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Abstract

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux
in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev
inequality adapted for all measures on Rn, with a strictly convex and super-linear potential. This
inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM06], for
all uniform strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.

Résumé

Nous montrons dans cet article une amélioration de la méthode donnée par S. Bobkov et M.
Ledoux dans [BL00]. En utilisant l’inégalité de Prékopa-Leindler, nous prouvons une inégalité
de Sobolev logarithmique modifiée adaptée à toutes les mesures sur Rn possédant un potentiel
strictement convexe et super-linéaire. Cette inégalité implique en particulier une inégalité de
Sobolev logarithmique modifiée, développée dans [GGM05, GGM06], pour les mesures ayant un
potentiel uniformément strictement convexe aussi bien que l’inégalité de Sobolev logarithmique
de type euclidien.

1 Introduction

The Prékopa-Leindler inequality is the functional form of Brunn-Minkowski inequality. Let a, b be
some positive reals such that a+ b = 1, and u, v, w be some non negative measurable functions on
Rn. Assume that, for any x, y ∈ Rn, we have

u(x)av(y)b ≤ w(ax+ by),

then (∫
u(x)dx

)a (∫
v(x)dx

)b

≤
∫
w(x)dx. (1)

If we apply inequality (1) to characteristic functions of bounded measurable sets A and B in Rn,
we get the multiplicative form of the Brunn-Minkowski inequality

vol(A)avol(B)b ≤ vol(aA+ bB),

where aA+ bB = {axA + bxB, xA ∈ A, xB ∈ B} and vol(A) is the Lebesgue measure of the set A.
One can see for example two interesting reviews on this topic [Gup80, Mau04].
Bobkov and Ledoux in [BL00] use the Prékopa-Leindler inequality to prove some functional inequal-
ities like Brascamp-Lieb, Logarithmic Sobolev and Transportation inequalities.



More precisely, let ϕ be a C1 strictly convex function on Rn and let

dµϕ(x) = e−ϕ(x)dx (2)

be a probability measure on Rn (
∫
e−ϕ(x)dx = 1). The function ϕ is called the potential of the

measure µϕ. Bobkov and Ledoux obtained in particular the following two results:

• (Proposition 2.1 of [BL00]) Brascamp-Lieb inequality: assume that ϕ is a C2 function on Rn,
then for all smooth enough functions g,

Varµϕ(g) :=
∫ (

g −
∫
gdµϕ

)2

dµϕ ≤
∫
∇g ·Hess(ϕ)−1∇gdµϕ, (3)

where Hess(ϕ)−1 is the inverse of the Hessian of ϕ.

• (Proposition 3.1 of [BL00]) Assume that for some c > 0 and p > 2, for all t, s > 0 with
t+ s = 1, and for all x, y ∈ Rn, ϕ satisfies, as s goes to 0,

tϕ(x) + sϕ(y)− ϕ(tx+ sy) >
c

p
(s+ o(s))‖x− y‖p, (4)

where ‖·‖ is the Euclidean norm in Rn. Then for all smooth enough functions g,

Entµϕ(eg) :=
∫
eg log

eg∫
egdµϕ

dµϕ ≤ c

∫
‖∇g‖qegdµϕ, (5)

where 1/p+ 1/q = 1. They give as an example the function ϕ(x) = ‖x‖p +Zϕ (where Zϕ is a
normalization constant) which satisfies inequality (4) for some constant c > 0.

The main result of this paper is to prove a modified logarithmic Sobolev inequality for the measure
µϕ with a potential strictly convex and super-linear. We obtain, for all smooth enough functions g
on Rn,

Entµϕ(eg) ≤
∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}eg(x)dµϕ(x), (6)

where ϕ∗ is the Fenchel-Legendre transform of ϕ, ϕ∗(x) := supz∈Rn {x · z − ϕ(z)}.
The main application of this result is to extend the modified logarithmic Sobolev inequalities pre-
sented in [GGM05, GGM06] for probability measures on R satisfying a uniform strictly convexity
condition. It is well known that if the potential ϕ is C2 on R such that for all x ∈ R, ϕ′′(x) > λ > 0,
then the measure µϕ defined on (2) verifies the logarithmic Sobolev inequality introduced by Gross
in [Gro75], for all smooth enough functions g, namely

Entµϕ(eg) ≤ 1
2λ

∫
g′2egdµϕ.

This result comes from the Γ2-criterion of D. Bakry and M. Émery, see [BÉ85] or [ABC+00] for
a review. We then improve the classical logarithmic Sobolev inequality of Gross, in the situation
where if the potential is even with ϕ(0) = 0 and satisfies

∀x ∈ R, ϕ′′(x) > λ and lim
|x|→∞

ϕ′′(x) = ∞.

Adding a technical hypothesis (see Section 3.1), we show that for all smooth functions g,

Entµϕ(eg) ≤
∫
Hϕ(g′)egdµϕ,

where

Hϕ(x) =
{
C ′ϕ∗(x) if |x| > C
1
2λx

2 if |x| ≤ C,
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for some constants C,C ′ > 0 depending on ϕ. Remark that we always have

∀x ∈ R, Hϕ(x) ≤ 1
2λ
x2.

This inequality implies concentration inequalities which are more adapted to the measure studied,
as we will see in Section 3.1.

The next section is divided into two subsections. In the first one we state the main theorem of
this article, inequality (6). In the second subsection, we explain how this result improves results of
[BL00]. In particular, one gets modified logarithmic inequality (5) or Brascamp-Lieb inequality (3).
Section 3 deals with some applications. The first one is an improvement of the Γ2-criterion of
Bakry-Émery for measures on R. We obtain then a global view of modified logarithmic Sobolev
inequality for log-concave measures as introduced in a joint work with A. Guillin and L. Miclo
in [GGM05, GGM06]. Finally, we explain how the main theorem is equivalent to the Euclidean
logarithmic Sobolev inequality. As a consequence, a short proof of the generalization given in
[DPD03, Gen03, AGK04] is obtained.

2 Modified logarithmic Sobolev inequality for log-concave mea-
sures

2.1 The main theorem

Theorem 2.1 Let ϕ be a C1 strictly convex function on Rn, such that

lim
‖x‖→∞

ϕ(x)
‖x‖

= ∞. (7)

Denote by µϕ(dx) = e−ϕ(x)dx a probability measure on Rn, where dx is the Lebesgue measure on Rn,
(
∫
e−ϕ(x)dx = 1).

If ϕ∗ is the Fenchel-Legendre transform of ϕ, ϕ∗(x) := supz∈Rn {x · z − ϕ(z)}, then for all smooth
enough functions g on Rn, one gets,

Entµϕ(eg) ≤
∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}eg(x)dµϕ(x). (8)

The proof of this result is based on the following lemma:

Lemma 2.2 Let g be a C∞ function with a compact support on Rn. Let s, t > 0 with t+ s = 1 and
denote,

∀z ∈ Rn, gs(z) = sup
z=tx+sy

(g(x)− (tϕ(x) + sϕ(y)− ϕ(tx+ sy))).

Then we get, when s goes to 0,

gs(z) = g(z) + s{z · ∇g(z)− ϕ∗(∇ϕ(z)) + ϕ∗(∇ϕ(x)−∇g(x))}

+
(
((z − y0) · ∇(g + ϕ)(z) + ‖z − y0‖2)

)
O(s2),

uniformly on z ∈ Rn, where y0 ∈ Rn (and depends on z).

Proof
C Let s ∈]0, 1/2[ and note x = z/t− (s/t)y, hence

gs(z) = ϕ(z) + sup
y∈Rn

(
g
(z
t
− s

t
y
)
− tϕ

(z
t
− s

t
y
)
− sϕ(y)

)
.

3



Due to the fact that g has a compact support and by property (7) there exists ys ∈ Rn such that

sup
y∈Rn

(
g
(z
t
− s

t
y
)
− tϕ

(z
t
− s

t
y
)
− sϕ(y)

)
= g

(z
t
− s

t
ys

)
− tϕ

(z
t
− s

t
ys

)
− sϕ(ys).

Moreover, ys satisfies

∇g
(z
t
− s

t
ys

)
− t∇ϕ

(z
t
− s

t
ys

)
+ t∇ϕ(ys) = 0. (9)

The function ϕ is a strictly convex function, so that there is a unique solution y0 of the equation

∇ϕ(y0) = ∇ϕ(z)−∇g(z), y0 = (∇ϕ)−1(∇ϕ(z)−∇g(z)). (10)

We prove now that lims→0 ys = y0.

First we show that there exists R > 0 such that ∀s ∈ [0, 1/2], ‖ys‖ ≤ R. Indeed, if the function
ys is not bounded one can found (sk)k∈N such that sk → 0 and ‖ysk

‖ → ∞. By property (7)
lim‖x‖→∞ ϕ(x) = ∞, and since g is bounded we obtain skysk

= O(1). Due to the strict convexity of
ϕ, the last assertion is in contradiction with equation (9).
Let ŷ an accumulation point of the function ys, when s tends to 0. Then ŷ satisfies equation (10).
By unicity of the solution of (10) we get ŷ = y0. Therefore we have proved that lims→0 ys = y0.

Using Taylor’s formula and the continuity of ys at s = 0 we get

ϕ
(z
t
− s

t
ys

)
= ϕ(z) + s(z − y0) · ∇ϕ(z) +

(
((z − y0) · ∇ϕ(z) + ‖z − y0‖2)

)
O(s2),

and
g
(z
t
− s

t
ys

)
= g(z) + s(z − y0) · ∇g(z) +

(
((z − y0) · ∇g(z) + ‖z − y0‖2)

)
O(s2).

As a consequence,

gs(z) = g(z) + s{ϕ(z)− ϕ(y0) + (z − y0) · (∇g(z)−∇ϕ(z))}

+
(
((z − y0) · ∇(g + ϕ)(z) + ‖z − y0‖2)

)
O(s2).

Using equation (10) and the expression of the Fenchel-Legendre transformation for a strictly convex
function

∀x ∈ Rn, ϕ∗(x) = x · (∇ϕ)−1(x)− ϕ
(
(∇ϕ)−1(x)

)
,

and
∀x ∈ Rn, ϕ∗(∇ϕ(z)) = ∇ϕ(z) · z − ϕ(z),

we get the result. B

We are now to deduce our main result: Proof of Theorem 2.1
C The proof is based on the proof of Theorem 3.2 of [BL00]. First we prove inequality (8) for all
functions g, C∞ with compact support on Rn.
Let t, s > 0 with t+ s = 1 and denote for z ∈ Rn,

gt(z) = sup
z=tx+sy

(g(x)− (tϕ(x) + sϕ(y)− ϕ(tx+ sy))).

We apply Prékopa-Leindler inequality to the functions

u(x) = exp
(
g(x)
t

− ϕ(x)
)
, v(y) = exp (−ϕ(y)), w(z) = exp (gs(z)− ϕ(z)),
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and get (∫
exp(g/t)dµϕ

)t

≤
∫

exp(gs)dµϕ.

The differentiation of the Lp norm gives the entropy, and thanks to a Taylor’s formula we get(∫
exp(g/t)dµϕ

)t

=
∫
egdµϕ + sEntµϕ(eg) +O(s2).

Then applying Lemma 2.2 yields∫
exp(gs)dµϕ =∫

egµϕ + s

∫
{z · ∇g(z)− ϕ∗(∇ϕ(z)) + ϕ∗(∇ϕ(z)−∇g(z))}eg(z)dµϕ(z) +O(s2).

When s goes to 0, inequality (8) arises and can be extended extend it for all smooth enough func-
tions g. B

If ϕ(x) = ‖x‖2/2 + (n/2) log(2π) we obtain the classical logarithmic Sobolev of Gross for the
canonical Gaussian measure on Rn, with the optimal constant.

2.2 Remarks and examples

In the next corollary we recall a classical result of perturbation. If Φ is a function on Rn such that∫
e−Φdx <∞ we note the probability measure µΦ by

dµΦ(x) =
e−Φ(x)

ZΦ
dx, (11)

where ZΦ =
∫
e−Φ(x)dx·

Corollary 2.3 Assume that ϕ is a C1, strictly convex function on Rn such that

lim
‖x‖→∞

ϕ(x)
‖x‖

= ∞.

Let Φ = ϕ+U , where U is a bounded function on Rn and denote by µΦ the measure defined by (11).
Then for all smooth enough functions g on Rn, one has

EntµΦ(eg) ≤ e2osc(U)

∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}eg(x)dµΦ(x), (12)

where osc(U) = sup(U)− inf(U).

Proof
C First we observe that

e−osc(U) ≤ dµΦ

dµϕ
≤ eosc(U). (13)

Moreover we have for all probability measures ν on Rn,

Entν(eg) = inf
a>0

{∫ (
eg log

eg

a
− eg + a

)
dν

}
.

Using the fact that for all x, a > 0, x log x
a − x+ a > 0, we get

e−osc(U)EntµΦ(eg) ≤ Entµϕ(eg) ≤ eosc(U)EntµΦ(eg) .

5



Then if g a smooth enough function on Rn we have

EntµΦ(eg) ≤ eosc(U)Entµϕ(eg)

≤ eosc(U)

∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}eg(x)dµϕ(x).

The convexity of ϕ∗ Rn and th relation ∇ϕ∗(∇ϕ(x)) = x lead to

∀x ∈ Rn, x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x)) > 0.

Finally by (13) we get

EntµΦ(eg) ≤ e2osc(U)

∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}egdµΦ.

B

Remark 2.4 It is not necessary to state a tensorization result, as we may obtain exactly the same
expression when computing directly with a product measure.

Using Theorem 2.1 we find also the examples given in [BL00] and [BZ05].

Corollary 2.5 Let p > 2 and let Φ(x) = ‖x‖p/p where ‖·‖ is Euclidean norm in Rn. Then there
exists c > 0, we get for all smooth enough functions g, one has

EntµΦ(eg) ≤ c

∫
‖∇g‖qegdµΦ, (14)

where 1/p+ 1/q = 1 and µΦ is defined on (11).

Proof
C Using Theorem 2.1, we just have to prove that there exists c > 0 such that,

∀x, y ∈ Rn, x · y − Φ∗(∇Φ(x)) + Φ∗(∇Φ(x)− y) ≤ c‖y‖q.

Assume that y 6= 0 and define the function ψ by,

ψ(x, y) =
x · y − Φ∗(∇Φ(x)) + Φ∗(∇Φ(x)− y)

‖y‖q .

Then ψ is a bounded function. We know that Φ∗(x) = ‖x‖q/q. Choosing z = x‖x‖p−2/‖y‖ and
denoting e = y/‖y‖, we obtain

ψ(x, y) = ψ̄(z, e) = z · e‖z‖q−2 − 1
q
‖z‖q +

1
q
‖z − e‖q.

Taylor’s formula the yields ψ̄(z, e) = O(‖z‖q−2). But p > 2 implies that q ≤ 2, so that ψ̄ is a
bounded function. We then get the result with c = sup ψ̄ = supψ. B

In Proposition 2.1 of [BL00], Bobkov and Ledoux prove that the Prékopa-Leindler inequality implies
Brascamp-Lieb inequality. In our case, Theorem 2.1 also implies Brascamp-Lieb inequality, as we
can see in the next corollary.

Corollary 2.6 Let ϕ satisfy the conditions of Theorem 2.1 and assume that ϕ is C2 on Rn. Then
for all smooth enough functions g we get,

Varµϕ(g) ≤
∫
∇g ·Hess(ϕ)−1∇gdµϕ,

where Hess(ϕ)−1 denote the inverse of the Hessian of ϕ.
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Proof
C Assume that g is a C∞ function with a compact support and apply inequality (8) with the
function εg where ε > 0. Using Taylor’s formula we get

Entµϕ(exp εg) =
ε2

2
Varµϕ(g) + o(ε2),

and∫
{x · ∇g(x)− ϕ∗(∇ϕ(x)) + ϕ∗(∇ϕ(x)−∇g(x))}eg(x)dµϕ(x) =∫

ε2

2
∇g ·Hess(ϕ∗)(∇ϕ)∇gdµϕ + o(ε2).

Because of ∇ϕ∗(∇ϕ(x)) = x, one has that Hess(ϕ∗)(∇ϕ) = Hess(ϕ)−1 and the corollary is proved.
B

Remark 2.7 Let ϕ satisfy the conditions of Theorem 2.1, and L be defined by

∀x, y ∈ Rn, L(x, y) = ϕ(y)− ϕ(x) + (y − x) · ∇ϕ(x).

The convexity of ϕ implies that L(x, y) > 0 for all x, y ∈ Rn. Let F be a density of probability with
respect to the measure µϕ, we defined the following Wasserstein distance with the cost function L
by

WL(Fdµϕ, dµϕ) = inf
{∫

L(x, y)dπ(x, y)
}
,

where the infimum is taken over all probability measures π on Rn × Rn with marginal distributions
Fdµϕ and dµϕ. Bobkov and Ledoux proved in [BL00] the following transportation inequality

WL(Fdµϕ, dµϕ) ≤ Entµϕ(F ) . (15)

The main theorem of Otto and Villani in [OV00] is the following: Classical logarithmic Sobolev
inequality of Gross (when ϕ(x) = ‖x‖2/2 + (n/2) log(2π)) implies the transportation inequality (15)
for all functions F , density of probability with respect to µϕ (see also [BGL01] for another proof).
The method developed in [BGL01], enables to extend the property for ϕ(x) = ‖x‖p + Zϕ (p > 2).
In the general case exposed here, we do not know if the modified logarithmic Sobolev inequality (8)
implies transportation inequality (15).

3 Applications

3.1 Application to modified logarithmic Sobolev inequalities

In [GGM05, GGM06], is given a modified logarithmic Sobolev inequality for measure µϕ on R is
given with a potential between |x| and x2. More precisely let Φ be a function on the real line and
assume that Φ is even and satisfies the following property: there exists M > 0 and 0 < ε ≤ 1/2
such that,

∀x > M, (1 + ε)Φ(x) ≤ xΦ′(x) ≤ (2− ε)Φ(x). (H)

Then there exist A,B,D > 0 such that for all smooth functions g we have

EntµΦ(eg) ≤ A

∫
HΦ

(
g′

)
egdµΦ, (16)

where

HΦ(x) =
{

Φ∗(Bx) if |x| > D,
x2 if |x| ≤ D,

7



and µΦ is defined on (11).
The proof of inequality (16) is rather technical and is divided in two parts: the large and the small
entropy. Using Theorem 2.1 one obtains two results in this direction. In the next theorem, we
extend (16) in the case where the potential is “bigger” than x2.

Theorem 3.1 Let ϕ be a C2 function on R. Assume that ϕ is even, ϕ(0) = 0 and satisfies, for
some λ > 0,

∀x ∈ R, ϕ′′(x) > λ and lim
|x|→∞

ϕ′′(x) = ∞. (17)

Assume also that there exists A > 1 such that for |x| large enough,

Aϕ(x) ≤ xϕ′(x). (18)

Then there exists C > 0 such that for all smooth enough functions g,

Entµϕ(eg) ≤
∫
Hϕ(g′)egdµϕ, (19)

where

Hϕ(x) =
{

2A
A−1ϕ

∗(x) if |x| > C
1
2λx

2 if |x| ≤ C.
(20)

The proof of this theorem is a straightforward application of the following lemma:

Lemma 3.2 Assume that ϕ satisfies conditions of Theorem 3.1, then we get

∀x, y ∈ R, xy − ϕ∗(ϕ′(x)) + ϕ∗(ϕ′(x)− y) ≤ Hϕ(y). (21)

Proof
C We know that x = ϕ∗

′
(ϕ′(x)), and the convexity of ϕ∗ yields

xy − ϕ∗(ϕ′(x)) + ϕ∗(ϕ′(x)− y) ≤ y
(
ϕ∗

′
(ϕ′(x))− ϕ∗

′
(ϕ′(x)− y)

)
. (22)

Let fixed y ∈ R and note ψy(x) = ϕ∗
′
(x+ y)− ϕ∗

′
(x). The function ϕ is convex, so one gets for all

x ∈ R, ϕ∗
′′
(ϕ′(x))ϕ′′(x) = 1, and the maximum of ψy(x) is reached on x0 ∈ R which satisfies the

condition ϕ∗
′′
(x0) = ϕ∗

′′
(x0 + y).

Conditions on ϕ easily imply that there exists C > 0 such that

∀y > C, sup
t>x+y

ϕ∗
′′
(t) < inf

t≤x
ϕ∗

′′
(t),

so that if y > C, then x0 ∈ [−y, 0]. One obtains that

∀y > C,∀x ∈ R, ϕ∗
′
(x+ y)− ϕ∗

′
(x) ≤ 2ϕ∗

′
(y),

and hence
∀|y| > C,∀x ∈ R, xy − ϕ∗(ϕ′(x)) + ϕ∗(ϕ′(x)− y) ≤ y2ϕ∗

′
(y).

By (18) one gets

∀|y| > C,∀x ∈ R, xy − ϕ∗(ϕ′(x)) + ϕ∗(ϕ′(x)− y) ≤ 2A
A− 1

ϕ∗(y). (23)

A Taylor’s formula then leads to

∀x, y ∈ R, xy − ϕ∗(ϕ′(x)) + ϕ∗(ϕ′(x)− y) ≤ y2

2
ϕ∗

′′
(ϕ′(x)− θy) ≤ y2

2λ
,

for some θ ∈ (0, 1), and (21) follows (23). B
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Remark 3.3 • The last theorem improved the Bakry-Émery criterion. In fact when a probabil-
ity measure is more log-concave than the Gaussian measure, we obtain a modified logarithmic
Sobolev inequality sharper than the classical inequality of Gross. Using a such inequality then
one obtains concentration inequality which is more adapted to the probability measure studied.

• Theorem 3.1 is more precise than Corollary 2.5 proved by Bobkov, Ledoux and Zegarlinski in
[BL00, BZ05]. The particularity of the function Hϕ defined on (20) is its behaviour around the
origin. If a probability measure satisfies inequality (19) then it satisfies a Poincaré inequality
with constant 1/λ.

• Note also than this method can not be applied for measures with a concentration between e−|x|

and e−x2
described in [GGM05, GGM06]. In particular Lemma 3.2.

• Note finally that the condition (18) is simply a technical condition, which is satisfied for almost
functions.

A natural application of Theorem 3.1 is a concentration inequality in the spirit of Talagrand,
see [Tal95].

Corollary 3.4 Assume that ϕ satisfies the conditions of Theorem 3.1 and there exists B > 1 such
that for |x| large enough,

xϕ′(x) ≤ Bϕ(x). (24)

Then there exists constants C1, C2, C3 > 0, independent of n such that: if F is a function on Rn

such that ∀i, ‖∂iF‖∞ ≤ ζ, then we get for λ ≥ 0,

µ⊗n(
∣∣F − µ⊗n(F )

∣∣ > λ) ≤


2 exp

(
−nC1Φ

(
C2

λ

nζ

))
if λ > nC3ζ,

2 exp
(
−C1

λ2

nζ2

)
if 0 ≤ λ ≤ nC3ζ.

(25)

Proof
C Using the additional hypothesis (24), the proof of (25) is the same as for Proposition 3.2
of [GGM06]. B

When the function ϕ is strictly convex but does not satisfies (17) then a n-dimensional version
of (19) is available but only for large entropy.

Theorem 3.5 Let Φ be a C1, strictly convex and even function on Rn, such that

lim
‖x‖→∞

Φ(x)
‖x‖

= ∞.

Assume that Φ > 0 and Φ(0) = 0 (it implies that 0 is the unique minimum of Φ).
Assume that

lim
α→0, α∈[0,1]

sup
x∈Rn

(1− α)
Φ∗

(
x

1−α

)
Φ∗(x)

 = 1, (26)

and also that there exists A > 0 such that

∀x ∈ Rn, x · ∇Φ(x) ≤ (A+ 1)Φ(x). (27)

Then there exist C1, C2 > 0 such that for all smooth enough function g such that
∫
egdµΦ = 1 and

EntµΦ(eg) > 1 we get

EntµΦ(eg) ≤ C1

∫
Φ∗(C2∇g)egdµΦ. (28)

9



Proof
C Let apply Theorem 2.1 with ϕ = Φ + logZΦ, one has

EntµΦ(eg) ≤
∫
{x · ∇g(x)− Φ∗(∇Φ(x)) + Φ∗(∇Φ(x)−∇g(x))}egdµΦ.

Let α ∈ [0, 1[, Φ∗ is convex so that

∀x ∈ Rn, Φ∗(∇Φ(x)−∇g(x)) ≤ (1− α)Φ∗
(
∇Φ(x)
1− α

)
+ αΦ∗

(
−∇g(x)

α

)
. (29)

Recall that Φ∗ is also an even function. Young’s inequality implies that

∀x ∈ Rn, x · ∇g(x)
α

≤ Φ(x) + Φ∗
(
∇g(x)
α

)
. (30)

Using (29) and (30) we get

EntµΦ(eg) ≤ 2α
∫

Φ∗
(
∇g
α

)
egdµΦ + α

∫
Φ(x)egdµΦ+∫ (

(1− α)Φ∗
(
∇Φ(x)
1− α

)
− Φ∗(∇Φ(x))

)
egdµΦ.

We have Φ∗(∇Φ(x)) = x · ∇Φ(x) − Φ(x), then inequality (27) implies that Φ∗(∇Φ(x)) ≤ AΦ(x).
Because of Φ(0) = 0 one has Φ∗ > 0, so that

EntµΦ(eg) ≤ α

∫
Φ∗

(
∇g
α

)
egdµΦ + α

∫
Φ∗

(
∇g
α

)
egdµΦ + (α+A|ψ(α)− 1|)

∫
ΦegdµΦ,

where

ψ(α) = sup
x∈Rn

(1− α)
Φ∗

(
x

1−α

)
Φ∗(x)

. (31)

Let λ > 0, making use of
∫
egdµΦ = 1 then yields∫
ΦegdµΦ ≤ λ

(
EntµΦ(eg) + log

∫
eΦ/λdµΦ

)
.

One has lim
λ→∞

log
∫
eΦ/λdµΦ = 0. Let then let now choose λ large enough so that log

∫
eΦ/λdµΦ ≤ 1.

Using the property (26), taking α such that (α+A|ψ(α)− 1|)λ ≤ 1/4 implies

EntµΦ(eg) ≤ 2α
∫

Φ∗
(
∇g
α

)
egdµΦ +

1
4
(EntµΦ(eg) + 1).

Then a consequence of EntµΦ(eg) > 1 is that

EntµΦ(eg) ≤ 4α
∫

Φ∗
(
∇g
α

)
egdµΦ.

B
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3.2 Application to Euclidean logarithmic Sobolev inequality

Theorem 3.6 Assume that the function ϕ satisfies conditions of Theorem 2.1. Then for all λ > 0
and for all smooth enough functions g on Rn,

Entdx(eg) ≤ −n log (λe)
∫
egdx+

∫
ϕ∗(−λ∇g)egdx. (32)

This inequality is optimal in the sense that if g = −C(x − x̄) with x̄ ∈ Rn and λ = 1 we get an
equality.

Proof
C Integrating by parts in the second term of (8) yields for all g smooth enough∫

x · ∇g(x)eg(x)dµϕ(x) =
∫

(−n+ x · ∇ϕ(x))eg(x)dµϕ(x).

Then using the equality ϕ∗(∇ϕ) = x · ∇ϕ(x)− ϕ(x) we get for all smooth enough functions g,

Entµϕ(eg) ≤
∫

(−n+ ϕ+ ϕ∗(∇ϕ−∇g))egdµϕ,

Let now take g = f + ϕ to obtain

Entdx

(
ef

)
≤

∫
(−n+ ϕ∗(−∇g))egdx.

Finally, let λ > 0 and take f(x) = g(λx), we get then

Entdx(eg) ≤ −n log (λe)
∫
egdx+

∫
ϕ∗(−λ∇g)egdx,

which proves (32).
If now g = −C(x− x̄) with x̄ ∈ Rn an easy computation proves that if λ = 1 the equality holds. B

In the inequality (32), there exists an optimal λ0 > 0 and when C is homogeneous, we can im-
prove the last result. We find an inequality called Euclidean logarithmic Sobolev inequality which is
explained on the next corollary.

Corollary 3.7 Let C be a strictly convex function on Rn and assume that C is q-homogeneous,

∀λ > 0 and ∀x ∈ Rn, C(λx) = λqC(x).

Then for all smooth enough function g in Rn we get

Entdx(eg) ≤ n

p

∫
egdx log

(
p

nep−1Lp/n

∫
C∗(−∇g)egdx∫

egdx

)
, (33)

where L =
∫
e−Cdx and 1/p+ 1/q = 1.

Proof
C Let apply Theorem 3.6 with ϕ = C + logL. Then ϕ satisfies conditions of Theorem 3.6 and we
get then

Entdx(eg) ≤ −n log
(
λeL1/n

) ∫
egdx+

∫
C∗(−λ∇g)egdx.

Due to the fact that C is q-homogeneous an easy computation proves that C∗ is p-homogeneous
where 1/p+ 1/q = 1. An optimization over λ > 0 gives inequality (33). B

Inequality (33) is called Euclidean logarithmic Sobolev inequality and computations of this section
is the generalization of the work of Carlen in [Car91]. This inequality with p = 2, appears in the
work of Weissler in [Wei78]. It was discussed and extended to this last version in many articles see
[Bec99, DPD03, Gen03, AGK04].
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Remark 3.8 As explained in the introduction, computation used in Corollary 3.7 clearly proves
that inequality (33) is equivalent to inequality (32). Agueh, Ghoussoub and Kang, in [AGK04], used
Monge-Kantorovich theory for mass transport to prove inequalities (32) and (33). Their approach
gives another way to establish Theorem 2.1.
Optimal transportation is also used by Cordero-Erausquin, Gangbo and Houdré in [CEGH04] to
prove the particular case of the inequality (14).
Note finally that inequality (33) is optimal, extremal functions are given by g(x) = −bC(x− x̄), with
x̄ ∈ Rn and b > 0. If they are only ones is still an open question.
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