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Abstract

We show that if a sequence of Hamiltonian flows has a C0 limit,
and if the generating Hamiltonians of the sequence have a limit,this
limit is uniquely determned by the limiting C0 flow. This answers a
question by Y.G. Oh in [Oh04].

1 Introduction

Let Hk be a sequence of Hamiltonians with flow ϕt
k on a symplectic manifold

(M,ω), such that limk Hk = H and limk ϕ
t
k = ϕt where limits are intended

as C0 limits. Can we say that ϕ is the flow of H ? In the case where H
has a flow (e.g. H is C1,1) this has been proved in [Vit92], and one could
alternatively use the methods of [Hof90]. However if H is only C0, it is not
easy to make sense of this question, since the flow of a C0 hamiltonian is not
defined.

This question is not as artificial as the reader may think, and has appar-
ently been asked by Y.G. Oh in the framework of C0-Hamiltonians ([Oh04],
this seems to be related to Question 3.11 or 3.20). It is sufficient to solve this
question for the case where H is continuous and ϕ = Id. Do we necessarily
have H = 0 in this case ?
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Of course we could have H(t, x) = h(t) and we exclude this case by
normalizing the Hamiltonian, either by

∫

M

H(t, x)ωn = 0

for M compact, or by assuming it has compact support in the non-compact
case.

Our aim in this short note is to give a positive answer to Oh’s question.

Theorem 1.1. Let Hn(t, z) be a sequence of C1,1 Hamiltonians on (M,ω),
such that Hn converges in the C0 topology to some continuous function H(t, z).
Let ϕt

n be the flow of Hn. Then if ϕt
n converges to Id in the C0 topology, we

have H = 0.

Remark 1.2. a) Throughout the paper, by C0 convergence of ϕt
n to ϕt, we

always mean C0 convergence uniform in t, for t in a compact interval. In
other words,

∀ε > 0 ∃N0 ∀t ∈ I ∀N > N0, ‖ϕ
t
n − ϕt‖C0 ≤ ε

b) Note that if we do not assume that Hn converges, the theorem does
not hold. Indeed, consider a non-zero Hamiltonian H0 supported in the unit
ball. Then the sequence nH0(nz) does not converge, but the time one flow
C0, does converge to the identity.

c) As Y.G. Oh pointed out, the proof of the theorem has a straightforward
adaptation to the convergence in Hofer norm, i.e. the norm given by

‖H‖ =

∫ 1

0

[

max
x∈M

H(t, x) − min
x∈M

H(t, x)

]

dt

As a Corollary we get

Corollary 1.3. Let ϕt
n, ψ

t
n be sequences of Hamiltonian flows associated to

Hn, Kn. Assume
lim

n
Hn = H, lim

n
Kn = K

and
lim

n
ϕt

n = lim
n
ψt

n = ρt

where all limits are intended as C0 limits. Then

H = K
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Proof of Corollary, assuming the theorem. Indeed, (ϕt
n)−1◦(ψt

n) C0 converges
to the identity, and is generated by (Kn−Hn)(t, ϕt

n(z)), hence C0 converges to
(H−K)(t, ρt(z)). Thus, according to the theorem we have (H−K)(t, ρt(z)) =
0 hence H = K.

We thank Albert Fathi for drawing our attention to this problem, and
Y.G. oh for raisong the question and for some useful comments.

2 Proof of the theorem

If H(t, x) is a Hamiltonian, we set

Ψs : (t, τ, z) −→ (t, τ − sH(st, ϕst(z)), ϕst(z))

This is the flow of K(s; t, τ, z) = sH(st, z) on T ∗
R×M , with s the new time

variable.
Now if Hn → H and ϕt

n → Id, we have Ψs
n → Ψs, where Ψs is given by

Ψs(t, τ, z) = (t, τ − sH(st, z), z), all limits being in the C0 topology. Let us
show that Ψs cannot be the C0 limit of a sequence of Hamiltonian maps,
unless H = 0.

More generally, consider the problem of a topological submanifold (i.e.
C0) L in T ∗N , that would be a C0 limit of C1 Lagrangian submanifolds.
According to [LS94], if L is C1, it is necessarily Lagrangian. When L is
C0, what “Lagrangian” means is unclear. However when L is a graph in
the cotangent bundle, L = {(x, p(x)) | x ∈ N}, requiring that p(x)dx is
closed makes sense even if p ∈ C0. Indeed we may interpretate this as
meaning that p(x)dx is closed in the distribution sense, as suggested by
Michael Herman ([Her89] definition 8.13 page 60). In our case we wish to
prove that if L is a non Lagrangian C0 graph, we may not approximate it by
Lagrangian submanifolds. Our crucial assertion is

Proposition 2.1. Let N be a closed manifold that is the total space of an S1

fibration. Let p be a continuous section of T ∗N which, considered as a one-
form, is not closed in the sense of distributions. Then, there exists f ∈ C∞

such that p(x) − df(x) does not vanish on N .

Corollary 2.2. Let Ln be a sequence of exact Lagrangians submanifolds in
T ∗N . If L is the C0 graph of a one form p, and Ln converges C0 to L, that
is for any neighbourhood U of L, and n large enough, Ln is in U , then p is
closed in the sense of distributions.

3



Remark 2.3. (a). Note that once we have a C1 solution, f , for any C1 close
function g we will have that p(x) − dg(x) does not vanish. Thus, we
can replace f by a smooth approximation. In the sequel we shall thus
not bother about the smoothness of the solution.

(b). Note that a smooth fibration with fiber S1, that is a principal bundle
with group Diff(S1) is equivalent to a principal bundle with fiber the
group S1, since the inclusion of S1 into Diff(S1) induces an isomor-
phism of homotopy groups.

Under the above assumptions, let V be the base of the circle fibration,
and y : N −→ V be the projection. For y in a domain of trivialization of
the fibration, we consider coordinates (θ, y) where θ ∈ S1. Note that we may
always assume to be given an invariant measure (by the circle action) on N .
We also set p(θ, y) = (π(θ, y), r(θ, y)) where θ ∈ S1, y ∈ V , π(θ, y) ∈ R and
r is a section of T ∗V parametrized by θ ∈ S1.

Lemma 2.4. Assume for some y ∈ V we have

P (y) =

∫

S1

π(θ, y)dθ 6= 0

Then there exists f ∈ C1(S1 × V,R) such that p(θ, y) − df(θ, y) does not
vanish. The same holds for N the total space of a circle fibration..

Proof. Let p(θ, y) = (π(θ, y), r(θ, y)) be a one form on S1×V that is a section
of T ∗(S1×V ). We look for a function f(θ, y) such that p(θ, y)−df(θ, y) never
vanishes. Let us first try to solve

π(θ, y) −
∂f

∂θ
(θ, y) = ε(θ, y)

Then this is solvable if and only if
∫

S1

(π(θ, y) − ε(θ, y))dθ = 0

and thus, denoting by P (y) =
∫

S1 π(θ, y)dθ, we can choose ε non vanish-
ing outside a neighbourhood of the set Z = {(θ, y) | P (y) = 0} (e.g. take
ε(θ, y) = P (y)). In general we cannot choose ε non-zero in such a neighbour-
hood.

Note that f is well-defined up to a function of y.
Now we need to find h such that p(θ, y)−df(θ, y)−dh(y) does not vanish

on Z. But if the projection of Z on V , U , is not all of V , we can find a function
h on V with no critical point in U . Multiplying h by a large constant, we
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may assume dh to be arbitrarily large. Then p(θ, y) − df(θ, y) − dh(y) will
not vanish for all (θ, y) with y ∈ U , and thus for (θ, y) ∈ Z.

Lemma 2.5. Assume p is C0 on N , and consider a smooth circle fibration
of N . Assume for any curve γ, C∞ close to a fiber of the fibration, we have

∫

S1

p(γ(t))γ̇(t)dt = 0

Then p is closed in the sense of distributions.

Proof. We shall take local coordinates (θ, y) in the neighbourhood of a fiber.
Now let η(θ, y) be a smooth vector field on N .

Let α be a one-form. We wish to compute the integral of α over the curve
t→ (t, y + εη(t, y)). This will be

∫

S1

α(θ, y + εη(θ, y))(1, ε
∂

∂θ
η(θ, y))dθ

Writing α = αθdθ + αydy we can rewrite the above as

∫

S1

αθ(θ, y + εη(θ, y)) + εαy(θ, y + εη(θ, y))
∂

∂θ
η(θ, y)dθ

Now averaging this over y ∈ V , and differentiating with respect to ε at
ε = 0, we get

∂

∂ε

∫

V

∫

S1

αθ(θ, y + εη(θ, y)) + εαy(θ, y + εη(θ, y))
∂

∂θ
η(θ, y)dθdy =

−

∫

V

∫

S1

[

αθ(θ, y + εη(θ, y))∇y · η(θ, y) + αy(θ, y + εη(θ, y))
∂

∂θ
η(θ, y)+

εαy(θ, y + εη(θ, y)) ∧ dyη(θ, y)

]

dθdy

This is obtained by applying the change of variable (θ′, y′) = (θ, y+ εη(θ, y))
to the

∫

V ×S1

f(θ, y + εη(θ, y))dθdy

to get
∫

V ×S1

f(θ, y′)dy
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where
dy′ = dy + εη(θ, y′) + o(ε)

so that
dy = dy′ − εη(θ, y′) + o(ε)

and
det(dy′) = det(dy) − ε∇y · η(θ, y)

remembering that trace dη = ∇ · η

∫

V ×S1

f(θ, y′)dy =

∫

V ×S1

f(θ, y′)dy′ − ε

∫

V ×S1

f(θ, y′)
∂

∂y′
η(θ, y′)dy′

and denoting by ∇y the nabla operator with respect to the y variables. where
all derivatives should be understood in the distributional sense. Now com-
puting the above for ε = 0, we get

∫

V

∫

S1

[

(αθ∇y · η)(θ, y) + αy(θ, y)
∂

∂θ
η(θ, y)

]

dθdy

Integrating by parts we get

∫

V

∫

S1

[

(∇yαθ)(θ, y)η(θ, y)− (
∂

∂θ
αy)(θ, y)η(θ, y)

]

dθdy =

∫

V

∫

S1

[

(∇yαθ)(θ, y) −
∂

∂θ
αy(θ, y)

]

η(θ, y)dθdy

The above line is exactly the integration of dα against the bivector ∂
∂θ

∧
(0, η). As this vanishes for all η, means that ı ∂

∂θ

dα vanishes as a distribution

(or current).
We thus proved that if for all η the integration of α over the loop t →

(y+εη(t, y), t) has vanishing derivative, we must have that ı ∂

∂θ

dα is identically

zero. Now if we slightly modify our fibration, and apply the same argument,
we get that ıZdα = 0 for any vector field Z tangent to the fiber of a circle
fibration of N , close to the given one. The next lemma allows us to conclude
the proof.

Lemma 2.6. Assume α is a continuous form such that for all Z vector field
tangent to a fibration close to Z0, we have iZdα = 0. Then dα = 0 as a
distribution.
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Proof. Indeed, it is enough to show that our assumption implies that iZdα
vanishes for all vector fields Z.

First of all, the problem is local: using a partition of unity, it is enough
to show that iZdα = 0 holds for any Z supported in a small set, tangent to
a fibration close to Z0.

Now since Z0 does not vanish, any vector field C1 close to Z0 has a
flow box near z0, hence a small diffeomorphism makes it tangent to Z0. Thus
locally, the set of Z such that iZdα = 0 is open in the C∞ topology, and thus,
by considering iZ−Z0

, any small vector field supported in the neighbourhood
of z0 satisfies iZdα = 0.

Proof of the proposition. According to the second lemma, if p is not closed,
using a vector field, we may smoothly perturb the fibration, π so that one
of the fibers satisfies

∫

π−1(y)
p 6= 0. Then, using this new fibration and the

first lemma, we see that there is a function f such that p(x)−df(x) does not
vanish.

Proof of Corollary, following [LS94]. First of all if Ln converges to L, then
Ln × 0S1 ⊂ T ∗(N ×S1) converges to L× 0S1 , and this will be the graph of p,
considered as a one-form on N × S1. Now if p is closed on N , its extension
to N × S1 is also closed, since

∫

N×S1

[

∂

∂xi

pj(x) −
∂

∂xj

pi(x)

]

ϕ(x, θ)dxdθ

defined as

−

∫

N×S1

[

pj(x)
∂

∂xi

ϕ(x, θ) − pi(x)
∂

∂xj

ϕ(x, θ)

]

dxdθ

is equal to
∫

N×S1

[

pj(x)
∂

∂xi

ϕ̄(x) − pi(x)
∂

∂xj

ϕ̄(x)

]

dxdθ

where we set ϕ̄(x) =
∫

S1 ϕ(x, θ)dθ, so that p is closed (in the sense of
distributions) as a one form on N if and only if it is closed (in the sense of
distributions) as a one form on N × S1.

According to the above lemma, we see that we may, using a Hamiltonian
symplectomorphism, send L away from the zero section (by (x, p) → (x, p−
df(x))) and thus any Lagrangian submanifold Ln in a neighbourhood of L
will also be sent to T ∗N \0N and thus may be disjoined from itself by a small
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Hamiltonian isotopy, since (x, p) → (x, λp) is conformal, and thus induces a
Hamiltonian isotopy on exact Lagrangians. But this is impossible according
to Gromov’s theorem ([Gro85] p. 330).

Note in particular that if Ln = ϕn(V ) for some Lagrangian sumbanifold
V such that H1(V ) → H1(N) is injective the assumptions of the corollary
are satisfied. Indeed, in this case, let α be the class of the Liouville form
on V , and assume α = π∗(β) where β ∈ H1(N), then applying the map
(x, p) → (x, p−β(x)) which is symplectic, we send L to L′ which is Lagrangian
if and only if L is, and the image V ′ of V is now exact. Then the ϕn(V ′)
now converge to L′, and if L′ is not closed, we may send L′ away from the
zero section by a symplectic map, and thus, the same holds for V ′. But V ′

is exact, a contradiction.

Remark 2.7. However any submanifold can be approximated in the Haus-
dorff topology by a (non-exact) Lagrangian one. Indeed, given V , we may
approximate it by a union of small Lagrangian tori, each being contained
in a Darboux chart near V . On the union of such tori, we may perform a
Polterovich surgery, in order to obtain a connected Lagrangian submanifold.
Quite obviously the map H1(V ) → H1(N) is not injective in this case: each
torus produces a lot of 1-cycles of V , which go to zero in N .

End of proof of the theorem. Let us consider the graph Ln of Ψ1
n in (T ∗

R ×
M) × (T ∗R ×M). Then Ln is a sequence of exact Lagrangian submanifold,
converging to V , the graph of the map Ψ1, which is given by

{(t, τ, z, t, τ −H(t, z), z) | (t, τ, z) ∈ T ∗(R) ×M}

Now the identification of T ∗
R × T ∗

R with the cotangent of the diagonal,
T ∗∆R2 given by the map

(t1, τ1, t2, τ2) −→ (
t1 + t2

2
,
τ1 + τ2

2
, τ1 − τ2, t1 − t2)

extends to a symplectic map from (T ∗
R ×M) × (T ∗R ×M) to T ∗∆R2 ×

(M ×M)
The graph Γ of Ψ1 when regarded over T ∗∆R2 × (M ×M) is given by

(t, τ, z) → (t, H(t, z), τ −
1

2
H(t, z), H(t, z), z, z)

Note that Γ is in a neighbourhood of T ∗(∆R2) × ∆M , hence accord-
ing to Weinstein’s tubular neighbourhood’s theorem, it is a submanifold of
T ∗(∆R2) × T ∗∆M = T ∗(∆R2×M).
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A change of variables in the base, given by (t, τ, z) → (t, τ − 1
2
H(t, z), z)

induces on the cotangent bundle a symplectic map such that Γ is now the
image of the map

(t, σ, z) → (t,−H(t, z), σ, 0, z, z)

This is a graph over the diagonal denoted by V . Since Ψ1 is not symplectic,
in the sense that the Liouville form (τ − H(t, x, p))dt + pdx − τdt − pdx =
−H(t, x, p)dt is not closed in the sense of distributions, unless H(t, x, p) =
h(t) which we excluded by the normalization assumption. Thus Γ is not
Lagrangian, we get according to Corollary 2.2 that Ln cannot converge to V .
This concludes our proof.

Remark 2.8. One would like to know whether proposition 2.1 still holds for
N a general compact manifold. This does not seem to follow literally from
[LS94], even though their method may be useful.

Remark 2.9. We could have also used the ideas from [Sik91] for most of our
proof. We think however that proposition 2.1 is of independent interest.
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