fraction of decay rate towards the 4p state by the fraction of
decay processes from the 4p state towards the 3s ground
state). The wavelengths and dipole moments of the relevant
transitions are recalled in Table I.

Figure 4 represents the dressed-state picture and all the
allowed quantum paths. The particularity of this system is
that due to the sign of the detunings, the 3s-5s and 3s-4d
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two-photon transitions lead to oscillations for negative and
positive chirp, respectively, as shown in the numerical simu-
lations presented in Fig. 5. These simulations are performed
in the weak-field regime, using Eq. (10) and summing inco-
herently the contributions towards the various final states. By
varying the central wavelength of the laser pulse one can
favor one or the other two-photon transition as shown in Fig.
5. At 611 nm [Fig. 5(a)], the 3s-5s two-photon transition is
excited only, whereas the 3s-4d transition dominates at
574 nm [Fig. 5(d)]. For intermediate wavelengths [Figs. 5(b)

and 5(c)], both final states can be reached, with relative
weights depending on the spectral intensity at the relevant
frequencies.

The 3s-4d s2D5/2d transition can be excited through the 3p

s2P3/2d only. Therefore, only one sequential-direct interfer-

ence (such as described in Sec. II and Fig. 1) is present in the
excitation probability towards this final level 4d s2D5/2d. The

other two-photon transitions [ 3s-5s and 3s-4d s2D3/2d] in-

volve both 3p (2P1/2 and 2P3/2) intermediate states. There-
fore, two sequential paths and one direct path are present,
leading to three interference contributions. For each final

state, the two-photon detuning d
e

skid is much larger than the

intermediate-state splitting: ud
e

skid u @ uud
e

sk1d u−ud
e

sk2duu. Thus two
rapid oscillations are due to the interferences between se-
quential paths (1) and (2) [(5) and (6)] with the direct path
(3) [(7)], and one slow oscillation results from interferences
between sequential paths (1) and (2) [(5) and (6)]. The values
of all the periods of interferences are gathered in Table II.
Due to the near degeneracy of the 4d doublet, the direct-
path—sequential-path interferences [through the common 3p

s2P3/2d intermediate state] associated with both final states

have the same period.
The probability of each path depends on the strength of

the coupling at the crossing which is proportional to the laser
electric field amplitude and the corresponding dipole mo-
ments. The sequential-sequential interference is highly con-
trasted for balanced excitation paths. Moreover, its amplitude
is chirp independent whereas the sequential-direct interfer-
ence amplitude depends on d /dvL (see Sec. II) and decreases
rapidly with uf9u. Using expression (12), one can calculate
the theoretical contrast of sequential-sequential interference
(oscillations with a long period) for negative chirp (3s-5s

transition), assuming the same spectral intensity at each tran-
sition:

C =
Pmax − Pmin

Pmax + Pmin

=
2ua5uua6u

ua5u2 + ua6u2
= 80 % , s13d

where

FIG. 4. Sodium levels in the dressed atom picture. Paths 1–4 are

associated with the 5s final state and paths 5–8 with the 4d final

state.

FIG. 3. (Color online) Diagram of the sodium levels involved.

The two-photon transition is drawn here on resonance with the 4d

final state.

TABLE I. Spectroscopic data concerning the sodium levels in-

volved in the experiment.

Level

Energy

scm−1d [63] Transition

Wavelength

in vacuum (nm)

Dipole moment

(C m) [64]

3s1/2 0

3p1/2 16956,17 3s1/2→3p1/2 589,75 1,209310−29

3p3/2 16973,37 3s1/2→3p3/2 589,16 −1,710310−29

5s1/2 33200,68 3p1/2→5s1/2 615,59 −2,558310−30

3p3/2→5s1/2 616,25 3,620310−30

4d5/2 34548,73 3p3/2→4d5/2 568,98 6,892310−30

4d3/2 34548,77 3p1/2→4d3/2 568,42 −6,629310−30

3p3/2→4d3/2 568,98 9,385310−31

TABLE II. Periods f2p9 sjidsfs2d of all the interference paths.

Quantum paths are numbered in Fig. 4.

Paths sjid Interference period f2p9 sjid sfs2d

1-3 1273

2-3 1399

1-2 14119

5-7 1749

6-7 1955

5-6 16578
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ua6u~ m3s1/2−3p1/2
m3p1/2−5s1/2

, s14d

ua5u~ m3s1/2−3p3/2
m3p3/2−5s1/2

, s15d

as well as for positive chirp (3s-4d transition):

C =
2ua1uua2u

ua1u2 + ua2u2 + ua28u
2

= 12 % , s16d

where

ua1u~ m3s1/2−3p1/2
m3p1/2−4d3/2

, s17d

ua2u~ m3s1/2−3p3/2
m3p3/2−4d3/2

, s18d

ua28u ~ m3s1/2−3p3/2
m3p3/2−4d5/2

. s19d

This difference is mainly due to the 4d s2D5/2d state which

is accessible only through the 3p s2P3/2d intermediate state

and therefore does not contribute to the sequential-sequential
interference, but reduces its contrast.

An analogy with pump-probe experiments was made at
the end of Sec. III A. The wave packet created here is a
superposition of two 3p fine structure states (2P1/2 and 2P3/2).
It corresponds thus to a spin-orbit precession [25,65–68].
The initial “bright” state is uL=1,ML=0l with a linear polar-
ization. The dark states are uL=1,ML= ±1l depending on the
initial spin sublevel Ms= ±1/2. For a 5s final state and linear
polarization, they cannot be excited towards the final state.
This explains the much higher contrast observed here for the
3s-5s transition as compared to 3s-4d or previous spin pre-
cession studies [66–68].

B. Experimental setup

To perform the experiment [59], a conventional Ti: sap-
phire laser with chirped pulse amplification (Spitfire Spectra
Physics) is used. It supplies 800 mJ at a central wavelength
of 795 nm with a pulse duration FWHM of 130 fs. The rep-
etition rate is 1 kHz. A fraction of the energy feeds a home-

made noncollinear optical parametric amplifier [69], without
compression, which delivers pulses of 10 mJ, ca 30 nm
bandwidth tunable from 500 nm to 700 nm. To vary the
chirp f9 on the interval [−40 000 fs2, 40 000 fs2] with
100 fs2 steps, we have combined glass rods (4 cm SF58,
6 cm SF10) with an adjustable double pass gratings pair
s600 grooves/mmd.

The pulse is slightly focused into a sealed cell containing
natural sodium with a pressure of 1.7310−4 Pa. The 4p

→3s fluorescence signal at 330 nm is collected by 18 optical
fibers and detected by a photomultiplier with photon count-
ing. The signal was monitored as a function of the grating’s
distance, which is essentially proportional to the chirp but
not exactly as explained below.

C. Results

The 4p→3s fluorescence is plotted in Fig. 6 as a function
of the grating’s distance for the same excitation wavelengths
as in the simulations presented in Fig. 5. The curves at
611 nm and 574 nm involve preferentially a single final state
(611 nm corresponds to the 3s-5s transition while 574 nm
corresponds to the 3s-4d transition). In both cases strong
interferences with the small and large periods are observed
as described above. The experimental periods as well as the
contrast of the oscillations are in perfect agreement with the
calculated one. The experimental results in these two cases
reproduce perfectly the simulation obtained and plotted in
Fig. 5. However, one striking difference shows up when
comparing the results obtained at these two wavelengths:
The onset of oscillations do not take place at the same grat-
ing’s distance. At intermediate wavelengths [599 and
596 nm, Figs. 6(b) and 6(c), respectively], both 4d and 5s

final states are accessible. Interferences are therefore ob-
served for small distances [as in Fig. 6(d), final state 4d] as

FIG. 5. Calculated 4p-3s fluorescence as a function of the chirp.

The laser parameters have been chosen to be similar to the ones

used in the experiment: (a) l0=611 nm sdl=28 nmd, (b) l0

=599 nm sdl=24 nmd, (c) l0=596 nm sdl=28 nmd, and (d) l0

=574 nm sdl=23 nmd.
FIG. 6. 4p-3s fluorescence as a function of the grating’s distance

L. The values of the chirp fl9 are also indicated at l=603 nm and

l=579 nm corresponding to the two-photon transitions. Experi-

mental results (dots) with simulations (solid lines). The scans cor-

respond to different wavelengths: (a) l0=611 nm sdl=28 nmd, (b)

l0=599 nm sdl=24 nmd, (c) l0=596 nm sdl=28 nmd, and (d)

l0=574 nm sdl=23 nmd.
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well as for large distances [as in Fig. 6(a), final state 5s]. For
intermediate distances (between 12 and 14 cm), however,
both interference patterns coexist, unlike in the simulations
of Fig. 5 where the onsets of interferences are located at zero
chirp (and the first maximum for small positive or negative
chirp). Moreover, the interference patterns associated with
each final state do not change when the laser wavelength is
scanned. Only their relative weight depends on the wave-
length. At first sight, these results seem to mean that the
grating’s position of “zero chirp” depends on the final state
accessed instead of depending on the laser wavelength. How-
ever, a simulation based on the complete spectral phase of
the excitation pulse (also shown in Fig. 6) fits perfectly the
experimental results. The spectral phase introduced by the
gratings is the following:

fgsL,vd = 2
v

c
L cos udsvd , s20d

where L is the distance between the two gratings (scanning
parameter) and udsvd the diffraction angle. The glass rods

phase contribution is simply

frsvd =
v

c
fnSF58svdLSF58 + nSF10svdLSF10g . s21d

The excellent agreement between calculated and experimen-
tal results means that although the quadratic phase is suffi-
cient to explain most of the observed phenomena, some de-
tails such as the position of the onset of interferences need
higher-order terms to be explained. As detailed in Sec. V,
including the effects of the cubic phase allows us to explain
all the observed features.

V. EFFECT OF THE CUBIC PHASE

We have analyzed in the previous sections how the chirp
associated to the quadratic phase allows clearly to separate
the two different contributions (sequential and direct) to the
two-photon absorption. The phase difference between these
two quantum paths is proportional to the second-order phase
derivative, so that varying the chirp allows one to scan the
interference pattern. When a pure quadratic phase is taken
into account, the interferences are present only for one sign
of f9 and start exactly at f9=0. This value corresponds to a
Fourier-transform-limited (FT) pulse which maximizes the
direct TPA. Also, changing the sign of f9 changes the arrival
order of the frequencies, so that the sequential path is al-
lowed for one sign and forbidden for the other. However, the
experimental results show that the onset of interferences cor-
responds to different spectral phase functions for different
final states. These observations are in agreement with simu-
lations including the whole spectral phase given by Eqs. (20)

and (21). In order to understand qualitatively the observed
features, we analyze in this section the role of the cubic
phase [third order of dispersion (TOD)] and we show that the
second and third orders are sufficient to explain all the ob-
served features.

Taking into account the experimental parameters, the
second- and third-order dispersions in our setup, for a given
central frequency v0, are the following:

f9sL,v0d = fg9sL,v0d + fr9 =
− La

v0
3 + fr9, s22d

f-sL,v0d = fg-sL,v0d + fr- =
3La

v0
4 + fr-, s23d

where a=8p2c /d2 and 1/d is the number of grooves per
millimeter. fg-sLd and fr- are positive quantities while fg9sLd
and fr9 have opposite signs. So at the gratings’ distance L0

corresponding to f9sL0d=0 the cubic phase has a significant

value: the pulse is not FT limited. The analysis made above
on the basis of all frequencies arriving either simultaneously
in the pulse or, sequentially, is oversimplified to explain
qualitatively the phenomena. Analytic expressions including
the second and third orders of dispersion can be derived [70].
We show in the following how the use of Wigner represen-
tation can be helpful to understand the observed results.

A. Wigner representation

To have an intuitive understanding of the relations be-
tween time and frequency characteristics, several time-
frequency distributions have been proposed [71]. The Wigner
function has the simplest form among the usually used time-
frequency distribution functions. Moreover, in the case of
ultrashort pulses it can display features that bear a close re-
lation to the instantaneous carrier frequency and group delay
of the pulse, which makes it possible to analyze the laser
chirp quantitatively [72]. For all these reasons the Wigner
distribution is chosen for a better understanding of the role of
higher-order terms of dispersion in the multiple interference
pattern. The Wigner distribution for the electric field Esvd in

the frequency domain is defined as

Wst,vd =
1

p
E ESv −

v8

2
DE*Sv +

v8

2
De−iv8tdv8. s24d

The usefulness of this representation comes mainly from
its marginal properties: the time marginal defined by the in-
tegration along the v axis represents the intensity temporal
profile and the frequency marginal defined by the integration
along the t axis gives the spectral profile. As an example, the
Wigner representation of a linearly chirped pulse is an ellip-
sis with a main axis corresponding approximately (in the
limit of large chirps) to the instantaneous carrier frequency.
For quadratic and cubic phases, the Wigner representation
has a parabola shape: the instantaneous frequency is a non-
linear function of time or is not unique. More precisely, for
small third-order spectral phases (compared to f9), the pa-
rabola is a small deviation from the linear behavior [cf. Figs.
7(a), 7(b), 7(d), and 7(e)] whereas for pure cubic phase, the
parabola is symmetric with respect to the time axis: Two
instantaneous frequencies are simultaneously present in the
pulse and vary symmetrically with respect to the central fre-
quency [cf. Fig. 7(c)].

B. Application to our experiment

Figure 7 displays the Wigner function of the exciting
pulse obtained for several values of the grating’s distance L,
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but with the same spectrum (centered at l=591 nm, spectral
width dl=30 nm). These distances correspond to the differ-
ent domains of interest which can be seen on Fig. 6. Namely,
at intermediate distances (11.7 cm,L,14.1 cm), both final
states can be accessed by sequential excitation. This case is
illustrated in Fig. 7(c). At longer or shorter distances [Figs.
7(a) and 7(e)], only one final state can be reached by a se-
quential process. Finally, the plots on Figs. 7(b) and 7(d)

correspond to the transition distances where the sequential
path appears or disappears and where the direct path is maxi-
mized. These distances correspond to the main maxima ob-
served in Fig. 6. More precisely, the characteristic gratings’
distances Lk are chosen such that f9svk ,Lkd=0 where vk is a

one-photon or two-photon resonance (see Table I).
On each Wigner function plot, the wavelengths of these

resonances are represented by horizontal lines. The vertices

of the parabola correspond to these characteristic frequen-
cies. At a given distance, in order to have a sequential con-
tribution, the wavelengths of the one-photon transitions need
to be correctly ordered within the pulse. The direct two-
photon transitions are always maximized when the frequen-
cies around the central two-photon frequencies arrive simul-
taneously. This is obviously the case for FT pulses. For
non-FT pulses, having f9sveg /2d=0 provides a relative

maximum for the direct two-photon process [cases shown in
Figs. 7(b) and 7(d)].

In Figs. 7(a) and 7(e), all the frequencies involved (one
and two-photon transitions) arrive sequentially in the pulse,
corresponding effectively to a decreasing or increasing in-
stantaneous frequency, respectively. The expected behavior
is almost the same as for a quadratic phase only. As a matter
of fact, the value of f9 is such that it dominates the TOD.

In the intermediate cases [Figs. 7(b)–7(d)], due to the
TOD, two “instantaneous frequencies” are simultaneously
present. These frequencies start from the same initial value,
vary in opposite directions, and finish at the lower end and
higher end of the spectrum, respectively. This initial fre-
quency decreases from Figs. 7(b)–7(d). It is respectively
close to the 3s-4d two-photon transition [Fig. 7(b)], the 3s

-3p transition [Fig. 7(c)], and the 3s-5s two-photon transition
[Fig. 7(d)]. Thus, in Fig. 7(c), both sequential processes (3s

-3p-5s and 3s-3p-4d) are fully allowed so that both interfer-
ence patterns are present at the corresponding distance (Lc

=13.0 cm; see Fig. 6). However, the direct two-photon pro-
cesses are not maximized so that the interference contrast is
not very high. When reducing the distance from Lc

=13.0 cm, the initial frequency decreases and moves towards
the frequency of the 3s-5s two-photon transition. When it
reaches this value (at Ld=11.64 cm), the two frequencies
v3s-3p and v3p-5s arrive simultaneously. This is the distance
for which the sequential process (towards the 5s state) dis-
appears. Slightly before this distance, one reaches the maxi-
mum of the 3s-3p-5s ladder. Similarly, when increasing the
distance from Lc=13.0 cm, the initial frequency increases
and moves towards the 3s-4d two-photon transition. At this
value (for Lb.14.16 cm), the two frequencies v3s-3p and
v3p-4d arrive simultaneously. Again, the sequential process
towards the 4d state disappears, but slightly before this dis-
tance, the 3s-3p-4d ladder reaches its maximum.

The examples detailed here show the usefulness of the
Wigner representation to understand the respective role of
the quadratic and cubic spectral phase. An elegant explana-
tion of the experimental observations based on the evolution
of the instantaneous frequencies in the pulse could be given.

C. Optimization of the cubic phase

We have seen so far that the quadratic phase provides a
sensitive way to adjust the interference phase between se-
quential and direct two-photon transitions. The first maxi-
mum appearing when scanning f9 from f9=0 (with the cor-
rect sign) is also the absolute maximum. The effect of TOD
can be intuitively seen as adding a “frequency dependence”
to f9. The condition for maximizing the direct two-photon
path is given by f9sveg /2d=0. In case of second and third

FIG. 7. Representation of the Wigner function of the excitation

pulse, for one central wavelength s591 nmd, such that both two-

photon transitions are involved. Cases (a)–(e) represent the Wigner

function for different values of the gratings’ distance Ln such that

f9svn ,Lnd=0 where vn is a one-photon or two-photon resonance.

(a) La=15.48 cm for which f9sv3p-4d ,Lad=0, (b) Lb=14.16 cm for

which f9sv3s-4d /2 ,Lbd=0, (c) Lc=13.0 cm for which

f9sv3s-3p ,Lcd=0, (d) Ld=11.64 cm for which f9sv3s-5s /2 ,Ldd=0,

and (e) Le=10.56 cm for which f9sv3p-5s ,Led=0. One can note that

11.6 cm and 14.1 cm correspond to the onset of interferences in the

experimental curves in Fig. 6. The horizontal solid lines correspond

to the central wavelengths of the direct two-photon transitions

whereas the horizontal dashed lines correspond to the wavelengths

of the sequential contributions.
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orders only phase dispersion, this condition corresponds also
to the two sequential transitions arriving simultaneously.

As seen in the previous subsection, the transitions towards
the two final states are not optimized simultaneously. With-
out any TOD, these maxima occur for slightly positive chirp
(for the 4d final state) and for slightly negative chirp (for the
5s final state). With the TOD present in our experiment,
these two maxima are strongly shifted in such a way that
now the interference structures coexist for a given distance
range instead of being separated. In this subsection, we de-
cided to adjust artificially the amount of TOD in order to
create a pulse shape which maximizes simultaneously the
excitation towards both final states. In order to allow for a
direct comparison with the present experiments, we have re-
duced the TOD of the system by a factor b.0.2, so that
fartif- sLd=bf-sLd and we present in Fig. 8 a scan of the

fluorescence yield obtained as a function of the gratings’
distance L, together with the result obtained with the experi-
mental parameters. With these new parameters, the two
maxima (towards 4d and 5s final states) are now present for

the same pulse parameters (gratings’ distance). It should be
recalled that since the paths associated to two different final
states add incoherently, the maximum obtained is closed to
the sum of the two contributions. In a real experiment, such
pulse parameters could be achieved for instance by combi-
nation of dispersive rods, prism pairs, and gratings pairs or
more easily with a pulse shaper [35,36,73].

VI. CONCLUSION

In this paper we have studied the role of the quadratic
spectral phases of the excited pulse in a ladder climbing.
This has been successfully demonstrated in sodium vapor.
Due to the broad bandwidth of our laser, several two-photon
transitions are allowed and eight quantum paths are involved
leading to quantum interferences. A careful analysis based on
the Wigner representation provides an elegant understanding
of the complex interference pattern. The particular role of the
cubic phase is emphasized. By carefully adjusting the rela-
tive values of the quadratic and cubic phases it is possible to
maximize the effect of the two contributions.

As a conclusion, it is well known that in the case of a
multiphoton transition without any resonant intermediate
state, the expected results can be deduced from the power
spectrum of ENstd (for an N-photon transition) just as the

result of a one-photon transition can be explained by the
laser spectrum [38,43], provided that one is not interested by
transients effects [41,44,74,75]. However, the presence of a
nearly resonant intermediate state as in this work induces
new subtle effects which require a careful analysis.
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