
HAL Id: hal-00008537
https://hal.science/hal-00008537

Submitted on 8 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The future of programming languages
Patrice Ossona de Mendez, Hubert Tonneau

To cite this version:
Patrice Ossona de Mendez, Hubert Tonneau. The future of programming languages. Software 2.0,
2003, 100, pp.56-58. �hal-00008537�

https://hal.science/hal-00008537
https://hal.archives-ouvertes.fr


cc
sd

-0
00

08
53

7,
 v

er
si

on
 1

 -
 8

 S
ep

 2
00

5

Number 100, April 2003, Pages 56–58 (polish translation)

THE FUTURE OF PROGRAMMING LANGUAGES

PATRICE OSSONA DE MENDEZ AND HUBERT TONNEAU

Abstract. The orientation of programming languages seems to follow two
main directions: The first one corresponds to a seek of major companies to get
more and more power over end users, while limiting their own responsibility in
a kind of “democracy” under trusteeship. The other one is a quest for indepen-
dence of the users expressed, for instance, in the free software movement. While
the first tendency leads to a severe limitation of programmers’ possibilities and
to a uniformization of “personal” softwares restricted to “macro-softwares”,
the needs of the second one for coherency might lead to the introduction of
another kind of operating system responsible for a language-independent com-
pilation, which we shall call a language operating system, allowing a new level
of integration: language-level integration.

1. Introduction

The first question we may ask in order to determine a possible future for pro-
gramming languages is: “what is a programming language good for?”

It is no doubt that several issues are concerned with the programming of a
computer application: at first, we want to be able to tell a computer what it should
do, how it should do it, when it should do it and how it should interact with its
environment. Each of these needs some “way to tell it”, that is: some language.

Further characteristics will depend on our point of view and on our actual per-
spectives.

As well as the introduction of reading and writing has first led to the creation
of an oligarchy somehow owning the techniques and using the growing needs of the
society they belonged to to increase their power and to establish their supremacy
(think about the power of the scribes in the antic Egypt), the introduction of pro-
gramming techniques has first led to the a pyramidal organization of the knowledge
and of the actual development power. Its is no doubt that the major companies
that emerged in this context tend to keep their monopolistic position. Hence, they
will be concerned by the preservation of their advantages, a limitation of their re-
sponsibilities and an increase of the dependence of their customers. These goals
have to be kept in mind, when imagining the future of programming they may
propose.

Nevertheless, coming back to our comparison, an irresistible movement toward a
mass alphabetization emerged worldwide and, as the alphabetization became quasi
universal, access to the knowledge and to the publication induced new democratic
structures. Similarly, the access to programming cannot stay a reserved territory for
some upper classes or software trusts. In that sense, the “free software” movement,
although initiated by academics, has found a wide audience in the public, as an
opportunity of democratization of the software development. From this later point

Patrice Ossona de Mendez is a researcher in discrete mathematics, co-developer of PIGALE
(http://pigale.sourceforge.net) and member of Pliant project’s core team (http://pliant.cx).

Hubert Tonneau is the development director of Heliogroup company, leader of Pliant project
and creator of Pliant language.

c©2003 Software-Wydawnictwo

1

http://www.software.com.pl
http://pigale.sourceforge.net
http://pliant.cx


2 PATRICE OSSONA DE MENDEZ AND HUBERT TONNEAU

of view, the perspectives are quite different: instead of a uniformization and a
restriction of the programmer possibilities, one seeks the actual possibility to anyone
to put its own brick on the edifice, to get the power of modifying the applications
he uses and to progressively extend his programming skills to all the aspects of
software development. This raises the problem of a global consistency in application
interactions and the ability to reach each possible abstraction level.

Each of these points of view lead to a different probable evolution of programming
techniques and, specifically, to divergent conceptions of the future of programming
languages.

2. The oligarchic attempt

There is no doubt that the deep tendencies of the last years have been induced by
majors software companies, which still possess the main part of the communication
capabilities and a quasi trust on software markets. What are these tendencies?

• The introduction of pay-per-use applications, software rental, limited life-
time DVD, etc.

• The restriction of the programming access through proprietary intermediate
code, which is interpreted or run into a virtual machine.

What are their goals?
First, users won’t own anything anymore. Hence, no private copy will be allowed

anymore, the responsibility of the software company will be reduced to each single
use, the continuation of users’ work will depend on its acceptance for a periodic
update of a software he knows nothing about, using a protocol which is not clear.
Thus, no responsibility on one side, and a total dependence on the other side.

Then, proprietary intermediate code will become the only possible access to the
operating system and to the window manager. Any programming language will
be heavily dependent on the actual possibilities of the intermediate code and of
its libraries. After a while will only survive two kinds of programming languages:
proprietary ones allowing to write some applications of limited complexity and
efficiency, and more or less public ones appearing as kind of unified macro languages
to pilot proprietary applications through “standard” libraries that you could not
write within this framework. Here, object oriented programming is not seen as a
way to properly distinguish parts of a software, but rather of a way of limiting the
possible “intrusion” of a programmer in proprietary data structures.

Although all of this would look pretty and accessible (simplified, or even by-
click programming within the world of some company), it would be much like a
“democracy” under trusteeship, where the trustee would handle your resources as
if they were its own, and where citizens would be more or less constrained to always
reelect the some leaders, that would be less and less responsible for their acts. But,
it is a common temptation for citizens to avoid any kind of personal responsibility,
even by a loss of freedom. . .

Nevertheless, it doesn’t mean that the idea of introducing intermediate code is
bad a priori, as long as it is seen as an alternative choice for applications needing
neither efficiency nor low level features. But recall that the introduction of an
intermediate level did not wait for a bytecode or a MSIL to appear!

3. Toward a democratization of programming

We encounter a situation which is quite similar to the one born from the devel-
opment of BASIC in the late 60’s, which somehow led to the “personal computer
revolution”, the historic shift from corporate big computers to personal small ones
with the ability given to programmers to interact with hardware using some gen-
eral purpose operating system (DOS). BASIC language and DOS have appeared to



THE FUTURE OF PROGRAMMING LANGUAGES 3

be insufficiently efficients and general to allow the development of “true” software
applications on a window system. The same way the lack of unified approaches
and of portability between different computers led to the development of several
high-level languages, the lack of interoperability of software applications and the
lack of coherence of software developments have led to a multitude of peripheral
languages, mainly scripting and macro ones.

From this point of view, the main challenge of software developments stand in
the simplification and standardization of environment and language interactions
(it means user, system, network, application and object interactions). The stan-
dard interface used to be based on console, file sharing and API. But, nowadays,
WEB/graphic interfaces, server/client, shared memory and messages seem to be
the main interaction frameworks.

Thus, integration has more or less be solved by introducing standard libraries and
intermediate machine code to perform the interface with the window manager and
the operating system, while client/server protocols and messages are assumed to be
a panacea for software cooperation. No need to say that each of these approaches
assume the introduction of a specific language (bytecode, interface description lan-
guage, server/client protocol, or whatever. . . ) restricting de facto the depth of the
interaction. Moreover, such techniques are only concerned with the integration with
target language environments, and the so-built applications share all the character-
istics of language-based applications: no coherence may be found in their internal
representations.

Last, the integration of several modules within a single language framework goes
through the encapsulation (object oriented programming, name scoping) to avoid
implicit unwanted interactions, mainly: name clashes. The intrinsically flat model
of resource naming of most of the compilers lead to incredibly complex construction
to partially achieve this goal.

All of this is the mere consequence of an old vision of the compilation process,
which tend to disappear with the aim of three main concepts: reflexivity, dynamic
compilation and modularity, which give the possibility for the code to look at the
internals of the compiler, to modify the parsing and/or compilation rules and to ask
for the compilation of some new (generated) code, each of these being performed
in some private local module. Interaction between modules is then solved by the
description of the visibility of names from one module to another.

4. Toward a programming operating system?

A quick overview of existing languages displays a large common core of services,
which might be enlarged in an object oriented view. Several attempts to build
some “object operating system” failed, mainly because of the restriction of the
prerogatives of such an operating system to a mere data management. According
to a view of a “programming language” as a “way to say”, a programming operating
system should have very large attributions:

• Data management. It means memory management (cache, garbage col-
lection, etc.) as well as data access resolution and control.

• Parallelism. Here, we mean the management of parallelism, multi-threading,
message triggering and synchronization.

• Algorithmic management. This concerns the management of all the
services more or less dependent of a particular data structure.

• Name and modularity management. It concerns resources naming,
module encapsulation and visibility handling.



4 PATRICE OSSONA DE MENDEZ AND HUBERT TONNEAU

Altogether, if we want an operating system to fulfill all these requirements, it should
also responsible for a part of the parsing and compilation. Therefore, it appears as
a kind of “universal dynamic modular compiler”.

Recall most of the compilers are concerned with two stages: the parsing (syntax
and grammar recognition), which leads to the construction of an expression tree,
and the compilation of the expression tree itself into an instruction list, which might
be further optimized. A programming operating system should be responsible for
both parts, according to local software-defined rules. A language is then defined as
a set of parsing and compilation procedures.

Although basic rules might be defined using a core minimal language, user de-
fined languages should also be able to express new rules (meta-programming). Last,
imperative languages (like C), declarative languages (like PROLOG), functional
ones (like CAML), languages without reserved keywords (like PL/I or REXX), as
well as relational languages (like SQL) should have a possible definition. This way,
languages are reduced to the organization of some conceptual framework into a
coherent “way to say”.

Frameworks may easily interact with each other, as data, functions and even
abstractions like types are shared at programming operating system level. In order
to avoid name clashes, compilation should use a locality principle: each “module”
has some view (or map) of its programming environment, while the operating has
(directly or indirectly) access to the whole atlas.

The multiplicity of frameworks allows to meet to paradoxical requirements of
the programmer: ease to write and efficiency. A “catch-all” language seems an
utopia to me and it is of a main importance to keep the ability for the programmer
to solve such or such problem at the level of abstraction to which it corresponds
(who would write a driver in ADA or a spreadsheet in assembly?). Contrary to the
common opinion, global coherence is not incompatible with a strong adaptation to
a specific field, but this coherence will need developers to be more mature and less
centered on their own problematic.

This approach allows integration at language level. For instance, integration of
a database manager and of an HTTP server allows the introduction in dynamic
pages’ code of operators involving heavy cooperation of these, in order to achieve,
for instance, automatic database update with access rights checked through digital
signatures. This approach is the one of Pliant project (http://pliant.cx).

(P. Ossona de Mendez) Centre d’Analyse et de Mathématiques Sociales, CNRS, UMR

8557, 54 Bd Raspail, 75006 Paris, France

E-mail address: pom@ehess.fr

URL: http://www.ehess.fr/centres/cams/person/pom/index.html

(H. Tonneau) Heliogroup company, 45 bis rue du sergent Bobillot, 93100 Montreuil,

France

E-mail address: hubert.tonneau@heliosam.fr

http://pliant.cx
mailto:pom@ehess.fr
http://www.ehess.fr/centres/cams/person/pom/index.html
mailto:hubert.tonneau@heliosam.fr

	1. Introduction
	2. The oligarchic attempt
	3. Toward a democratization of programming
	4. Toward a programming operating system?

