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Enumerative invariants of stongly semipositive real symplectic
manifolds

Jean-Yves Welschinger

6th September 2005

Abstract:

Following the approach of Gromov and Witten [J, RJ], we define invariants under defor-
mation of stongly semipositive real symplectic manifolds provided essentially that their real
locus is Pin*. These invariants provide lower bounds in real enumerative geometry, namely
for the number of real rational J-holomorphic curves which realize a given homology class
and pass through a given real configuration of points. In a first part of this paper, we obtain
the correponding results for real projective convex manifolds using algebraic techniques.

Introduction

A smooth compact symplectic manifold (X,w) of dimension 2n is said to be semipositive as
soon as for every spherical class d € Hy(X;Z) such that [w]d > 0, the implication ¢;(X)d >
3—n = ¢1(X)d > 0 holds. These manifolds provide a favourable framework to define genus
zero Gromov-Witten invariants (see [[J]) and in particular these invariants are enumerative.
We will assume throughout the paper that the manifold (X,w) is strongly semipositive, by
which we mean that for every spherical class d € Hy(X;Z) such that [w]d > 0, the implication
c1(X)d >2—-n = ¢1(X)d > 1 holds (see Remark f.4). An important source of examples
are smooth projective Fano manifolds. The manifold is said to be real when it is equipped
with an antisymplectic involution, that is an involution cx such that cjw = —w. We denote
by RX the fixed locus of this involution and by R7,, the set of almost complex structures of X
of finite regularity C', I > 1, which are tamed by w and for which cx is J-antiholomorphic. In
this context, one can count the number of real rational J-holomorphic curves which realize a
given homology class d € Hy(X;Z) and pass through some given real configuration of points,
under the assumptions that J is generic and this number finite. However, this number does
depend in general on the choice of the almost complex structure J or the configuration of
points, basically because the field of real numbers is not algebraically closed. In [[I7], [ig],
a way of counting these real rational J-holomorphic curves with respect to some sign +1
has been introduced in order to define an integer which neither depends on the choice of
J € RJ, nor on the choice of the points. This integer is invariant under deformation of
the real symplectic manifold, but has been defined only in dimension four. The integer +1
depended on the parity of the number of real isolated double points of the real rational J-
holomorphic curves which were counted. These curves are indeed singular in general in this
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dimension. The question appeared then whether it was possible to obtain similar results in
higher dimensional real symplectic manifolds. A partial answer to this question was obtained
in [I9] where a way to count such real rational curves in real algebraic convex 3-manifolds has
been introduced. The sign +1 depended then on some spinor state of the real rational curve
which was first defined and which required the choice of a Ping structure on the real locus
RX. The integers thus defined were invariants under isomorphism of real algebraic convex
3-manifolds. However, as was pointed out in [[[J], very few such convex 3-manifolds indeed
have non trivial genus zero Gromov-Witten invariants, namely CP3, CP? x CP!, (CPY)3,
FI(C?) and the quadric in CP* for the ones I am aware of. The aim of this work is to
build such integer valued invariants for strongly semipositive real symplectic manifolds of any
dimension, see Theorem [B.I. These integers are obtained by counting the number of real
rational J-holomorphic curves which realize a given homology class and pass through a given
real configuration of points with respect to some spinor state in {£1} that we first define,
see §§.2.9 and p.3. They are invariant under strongly semipositive deformation of the real
symplectic manifold. This means that if w; is a continuous family of strongly semipositive
symplectic forms on X for which ¢ w; = —w;, then these invariants are the same for all triples
(X,wt, cx). Moreover, they provide lower bounds in real enumerative geometry, namely for
the number of real rational J-holomorphic curves which realize a given homology class and
pass through a given real configuration of points, see Corollary .3 In order to define the
spinor states of such real rational J-holomorphic curves and hence build these invariants, it
is necessary here to make some topological assumption on the real locus of the manifolds,
basically that its second Stiefel-Whitney class either vanishes or equals the square of the first
Stiefel-Whitney class, see §[[.2.] for the exact hypothesis and Remark .4 for a comment on
these hypothesis. In a first part of this paper, we build the invariants for real algebraic convex
manifolds of any dimension, using algebraic techniques. They are a particular example of
strongly semipositive real symplectic manifolds once equipped with an invariant kéhler form.
These results are then extended in the second part of the paper to any strongly semipositive
real symplectic manifolds, using the techniques of pseudo-holomorphic curves in symplectic
geometry initiated by Gromov [g.
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Part I

Enumerative invariants of real algebraic
convex manifolds

1 Preliminaries

1.1 Moduli space of genus zero stable maps

Let (X, cx) be a smooth real algebraic convex manifold of complex dimension n > 3, that is
a smooth real projective manifold such that for every morphism u : CP' — X, the vanishing
HY(CPY;w*TX) = 0 occurs. Denote by RX = fix(cy) its real locus, which we assume to
be nonempty. Let d € Ho(X;Z) be such that (cx)«d = —d and (n — 1)/(c1(X)d — 2). We
set kg = ——(c1(X)d — 2) + 1. Note that kq € N* as soon as d is realized by some rational

n—1
curve, see Lemma 11 of [J. Denote by MZ ,(X) the space of genus zero stable maps of X
which realize d and have k; marked points. Let ev? : HZ J(X) =X k4 be the evaluation map.
Note that dimg¢ ﬂgd(X) = ¢1(X)d +n — 3+ kg = nkq so that ev? is a morphism between
projective manifolds of the same dimension. Let 7 € oy, be such that 72 = id. Following §1.1
of [[9], we denote by ¢, : (z1,...,x,) € Xk — (cx (1)), .- ex(2r(k,))) the associated real
structure on X*¢. In the same way, denote by Cxq, the real structure of MZ ,(X) induced by
M s (U, 21,00y 21,) € Morg(X) x (CPY)* — (cx ouo conj, conj(z-(1)), - - - ,conj(2r(x,))) €
Morg(X) x (CPY)*a, where conj is the standard complex conjugation of CP' and Morg(X) =
{u : CP' — X |u,[CP'] = d} (see Theorem 1.1 of [IJ]). Denote by R, X% = fix(c,) and



]RTMZ L(X) = fix(cyq,) the real loci of these spaces. The evaluation morphism restricts to
R ev? : RTmzd(X) — R, X% Finally, denote by Mzd (X)* (resp. RTmZd (X)*) the subspace
of simple stable maps of MZ ,(X) (resp. RTHZ (X)), it is contained in the smooth locus of

HZ L(X), see [B]. Note that the singular locus of HZ ,(X) is of codimension greater that one
and will play no réle in this paper.

Theorem 1.1 Let (X,cx) be a smooth real algebraic convexr manifold of complex dimen-
sion n > 3.

1) The divisor Red = ﬂzd(X)* \Mgd (X)* has normal crossings.

2) Let (u,C, z) € ./\/l%d (X)* and Ny, be its normal sheaf. Then the isomorphisms ker d|(, ¢, ev® =
H(C;Ny@Op(—2)) = H(C; Nu®Oc(—2)) B HO(C; Nu™@0¢ (—2)) and coker d| ¢, ev? =
HY(C; N, @ Oc(—2)) hold.

3) As soon as (n,c1(X)d) # (3,4), the locus of stable maps (u,C,z) € Mzd(X)* for which
u is not an immersion is mapped onto some submanifold of X*4 having codimension greater
than one.

Remark 1.2 In the third part of this theorem, the condition n > 3 is crucial. For a discussion
on the condition (n,c1(X)d) # (3,4), see Remark 3.2 of [I9].

Proof:

The first part is Theorem 3 of [}]. The proof of the second part goes exactly along the
same lines as the one of Lemma 1.3 of [L9], it is not reproduced here. Now the locus of stable
maps (u,C,z) € M%d (X)* for which w is not an immersion and for which ©*TX ® O¢(—1) is
generated by its global sections is of codimension n—1 in Mgd (X)*. This follows from the fact
that the tautological section o : (u,C,2) € M{(X)* — d|.u € Hom¢(T:C,T,,)X) vanishes
transversely at those points, which can be proved as Proposition 3.1 of [I9]. From the second
part of Theorem [L.1], the locus of stable maps (u, C, 2) € Mgd(X)* for which dim H'(C; N, ®
Oc(—z)) > 1 is mapped onto some submanifold of X*¢ having codimension greater than one.
Let then (u,C,z) € Mgd(X)* be such that dim H'(C; N, ® Oc(—z)) < 1. From a theorem
of Grothendieck ([fl]), the normal bundle N, of u is isomorphic to Oc(a1) @ -+ & Oc(an—1),
where a; > kg—1for 1 <i<n—2and a,—1 > kg—2. If u is not an immersion, then deg(N,) <
c1(X)d—3 = (n—1)(kg—1)—1, so that N,, has to be isomorphic to Oc(kq—1)" 200 (kg—2).
Remember that the convexity of X forces ©*T'X to be a direct sum of line bundles of non-
negative degrees, see Lemma 10 of [[f]. Assume that u*TX ® Oc(—1) is not generated by its
global sections, then w*TX = F @ (’)’5, where F' is a direct sum of line bundles of positive
degrees and k > 1. Let z¢ € C be the point where du vanishes. The latter maps TC ® Oc(z¢)
to F' so that N, is isomorphic to OF & (F/du(TC®O¢(z¢))). From what precedes, this forces
kq < 2 and the inequality deg(u*TX) > 3 forces kg > 2. Hence, kg = 2 and k = 1. Now the
composition of the tautological section o : (u,C, 2) € ME(X)* + d|,u € Home(T.C, Tyz)X)
with the projection Home(7.C,Ty;)X) — Homc(7.C, F) vanishes transversely since F' ®
Oc(—1) is generated by its global sections. Since dim F' = n — 2, the result follows in all the
cases but n =3, kg =2. O

Lemma 1.3 Assume that either n is even, or T has a fized point in {1,... kq}. Then, as
soon as © € R, X% is generic enough, the fibre (Rrev?) ™ (z) uniquely consists of irreducible
real rational curves having non-empty real parts.



Note that when kg is odd, 7 has a fixed point so that the hypothesis of Lemma [1.3 is satisfied.
We will assume throughout the paper that this hypothesis holds.

Proof:

To begin with, assume that 7 has a fixed point, say 1 € {1,...,ky} and denote z by
(z1,...,m,). Let (u,C,z) € (Rrev?)~!(z). From Theorem [1], as soon as z is generic
enough, C' is irreducible. From the definition of cpq ,, there exists ¢ € Aut(C) such that
cx ouoconj =wuo¢ ! and conj(z;)) = #(z), i € {1,... ,ka}. Let c¢ = ¢~ o conj, then
cx ou = uocc and co(z-;)) = zi, @ € {1,...,kq}. In particular, cc is a real structure
on C' which has one fixed point at least, namely x;. Assume now that n is even. From
what has been done, we can also assume that k; is even. From the definition of kg, it
implies that ¢1(X)d is odd. Now if C' has an empty real part, then ¢;(X)d = wa(u*TX)[C]
mod (2) = 2wy (u*TX/cx)[C/cc] =0 mod (2), hence the contradiction. O

Lemma 1.4 Let RM* be a connected component of RTMgd(X)*. Then, the homology
class u [RC| € H1(RX;Z/27Z) does not depend on the choice of (u,C,z) € RM*.

The homology class given by Lemma [[.4 will be denoted by dgpy+ € Hy(RX;Z/27).

Proof:

Let R, U4 — R, M* be the universal curve. Then, all the fibres of R,U? have same
homology class in Hy(R,U% Z/2Z). The result is thus obtained after composition with the
morphism H(R,U% Z/27) — H1(RX;7/2Z) induced by the evaluation map R,U? — RX.
O

1.2 Spinor states

——t
1.2.1 GL,,(R)-structures

Denote by Eim(R) the universal covering of GL,,(R). It can be equipped with two different
=t
group structures which turn the covering map into a morphism. Denote by GL,,(R) (resp.

EE;L(R)) the group structure for which the lift of a reflexion is of order two (resp. of order
four). Let M — RX be a vector bundle of rank m and Rj; be the associated GL,,(R)-

principal bundle of frames. The obstruction to the existence of a EE:;(R)—principal bundle

(resp. E}'fr_n(]R)—principal bundle) Py over Ry is carried by the characteristic class wa(M) €
H?(RX;Z/27Z). (resp. wa(M) +w3(M) € H*(RX;Z/2Z)), see [[(] for example. From now
on, we will assume that one of the following holds and will denote by HYP these hyposthesis.

1) If either k, is odd or n = 3 mod (4), we assume that 0 € {w2(RX), wa(RX)+w?(RX)}.

We then set M = TRX and equip this bundle with a ali:;(R) or GL,, (R)-structure depending
on whether ws(RX) or wy(RX) + w?(RX) vanishes.

2) If k4 is even and n = 0 mod (4), we assume that wy(RX) = 0. We then set M =
TRX @ Det(RX)3, where Det(RX) is the determinant line bundle of RX, and equip this
bundle with a spin structure, which is possible since wy (M) = wa (M) = 0.

3) If kg4 is even and n = 2 mod (4), we assume that we(RX) = w?(RX). We then set
M = TRX @ Det(RX) and we equip this bundle with a spin structure, which is possible since
wl(M) = ’LUQ(M) = 0.

4) If kg is even and n = 1 mod (4), we assume that there exists w € H'(RX;Z/2Z) such
that w? € {wa(RX), w2 (RX)+w?(RX)}. We then set M = TRX @® Lry (w)?, where Lg x (w)



is the line bundle over RX whose Euler class is w. Moreover, we equip this bundle with
a GL:;(]R) or GL,,(R)-structure depending on whether w? = wy(RX) or w? = wy(RX) +
w?(RX). Note that wi (M) = w1 (RX) and we(M) = wa(RX) + w?.

Remark 1.5 Under the assumption 4, we will have actually to restrict ourselves to real
rational curves A whose real locus RA satisfy < w,[RA] ># 0. Using the terminology of
Lemma, [1.4, this means that we will restrict ourselves to connected components RM™* of
R, M{ (X)* for which < w,dpr- ># 0 € Z/2.

Examples:

1) If n = 3, then from Wu formula, wo(RX) = w?(RX) so that condition 1 is always
satisfied, see page 132 of [[4] for instance.

2) All projective spaces satisfy these hypothesis. Indeed, if X = CP™ and w is the
generator of H'(RP™;Z/27), then w1 (RX) = (n + 1)w and we(RX) = sz. Ifn#1
mod (4) or kg is odd, one easily check the hypothesis. If k; is even and n =1 mod (4), one
has to choose w to be the generator of H'(RP";Z/27Z). It turns out that the definition of kg
forces the degrees of rational curves to be odd in this case, so that their real parts are always
non trivial against w.

3) If RX is spin and n # 1 mod (4), HYP are satisfied.

1.2.2 Spinor states of balanced real rational curves

Let u : (CP!, conj) — (X, cx) be a Z/2Z-equivariant immersion and 0 — TCP! — w*TX —
N, — 0 be the associated exact sequence. Let d = u,[CP'] and kg be the associated integer,
see §[.]. We assume that the hypothesis HYP of §[.2.] are satisfied and deduce from the
previous exact sequence a splitting ©*TRX = TRP! @ RN, which is well defined up to
homotopy. Assume now that the vanishing H!(CP; N, ® O¢p1(—kg)) = 0 occurs, so that
N, gets isomorphic to Ogpi(kg — 1)1, Such a curve is said to be balanced, as its normal
bundle is a direct sum of isomorphic lines bundles. Let ¢ € RP! and (vy,...,v,_1) be a basis
of the fibre RN,|¢. For i € {1,...,n — 1}, there exists a unique holomorphic line sub bundle
of degree kg — 1 of N, which contains v;. This immediatly follows from the isomorphism
P(N,) = CP! x CP"2 and the fact that such line sub bundles are mapped onto constant
sections of CP! x CP"~2. We deduce a decomposition RN,, = Lgp1 (kg — 1)"~! which is well
defined up to homotopy.

Now let M be the vector bundle defined in §1.2.1. In all cases 1 to 4 considered in §l.2.1],
we obtained a decomposition u*M = Lgp1(0)® Ly p1 (kg—1)™"! well defined up to homotopy.
That is u*M is given a splitting as the direct sum of m orientable real line bundles when kg
is odd and as the direct sum of m — 1 non orientable real line bundles and one orientable one
when kg is even. Note that in all the cases u*M is orientable, since m = 3 mod (4). When
both k; and n are even, u*M is even oriented since by assumption M is. When k; is even
and n is odd, we equip u*M with an orientation. We are then ready to define the spinor state
of the balanced real rational curve Im(u).

1st case : k; is odd. In this case, we choose some trivialization of each factor Ly pi1(0)
of u*M = Lgp1(0)™ given by some non vanishing section v;, i € {1,...m}. We hence get a
loop (v1(€),...,vm(£)), &€ € RP!, of the GL,,(R)-bundle u* Ry of frames of u*M. We define
spp(u) = +1 (resp. spp(u) = —1) if this loop does lift (resp. does not lift) to a loop of the

— ——=
GL,,(R)-principal bundle u*Py; given in §[.2.] which defines the GL,,(R)-structure p on M.



This integer neither depends on the choice of the decomposition u*M = Lgp1(0)™ nor on
the one of the sections v1(§),...,v,(€). It also does not depend on the parameterization u
of Im(u) and is called the spinor state of Im(u).

2nd case : kg is even. Then m — 1 = 2 mod (4) and u*M is oriented. We choose
some trivialization of each factor of the decomposition u*M = Lygp1(0) ® Lgp1 (kg — 1)1
over [0,7] C RP! given by some non vanishing section v;|jg A, i € {1,...m}. We can as-
sume that v;1 € Lpp1(0) and the basis (vi(€),...,v,(§)) to be direct. Also, we assume
that the orientations of RP! given by v; and [0, 7] are the same. Then we can apply the

1

rot(¢)
path g¢(§) = ) € GL,(R) to this basis, where £ € [0, 7] and

rot(£)

cos(§)  —sin(¢) . The number of such rotation blocks is odd. We hence get

rot(¢) sin(¢)  cos(§)

a new decomposition u*M = Lrp1(0)™ as a direct sum of orientable real line bundles.

Lemma 1.6 The homotopy class of the decomposition u*M = Lgp1(0)™ hence obtained
does not depend on the choice of the base (v1,...,Vm).

Note that it however depends on the choice of the orientation on uw*M.

Proof:

When vy is fixed, the orientation of u*M induces an orientation of the factor Lgpi(kq —
1)m=1. The result follows from the fact that the set of direct basis of Lgpi(kq — 1)™ ! is
connected. Consider now the base (—v1,v3,v2,...,Um—1,Vm). Since m = 3 mod (4), it is
a direct basis of u*M. Applying the path g(§) taking into account that the orientation of
RP! is reversed amounts the same as applying the path g(m — &) with the same orienta-
tion. To conclude, one just has to check that applying the rotation block rot(£) to the basis
(vi, vi41) has the same effect as applying the rotation block rot(m—¢) to the basis (v;y1,v;). O

Thanks to Lemma [.4, we can now define the spinor state sppo(u) € {£1} as in the first
case, where o is the chosen orientation of u*M. This integer neither depends on the choice of
the decomposition u*M = Lgp1(0)™ nor on the one of the sections v1(&),...,v,(£). It also
does not depend on the parameterization u of I'm(u). Note that the definition of spinor state

——
given here extends the one of §2.2 of [[J]. Remember that the set of GL, (R)-structures of

M is a principal space over H!(RX;Z/27Z), see page 184 of [[(] for example. We denote this
action by (w,p) +— w.p, where w € H'(RX;Z/27).

Lemma 1.7 Let u : (CP!,conj) — (X, cx) be a Z/2Z-equivariant balanced immersion
andw € HY(RX;Z/2Z). Then, spp,—o(u) = —spp.o(1) and spy. po(u) = (—1)<w=BP1>gp0 (1),

Proof:

The composition of the path g(§), £ € [0, 7], applied to the basis (v1,...,v,) and the
path g(m — &), £ € [0, 7], applied to the basis (v1,v3,v2,v4, ..., Um—1, V) has a non-vanishing
homotopy class in m1(GL,,(R)) = Z/27Z. The relation spp _o(u) = —sppo(u) follows. The

relation spy. po(u) = (—1)<w’“*[RP1]>spp,a(u) immediatly follows from the definition of the

action of HY(RX;Z/2Z) on the set of Z}\Zi(R)—s‘cructures of M. O



2 Statement of the results

2.1 Statements

Let (X, cx) be a smooth real algebraic convex manifold of dimension n > 3. Let d € Ha(X;Z)
be such that (cx).d = —d, (n—1)/(c1(X)d—2) and kq = =1 (c1(X)d—2)+1. Let 7 € oy, be
such that 72 = id and 7(1) = 1 if n is odd, see Lemma [[.3 Let z € R, X*¢ be generic enough,
so that there are only finitely many connected real rational curves which realize d and pass
through z. Moreover, they are all irreducible, immersed, balanced and have non-empty real
part, see Theorem [L1] and Lemma [.J. Let h € H(RX;Z/2Z), we denote by Ry(x,h) the
finite set of those curves whose real part realize h. We assume that the hypothesis HYP of
§[[.2.] hold and denote by M — RX the given rank m vector bundle. Note that in the fourth
case of HYP, that is if k4 is even and n =1 mod (4), we have to assume that < w,h >%# 0,
where w € H(RX;Z/27Z) is the given cohomology class, see Remark [.§. In case k4 is even
and n is odd, we equip M|;, with an orientation o. This orientation induces an orientation
on M|ga for every A € Ry(z,h). Thus, spinor states of all the elements of R4(z, h) are well
defined. We set
PP ) = D sppolA) €Z,
AeR4(z,h)

where the connected components of RX have been labelled (RX)q,...,(RX)y, r; = #(z N
(RX);),i€{1,...,N},and r = (r1,...,7N).

Theorem 2.1 Let (X, cx) be a smooth real algebraic convex manifold of dimensionn > 3.
Assume that the above hypothesis hold so that the integer anl’hp’a(g) is well defined. Then,
this integer does not depend on the generic choice of z in Ry X",

We can thus denote this integer by anl’hp’a without ambiguity.

Corollary 2.2 Under the hypothesis of Theorem [2.1, assume that kg is even and n is
odd. If the restriction of M over the connected component of x1 in RX is not orientable, then
anl’hp’a = 0. In particular, the genus zero Gromov-Witten invariant GWy(X,d, pt, ..., pt) is
even in this case.

Proof:

Let x1 move along a loop around which M is not orientable, then it comes back together
with the opposite orientation —o on M|,,. The result thus follows from Lemma [.7 and
Theorem R.1. O

Note that the automorphism group of (X, cx) provides symmetries for the invariant Xg,hp,o
which also sometimes imply its vanishing, see Remark 2.4 of [[]. From Corollary R.3, if
kq is even and m is odd, we can assume that M is orientable. The orientation o on M

—+
together with the GL,, -structure provide a spin-structure on M. We can thus get rid of the

mention of the orientation in Xﬁl’hp’o, provided that when kg4 is even, p is understood as a spin

——
structure rather than a GL,,-structure. The generating function for this invariant is some

polynomial x*"P(T) = 3"\~ PP € 7Ty, ..., Tn], where T" = 17t ... T\ and we have

set Xg,hp = 0 when it is not well defined. This polynomial has the same parity as k4 and each

of its monomials Xf’h P actually only depend on one indeterminate. The latter follows from



the fact that real rational curves have connected real parts which cannot interpolate points
in different connected components of RX. Theorem P.I] means that the function

X' (d,h) € H3(X;Z) x H{(RX;Z/2Z) — x*"P(T) € Z[T)

is an invariant associated to the isomorphism class of (X,cx). This invariant immediatly
provides the following lower bounds in real enumerative geometry.

Corollary 2.3 Under the hypothesis of Theorem .1,
‘qunl7hp’ S #Rd(L h) S Nd - GWO(X7 dupt7 o 7pt)7
for every generic x € R, X¥a.

Remark 2.4 1) In the case n = 3, these results have already been obtained in [[[J]. The case
n = 2 is covered by [Lg].

2) The problem of computing these invariants Xﬁl is widely open. So far, with the
exception of §3.4.2 of [[[§], the only approach which has been successful comes from trop-
ical geometry. It allowed to I. Itenberg, V. Kharlamov and E. Shustin to produce various
estimations for some toric surfaces of the invariants introduced in [[§], see [, [{]. Also, G.
Mikhalkin announced the value | thibhp| =45 when X = CP3,d=5and h = 1.

7hp

2.2 Topological interpretation

Note that the singularities of RTHZ ,(X) are of codimension two at least since it is nor-

mal, see Theorem 2 of [J]. This space thus carries a first Stiefel-Whitney class. For D €

Hygy—1 (RTﬂzd(X); Z/27), denote by D" its image under the morphism and_l(RTMZd (X);Z)2Z) —
HY (R, My, (X);Z/27).

Proposition 2.5 The first Stiefel- Whitney class of every component RM* of RTMgd(X)
which contains a balanced curve writes

wi(RM*) = (Rrev!)*wi (R, X") + > ¢(D)DY € H'(RM*;Z/2Z),
DCRed

where €(D) € {0,1} and if (D) = 1, the irreducible component D of Red gets contracted by
the evaluation map Rrev®. O

Here Red’ denotes the union of the divisor Red introduced in Theorem [L.1 and the divisors
of non-balanced curves (u,C,z) such that dim H(C; N, ® Oc(—z)) > 2, in case such di-
visors exist. Denote by Red; the union of the irreducible components D of Red’ for which
¢(D) = 1. Equip R, X" with the system of twisted integer coefficients Z and denote by
[R,X*4] € Hy,, (R, X%; Z) one associated fundamental class. Denote by Z* the local system
of coefficients of RM* pulled back from Z by R, ev?, see [[L§].

Proposition 2.6 Under the hypothesis of Proposition [2.4, there exists a unique funda-
mental class [RM*] € H,y, (RM*, Redy; Z*) such that for every balanced curve (u,C,z) €
RM?*, the morphism (Rrev?), : Hyp,(RM*, RM*\ {(u,C, 2)}; 2*) — Hpp, (R XFa R XFa \
{u(2)}; Z) sends [RM*] onto spy o(u,C, z)[R,.X*]. O



Since R, ev?(Red;) is of codimension two, the group and(RTXkd, R, ev?(Red;); Z) is cyclic,
generated by [R,X*]. The integer Xf«l’hp is nothing but the one defined by the relation
(RTevd)*[]RTMZ (X)) = XE"PIR, X*4], where the fundamental class []RTMZ L(X)] is given
by Proposition P.§ and restricted to connected components RM* for which dga+ = h, see
Lemma [[4

3 Proof of Theorem 2.1

We restrict the evaluation map R, ev? : RTHZ LX) = R X ka to some connected component
RM* of RTﬂg L(X)*. We denote by R,Crit (resp. R;Red) the divisor of critical points
of Rrev? (resp. the divisor of curves with reducible domain). The integer Xf’hp(g) is then
well defined and constant on each connected component of the complement of the image
RTevd(RTCrit UR;Red) in R, X ki We have to prove that this integer remains unchanged

while crossing these image divisors. This is the concern of the following Theorems B.4 and
B.5. Theorem P.1] thus follows from Theorems B.4 and B.5. O

3.1 Generic points of the divisor R, ev?(R,Red)

We are interested here in the part of Rrev?(R,;Red) which cannot be avoided by a generic
path of R, X%, In particular, it follows from Theorem 3 of [B] that this part is made of points
which are images of stable curves (u, C, z) € RM™* for which C' has two irreducible components
C1,Cs. For i € {1,2}, denote by d; = u.[C;] € Ha(X;Z) and (c1(X)d; —2) +n—1 =
(n — 1)l; + n; where [; € N and 0 < n; < n — 2. Moreover, denote by k; = #(z N C;) and
u; = u|c;, so that ky + ko = kq.

Proposition 3.1 The complement in R;Red of the locus of stable maps (u,C,z) such
that C has two irreducible components C1,Cy and u is an immersion which satisfies one of
the following conditions 1,2a or 2b, is mapped by Rrev?® onto finitely many submanifolds of
codimension greater than one of R, X%d.

1) With the above notations, ny = no = n — 2, ky =1y and ko = lo + 1. Moreover, the
isomorphisms Ny, = Oc, (k1)" 2 ® Oc¢, (k1 — 1) and Ny, = Oc, (ko — 1)"2 @ Oc, (ke — 2)
hold. Finally the tangent line of u(Cy) (resp. u(C3)) at & = u(Cy N Cy) is transversal to the
hyperplane generated by Oc, (ko — 1)"2|¢ and Teu(Cs) (resp. by Oc, (k1)" 2 and Tzu(Cy)).

2) With the above notations, (n1 + 1)+ (ne+1) =n —1, ky =11 and ky = l. Moreover,
one of the following:

a) The isomorphisms Ny, = Oc, (ki)™ @ Oc¢, (k1 — 1)""™~1 and N,, = Oc, (ko)™ @
Ocy (ka—1)"""271 hold. Finally the spaces generated by Oc, (k1)™, Teu(Ch) and by Oc, (k2)"2,
Teu(Cy) are in direct sum at the point § = u(C1 N Cy).

b) The isomorphisms Ny, = Oc, (k1)™ @® Oc¢, (k1 — 1)1 and N,, = Oc, (k2)™2T @
Oc,(ky — 1)""273 @ Oc, (k2 — 2) hold. In this case, the spaces generated by Oc, (ki)™ ,
Teu(Ch) and by Oc, (ko)™ Y, Teu(Cs) are in direct sum at the point & = u(Cy NCy). Finally,
the tangent line Tgu(Ch) is transversal to the hyperplane generated by Oc, (ko)™ & O¢, (ke —
1273 and Teu(Cy).

Proof:
For i € {1,2}, denote by z;, = 2N C;, 7, = 7|¢; and ev; : RTiMZi(X)* — R, Xk, We
can assume that at most one of the two differentials d|(ui7oi7§i)evi is not surjective and that
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its cokernel is then one dimensional. Indeed, the image under ev; X evy of the stable maps
not having this property is included inside a finite union of subvarieties of codimension two
at least. Since the dimension of RTiﬂZi(X )* is equal to (n — 1)l; + n; + k;, we deduce the
following alternative. Either (n — 1)l + ny + k1 > nky and (n — 1)ly + no + ke > nke — 1, or
(n —1)l; +n; + ki > nk;, i € {1,2}. This alternative rewrites:

1) Either, (n — 1)({; — k1) > 0 which imposes k1 < I, and (n — 1)(la — k2) = —1 which
imposes kg =1lo + 1 and ny =n — 2.

2) Or, (n—1)(l; — k;) > 0,7 € {1,2}, which imposes k; < ;.

Note that ny + no+ (n — 1)(l1 + l2) = c1(X)d —4+2(n—1) = (n — 1)(kg + 1) — 2 and
2<(n1+1)+ (ng+1) <2(n—1). Thus, either ny +no +2=2(n—1) and Iy + Il + 1 = kg,
orny+ne+2=mn-—1andly + o = kg. Our alternative hence finally rewrites:

1) Either, k1 =11, ks =1lo+ 1 and ny = ng =n — 2.

2) OI‘, klzll, kQZZQ and (n1+1)+(n2+1):n—1.

Let us write now Ny, = Oc¢,(a1) ® -+ & Ocy (an—1) and Ny, = Ocy(b1) B -+ B Ocy (bn—1).
In the first case, the surjectivity of d|(u1,01,gl)evl imposes that for 1 <i<n-—1,a; > ki — 1.
In the same way, since the cokernel of d\(u%@@)evg is one dimensional, for 1 < ¢ < n — 2,
b; > ko — 1 and by,—1 = k2 — 2. Thus, for 1 <i <n—2,b; = ks — 1 so that N, = O¢, (k2 —
1)"2 ® Oc,(ky — 2) and ug is an immersion. We can assume that the map d\(u,C@RTevd
has a one dimensional cokernel once restricted to infinitesimal deformations of stable maps
with reducible domains. This cokernel is generated by infinitesimal deformations of points
z = u(z) for which only one point of Cy deforms in a direction transversal to the sub bundle
Oc, (ks — 1)"=2 of N,,. We deduce that a,, 1 = k; — 1 and for 1 <i < n —2, a; = ki, s0
that in particular u; is an immersion. Moreover, the hyperplane generated by Oc, (k1) 2
and T¢u(C1) has to be transverse to Tzu(Cs) so that u is an immersion at {. The intersection
of the hyperplanes generated by Oc, (k1)" 2, Teu(C1) and Oc, (kg — 1)"72|¢, Teu(Cs) is of
dimension n — 2. This space is generically in direct sum with Tzu(C1), hence the result in the
first case.

In the second case, the surjectivity of the maps d|(u1,01 z)ev1 and d|(u2702,§2)ev2 imposes
that for 1 <i<n-—1, a; > ki —1 and b; > ko — 1. We can once more assume that the map
d|(u,C7E)RTevd has a one dimensional cokernel once restricted to infinitesimal deformations of
stable maps with reducible domains. We then deduce the alternative.

a) Either for i € {1,2}, Ny, = Oc¢. (k;)™ ® O¢,(k; — 1)"~"~! and the spaces generated by
Oc, (k1)™, Teu(Ch) and by O, (k2)™?, Teu(Cs) are in direct sum at the point £ = u(C1NCy).
In this case, the cokernel of the evaluation map is generated by infinitesimal deformations of
points = u(z) for which k4 — 1 points are fixed and the last one moves along a sub bundle
Oc, (k; — 1) transversal to this direct sum.

b) Or Ny, = Oc, (k1) ©Oc, (k1 —1)""™ "1 and N, = Oc, (k2)"2 1@ Oc, (ke —1)" 2730
Oc, (k2 — 2). In this case, the cokernel of the evaluation map is generated by infinitesimal
deformations of points x = u(z) for which k; — 1 points are fixed and the last one moves
in the direction of Og, (k2 — 2). Thus, the spaces generated by Oc, (k1)"!, T¢u(Ch) and by
Ocy, (ko)™ ™, Teu(Cy) are in direct sum at the point & = u(Cy N Cy). Finally, the tangent line
Teu(Ch) is generically transversal to the hyperplane generated by Ogc, (k2)"2 ™ @ O¢, (k2 —
1) 273 and Teu(Cy). O

Proposition 3.2 The stable maps given by Proposition [3.1 are reqular points of the eval-

uation map ev?.
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Proof:

Let (u,C,z) € ﬂgd(X)* be such a stable map. From Proposition B.1|, the differential
map d\(u,cgevd is injective once restricted to the hyperplane tangent to the divisor Red of
stable maps with reducible domains. We have thus to prove that d|(,,c.») ev? is injective once
restricted to some transversal to this hyperplane. Let B be a smooth curve trasversal to Red

at (u,C,z), and U — B be the universal curve. Let s1,...,s;, : B — U be the tautological
sections of this universal curve and eval : U — X be the evaluation map. From Proposition
@, we can assume that it contracts si,...,s,—1 onto kg — 1 fixed points z1,...,zg,—1. We

have then to prove that eval is injective once restricted to Im(sy,). The singular fibre of
U — B has two irreducible components C7, Cs and their normal bundles in U are isomorphic
to Oc,(—1) and O¢,(—1) respectively. Suppose that deval] Im(s,) Would vanish at s ,(0).
Since deval is injective at £ = C; N Cq, it would map the normal bundles O¢, (—1) and
Oc¢,(—1) onto sub bundles of degrees k; — 1 and k2 — 1 of N,,, and N,, respectively. This
already provides a contradiction in cases 1 and 2b given by Proposition B.J], since in these
cases, sub bundles of degree k2 —1 of N,, are all tangent to the space of deformation of stable
curves with reducible domain. In the case 2a given by Proposition B.J], we have to notice
in addition that this sub bundle of degree k1 — 1 (resp. ko — 1) of Ny, (resp. N,,) does
contain the image of T¢Cy (resp. T¢Ci). We deduce once more a contradiction since from
Proposition B.1], such sub bundles are all tangent to the space of deformation of stable curves
with reducible domain. [J

3.2 Passing through R.cv?(R,Red)

Let y:t€ A={z€Cllz| <1} = z(t) = (21(t),...,21,(t)) € X" be a Z/2Z-equivariant
analytic path transversal to R,ev?|gr_req at a generic point given by Proposition B.1. Let
B C HZ ,(X)* be an irreducible component of the inverse image of Im(v) under ev? and
U — B be the universal curve. Let eval : U — X be the evaluation map. The rank n
holomorphic vector bundle eval*T' X has a tautological rank two sub bundle, namely eval , TU.
From Proposition B.9, we can assume without loss of generality that 7 = id and that only one
point of the configuration, say xy,(t), indeed depends on t. We set B = {(u¢,Cy,2,) , t € A}.

Proposition 3.3 There exist n— 3 real line sub bundles RLq,... ,RL,_3 of eval'TRX —
RU such that the sum eval, TRU + RLy + --- + RL,_3 is direct. Moreover, for every t # 0

and 1 < i <n—3, RL; projects onto the real locus of a real holomorphic line sub bundle of
degree kg — 1 of Ny,.

Proof:

The strategy is the following. For 1 < j < n—2, we extend 7 : A — X% to an embedding
T : (s,t) € A x A X% such that T';(0,¢) = ~(t) and I';(s,0) € ev?(Red). The inverse
image of Im(I';) under ev? is a surface S; containing B. The universal curve U; over S; is a
3-dimensional manifold containing U. Let N be the quotient bundle eval*T X /eval, TU. The
image under eval, of the normal bundle of U in U; provides a real holomorphic line sub bundle
Ej of N which for t € A\ {0} restricts to a line subbundle of degree k; — 1 of N,,. We have
to prove that we can find n — 3 such line sub bundles in direct sum in N. The result follows
since the real loci of these sub bundles Ej lift to real sub bundles RL; of eval*T'RX -which
are not claimed to be real loci of holomorphic ones-. In cases 1 and 2b given by Proposition
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B.1], we can even produce n — 2 such sub bundles. Indeed, in the case 1, the intersection at
¢ = C1 N Cy of the subspaces < O, (k1)" 2, Teu(Ch) > and < O, (ko — 1)"72, Teu(Co) >
is of codimension two in eval*T'X and transversal to Tru(C1) ® Teu(C2). Fix some real
basis e1,...,e,_2 of this subspace. For 1 < j < n — 2, there exists a unique real line
sub bundle of degree ki (vesp. k2 — 1) of Ny, (resp. N,,) which contains the image of
e;. These bundles define the real line sub bundle L; of N|¢,. Since these sub bundles
are in direct sum over Cp and of the expected form, Proposition B.3 is proved in this first
case. In the case 2b given by Proposition B.|, the subspaces < O¢, (k1)™, Tzu(C1) > (resp.
< Oc, (ko)™ Teu(Co) >) and < Og, (k2)™2 ™ @ Oc, (ko — 1)"273 Teu(Cy) > (resp. <
Ocy (k1)™ @ O¢y (k1 — 1) "™~ Tru(Cy) >) are transversal to each other and neither contain
Teu(Ch) nor Teu(Cs) in their intersections. Choose a free family ey, ..., e, 2 of T,¢)RX such
that ey, ..., e, projects onto Oc, (k7)™ and e, 41, ..., e,_2 projects onto Oc, (ke)™2+1. For
1 < j < nq, there exists a unique line sub bundle of degree ki (resp. ko —1) of Ny, (resp. Ny,)
which contains the image of e;. In the same way, for ny +1 < j < n — 2, there exists a unique
line sub bundle of degree ki — 1 (resp. k2) of IV, (resp. N,,) which contains the image of e;.
These bundles define real line sub bundles Zj of N|¢, which are in direct sum. We conclude
as before. Finally, the case 2a given by Proposition B.]] can be performed in exactly the same
way as the case 2b, since the spaces < Oc, (k1)™, T¢u(C1) > and < Og, (k2)"?, Teu(Ca) > are
in direct sum. In this case however, we produce only ny + ny = n — 3 line sub bundles of V.
This is nevertheless enough to conclude. [

Theorem 3.4 Let v : t € A = {2z € C||z| < 1} = z(t) = (21(t),...,75,(t)) € XF
be a Z/2Z-equivariant analytic path transversal to Rrev?(R,Red) at a generic point given
by Proposition [3.4. Then, there exists ¢ > 0 such that thpo(’y(t)) does not depend on
t €] —e,€e[\{0}.

Proof:

As in the begining of §B.3, denote by B C MZ ,(X)* an irreducible component of the
inverse image under ev? of Im(v), U — B the universal curve and eval : U — X the evaluation
map. F rom the hypothesis, we know that the bundle eval*(TRX & Lrx (w)?) is equipped with

a GLn Lq-structure as well as an orientation when k; and n are even. Here, a € {0,1,2,3}
and w € HY(RX;Z/27), w = w1 (RX) except possibly when k4 is even and n = 1 mod (4).
This bundle splits as eval,7TRU @ RL; @ --- @ RL,,_o ® Lrx(w)® over RU, where RL; @

-+ ®RL,_3 are given by Proposition and RL,,_5 is a complement of eval , TRU @& RL; &

- @® RL,_3® Lrx(w)®. If kg is even, we apply the path g(¢) defined in fibrewise
over RB. The sub bundles RL; @ -+ @ RL,,_9 and Lgx(w)® are then all orientable once
restricted to non-singular fibres of RU. They are thus either orientable over the whole RU,

=+
or isomorphic to the determinant line bundle of RU. In both cases, the GL,,, ,-structure

——+
of eval*(TRX @ Lrx(w)*) — RU descend to a GL, -structure on RU (see Lemmas 1.6 and
1.7 of [id]). It suffices then to notice that the homology classes of the fibres RU — RB in

—
H(RU;Z/2Z) are all the same and that the evaluation of a GL4 -structure on a curve in a
surface only depends on its homology class modulo 2, see [[J] or Lemma 3.4 of [[Ld]. O

3.3 Passing through R.ev?(R,Crit)

Let us go on with the notations of §8.3. Let v : t € A = {z € C||2| < 1} + z(t) =
(z1(t), ..., mk,(t)) € X* be a Z/2Z-equivariant analytic path transversal to Rev?|g, oyt at a
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generic point. Let B C ﬂi ,(X)* be an irreducible component of the inverse image of Im()
under ev?, U — B be the universal curve and eval : U — X be the evaluation map.

Theorem 3.5 With the above notations, let (u,C,z) € B be a critical point of ev? and
lo be the wvanishing order of d(u,aé)evd. Then, there exists € > 0 such that the following
alternative holds.
1) Eitherly is odd and then fort €]—e¢,0[ (resp. t €]0,¢[), BN (ev R = {(uf, O 20, (uy, C L z)}
with spp o(uy, C;F, 2) = —spp.o(u; ,Cf 27 ) (resp. BN (ev?)™(t) = 0) or vice versa.
2) Or ly is even and then for t €] — €,¢[\{0}, B N (ev))™ () = {(us,Cy,2,)} with
sppo(ut, Cr, 24) independant of t # 0.

Proof:

Denote by N — U the quotient bundle eval*T X /eval*T'C}, where {C}, b € B} are the
fibres of U — B. From the hypothesis, the central fibre C, satisfies dim H 1(C’bO;NbO ®
Oc,, (—zy,)) = 1 so that N, is isomorphic to O, (ka — "3 @ Oc,, (ka) ® Oc,, (ka — 2)
whereas the other fibres Ny, b # by, are balanced -restricting B if necessary-. Each factor
cho(k‘d — 1) deforms to an analytic family of sub bundles over the whole B. Indeed, the
rational curve associated to this line sub bundle in the projectivization P(Np,) has a normal
bundle isomorphic to O" 3@ O(1)®O(—1) and is thus a smooth point in its moduli space. We
deduce a short exact sequence of real holomorphic vector bundles0 — £ — N — F — 0 where
for every b € B, Elc, = Oc,(ka—1)""%, Flc, = Oc,(ka—1)? it b # bg and Fl¢, = O, (ka)®
cho (kg —2) otherwise. We deduce a decomposition eval*TRX = eval*TRC, @ RE @ RF well
defined up to homotopy. If k, is even, we apply the path g(£) defined in §[[.2.9 fibrewise over
RB. The bundle eval*TRC, ® RE is then a direct sum of orientable real line bundles and
as in the proof of Theorem B.4, the GLn to-structure of eval® M descend to a EZ;t—structure
on RF from Lemmas 1.6 and 1.7 of [[[(J. The proof becomes then the same as the one of
Proposition 3.5 of [[9]. O

Part II
Enumerative invariants of strongly
semipositive real symplectic manifolds

Throughout this part, we will assume that (X, w, cx) is a strongly semipositive real symplectic
manifold of dimension 2n, n > 3.

4 Moduli space of real rational pseudo-holomorphic curves

We recall here the construction of the universal moduli space RM(z) of real rational pseudo-
holomorphic curves which realize a given homology class d and pass through a given config-
uration of points z, see [I3] and [[[§ for the real case in dimension 4.

Let d € Ho(X;Z) be such that (cx)«d = —d and (n — 1)/(c1(X)d — 2). Let kg =
—L(c1(X)d—2)+1 and z = (21,...,2x,) € X" be a real configuration of k, distinct points.
Denote by 7 € oy, the permutation of {1,...,kq} induced by cx and assume that 7(1) =1
if n is odd, see Lemma [[.3 Let S be an oriented 2-sphere and z = (z1,...,2,) be a set of
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k4 distinct marked points on it. Let Jg be the space of complex structures of class C* on S
which are compatible with its orientation, where [ is a large enough integer. Likewise, let 7,
be the space of almost complex structures of class C! of X, tamed by w. Denote by

P(z) = {(u, Js,J) € L*P(S,X) x Ts x Jo |us[S] = d, u(z) = z and a5(u) = 0},

where 05(u) = du+JoduoJg is the Cauchy-Riemann section of the C'~* Banach bundle & over
LFP(S, X)x Jsx T, whose fibre over (u, Js, J) is the separable Banach space LF~1P(S, A% S®
E,), where E, = v*TX. Denote by P*(x) C P(x) the subspace of non-multiple pseudo-
holomorphic maps. We recall the following Proposition (see Proposition 3.2.1 of [[L3]).

Proposition 4.1 The space P*(z) is a separable Banach mam'foqu of. class C*=F whose
tangent space at (u,Jg,J) € P*(x) is the space T(, js nP* () = {(v, Js,J) € LFP(S, E,) X
TJSJS X TJjw | v(g) =0 and V(UJ'S’J:)OF = 0}. U

Let us fix some cx-invariant riemannian metric ¢ on X and denote by V the connection
induced on T'X as well as on all the assiciated vector bundles. Then, V(U o) writes

Vogz(v, Js, J) =Dv+JoduoJg+ Joduo Jg, where D is the Gromov operator defined by
v e LFP(S,E,) — D(v) =Vu+ JoVvoJs+V,Joduo Jg € Elu,J5,0)-

Denote by Dif f(S, z) the group of diffeomorphisms of class C'*! of S, which either pre-
serve the orientation and fix z, or reverse the orientation and induce the permutation on
z associated to 7. Let Dif fT(S,z) (resp. Diff~(S,z)) be the subgroup of Dif f(S,z) of
orientation preserving diffeomorphisms (resp. its complement in Dif f(S,z)) and s, be the
morphism Dif f(S, z) — Z/2Z of kernel Dif fT(S,z). The group Dif f(S,z) acts on P*(x)
by

(o™ (971" Js,J) if su(¢) = +1,
(ex ouog™ (¢71) Js,ex*(J)) if su(d) = —1,

where (¢p~1)*Js = s.(¢)dp o Jgodp~! and ex*(J) = —dcx o J odcx. The order two elements
of Dif f~(S,z) are the only ones in Dif f(S,z) \ {id} which may have a non-empty fixed
point set in P*(z). In particular, two such involutions have disjoint fixed point sets, compare
Lemma 1.3 of [I§]. Let cg € Dif f(S,z) be such an element, we denote by RP*(z).4 its
fixed locus in P*(x). Denote by RJgs (resp. RJ,,) the fixed locus of ¢g (resp. cx) in Jg
(resp. J.,). Likewise, denote by L¥P(S, E,).1 = {v € L*¥P(S,E,) |dcx ovocg = v} the fixed
locus of cg in L*P(S, Ey,). Then, T(, s /n\RP*(2)cs = {(v, Js,J) € LFP(S, E,) 41 x TysRTs %
T/RJ, |v(z) = 0 and V(U,JS,J)UE = 0}, see Proposition 1.4 of [[§]. Note that oz and D are
Dif f(S, z)-equivariant so that D induces an operator Dg : LFP(S, E,),1 — LF712(S, A% S®
Ey)i1 = {a € LF1P(S A% S ® E,)|dcx o aocs = a}. Denote by L*P(S, E, )41 = {v €
LFP(S, Ey)11|v(z) = 0} and by HY(S, By —5)11 (resp. HL(S,Ey —2)+1) the kernel (resp.
cokernel) of the operator Dg : LKP(S, E, )41 — LF"1P(S,A%'S ® E,);1. Remember that
this operator Dg induces a quotient operator Dg : L*P(S, E, _,)1/du(L*?(S,TS_,) 1) —
LF=1P(S AOLS @ By) 11 /du(LE~1P(S,A%LS @c T'S)41) (see formula 1.5.1 of [{] or §1.4 of
[[g)). Denote by HY (S, Ny —2)+1 (vesp. Hh(S,Ny—:)+1) the kernel (resp. cokernel) of
the operator Dr. Finally, the action of Diff*(S,2) on P*(x) is proper, fixed point free
and with closed complements. Denote by M¢%(x) the quotient of P*(z) by the action of
Dif f+(S,z). The projection 7 : (u,Jg,J) € P*(z) — J € J, induces on the quotient a
projection M%(z) — J,, still denoted by 7. The manifold M9 (z) is equipped with an action
of the group Dif f(S,2)/Dif fT(S,z) = Z/2Z which turns 7 into a Z/2Z-equivariant map.

¢-(u, Js, J) = {
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Let us denote by RM¢9(z) the fixed locus of this action and by 7g the induced projection
RM%(z) — RT,.

Proposition 4.2 The space RM%(z) is a separable Banach manifold of class C'™F and
7R : RMY(x) — RJ,, is Fredholm of vanishing index. Moreover, at [u,Js, J] € RM%(z), the
kernel of mr is isomorphic to HY(S,Ny )41 and its cokernel to H:(S, Ny —5)41. O

The proof of this proposition is the same as the one of Proposition 1.9 of [I§]. It is not
reproduced here.

5 Spinor states of generalized real Cauchy-Riemann operators

Let (u,Js,J) € RP*(z).s be such that uw is an immersion. The normal bundle N, =
w*TX/du(TS) is equipped with a Z/2Z-equivariant operator DV : L*P(S,N, _,) = {v €
LEP(S,N,) |v(z) = 0} — LF=1P(S,A%S ® N,). Remember that its complex linear part is
some Cauchy-Riemann operator denoted by 0 whereas its complex antilinear part is some or-
der zero operator denoted by R(v) = Nj(v,du(.)) where N is the Nijenhuis tensor of J, see
Lemma 1.3.1 of [§. Such an operator is called a generalized real Cauchy-Riemann operator,
it is Fredholm of vanisning index. Denote by ¢y the complex antilinear involutive morphism
induced by cx on the complex vector bundle N,. Denote by RN, (resp. RS) the fixed locus
of ey (resp. cg). This vector bundle RN, over RS has rank n — 1 and the riemannian metric
g on RX induces a splitting v*TRX = TRS ® RN,,. We assume that the hypothesis HYP of

§[.2.1 hold and equip the associated bundle M — RX with a éfi (R)-structure. The aim of
this paragraph is to define a spinor state for such generalized real Cauchy-Riemann operators
when they are isomorphisms. We will begin with standard real Cauchy-Riemann operators
in §f.1 and then extend to generalized ones in §5.3.

5.1 Spinor states of real Cauchy-Riemann operators

Denote by Opz(N,) the space of Cauchy-Riemann operators of class C'=1 on N, it is an
affine Banach space spanned by I'"=1(S, A%'S ® Endc(N,)), see Appendix C1 of [[J]. Denote
by ROpgz(N,) the sub space of Opz;(N,) made of operators which are Z/2Z-equivariant with
respect to the actions of cy. For D € Opy, we denote by D, its restriction to LFP(S, Ny,—2)
so that D, is Fredholm with vanishing index.

Lemma 5.1 The set of operator D € ROpgz(Ny) for which D is an isomorphism is dense
open in ROps(Ny). The set of these operators for which D, has a one dimensional cokernel
is a one dimensional submanifold of ROpg5(N,). Finally, the set of these operators for which
D, has a cokernel of dimension greater than one is included in a countable union of strata of
codimensions greater than one in ROpgz(N,). O

Remember that the space Opyz(N,,) (resp. ROpg(N,)) corresponds to the space of holomor-
phic structures on N, (resp. for which ¢y is antiholomorphic), see [LI]. Let D € ROpg(N,)
such that D, is an isomorphism. Such an operator is said to be balanced, since it defines a
holomorphic structure on N, such that the isomorphism N, = Og(kg —1)"~! holds. We can
thus define as in §1.2.9 the spinor state spy (D) € {£1} of the balanced operator D.
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Proposition 5.2 Let D', D? ¢ ROpz(N,,) be two operators belonging to two adjacent
connected components of balanced operators of ROpgz(N,). Then, sppo(D') = —sppo(D?).

Proof:

Let Dy € ROpg(N,) be an operator in the wall between the two components containing
D; and Ds. In particular, dim¢ H'(S, N, ® Og(—z)) = 1 when N, is equipped with the
holomorphic structure induced by Do, so that N, = Og(kg — 1) 3 @ Og(kq) ® Og(kq — 2).
Let Uy, U; be the standard atlas of CP! =2 S. The holomorphic bundle N, is obtained by
gluing the two charts Uy x CP"~! and U; x CP"~! with the help of the gluing map

P : (U(] N Ul) x cpr—1 - (U1 N Uo) x Cpn—1

(%)kd_lIdn—?: 0 0 V1 )
(& (1, vnm) = (4 0 (k0 .| )
0 0 (@ |\ v

The operator Dy writes in these charts Dg(vy,...,v,_1) = (Qvi,...,0v,_1). Let f: Uy — C
be such that f(§) = % if |¢] > 1 and f(€) = £if |¢] < 1—e. We choose f such that z is disjoint
from the support of df and such that on Of Ndé #0. For t € R, we set Dy(v1,...,0p1) =
(Ovi,...,00,_2,00,_1 + tOf @ v,_2). Note that %|t:0Dt s (vg, .. 0po1) = (0,...,0,0f ®
Un—2) induces a non-vanishing morphism H®(S; N, ® Og(—z)) — H'(S, N, ® Og(—z)), since
on Of ANd¢é # 0. Thus, the path t € R +— D; € ROp4(Ny) is transversal to the wall of
non-balanced operators at ¢ = 0. Let

A()ZU()X(CPn_l — Uy x Cpn—1

Idn_g 0 0 U1 )
(& (v, oy 0n1)) — (f, 0 1 0 : )
0 t5&) 1]\ o,

and A1 = 1d : (f, (’Ul,... ;Un—l)) e U x cp1 — (f, (Uly---,Un—l)) e Uy x CP™ 1. This
0-cochain provides an isomorphism between N, equipped with the operator D; and the holo-
morphic vector bundle defined by the transition function

D, : (U() N Ul) x Cp»—t — (Ul N U()) x Cpn—1

(%)kd_lldn—ii 0 0 V1 >
(57 (Ulv---avn—l)) — (%, 0 (% kq 0 .
R O U R

We have to prove that for ¢ # 0, spp o(D¢) = —sppo(D—¢). For this purpose, we assume that
kq is odd, the case k4 even can treated in the same way. Let P : Uy — C be a polynomial of
degree kg — 1 with real coefficients and no real roots. From the definition of spinor state, the
sections v = (P,0,...,0),...,v5—2 = (0,...,0,§P,—tP) of N, restricted to RS can be used
to compute this spinor state. Indeed, they generate n — 2 real holomorphic line sub bundles
of degree kg — 1 of N, which are in direct sum and provide a trivialization of the real loci of
these bundles. The choice of the (n — 1)th such line sub bundle being unique up to homotopy,
it is not necessary to introduce it. Now it turns out that as ¢ crosses 0, the section v,_o|rs
crosses transversely the zero section of RN,. The loops of the principal bundle of frames of
RN, defined by (v1,...,v,—2) for ¢t > 0 and ¢t < 0 are thus obtained one from another by
performing a full twist around the axis generated by vq,...,v,_3. The result follows. [
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5.2 Spinor states of generalized real Cauchy-Riemann operators

Denote now by Opz. r(NVy) the space of generalized Cauchy-Riemann operators of class (ol
on N, it is an affine Banach space spanned by I'"1(S, A%'S @ Endr(N,)), see Appendix C'1
of [[3. Denote by ROpy, (NV,) the sub space of Opg, ,(N,) made of operators which are
Z/2Z-equivariant with respect to the actions of cy. For D € Opg, p, we denote by Df§ the
operator LEP(S, N, _,)11 — LFP(S,A%1S ® N,)41 so that D is Fredholm with vanishing
index.

Lemma 5.3 The set of operator D € R(Qp5+R(Nu) for which DHZ—g is an isomorphism is
dense open in ROngrR(Nu). The set of these operators for which Dﬁ% has a one dimensional
cokernel is a one dimensional submanifold of ROpgz, p(Ny). Finally, the set of these operators
for which ng has a cokernel of dimension greater than one is included in a countable union
of strata of codimensions greater than one in ROpz, p(Ny). O

Let D € ROpz,, r(IVy) be a balanced operator, that is an operator such that DH% is an iso-
morphism. Let d € ROpg(N,) be a balanced operator and § : ¢ € [0,1] — Dy € ROpg, 5(Ny)
be a generic path joining 0 to D. Denote by ns the number of times this path crosses the
wall of non balanced operators given by Lemma p.J, each crossing being transversal since §
is generic. Since the determinant line bundle Det(Dg) = A% ker(Dg) ® A™* coker(Dg) is
trivial over the affine space ROpgz, r(Ny), the parity of ns does not depend on d, see Propo-
sition A.2.4 of [[J. We can then define the spinor state of the balanced operator D to be
spp.o(D) = (—=1)"sppo(d) € {£1}, where sppo(0) has been defined in §f.1. It follows from
Proposition p.3 that this spinor state spp (D) does not depend on the choice of 0 we made
and hence is well defined.

6 Statement of the results

Let (X,w,cx) be a strongly semipositive real symplectic manifold of dimension 2n, n > 3.
Let d € H9(X;Z) be such that (cx)«d = —d, (n —1)/(c1(X)d — 2) and ¢1(X)d > 2. Let
ka = —25(c1(X)d —2) +1 and z = (z1,...,7k,) € X" be a real configuration of k, distinct
points. We assume that z has at least one real point if n is odd, see Lemma [[.J. We label the
connected components of RX by (RX)q,...,(RX)y and set r; = #(zN(RX);),7 € {1,...,N}
as well as r = (r1,...,7n). Let J € RJ, be generic enough, so that there are only finitely
many connected real rational J-holomorphic curves which realize the given homology class d
and pass through z. Moreover, these curves are all irreducible, smooth and have non-empty
real part, see Lemma [[.3. Let h € H;(RX;Z/27Z), we denote by R4(z, .J, h) the finite set of
those curves whose real part realize h. We assume that the hypothesis HYP of §[[.2.1] hold
and denote by M — RX the given rank m vector bundle. Note that in the fourth case of
HYP, that is if kg is even and n = 1 mod (4), we have to assume that < w,h ># 0, where
w € HY(RX;7Z/27) is the given cohomology class, see Remark [J. In case kg is even and n is
odd, we equip M|, with an orientation o. This orientation induces an orientation on Mg
for every A € Ry(z, J, h). Note that for every such curve A € Ry(z, J, h), the normal bundle
N4 comes equipped with a generalized real Cauchy-Riemann operator D4 which is balanced
since J is generic, see Proposition [l.J. Thus, spinor states of all the elements A € Ry(z, J, h)
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are well defined, namely as sppo(Da4), see §5.3. We set

XPPPO(, Ty = ) sppa(A) €L
AERd(g,J,h)

Theorem 6.1 Let (X,w,cx) be a strongly semipositive real symplectic manifold of di-
mension 2n, n > 3. Let d € Hao(X;Z) be such that (cx)«d = —d, (n —1)/(c1(X)d — 2)
and ¢1(X)d > 2. Let kg = —(ci(X)d —2) + 1 and = (z1,...,74,) € X" be a real
configuration of kg distinct points with at least one real one if n is odd. Label the connected
components of RX by (RX)1,...,(RX)n and set r; = #(xz N (RX);), i € {1,...,N} as well
asr = (ri,...,rn). Let h € Hi(RX;Z/2Z), assume that the hypothesis HYP of §[.2.1 hold
and denote by M — RX the given rank m vector bundle. In case kg is even and n is odd,
equip M|z, with an orientation o and if moreover n =1 mod (4), assume that < w,h ># 0.
Then, the integer anl’hp’a(g, J) neither depends on the generic choice of J € RJ,, nor on the
choice of x.

See Remark 6.4 below for a comment on the hypothesis of Theorem [B.1. It follows from this
theorem that the integer Xﬁl’hp’o(g, J) can be denoted by Xﬁl’hp’o without ambiguity. We can
even get rid of the orientation o from the following (compare Corollary R.9).

Corollary 6.2 Under the hypothesis of Theorem [p_], assume that kg is even and n is odd.
If the restriction of M over the connected component of t NRX in RX is not orientable, then
anl’hp’a = 0. In particular, the genus zero Gromov-Witten invariant GWy(X,d, pt, ..., pt) is
even. [

Note that if all the points of z " RX are not in the same connected component of RX, then
Xﬁl’hp’o vanishes since the real locus of rational curves is connected and thus cannot interpolate
points in different connected components. The generating function for this invariant is then
some polynomial x%"?(T) = Y o reNN Xﬁ’hpT’" € ZT,...,Tn], where T" = T{* ... T\ and we
have set Xﬁl’hp = 0 when it is not well defined. This polynomial has the same parity as k; and
each of its monomials anl’hpT" only depends on one indeterminate as we just saw. Theorem
b.1] means that the function

X" (d,h) € H3(X;Z) x H|(RX;Z/2Z) — x*"P(T) € Z[T)

only depends on the real symplectic manifold (X, w, cx) and is invariant under strongly semi-
positive deformation of this real symplectic manifold. This means that if w; is a continuous
family of strongly semipositive symplectic forms for which ¢y w; = —w;, then this function is
the same for all triples (X,wy,cx). This invariant immediatly provides the following lower
bounds in real enumerative geometry (compare Corollary P.3).

Corollary 6.3 Under the hypothesis of Theorem b1,
’Xg’hp‘ S #Rd(£7 J7 h) S Nd = GWO(X7 dupt7 e 7pt)7

for every generic J € RJ,, and every x € X*4 such that xt N\RX =r.
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Remark 6.4 Let us end this paragraph with some comments on the hypothesis of Theorem
Bl

1) The condition (n—1)/(c1(X)d—2) is a necessary condition for the genus zero Gromov-
Witten invariant GWy(X,d, pt,...,pt) to be non-trivial. This just comes from dimensional
reasons since we do consider only point conditions throughout this paper.

2) The strongly semipositive condition as well as the condition ¢;(X)d > 2 is made to
prevent the appearance of non simple real stable maps in the Gromov compactification of
the moduli space of real rational pseudo-holomorphic curves over a generic path in R7,,.
The treatment of such non simple stable maps requires more involved techniques, see [[J]
for example. Note that the theory of polyfolds under construction might provide helpful
techniques to remove these assumptions, see [f].

3) The hypothesis HYP are topological contitions on degree two characteristic classes of
the real locus RX. They are used to define the spinor state of real rational curves which are
crucial in the defition of the invariant x?. Can similar invariants be obtained without these
topological contitions? I don’t know. Note that similar issues appeared in [l in order to
prove the orientability of the moduli space of pseudo-holomorphic discs having boundary in
some lagrangian submanifold L. There, L was assumed to be relatively spin.

4) The existence of at least one real point in the configuration when n is odd is to prevent
the appearance of real rational curves with empty real locus in R4(z, J, h), see Lemma [[.3.
For such real rational curves with empty real locus, spinor states are not defined and I cannot
obtain similar invariants yet. This subtle problem appears in the important case of Calabi-
Yau threefolds, where z = (0. I believe however that there should be a way to overcome
sometimes this difficulty, but cannot do it yet.

7 Proof of Theorem B.1]

Let Jo, J1 € RJ, be two generic real almost complex structures, so that the integers Xﬁl’hp’o(g, Jo)
and Xf’hp’o(g, J1) are well defined. We have to prove that these integers are the same. Let
v :t e 0,1 — J € RJ, be a generic path joining Jy to Ji, transversal to 7mr. Let
RM., = RM%(z)* x, [0,1], RM,, be its Gromov compactification and 7., : RM, — [0,1]
be the associated projection. Then Rﬂw provides a cobordism between R4(z, Jy, h) and
Ra(z, J1,h). On each connected component of the complement of both the the critical values
of 7., and the elements of m.,(RM, \ RM,), the integer P03 ;) is constant. We thus
just have to prove that this integer also does not change while crossing one of these values.
Theorem .1 hence follows from Theorems and .5, O

7.1 Generic critical points of my

Lemma 7.1 The space of elements [u, Js, J] € RM%(z)* for which u is not an immersion
is a sub stratum of codimension n — 1 of RM%(z)*.

Proof:

This fact was proved in the first part of Proposition 2.7 of [I§] when n = 2 -and mainly
follows from the results of §3 of [[§]-. The proof being readily the same in higher dimensions,
it is not reproduced here. [
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Lety:t € [0,1] — J; € RJ, be a generic path transversal to mg. Let RM. = RM%(z)* x,,
0,1] and 7, : RM., — [0,1] be the associated projection. From Lemma [.1 follows that all
the elements of RM.,, are immersions.

Theorem 7.2 Let [uy,, J2, Jy,] € RM,, be a critical point of 7. Let p: X €] — €, e[
1(A) € RM,, be a local parameterization such that u(0) = [ug,, J&, Jy,]. Then, as soon as e
is small enough, the following alternative holds. Either m, o u crosses tg as A crosses 0 and
then spp o(1(X)) does not depend on X €] — €,€[\{0}, or my o u does not cross ty as \ crosses
0 and then spp o(pu(N)) = —spp.o((—A)) for every X €] — €, e[\{0}.

Proof:

Denote by u(A) = [uy,J3,J)] and fix a Z/2Z-equivariant trivialization N — S of the
complex normal bundles N,, — §. We deduce a family of generalized real Cauchy-Riemann
operators Dy : LFP(S,N_,) 1 — LE-1P(S A% S ® N) 1 parameterized by A €] — ¢, ¢[. Let
Ej be a closed complement to the one dimensional kernel of Dy and for A €] — €,¢[, F\ =
Dy (Ep). Then, Dy induces a family of morphisms Dy : H® = LFP(S, N_,)11/Ey — H} =
LF=1P(S,A%1S ® N),1/Fy. Note that the one dimensional vector space H (resp. H})

is trivialized by vy, = %u,\ (resp. %ﬂtzmw()\)), so that the linear maps D) and %ﬁwﬁ, o
1) get conjugated. More generaly, for every operator D € ROpz, p(N), denote by D the
induced morphism L¥P(S,N_,)1/Ey — L¥=1P(S,A%S @ N);1/D(Ep). The hypersurface
H of ROpyz JFR(N ) made of operators having a one dimensional cokernel is defined in a
neighbourhood of Dy as H' = {D ¢ ROpz, r(N) | D = 0}, see Lemma p.3. Thus, the curve
A €] — €,¢[— Dy € ROpg, z(N) crosses H' at A = 0 if and only if 4 (7, 0 p1)(vy) crosses tg
as A crosses 0 that is if and only if 7, has a local extremum at A = 0. Now from Proposition
B.2, if Dy crosses H' at A = 0, then sppo(Dy) = —sppo(D_1), A €] — €,€[\{0}, whereas
spp,o(Dyx) = sppo(D_)) otherwise. [

7.2 Passing through real reducible curves

Let v:t € [0,1] — J; € RJ, be a generic path transversal to mg. Let RM., = RM%(2)* x.,
[0, 1], Rﬂw be its Gromov compactification and 7, : Rﬂw — [0, 1] be the associated projec-
tion.

Lemma 7.3 Under the assumptions of Theorem [.1, as soon as vy is generic enough,
Rﬂ«, \ RM.,, consists of finitely many reducible curves having two irreducible components,
both real and embedded, intersecting in a unique real ordinary double point. Moreover, if dy, do
(resp. ki,ko) denote the homology classes of these components (resp. the number of marked
points on them), so that dy + dy = d and ki + ko = kg, then either c1(X)dy —1 = (n—1)k;
and ¢1(X)dy — 1 = (n—1)(ky — 1), or k; = E(=27(c1(X)d — 2)) + 1, where E() denotes the
integer part.

Proof:

From Gromov compactness theorem, elements of Rﬂw \ RM, correspond to reducible
curves parameterized by a tree of complex spheres. Since the manifold is semipositive, the
moduli space of such curves comes with a Fredholm projection onto J,, whose Fredholm index
is one minus the number of spheres in this tree, see Theorem 6.2.6 of [[J]. Note that since
marked points are not at singular points of the parameterizing tree and the configuration of
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points z contains at least one real point, both irreducible components of the reducible curve
should be real. The first part of the lemma follows. Now the numerical conditions on ki, ko
are obtained exactly in the same way as in the first part of the proof of Proposition B.1, it is
not reproduced here. [

Denote by R./\/ldl’dz( ) the universal moduli space of simple real stable maps having two
irreducible components C4, Cy, both real with k1, ko marked points on them respectively and
which realize the homology classes dj, ds. Denote by ﬂdl’dz the index —1 Fredholm projection

]R{Mdl’dQ (z) > R,

Proposition 7.4 Let (u,Jg,J) € RMdl’dz( ) be given by Lemma [7.3. Then, there exists

a path (Jx)aejo,) in RI, such that Jo = J, (u,Js,Jy) € RMZ?%( ) for every A € [0,1]
and Jy is integrable in a neighbourhood of uw(Cy U Ca). Moreover, Jy can be chosen in the
form 1 or 2a given by Proposition [3.] depending on whether ki = E( 7(c1(X)d — 2)) or

b1 = B((e(X)d - 2) + 1.

Proof:

Such an homotopy (Jx)e[o,1] can be obtained in the following way. We first stretch the
almost complex structure J in a neighbourhood of the double point using a one parameter
family of Z/2Z-equivariant diffeomorphisms of X which read as a family of homotheties in a
local chart mapping the curve onto two coordinate axis of C" and mapping J at the singular
point onto the complex structure of C". Having the scale of the homothety converging to 400,
we deduce a homotopy (J)) Ael0.1] such that J 1 is integrable in a neighbourhood of the singular
point. For every i € {1,2}, fix a Z/2Z-equivariant identification of a tubular neighbourhood of
u(C;) in X with a neighbourhood of the zero section in its normal bundle N; = «*T X /u, TC;.
The latter is equipped with the almost complex structure J 1. We then stretch J 1 using a
one parameter family of homotheties in the fibres of IV; whose scale converge to +oo The
path of almost complex structures we obtain does converge since the zero section is pseudo-
holomorphic and we get a homotopy (.Jy) relL,3) such that J 3 is integrable in a neighbourhood
of the singular point and equip N; with the structure of a complex vector bundle. Now, let J;

be a holomorphic structure on this complex vector bundle and V be an associated complex
connection. Then, for every y € N;, Js (y) writes Ji(y) + A(y) where A(y) € A% C; ® N;. We
4

thus set for A € [2,1] and y € N;, Jx(y) = J1(y) +4(1 — A\)A(y). The result follows from the
fact that J; can be chosen in the form 1 or 2a given by Proposition B.1] depending on whether
ki = E(L5(c1(X)d —2)) or ky = E(=25(c1(X)d—2)) + 1. O

Theorem 7.5 Let v : t € [0,1] — J; € RT, be a generic path transversal to mr. Let
RM., = RM%(z)* x, [0,1], RM, be its Gromov compactification and 7, : RM, — [0,1] be
the associated projection. Let (u,Jg,J) € RM, \ RM, be given by Lemma and tg =
my(u, Js, J) €]0,1[. Then, there exist a neighbourhood W of (u,Js,J) in RM, and € > 0
such that ZCEW;l(t)ﬂW spp.o(C') does not depend on t €]ty — €,to + €[\{to}.

Proof:

From Lemma [, (u,Jg,J) € R./\/ldl’dQ( ) with either k; = E(:1(c1(X)d — 2)) or
ki = E(:15(c1(X)d — 2)) + 1. From Proposition [(4, we can assume that .J is integrable
in a neighbourhood of u(C;y U C3) and of the form 1 or 2a of Proposition B.J depending
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on whether k1 = E(-21(c1(X)d — 2)) or ky = E(-21(c1(X)d — 2)) + 1. Indeed, let p :
A€ 0,1 — (u,Js,Jy) € RMdl’dz( ) be the path given by this Proposition B.1. Then,
after perturblng ,u if necessary, we can assume that it crosses transversely the critical locus

of ﬂdl’ : RM k‘hk)g( z) — RJ,, at finitely many points, where the cokernel of F[(éhdz is two
dimensional. Outside of these points, FE? a2 |tm (y) is an immersion and thus Im(mfé1 42 is locally

a wall which divides RJ,, in two connected components. Let WV be a neighbourhood of Im ()

in Rmd(g). Then, from Theorem [7.3, as soon as W is small enough, ZCEW—l(J)ﬁW spp,o(C)
takes one value on each side of the wall Im(ﬂﬁél’dz). Now let (u, Jg, J%) € RMdl’dQ( ) be

a critical point of W%l’dz and J 1€ D C RJ, be a closed disc transversal to le,dz at J 1.

Then, ( Eél’dQ) YD) is a Smooth curve of RMdl’d2( ) which projects onto a curve of D
which is cuspidal at J 1. The connected component of this curve which contains (u, Jg, J 1 )
is homeomorphic to an interval whose image curve B intersects 0D at two points. The
complement of these two points in 0D consists of two intervals 9Dy and 0Dy and once more,
from Theorem [.3, as soon as W is small enough, the value Z(Jerngl( )W spp,o(C) is the same
on each of these intervals.

Z N s
= = /
o di,ds
( Im(mp" ")
I
0Dy D CcRJ,

di,day
TR 7) is the same at Jy

Thus, the value Z(Jen Ly SPp, o(C) on each side of the wall Im(m
and J;. To prove Theorem [7.5, we then just have to prove that these values are the same on
both sides of the wall at J;. Now, to cross this wall, we can fix J and have one real point of
the configuration z vary since this can be performed equivalently by fixing £ and producing
some Hamiltonian deformation of J. The end of the proof thus goes now along the same lines

as the one of Theorem B.4 since all the arguments used there where local. [
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