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Logarithmi Sobolev inequality for log-onave measure fromPr�ekopa-Leindler inequalityIvan GentilCeremade (UMR CNRS no. 7534), Universit�e Paris IX-Dauphine,Plae de Lattre de Tassigny, 75775 Paris C�edex 16, FraneE-mail: gentil�eremade.dauphine.frInternet: http://www.eremade.dauphine.fr/egentil/22nd Marh 2005AbstratWe develop in this paper an amelioration of the method given by S. Bobkov and M. Ledouxin [BL00℄. We prove by Pr�ekopa-Leindler Theorem an optimal modi�ed logarithmi Sobolevinequality adapted for all log-onave measure on Rn . This inequality implies results proved byBobkov and Ledoux, the Eulidean Logarithmi Sobolev inequality generalized in the last yearsand it also implies some onvex logarithmi Sobolev inequalities for large entropy.R�esum�eDans et artile nous proposons une am�elioration de la m�ethode d�evelopp�ee par S. Bobkovet M. Ledoux dans [BL00℄. Nous prouvons par le th�eor�eme de Pr�ekopa-Leindler une in�egalit�ede Sobolev logarihmique, optimale et adapt�ee �a toutes les mesures log-onaves sur Rn . Cettein�egalit�e implique les r�esultats de Bobkov et Ledoux, les in�egalit�es de Sobolev logarithlmique detype Eulidien g�en�eralis�ees es derni�eres ann�ees et en�n etaines in�egalit�es de Sobolev logarith-miques de type onvexe pour les grandes entropies.1 IntrodutionPr�ekopa-Leindler is the funtional form of Brunn-Minkowski inequality. Let a; b > 0, a+ b = 0, andu, v, w three non negative measurable funtions on Rn . Assume that, for any x; y 2 Rn , we haveu(x)av(y)b � w(ax+ by);then �Z u(x)dx�a�Z v(x)dx�b � Z w(x)dx: (1)If you applied inequality (1) to harateristi funtions of bounded measurable sets A and B in Rn ,it yields the multipliative form of the Brunn-Minkowski inequalityvol(A)avol(B)b � vol(aA+ bB);where aA+ bB = faxA + bxB; xA 2 A; xB 2 Bg. One an see for example two interesting reviewson this topi [Gup80, Mau04℄.Bobkov and Ledoux in [BL00℄ use Pr�ekopa-Leindler Theorem to prove some funtional inequalitieslike Brasamp-Lieb, Logarithmi Sobolev and Transportation inequalities.More preisely, let ' be a C1 stritly onvex funtion on Rn and letd�'(x) = e�'(x)dx;



the probability measure on Rn (assume that R e�'(x)dx = 1). Bobkov-Ledoux prove in partiularthe following two results:� (Proposition 2.1) Brasamp-Lieb inequality: assume that ' is a C2 funtion then for all smoothenough g, Var�'(g) := Z �g � Z gd�'�2d�' � Z rg � Hess(')�1rgd�'; (2)where Hess(')�1 is the inverse of the Hessian of '.� (Proposition 3.1) Assume that for some  > 0 and p > 2, all t; s > 0 with t + s = 1, and forall x; y 2 Rn , ' satis�est'(x) + s'(y)� '(tx+ sy) > p(s+ o(s))kx� ykp; (3)where k�k is the Eulidean norm in Rn . Then for all smooth enough funtion g,Ent�'(eg) := Z eg log egR egd�'d�' � Z krgkqegd�'; (4)where 1=p + 1=q = 1. They give the example of the funtion '(x) = kxkp + Z' (Z' is anormalization onstant) whih satis�es inequality (3) for some onstant .In this artile, we prove also with Pr�ekopa-Leindler Theorem, some optimal logarithmi Sobolevinequality for log-onave measure without onditions like inequality (3). We obtain, for all smoothenough funtion g on Rn ,Ent�'(eg) � Z fx � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))geg(x)d�'(x); (5)where '� is the Frenhel-Legendre transform of ', '�(x) := supz2Rn fx � z � '(z)g.The �2-riterion of Bakry-Emery implies that if Hess(') > �Id in the sense of symmetri matrixwith � > 0, then the probability measure �' satis�es lassial logarithmi Sobolev inequality, forall smooth funtion g, Ent�'(eg) � 12� Z krgk2egd�': (6)This inequality is proved by Gross in [Gro75℄, one an see also [ABC+00℄ for a review about thisinequality and the related �elds. Inequality (5) is then a generalization of the lassial logarithmiSobolev inequality of Gross, adapted for all log-onave measure on Rn whih does'nt satis�es �2-riterion. We get an optimal modi�ed logarithmi Sobolev inequality for log-onave measures.The next setion is divided into two subsetions. In the �rst one we give the main theorem of thispaper: inequality (5). In the seond subsetion we explain how the theorem implies results of [BL00℄.In partiular one �nd again Brasamp-Lieb inequality (2) or modi�ed logarithmi Sobolev inequalityfor some funtion ', inequality (4). In setion 3 we prove that inequality (5) is equivalent to theEulidean logarithmi Sobolev inequality. In partiular it gives a short proof of the generalizationgiven in [DPD03, Gen03, AGK04℄. In setion 4 we give a onvex inequality for large entropy. Inpartiular we obtain a n-dimensional version for large entropy of inequalities prove in [GGM05b,GGM05a℄. 2



2 Logarithmi Sobolev inequality2.1 The main theoremTheorem 2.1 Let ' be a C1 stritly onvex funtion on Rn , suh thatlimjxj!1 '(x)kxk =1: (7)We note the probability measure �'(dx) = e�'(x)dx;where dx is the Lebesgue measure on Rn , assume that R e�'(x)dx = 1.Then for all funtion g on Rn , smooth enough suh that integrals used exits we haveEnt�'(eg) � Z fx � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))geg(x)d�'(x): (8)Lemma 2.2 Let g be a C1 funtion with a ompat support on Rn . Let s; t > 0 with t+ s = 1 andwe note for z 2 Rn , gs(z) = supz=tx+sy (g(x)� (t'(x) + s'(y)� '(tx+ sy))):Then we getgs(z) = g(z) + sfz � rg(z)� '�(r'(z)) + '�(r'(x) �rg(x))g+O�((z � y0) � r(g + ')(z) + kz � y0k2)s2�;where y0 2 Rn .ProofC Let s 2℄0; 1=2[ and note x = z=t� (s=t)y, henegs(z) = '(z) + supy2Rn �g�zt � st y�� t'�zt � st y�� s'(y)�:Due to the fat that g has a ompat support and by the property (7) there exists ys 2 Rn suhthat supy2Rn �g�zt � st y�� t'�zt � st y�� s'(y)� = g�zt � st ys�� t'�zt � st ys�� s'(ys):Moreover ys satis�es rg�zt � st ys�� tr'�zt � st ys�+ tr'(ys) = 0: (9)The funtion ' is a stritly onvex funtion then there is a unique solution y0 of the equationr'(y0) = r'(z) �rg(z); y0 = (r')�1(r'(z) �rg(z)): (10)We prove now that lims!0 ys = y0.First we prove that there exists R > 0 suh that 8s 2 [0; 1=2℄, kysk � R. Indeed, if the funtionys is not bounded one an found (sk)k2N suh that sk ! 0 and kyskk ! 1. By property (7)limkxk!1 '(x) = 1 then sine g is bounded we obtain skysk = O(1). Due to to the stritlyonvexity of ', the last assertion is in ontradition with equation (9).Let ŷ a value of adherene at s = 0 of the funtion ys then ŷ satis�es equation (10). By uniity ofthe solution of (10) we get ŷ = y0. Then we have proved that lims!0 ys = y0.3



By Taylor formula and the ontinuity of ys at s = 0 we get'�zt � st ys� = '(z) + s(z � y0) � r'(z) +O�((z � y0) � r'(z) + kz � y0k2)s2�;and g�zt � st ys� = g(z) + s(z � y0) � rg(z) +O�((z � y0) � rg(z) + kz � y0k2)s2�:Thengs(z) = g(z) + sf'(z)� '(y0) + (z � y0) � (rg(z) �r'(z))g+O�((z � y0) � r(g + ')(z) + kz � y0k2)s2�:Using equation (10) and the expression of the Frenhel-Legendre transformation for a stritly onvexfuntion '�(x) = x � (r')�1(x)� '�(r')�1(x)�;and '�(r'(z)) = r'(z) � z � '(z);we get the result. BProof of Theorem 2.1C The proof is based on the proof of Theorem 3.2 of [BL00℄. First we prove inequality (8) for allfuntion g, C1 with a ompat support on Rn .Let t; s > 0 with t+ s = 1 and we note for z 2 Rn ,gt(z) = supz=tx+sy (g(x) � (t'(x) + s'(y)� '(tx+ sy))):We apply Pr�ekopa-Leindler theorem to the funtionsu(x) = exp�g(x)t � '(x)�; v(y) = exp (�'(y)); w(z) = exp (gs(z)� '(z));to get �Z exp(g=t)d�'�t � Z exp(gs)d�':The derivation of the Lp norm gives the entropy, then using Taylor formula we get�Z exp(g=t)d�'�t = Z eg�' + sEnt�'(eg) +O(s2):Then apply Lemma 2.2 to getZ exp(gs)d�' =Z eg�' + sZ fz � rg(z)� '�(r'(z)) + '�(r'(z)�rg(z))geg(z)d�'(z) +O(s2):Then when s goes to 0 we get inequality (8).Then we an extend the inequality (8) for all funtion g smooth enough suh that integrals exist.BRemark that if '(x) = kxk2=2 + (n=2) log(2�) we obtain the lassial logarithmi Sobolev of Grossfor the anonial Gaussian measure on Rn . 4



2.2 Remarks and examplesIn the next orollary we give the lassial result of perturbation. Of ourse we lost the optimalonstant given in inequality (8).If � is a funtion on Rn suh that R e��dx <1 we note the probability measure �� byd��(x) = e��(x)Z� dx; (11)where Z� = R e��(x)dx�Corollary 2.3 Assume that ' is a C1, stritly onvex funtion on Rn suh that limjxj!1 '(x)=kxk =1. Let � = ' + U , where U is a bounded funtion on Rn and denote by �� the measure de�nedby (11).Then for all smooth enough funtion g on Rn . we getEnt��(eg) � e2os(U) Z fx � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))geg(x)d��(x); (12)where os(U) = sup(U)� inf(U).ProofC First we observe that e�os(U) � d��d�' � eos(U): (13)Moreover we have for all probability measure � on Rn ,Ent�(eg) = infa>0�Z �eg log ega � eg + a�d��;using the fat that 8x; a > 0, x log xa � x+ a > 0 we gete�os(U)Ent��(eg) � Ent�'(eg) � eos(U)Ent��(eg) :Then if g a smooth enough funtion g on Rn we haveEnt��(eg) � eos(U)Ent�'(eg)� eos(U) Z fx � rg(x) � '�(r'(x)) + '�(r'(x)�rg(x))geg(x)d�'(x):Using the fat that '� is a onvex funtion on Rn and r'�(r'(x)) = x we obtain that8x 2 Rn ; x � rg(x) � '�(r'(x)) + '�(r'(x)�rg(x)) > 0:Then by (13) we getEnt��(eg) � e2os(U) Z fx � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))gegd��:BRemark 2.4 It is not neessary to give a tensorisation result beause we will obtain exatly thesame expression if we ompute diretly with a produt measure.Using Theorem 2.1 we �nd also the same examples given in [BL00℄ and [BZ05℄.5



Corollary 2.5 Let p > 2 and let �(x) = kxkp=p where k�k is Eulidean norm in Rn . Then we getfor all smooth enough funtion g, Ent��(eg) � Z krgkqegd��; (14)where 1=p+ 1=q = 1 and for some onstant  > 0.ProofC Using Theorem 2.1, we just have to prove that8x 2 Rn ; 8y 2 Rn ; x � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x)) � kykq:Assume that y 6= 0 and let note by (x; y) = x � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))kykq :Then  is a bounded funtion. Indeed an easy alulus prove that '�(x) = kxkq=q. Let take nowz = xkxkp�2kyk and e = y=kyk then we obtain (x; y) = � (z; e) = z � ekzkq�2 � 1qkzkq + 1q zkzk � ekzkq:We have kek = 1, then e is bounded. Using Taylor formula we get � (z; e) = O(kykq�2). But p > 2implies that q � 2 and then � is a bounded funtion.  is then a bounded, if  = sup we get theninequality (14). BWe an remark that Proposition 2.5 is not true when p 2℄1; 2[. As we an see in [GGM05b℄, whenp 2℄1; 2[ we have to hange the right hand term of inequality (14) and to add a quadrati term.In Proposition 2.1 of [BL00℄, Bobkov and Ledoux prove that Pr�ekopa-Leindler's theorem impliesBrasamp-Lieb inequality. In our ase we prove that Theorem 2.1 implies also some Brasamp-Liebinequality as we an see in the next orollary.Corollary 2.6 Let ' satisfying onditions of Theorem 2.1 and assume that ' is C2 on Rn . Thenfor all smooth enough funtion g we getVar�'(g) � Z rg � Hess(')�1rgd�';where Hess(')�1 denote the inverse of the Hessian of '.ProofC Assume that g is a C1 funtion with a ompat support and let apply inequality (8) with thefuntion �g where � > 0. Using Taylor formula we getEnt�'(exp �f) = 2�2Var�'(f) + o(�2);andZ fx � rg(x)� '�(r'(x)) + '�(r'(x)�rg(x))geg(x)d�'(x) =Z �22 rg �Hess('�)(r')rgd�' + o(�2):Using the fat that r'�(r'(x)) = x we get that Hess('�)(r') = Hess(')�1 and the orollary isproved. B
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Remark 2.7 Let ' satisfying properties of Theorem 2.1. NoteL(x; y) = '(y) � '(x) + (y � x)r'(x);due to the onvexity of ' we get that L(x; y) > 0 for all x; y 2 Rn .Let F be a density of probability with respet to the measure �', we de�ned the following Wassersteindistane with the ost funtion equal to L byWL(Fd�'; d�') = inf �Z L(x; y)d�(x; y)�;where the in�mum is taken for all probabilities measures � on Rn � Rn with marginal distribu-tions Fd�' and d�'. Then Bobkov and Ledoux prove again in [BL00℄ the following transportationinequality WL(Fd�'; d�') � Ent�'(F ) : (15)The main theorem of Otto and Villani in [OV00℄ is the following: Classial logarithmi Sobolevinequality (when '(x) = kxk2=2 + (n=2) log(2�)) implies the transportation inequality (15) for allfuntion F , density of probability with respet to �' (see also [BGL01℄ for an other proof). By themethod developed in [BGL01℄, one an easily extend the property for '(x) = kxkp + Z' (p > 2).In the general ase exposed here, we don't know if inequality (8) imply inequality (15).3 Appliation to Eulidean logarithmi Sobolev inequalityTheorem 3.1 Assume that the funtion ' satis�es onditions of Theorem 2.1 then for all � > 0and for all smooth enough funtion g on Rn suh that integrals exits we getEntdx(eg) � �n log (�e) Z egdx+ Z '�(��rg)egdx: (16)Last inequality is optimal in the sense that if g = �C(x � �x) with �x 2 Rn and � = 1 we get anequality.ProofC Using integration by parts on the seond term of (8) we obtain for all g smooth enoughZ x � rg(x)eg(x)d�'(x) = Z (�n+ x � r'(x))eg(x)d�'(x):Then using the equality '�(r') = x � r'(x)� '(x) we get for all smooth enough gEnt�'(eg) � Z (�n+ '+ '�(r'�rg))egd�';Let now take g = f + ' to obtainEntdx�ef� � Z (�n+ '�(�rg))egdx:Let � > 0 and take f(x) = g(�x) we get thenEntdx(eg) � �n log (�e) Z egdx+ Z '�(��rg)egdx;whih prove (16).If now g = �C(x� �x) with �x 2 Rn an easy alulus prove that if � = 1 we get an equality. B
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In the inequality (16), there exits an optimal �0 > 0. Unfortunately, in the almost ase we an'tgive the expression of the optimal �0. It is the unique real satisfying the following equality�nZ egdx+ �0 Z rg � r('�)(��0rg)egdx = 0:But when C is homogeneous, we an give an better expression of the last theorem. We �nd inequalityalled Eulidean logarithmi Sobolev inequality whih is explained on the next orollary.Corollary 3.2 Let C a stritly onvex funtion on Rn and assume that C is q-homogeneous,8� > 0 and 8x 2 Rn ; C(�x) = �qC(x):Then for all smooth enough funtion g in Rn we getEntdx(eg) � np Z egdx log� pnep�1Lp=n R C�(�rg)egdxR egdx �; (17)where L = R e�Cdx and 1=p+ 1=q = 1.ProofC Let apply Theorem 3.1 with ' = C + logL. Then ' satis�es onditions of Theorem 3.1 and weget then Entdx(eg) � �n log��eL1=n� Z egdx+ Z C�(��rg)egdx:Due to the fat that C is q-homogeneous an easy alulus prove that C� is p-homogeneous where1=p+ 1=q = 1. An optimization over � > 0 gives inequality (17). BInequality (17) is alled Eulidean logarithmi Sobolev inequality. This inequality with p = 2appears in the work of Weissler in [Wei78℄. It was disussed and extended to this last version inmany artiles see [Car91, Led96, Be99, DPD03, Gen03, AGK04℄.Remark 3.3 Of ourse as it is explained in the introdution, alulus used in Corollary 3.2 provethat inequality (17) is equivalent to inequality (16). Agueh, Ghoussoub and Kang, in [AGK04℄, usedMonge-Kantorovih theory for mass transport to prove inequalities (16) and (17). Then it gives another way to establish Theorem 2.1.Note also that inequality (17) is optimal, extremal funtions is given by g(x) = �bC(x � �x), with�x 2 Rn and b > 0. But we don't know if it's only extremal funtions.4 Appliation to logarithmi Sobolev inequality for large entropyIn [GGM05b, GGM05a℄ is given a onvex logarithmi Sobolev inequality for measure �' betweene�jxj and e�x2 . More preisely let � a funtion on the real line and assume that � is even andsatis�es the following property, there exists M > 0 and 0 < " � 1=2 suh that8x >M; (1 + ")�(x) � x�0(x) � (2� ")�(x): (H)Then there exists A;B;D > 0 suh that for all smooth funtions g we haveEnt��(eg) � AZ H��g0�egd��; (18)where H�(x) = � ��(Bx) if jxj > D;x2 if jxj � D;8



and �� is de�ned on (11).The proof of inequality (18) is tehnial and it divided between two parts: the large and the smallentropy. We give in the next theorem a n-dimensional version of this inequality but only for largeentropy.Theorem 4.1 Let � be a C1, stritly onvex and even funtion on Rn , suh that limjxj!1�(x)=kxk =1: Assume that � > 0 and �(0) = 0 (it implies that 0 is the unique minimum of �).Assume that lim�!0; �2[0;1℄ supx2Rn8<:(1� �)��� x1�����(x) 9=; = 1; (19)assume also that there exists A > 0 suh that8x 2 Rn ; x � r�(x) � (A+ 1)�(x): (20)Then there exists C1; C2 > 0 suh that for all smooth enough funtion g suh that R egd�� = 1 andEnt��(eg) > 1 we get Ent��(eg) � C1 Z ��(C2rg)egd��: (21)ProofC Let apply Theorem 2.1 with ' = �+ logZ� we get thenEnt��(eg) � Z fx � rg(x) ���(r�(x)) + ��(r�(x)�rg(x))gegd��:Let � 2 [0; 1[, �� is onvex then��(r�(x)�rg(x)) � (1� �)���r�(x)1� � �+ �����rg(x)� �; (22)reall that �� is also a even funtion. Young's inequality implies thatx � rg(x)� � �(x) + ���rg(x)� �: (23)Using (22) and (23) we getEnt��(eg) � 2� Z ���rg� �egd�� + � Z �(x)egd��+Z �(1� �)���r�(x)1� � �� ��(r�(x))�egd��:We have ��(r�(x)) = x � r�(x) � �(x), then inequality (20) implies that ��(r�(x)) � A�(x).Due to the fat that �(0) = 0 we have �� > 0 we getEnt��(eg) � � Z ���rg� �egd�� + � Z ���rg� �egd�� + (�+Aj (�) � 1j)Z �egd��;where  (�) = supx2Rn8<:(1� �)��� x1�����(x) 9=;: (24)Let � > 0 then due to the fat that R egd�� = 1 we getZ �egd�� � ��Ent��(eg) + log Z e�=�d���:
9



We have lim�!1 log Z e�=�d�� = 0, then let now hoose � large enough suh that log R e�=�d�� � 1.Using the property (19), take � suh that (�+Aj (�) � 1j)� � 1=4 we obtainEnt��(eg) � 2� Z ���rg� �egd�� + 14(Ent��(eg) + 1):Then using Ent��(eg) > 1 we obtainEnt��(eg) � 4� Z ���rg� �egd��:BWe need a lemma to give non-trivial examples. This lemma explains how property (19) is a in�nityproperty.Lemma 4.2 Let �1 and �2 be two stritly onvex and even funtions suh that �1;�2 > 0, �1(0) =�2(0) = 0 and limjxj!1�1(x)=kxk = limjxj!1�2(x)=kxk =1: Assume also that �1(x) �1� �2(x).If �2 satis�es the property (19) then �1 satis�es also the same property.ProofC First we prove that ��1(x) �1� ��2(x). Let � > 0, then there exists A > 0 suh that8y 2 Rn ; kyk > A; (1� �)�2(y) � �1(y) � (1 + �)�2(y);then8x 2 Rn ; supkyk>A fx � y � (1 + �)�2(y)g � supkyk>A fx � y � �1(y)g � supkyk>A fx � y � (1� �)�2(y)g:�1 and �2 are stritly onvex then there exists B > 0 suh that8x 2 Rn ; kxk > B; ��1(x) = supkyk>A fx � y � �1(y)g;and the same for �2, then8x 2 Rn ; kxk > B; (1 + �)��2� x1 + �� � ��1(x) � (1� �)��2� x1� ��:Using now property (19) for �2 we get8x 2 Rn ; ��2(x) �  � �1 + ��(1 + �)��2� x1 + �� and ��2� x1� �� �  (�)1� ���2(x);where  is de�ned on (24). We get then8x 2 Rn ; kxk > B;  � �1 + ���1��2(x) � ��1(x) �  (�)��2(x):The funtion �2 satis�es (19) then lim�!0  (�) = 1 then ��1(x) �1� ��2(x).The end of the proof is elementary, we just have to remark that using a ompat argument we get8A > 0; lim�!0; �2[0;1℄ supkxk�A8<:(1� �)��1� x1�����1(x) 9=; = 1:Then, when kxk is large ��1 is equivalent to ��2. B
10
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