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Abstract

We develop in this paper an amelioration of the method given by S. Bobkov and M. Ledoux
in [BL0O]. We prove by Prékopa-Leindler Theorem an optimal modified logarithmic Sobolev
inequality adapted for all log-concave measure on R”. This inequality implies results proved by
Bobkov and Ledoux, the Euclidean Logarithmic Sobolev inequality generalized in the last years
and it also implies some convex logarithmic Sobolev inequalities for large entropy.

Résumé

Dans cet article nous proposons une amélioration de la méthode développée par S. Bobkov
et M. Ledoux dans [BL00]. Nous prouvons par le théoreme de Prékopa-Leindler une inégalité
de Sobolev logarihmique, optimale et adaptée a toutes les mesures log-concaves sur R”. Cette
inégalité implique les résultats de Bobkov et Ledoux, les inégalités de Sobolev logarithlmique de
type Euclidien généralisées ces derniéres années et enfin cetaines inégalités de Sobolev logarith-
miques de type convexe pour les grandes entropies.

1 Introduction

Prékopa-Leindler is the functional form of Brunn-Minkowski inequality. Let a,b > 0, a+b = 0, and
u, v, w three non negative measurable functions on R”. Assume that, for any z,y € R", we have

u(z)*v(y)" < w(az + by),

</u(m)dr[;>a (/ 1)(.7;)d.7;>b < /w(m)dm. (1)

If you applied inequality (1) to characteristic functions of bounded measurable sets A and B in R",
it yields the multiplicative form of the Brunn-Minkowski inequality

then

vol(A)%ol(B)? < vol(aA + bB),

where aA + bB = {ax o+ brp, 14 € A,z € B}. One can see for example two interesting reviews
on this topic [Gup80, Mau04].

Bobkov and Ledoux in [BLO0] use Prékopa-Leindler Theorem to prove some functional inequalities
like Brascamp-Lieb, Logarithmic Sobolev and Transportation inequalities.

More precisely, let ¢ be a C' strictly convex function on R” and let

dpe(z) = e @y,



the probability measure on R" (assume that [ e #(*)dz = 1). Bobkov-Ledoux prove in particular
the following two results:

e (Proposition 2.1) Brascamp-Lieb inequality: assume that ¢ is a C? function then for all smooth
enough g,

2
Var,,, (9) := / (g /gduw> dpsp < /Vg-HeSS(sD)]ngu@, (2)
where Hess(p) ! is the inverse of the Hessian of .

e (Proposition 3.1) Assume that for some ¢ > 0 and p > 2, all £, s > 0 with £ + s = 1, and for
all z,y € R", ¢ satisfies

c
to(z) + sp(y) — p(tz + sy) > 5(5+0(8))||$ —yl”, (3)
where [|-]| is the Euclidean norm in R". Then for all smooth enough function g,
Ent,_ () := [ e’log Ld,u <c [ |IVg||%efdu (4)
Ho\™ Tt - fegd,uw e = : it

where 1/p + 1/q = 1. They give the example of the function ¢(z) = |z||’ + Z, (Z, is a
normalization constant) which satisfies inequality (3) for some constant c.

In this article, we prove also with Prékopa-Leindler Theorem, some optimal logarithmic Sobolev
inequality for log-concave measure without conditions like inequality (3). We obtain, for all smooth
enough function g on R",

Ent,, (¢f) < /{w V() — " (Ve(2)) + " (Ve(z) - Vg(z)) }e! Ddpy (o), (5)

where ¢* is the Frenchel-Legendre transform of ¢, ¢*(z) := sup,cgn {2 - 2 — ¢(2) }.

The L-criterion of Bakry-Emery implies that if Hess(¢) > AId in the sense of symmetric matrix
with A > 0, then the probability measure p, satisfies classical logarithmic Sobolev inequality, for
all smooth function g,

1
But,, (o) < 5o [ IVgletdn, (6

This inequality is proved by Gross in [Gro75], one can see also [ABCT00] for a review about this
inequality and the related fields. Inequality (5) is then a generalization of the classical logarithmic
Sobolev inequality of Gross, adapted for all log-concave measure on R" which does’nt satisfies I3-
criterion. We get an optimal modified logarithmic Sobolev inequality for log-concave measures.

The next section is divided into two subsections. In the first one we give the main theorem of this
paper: inequality (5). In the second subsection we explain how the theorem implies results of [BL0O0].
In particular one find again Brascamp-Lieb inequality (2) or modified logarithmic Sobolev inequality
for some function ¢, inequality (4). In section 3 we prove that inequality (5) is equivalent to the
Euclidean logarithmic Sobolev inequality. In particular it gives a short proof of the generalization
given in [DPD03, Gen03, AGK04]. In section 4 we give a convex inequality for large entropy. In
particular we obtain a n-dimensional version for large entropy of inequalities prove in [GGMO5b,
GGMOba].



2 Logarithmic Sobolev inequality
2.1 The main theorem
Theorem 2.1 Let ¢ be a C' strictly convex function on R™, such that

lim 4G) 0. (7)

jalso0 [zl

We note the probability measure
po(dr) = e @y,

where dx is the Lebesgue measure on R"™, assume that fe"p(m)dm =1.

Then for all function g on R™, smooth enough such that integrals used exits we have
Ent, (¢7) < /{w - Vg(z) — 9" (Vo(@)) + " (Ve(z) = Vg(x)) e/ Ddp,(2). (8)

Lemma 2.2 Let g be a C* function with a compact support on R". Let s,t > 0 witht+s =1 and
we note for z € R",

9s(2) = S (9(z) — (to(r) + sp(y) — p(tz + sy))).

Then we get

9:(2) = 9(2) + 52 Vg(2) — ¢"(Ve(2) + 9" (Vp(a) - Vg())}
+0(((z = 90) - V(g + 9)(2) + |12 = woll)5*)
where yo € R,
Proof
4 Let s €]0,1/2[ and note = = z/t — (s/t)y, hence

9s(2) = p(2) + ySEuRQL (9(% - ;y) - tso(% - ;y) - sw(z;))-

Due to the fact that g has a compact support and by the property (7) there exists y; € R” such
that

(oG = 79) ~0(G —79) —oe) =G~ ) =2l ~ ) ~ et
su - — -y - -——-y|—s =gl—-—~ - - == -8 .
yemgt A \T 1Y Py I\7 ~ 7Y Y\F ~ 1Y P\Ys

Moreover y, satisfies

z s z S
V(](? - ?U€> - tV(,O(? - ?"/9) +tVep(ys) = 0. (9)
The function ¢ is a strictly convex function then there is a unique solution yq of the equation
Vo(yo) = Vo(2) = Va(2), w0 = (Vo) (Ve(2) - Vg(2)). (10)

We prove now that lim,_,qys = yo-

First we prove that there exists R > 0 such that Vs € [0,1/2], ||ys|| < R. Indeed, if the function
ys is not bounded one can found (si)gen such that s — 0 and |y, || — oo. By property (7)
lim o0 p(z) = oo then since g is bounded we obtain sgys, = O(1). Due to to the strictly
convexity of ¢, the last assertion is in contradiction with equation (9).

Let ¢ a value of adherence at s = 0 of the function y, then ¢ satisfies equation (10). By unicity of
the solution of (10) we get § = yy. Then we have proved that limg_,ys = yo.



By Taylor formula and the continuity of y, at s = 0 we get

o(2 = 2us) = 9(2) + s(z = o) - Vo) + O( (2 = o) - Veol2) + 12 = 0]*)s2))

t t
and . s
q(; - ?yg) =g(2) +s(z —yo) - Vg(2) + O(((z —10)-Vg(z) + ||z — y0|\2)52).
Then

9:(2) = 9(2) + 5{9(2) — wlw) + (=~ w0) - (Vg(2) ~ Vep(2))}
+0(((z = 90) - V(g + 9)(2) + 12 = wol*)s?).

Using equation (10) and the expression of the Frenchel-Legendre transformation for a strictly convex
function

o' () =2 (Vo) () = ¢ ((Ve) ' (@)).
and
" (Vo(z)) = Vo(z) 2 — ¢(2),
we get the result. >

Proof of Theorem 2.1

< The proof is based on the proof of Theorem 3.2 of [BL00]. First we prove inequality (8) for all
function g, C* with a compact support on R”.

Let t,s > 0 with £ + s = 1 and we note for z € R”,

gi(z) = Z:iggsy (9(z) — (to(z) + sp(y) — p(tz + sy))).

We apply Prékopa-Leindler theorem to the functions

e) =exp (45 < ol ol) = e (o), () = exp(0.(2) ~ 61:))

(./eXp(g/t)d“W>t < '/exp(gs)duw.

The derivation of the LP norm gives the entropy, then using Taylor formula we get

to get

(/exp(g/t)duw>t = /eguw+sEntW(eg) + 0(s?).

Then apply Lemma 2.2 to get

/ exp(gs)dpiy =
[ etmots [z V9) - @ (To(a)) + ¢ (Viola) -~ Vale)eriug(2) + O(7),
Then when s goes to 0 we get inequality (8).
Then we can extend the inequality (8) for all function g smooth enough such that integrals exist.

>

Remark that if ¢(z) = ||z]|*/2 + (n/2) log(27) we obtain the classical logarithmic Sobolev of Gross
for the canonical Gaussian measure on R".



2.2 Remarks and examples

In the next corollary we give the classical result of perturbation. Of course we lost the optimal
constant given in inequality (8).

If ® is a function on R" such that [ e~®dr < oo we note the probability measure p1g by

—®(x)

Zy

dpio(z) = ——da, (11)

where Z¢ = fe’d)(“’)dm-

Corollary 2.3 Assume that @ is a C', strictly convex function on R" such that limy, o0 0(z)/ ||z =
oo. Let ® = ¢ + U, where U is a bounded function on R" and denote by ug the measure defined

by (11).
Then for all smooth enough function g on R™. we get

Bnt,, (%) < ¢>) / {2 Vg(x) — ¢ (Vo(a) + @" (Vla) — Vg(@)}e!Dduo(a),  (12)

where osc(U) = sup(U) — inf(U).

Proof
< First we observe that
efosc(U) < dps < BOSC(U)_ (13)
dpy,

Moreover we have for all probability measure v on R,

9
Ent,(e9) = égg {/ <eg log% —e —I—a,)dy},

using the fact that Vz,a >0, zlog? — 2 +a > 0 we get

e (U Ent,, (¢) < Ent,_(e9) < U Ent,, (¢9).

He

Then if g a smooth enough function g on R" we have

Ent,  (e9) SeOSC(U)EntW(eg)

< eV /{m Vg(x) — ¢ (Veo()) + 9" (Vep(e) — Vg(x)) e dpy (x).

Ha

Using the fact that ¢* is a convex function on R” and Ve*(Ve(z)) = z we obtain that
Ve e R", x-Vy(z) - ¢ (Ve(z)) + ¢ (Ve(z) - Vg(z)) > 0.

Then by (13) we get

Ent,,, (¢/) < 2(0) / {z-Vg(z) — " (Vo() + 0" (Vo(z) - Vg(x))}e!dpa.

Remark 2.4 [t is not necessary to give a tensorisation result because we will obtain exactly the
same expression if we compute directly with a product measure.

Using Theorem 2.1 we find also the same examples given in [BL00] and [BZ05].



Corollary 2.5 Let p > 2 and let ®(z) = ||z||’ /p where ||-|| is Euclidean norm in R". Then we get
for all smooth enough function g,

Ent,, (¢9) < ¢ / Vg9 dpia, (14)

where 1/p+1/q =1 and for some constant ¢ > 0.

Proof
< Using Theorem 2.1, we just have to prove that

Ve eR", VyeR", z-Vg(z)-¢"(Vo(z)) + 9" (Ve(z) — Vg(z)) < cllyl”.
Assume that y # 0 and let note by

z-Vg(x) — 9" (Ve(z)) + ¢* (Ve(z) — Vy(z))
1yl '

Then 4 is a bounded function. Indeed an easy calculus prove that ¢*(z) = ||z]|7/q. Let take now
z = z||z||”?|ly|| and e = y/||y|| then we obtain

T/J(ﬂﬁay) =

1 q

Blary) = Plere) = 2 el| 20|02 = Lz + —\
q q

z (&

Izl 1=l

We have [le[| = 1, then e is bounded. Using Taylor formula we get P(z,e) = O(||ly||? ?). But p > 2
implies that ¢ < 2 and then % is a bounded function. %) is then a bounded, if ¢ = sup vy we get then
inequality (14). >

We can remark that Proposition 2.5 is not true when p €]1,2[. As we can see in [GGMO05b], when
p €]1,2[ we have to change the right hand term of inequality (14) and to add a quadratic term.

In Proposition 2.1 of [BL00], Bobkov and Ledoux prove that Prékopa-Leindler’s theorem implies
Brascamp-Lieb inequality. In our case we prove that Theorem 2.1 implies also some Brascamp-Lieb
inequality as we can see in the next corollary.

Corollary 2.6 Let ¢ satisfying conditions of Theorem 2.1 and assume that ¢ is C2 on R". Then
for all smooth enough function g we get

Vary, (g) < / Vg - Hess(p) ' Vgdu,,

where Hess(¢) ™! denote the inverse of the Hessian of .

Proof
< Assume that g is a C* function with a compact support and let apply inequality (8) with the
function eg where € > 0. Using Taylor formula we get

Ent,, (expef) = 262Varw (f) + o(€?),

and
[ 1+ 99(0) - & (o) + " (Tpla) - Tglo)) e () (o) =
62
[ 5 Vo Hess(e) (Vo) Vi, + ofe”)

Using the fact that Vo*(Vp(z)) = 2 we get that Hess(¢*)(Vp) = Hess(o) ! and the corollary is
proved. >



Remark 2.7 Let ¢ satisfying properties of Theorem 2.1. Note

L(z,y) = ¢(y) — ¢(z) + (y — 7)Vo(z),

due to the convezity of ¢ we get that L(x,y) > 0 for all z,y € R".
Let F be a density of probability with respect to the measure p,, we defined the following Wasserstein
distance with the cost function equal to L by

WPz diey) =i { [ L )in(e) )

where the infimum 1is taken for all probabilities measures m on R” x R™ with marginal distribu-
tions Fdu, and du,. Then Bobkov and Ledoux prove again in [BLOO] the following transportation

inequality
Wi (Fdpy,dp,) < Ent, (F). (15)

The main theorem of Otto and Villani in [OVO00] is the following: Classical logarithmic Sobolev
inequality (when o(z) = ||z||?/2 + (n/2)log(2)) implies the transportation inequality (15) for all
function F, density of probability with respect to p, (see also [BGLO1] for an other proof). By the
method developed in [BGLO1], one can easily extend the property for o(z) = ||z||’ + Z, (p = 2).

In the general case exposed here, we don’t know if inequality (8) imply inequality (15).

3 Application to Euclidean logarithmic Sobolev inequality

Theorem 3.1 Assume that the function ¢ satisfies conditions of Theorem 2.1 then for all A > 0
and for all smooth enough function g on R™ such that integrals exits we get

Entg,(e?) < —nlog (Xe) /egdx—i— /(p*(—)\Vg)egdx. (16)

Last inequality is optimal in the sense that if ¢ = —C(z — %) with & € R and X\ = 1 we get an
equality.

Proof
< Using integration by parts on the second term of (8) we obtain for all g smooth enough

[ a@er o) = [(nt o To@)er (o).
Then using the equality ¢* (V) = x - Vp(x) — p(x) we get for all smooth enough ¢
Ent, (e’) < /(n + o+ ¢ (Vo — Vg))eldu,,
Let now take g = f 4+ ¢ to obtain
Ent, (ef> < /(—n + ¢*(—=Vg))eldx.
Let A > 0 and take f(z) = g(Az) we get then
Ent ;. (e?) < —nlog (Xe) /egda:+ /(p*(—AVg)egdx,

which prove (16).
If now g = —C(z — z) with z € R" an easy calculus prove that if A = 1 we get an equality. >



In the inequality (16), there exits an optimal Ay > 0. Unfortunately, in the almost case we can’t
give the expression of the optimal Ag. It is the unique real satisfying the following equality

—n/egda:—i—)\o /Vg-V((p*)(—AOVg)egdx—O.

But when C'is homogeneous, we can give an better expression of the last theorem. We find inequality
called Euclidean logarithmic Sobolev inequality which is explained on the next corollary.

Corollary 3.2 Let C a strictly convex function on R" and assume that C' is g-homogeneous,
VA>20 and VzeR" C(\x) = XC(x).

Then for all smooth enough function g in R™ we get

) C*(— 9d,
Entg, () < ﬁ/egd.'fn log < P [ ¢ (=Vg)e x), (17)
p

nep—1Lp/n [ evdz
where L= [e %dz and 1/p +1/q=1.

Proof
< Let apply Theorem 3.1 with ¢ = C' + log £. Then ¢ satisfies conditions of Theorem 3.1 and we
get then

Enty,(e?) < —nlog (Aeﬁ”") /egdm—l-/C*()\Vg)egdm.

Due to the fact that C is g-homogeneous an easy calculus prove that C* is p-homogeneous where
1/p+1/q =1. An optimization over A > 0 gives inequality (17). >

Inequality (17) is called Euclidean logarithmic Sobolev inequality. This inequality with p = 2
appears in the work of Weissler in [Wei78]. It was discussed and extended to this last version in
many articles see [Car91, Led96, Bec99, DPD03, Gen03, AGKO04].

Remark 3.3 Of course as it is explained in the introduction, calculus used in Corollary 3.2 prove
that inequality (17) is equivalent to inequality (16). Agueh, Ghoussoub and Kang, in [AGK04], used
Monge-Kantorovich theory for mass transport to prove inequalities (16) and (17). Then it gives an
other way to establish Theorem 2.1.

Note also that inequality (17) is optimal, extremal functions is given by g(x) = —bC(x — %), with
z € R" and b > 0. But we don’t know if it’s only extremal functions.

4 Application to logarithmic Sobolev inequality for large entropy

In [GGMO5b, GGMO0ba] is given a convex logarithmic Sobolev inequality for measure i, between

e 17l and e*. More precisely let ® a function on the real line and assume that ® is even and

satisfies the following property, there exists M > 0 and 0 < ¢ < 1/2 such that
V> M, (1+¢&)®(x) <zd'(z) < (2—¢e)®(x). (H)

Then there exists A, B, D > 0 such that for all smooth functions g we have

Ent, () < A /Hq)(g')egduq), (18)
where
| ®*(Bz) if|z| > D,
Ho(z) = { z? if |z| < D,



and pe is defined on (11).

The proof of inequality (18) is technical and it divided between two parts: the large and the small
entropy. We give in the next theorem a n-dimensional version of this inequality but only for large
entropy.

Theorem 4.1 Let ® be aC', strictly convex and even function on R", such that lim, o ®(2)/[|z]| =
0o. Assume that ® > 0 and ®(0) = 0 (it implies that 0 is the unique minimum of ®).

Assume that
L oA

li 19
030, 0€10,1] peiin *(x) ’ (19)

assume also that there exists A > 0 such that
Ve e R", z-V&(z) < (A+1)P(x). (20)

Then there exists C1,Cy > 0 such that for all smooth enough function g such that [ e%dpe =1 and
Ent,,(e?) > 1 we get

Ent,, () < Gy /Q*(CZVQ)eng'b- (21)

Proof
< Let apply Theorem 2.1 with ¢ = ® 4 log Z¢ we get then

Ent,, (¢7) < /{ﬂﬁ -Vy(z) - @*(VO(z)) + @*(VO(z) - Vy(z)) e dpa.

Let a € [0,1[, ®* is convex then

Vo -V
O*(VO(z) - Vg(z)) < (1 — a)0* <17(“"”)> + a0* <ﬂ> (22)
-« «
recall that ®* is also a even function. Young’s inequality implies that
\Y% \Y%
I ICON <I>(gc)+<1>*< g(x)>. (23)
@ «

Using (22) and (23) we get

Ent,, (¢9) < Qa/cp*(%) Idus +a/<1>(gc)egdu<¢+ ( ( )) )
/ (1 - a)o* (V2@ _ o0 (va(a) ) e?dpa.

1 -«

We have ®*(V®(x)) = z - V®(x) — ®(z), then inequality (20) implies that ®*(V®(z)) < Ad(x).
Due to the fact that ®(0) = 0 we have ®* > 0 we get

Ent, (e?) < a/(I)* <E>egdu¢ —|—a/<1>* <E>egd,u¢ + (a + AjYp(a) — 1|)/<I>egdu¢,
a a

where

P(a) = sup (1—0)% : (24)

TER™ o

Let A > 0 then due to the fact that [e9dus =1 we get

/@egdmp < )\(Entu@(eg) —i—log/e@/)‘duq)).



We have )\lim log/e(b/)‘duq) = 0, then let now choose A large enough such that log [ e®Ndue < 1.
— 00
Using the property (19), take « such that (a + Ay (a) — 1|)A < 1/4 we obtain

Vv 1
Ent,, (¢?) < 2(1/(I>* <—g>egd,u(1> + Z(Entm(eg) +1).
«

Then using Ent,, (¢9) > 1 we obtain

Ent,, () < 4a /(I>* <E> eddpe.
) «

>

We need a lemma to give non-trivial examples. This lemma explains how property (19) is a infinity
property.

Lemma 4.2 Let & and Py be two strictly convex and even functions such that ®,®9 > 0, ®1(0) =
®3(0) = 0 and lim|g_,o P1(z)/ ||z = lim|, 00 P2(z)/|[z]| = 00. Assume also that () £ Dy (x).
If @4 satisfies the property (19) then ®1 satisfies also the same property.

Proof
< First we prove that ®(z) £ ®3(x). Let € > 0, then there exists A > 0 such that

Vy e R", iyl = A, (1 -€)Pa(y) < Pi(y) < (14 €)Pa(y),

then

Ve e R", sup {z-y—(1+€)Po(y)} < sup {z-y—P1(y)} < sup {z-y— (1 —¢€)Ps(y)}.
[[y]|>A [lyl[>A [[yll>A

®; and @, are strictly convex then there exists B > 0 such that

Ve € R", |zl > B, ®i(z) = sup {z-y—®i(y)},
llyll=A

and the same for ®5, then

Vo e R, ||z]| > B, (1403 —— | < ®f(x) < (1-e)@3( —— ).
1+e 1—¢€

Using now property (19) for ®5 we get

Vr € R", ®3(z) §¢<ﬁ>(l+e)¢§<%> and <1>;< ’ ) < w(e)/@’ﬁ(m),

where 1 is defined on (24). We get then

1
voe R ol > B 9(15;) #e) < 800 < plOlo)

The function ®, satisfies (19) then lim,_,o ¢ () = 1 then ®](z) Eo D5 (x).

The end of the proof is elementary, we just have to remark that using a compact argument we get

VA > 0 I (1 )(I)T (IE“> |
>0, 1m sup —Q)——F—— ¢ = L.
a—0,a€[0,1] ||| < A (I)l(.’l,')

Then, when ||z|| is large ®] is equivalent to ®3. >

10



Example 4.3 o Let ® be aCl, strictly convex function on R'. Assume that ® > 0 and ®(0) = 0.
Assume that
Ve eR, |z| >2, ®(z) =2"log’z
with a > 1 and b € R. Then ® satisfies property (19). Remark that if a €]1,2[ and b =0 then

the measure pe doesn’t satisfies (14) for small entropy.

e Here is now an example of measure on R with interactions. Let h be a C', strictly convex
function on R'. Assume that h > 0, h(0) = 0 and that h satisfies assumptions (19) and (20).
Assume also that

h(z
lim (2) = +o00. (25)
Note
n
O(x) = (mimip1 + h(:)),
=1
where x = (21, ,xy) and xn41 = x1. Then it’s easy to prove that ® is conver, even with

®(0) = 0 and satisfies inequality (20). Then using (25) we get that
4 n
O(z) =7 hlz).
=1

By Lemma 4.2 we prove that ® satisfy (19).

This example in interesting because it gives an measure on R which is not a product measure
on R" and satisfies inequality (21) for large entropy.
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