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Exact BCS stochastic schemes for a time dependent many-body fermionic system

A. Montina
Dipartimento di Fisica, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy

Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

The exact quantum state evolution of a fermionic gas with binary interactions is obtained as
the stochastic average of BCS-state trajectories. We find the most general Ito stochastic equations
which reproduce exactly the dynamics of the system and we obtain some conditions to minimize the
stochastic spreading of the trajectories in the Hilbert space. The relation between the optimized
equations and mean-field equations is analyzed. The method is applied to a simple two-site model.
The simulations display effects that cannot be obtained in the mean-field approximation.

I. INTRODUCTION

The numerical solution of a time dependent many-body problem is a formidable task for large quantum systems.
For example, for a system of an arbitrary number of fermions with M possible modes of the quantum field, e.g. in a
lattice model, the dimension of the Hilbert space is 2M so that both the computer time and the memory requirements
scale exponentially with the number of modes and becomes rapidly intractable when M increases. A similar situation
occurs also in classical mechanics, when we describe the dynamics as the evolution of a probability distribution.

To circumvent the problem on the memory requirement in classical physics, an approach is not to solve numerically
the equation of motion of the probability distribution, but to solve the statistical evolution of the variables and
to evaluate the mean value of some quantities over a finite number of realizations. Such a Monte Carlo approach
can be used also in quantum mechanics, the most famous example being the Path Integral Monte Carlo based on
the Feynman’s path integral formulation [1]. However, apart from notable exceptions (such as the imaginary time
evolution of bosons with real Hamiltonians, or the imaginary time evolution of some models of fermions [2]), for a
general quantum problem, the known Quantum Monte Carlo methods do not solve the computer time problem, which
remains exponentially long because an exponentially large number of Monte Carlo realizations is usually required
[3]. For fermions, this problem is the celebrated sign problem, which has been the subject of many efforts, both for
real-time and imaginary-time simulations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

In Monte Carlo techniques with path integral, the randomly generated states are generally mutually orthogonal.
In the original formulation of Feynman, they are the eigenvectors of the particle coordinates. As an alternative, we
can use to randomly explore an over-complete set of states. Since the dynamics of degenerate bosonic gas with weak
interactions is approximatively described by the evolution of a Hartree-Fock state, it can be convenient to evaluate
the exact dynamics using a superposition of paths of Hartree-Fock states [14]. A similar approach has been used for
fermion systems [15]. In Reference [14] the case of bosonic coherent states is also studied.

The number of random paths necessary to describe the dynamics can be reduced by increasing the number of
elements of the over-complete set. In the extreme limit where every state of the Hilbert state is an element of the
explored set, the dynamics can be described with a single, deterministic path: this corresponds to solving directly
the Schrödinger equation, but this faces again the memory problem. As an intermediate possibility, we can choose a
set of elements whose single path is a better approximation to the exact solution than the Hartree-Fock ansatz, but
which is still numerically tractable. Attractive interactions in a fermionic gas can lead to the condensation of Cooper
pairs in the superfluid state, as currently investigated experimentally in atomic gases close to a Feshbach resonance
[16]. It is expected that such a superfluid state is reasonably well described by a BCS-state, much better indeed than
by a Hartree-Fock state. For this reason we study here an exact stochastic approach with BCS states.

In this article we consider the dynamics in real-time of a system of fermions with binary interactions on a spatial
lattice. The Hamiltonian is

Ĥ =
∑

kl

hklĉ
†
k ĉl +

1

2

∑

kl

Vklĉ
†
k ĉ

†
l ĉlĉk, (1)

h and V are hermitian and real symmetric matrices, respectively, and ĉk, ĉ†k are Fermi annihilation and creation
operators. The mode index k labels the spin state σk and the lattice node in position rk. In what follows, we shall
denote as ms the total number of lattice nodes.

We wish to obtain the dynamical evolution of the quantum state as the average of stochastic trajectories of BCS
states. The exact evolution is achieved by averaging an infinite number of stochastic trajectories. The BCS state
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ansatz that we use is

|Ω, γ〉 ≡ ΩS(γ)|0〉 ≡ Ω e
1

2

∑

kl γkl ĉ
†

k
ĉ†

l |0〉, (2)

γ being an antisymmetric matrix, involving for spin 1/2 fermions a number of variables 2ms(2ms − 1)/2, and Ω being
a multiplicative complex variable. Note that the state in Eq. (2) is in general not normalized. We shall consider the
case where both γ and Ω are stochastic variables solving Ito stochastic equations [17].

In Section II we find the necessary and sufficient conditions on the stochastic equations in order to have an exact
description of the dynamics. These constraints do not fix univocally the stochastic scheme, thus we shall use this
freedom to reduce the statistical spreading of the trajectories. In Section III we construct explicit stochastic schemes.
The growth rate of the spreading is evaluated and an upper limit for the statistical error on the observables is
established, which shows that the statistical uncertainty is finite at every finite time. In Section IV the stochastic
approach is illustrated on a two-site model.

II. STOCHASTIC EQUATIONS

A. Conditions for the stochastic evolution to be exact

We want to evaluate exactly the quantum state evolution using a superposition of the BCS states |Ω, γ〉 ≡ Ω|γ〉
with a stochastic evolution of γ and Ω. For an infinitesimal variation of γ and Ω we calculate the variation of the
ansatz by expanding |Ω + ∆Ω, γ + ∆γ〉 in powers of ∆Ω and ∆γ: we have from Eq. (A4) that

∆|Ω, γ〉 =





∆Ω

Ω
+

1

2

∑

ij

∆γij ĉ
†
i ĉ

†
j +

1

8

∑

ijkl

∆γij∆γkl ĉ
†
i ĉ

†
j ĉ

†
k ĉ

†
l +

1

2Ω

∑

ij

∆Ω∆γij ĉ
†
i ĉ

†
j + ...



 |Ω, γ〉, (3)

On the other side, the Hamiltonian evolution during ∆t of the state equal to |Ω, γ〉 at time t is given to first order in
∆t by Schrödinger’s equation:

− iĤ∆t|Ω, γ〉 =





i

2

∑

ijkl

Vijγikγjlĉ
†
i ĉ

†
j ĉ

†
kĉ

†
l ∆t− i

∑

ij

(

1

2
Vijγij +

∑

k

hikγkj

)

ĉ†i ĉ
†
j∆t



 |Ω, γ〉 (4)

where we used Eq. (A5) to express ĉ|Ω, γ〉 in terms of ĉ†|Ω, γ〉 and where we took ~ = 1. If γ and Ω satisfy a
deterministic equation, it is obvious that the first term of the right hand side of Eq. (4) does not in general coincide
with the third term of the right hand side of Eq. (3). As we shall prove, Eq.(4) and Eq.(3) can become equal when we
consider stochastic equations and we average Eq.(3) over every possible realization of the stochastic variation during
∆t:

∆|Ω, γ〉 = −iĤ∆t|Ω, γ〉. (5)

Since S(γ) is invertible, we have to find a stochastic equation for Ω and γ that satisfies the equality




∆Ω

Ω
+

1

2

∑

ij

∆γij ĉ
†
i ĉ

†
j +

1

8

∑

ijkl

∆γij∆γkl ĉ
†
i ĉ

†
j ĉ

†
k ĉ

†
l +

1

2Ω

∑

ij

∆Ω∆γij ĉ
†
i ĉ

†
j



 |0〉 =





i

2

∑

ijkl

Vijγikγjlĉ
†
i ĉ

†
j ĉ

†
kĉ

†
l ∆t− i

∑

ij

(

1

2
Vijγij +

∑

k

hikγkj

)

ĉ†i ĉ
†
j∆t



 |0〉. (6)

Equation (6) is equivalent to the following ones,

∆Ω

Ω
= 0 (7)

∆γij = −
1

Ω
∆Ω∆γij − iVijγij∆t− i

∑

k

hikγkj∆t+ i
∑

k

hjkγki∆t (8)

∑

permutation of ijkl

(−1)p

[

1

8
∆γij∆γkl −

i

2
Vijγikγjl∆t

]

= 0 (9)
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where (−1)p is the signature of the permutation. The first equation implies that the deterministic term of Ω is zero.
The second equation gives the deterministic term for γ, the last one gives a condition for the noise term of γ. This
last condition can be written explicitly

∆γij∆γkl + ∆γjk∆γil + ∆γik∆γlj + i∆t(Vij + Vkj + Vil + Vkl)γikγlj

+i∆t(Vik + Vkj + Vil + Vjl)γijγkl + i∆t(Vik + Vlk + Vij + Vlj)γjkγil = 0 (10)

Note that this equation is automatically fulfilled when two of the four indices ijkl are equal.

B. Growth of the statistical error

To estimate the statistical error of the method, we consider the growth rate of the mean squared distance between
the true state of the system and a single realization of the stochastic ansatz, ∆||ψ〉 − |Ω, γ〉|2 = ∆M , where

M = 〈Ω, γ|Ω, γ〉. (11)

This will allow to prove that the statistical error remains finite at all finite evolution times and this will provide a
strategy to identify optimal stochastic schemes in trying to minimize the growth rate ∆M/M .

To the first order in ∆t,

∆M = (∆〈Ω, γ|)|Ω, γ〉 + 〈Ω, γ|(∆|Ω, γ〉) + (∆〈Ω, γ|)(∆|Ω, γ〉). (12)

In the right hand side, the sum of the first two terms gives exactly zero, since by construction ∆|Ω, γ〉 = −i∆tĤ|Ω, γ〉/~.
In the last term, we can replace ∆|Ω, γ〉 by its stochastic component:

∆|Ω, γ〉stoch ≡ ∆|Ω, γ〉 − ∆|Ω, γ〉

=





∆Ω

Ω
+

1

2

∑

ij

∆γstoch
ij ĉ†i ĉ

†
j



 |Ω, γ〉, (13)

where we used the fact that ∆Ω is purely stochastic and where ∆γstoch
ij is the stochastic part of ∆γij . Equation (12)

leads to

∆M

M
=

||∆|Ω, γ〉stoch||2

〈Ω, γ|Ω, γ〉
(14)

which can be evaluated using Wick’s theorem:

∆M

M
=

∣

∣

∣

∣

∣

∣

∆Ω

Ω
+

1

2

∑

ij

∆γstoch
ij 〈ĉ†i ĉ

†
j〉

∣

∣

∣

∣

∣

∣

2

+
1

2

∑

ijkl

∆γ∗ij∆γkl〈ĉiĉ
†
k〉〈ĉj ĉ

†
l 〉. (15)

where the expectation value is taken in the ansatz, 〈. . .〉 = 〈Ω, γ| . . . |Ω, γ〉/M . A clear step for the minimization of
the error growth is to choose ∆Ω in order to set to zero the first term in the right hand side of the above expression:

∆Ω

Ω
= −

1

2

∑

kl

∆γstoch
kl 〈ĉ†k ĉ

†
l 〉. (16)

We shall always choose ∆Ω in this way in what follows. It is then easy to show [see Eq. (13)] that

∆M = ∆M, (17)

i.e., the stochastic terms of ∆M are exactly zero. Furthermore the deterministic part of ∆γ is now slaved to the
stochastic part of ∆γ, according to Eq.(8): the only increments that remain to be specified to fully determine the
stochastic scheme are ∆γstoch

ij , and this we shall do in the next section.
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III. EXPLICIT EXACT STOCHASTIC SCHEMES

A. Our solution for an arbitrary interaction potential

This most general solution relies on the following ansatz for the stochastic increment:

∆γstoch
ij = (∆fi + ∆fj)γij (18)

where the noise terms ∆fk are independent of γij . Inserting this ansatz in the validity condition Eq.(10), we find that
if the noise terms have the following correlation function,

∆fi∆fj = −iVij∆t, (19)

this validity condition is satisfied [21]. Since the matrix Vij is real symmetric it can be diagonalized; a noise having
this correlation function may then be explicitly constructed using the corresponding eigenbasis.

In the specific case of a discrete δ interaction potential between two opposite spin components:

Vij = V0δri,rj
δσi,−σj

(20)

where ri and σi are the lattice position and the spin component of the mode of index i, the following explicit noise
may be used:

fi = (−iV0)
1/2
[

∆ξri
δσi,↑ + ∆ξ∗ri

δσi,↓

]

(21)

where the ∆ξr’s are statistically independent complex Gaussian noises of variance ∆t. For this specific noise imple-
mentation, f∗

i fj = |V0|∆t δij , so that the growth rate of the statistical error can be expressed by the simple formula
[22]:

∆M

M
= |V0|∆t

∑

k

〈ĉk ĉ
†
k〉〈ĉ

†
k ĉk〉 ≤

1

2
|V0|∆tms (22)

where ms is the number of lattice nodes and where we used the Eqs. (A8,A11, A9). ∆M/(M∆t) has a constant as an
upper bound, thus the norm squared of |Ω, γ〉 is bounded at every time by exp(|V0|mst/2) times its initial value. A
similar bound was derived in the stochastic Hartree-Fock scheme in [15], with a larger exponent [18]. Consequently,
the Monte Carlo statistical variance of an observable O is finite when Tr[O2] is finite [see Ref. [19], Eq. (30)].

To be complete we also give the corresponding deterministic part of the evolution of γ:

∆γij/∆t = −iVijγij − i
∑

k

(hikγkj + hjkγik) − i
∑

k

(Vik + Vjk)〈ĉ†k ĉk〉γij . (23)

We note that the last sum over k in the righthand side is simply the Hartree mean-field term.

B. Case of an off-diagonal γ and a delta interaction

We now restrict to useful limiting cases where the one-body Hamiltonian h is spin-diagonal, the interaction potential
is an on-site discrete δ between two distinct spin components, as defined in Eq.(20), and where the matrix γ in the
ansatz has initially zero matrix elements between identical spin components. We have then identified exact stochastic
schemes that preserve at any time this block off-diagonal structure of γ.

1. The solution that we have found with minimal error growth

A general strategy to find the ‘best’ stochastic scheme among a very large number of possibilities is to try to
minimize the growth rate of the statistical error Eq.(14). Whereas this program is easily fulfilled for bosons [14] it
seems to be more difficult to achieve for the stochastic BCS ansatz. Here we report the solution that we have found
with minimal error growth. It is possible that a better solution exists. The stochastic increment is given by

∆γstoch
↑ri,↓rj

= (iV0)
1/2(∆ξri

− ∆ξrj
)γ↑ri,↓rj

(24)
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where the ∆ξr are ms independent real Gaussian noises of variance ∆t. The corresponding growth rate of the
statistical error is exactly given by

∆M

M
= ∆t|V0|

∑

r

[

〈ĉ†↑r ĉ↑r〉〈ĉ↑r ĉ
†
↑r〉 + 〈ĉ†↓r ĉ↓r〉〈ĉ↓r ĉ

†
↓r〉 − 2〈ĉ†↑rĉ

†
↓r〉〈ĉ↓r ĉ↑r〉

]

(25)

which is indeed smaller than the general result Eq.(22) because of the occurrence of a negative term involving
anomalous averages. In this scheme the deterministic part of the evolution of γ is given by

∆γ↑ri,↓rj
/∆t = −iV0γ↑ri,↓rj

[〈ĉ†↓ri
ĉ↓ri

〉−〈ĉ†↑ri
ĉ↑ri

〉−{i↔ j}]− iV0δri,rj
γ↑ri,↓rj

− i
∑

rk

(h↑ri,↑rk
γ↑rk,↓rj

+h↓rj ,↓rk
γ↑ri,↓rk

)

(26)

2. The solution that we have found with minimal memory requirement

In the case when the one-body Hamiltonian h is totally spin independent and when the off-diagonal block γ↑ri,↓rj
is

initially a symmetric or antisymmetric matrix (under the exchange of ri and rj), we have found a stochastic scheme
which preserves this symmetry property at all times, which allows to save a factor of two on the memory requirement;

∆γstoch
↑ri,↓rj

= i(iV0)
1/2(∆ξri

+ ∆ξrj
)γ↑ri,↓rj

(27)

where the ∆ξr are ms independent real Gaussian noises of variance ∆t. In this case, the growth rate of the statistical
error is

∆M

M
= ∆t|V0|

∑

r

[

〈ĉ†↑r ĉ↑r〉〈ĉ↑r ĉ
†
↑r〉 + 〈ĉ†↓r ĉ↓r〉〈ĉ↓r ĉ

†
↓r〉 + 2〈ĉ†↑rĉ

†
↓r〉〈ĉ↓r ĉ↑r〉

]

≤ ∆t|V0|ms (28)

which is larger than for the two previous schemes. In this scheme the deterministic part of the evolution of γ is given
by

∆γ↑ri,↓rj
/∆t = −iV0γ↑ri,↓rj

[

〈ĉ†↓ri
ĉ↓ri

〉 + 〈ĉ†↑ri
ĉ↑ri

〉 + {i↔ j}
]

−iV0δri,rj
γ↑ri,↓rj

−i
∑

rk

(h↑ri,↑rk
γ↑rk,↓rj

+h↓rj,↓rk
γ↑ri,↓rk

)

(29)

C. Link with the mean-field approximation

In the three explicit stochastic schemes given in this section, the deterministic part of the evolution for γij did not
coincide with the mean-field evolution. This in contrast with the optimized stochastic Hartree-Fock schemes obtained
for bosons [14] and for fermions [15]. For a general stochastic BCS ansatz with the optimizing choice Eq.(16), we found
the following relation between the deterministic evolution of γij and its mean field evolution (given in Appendix B):

∆γij − ∆γmean field
ij =

∑

kl

∆γik∆γjl〈ĉ
†
k ĉ

†
l 〉 (30)

by inserting the expression Eq. (16) of ∆Ω into Eq. (8) and by using Eq. (10) to eliminate ∆γij∆γkl. This shows that
finding a stochastic scheme where the deterministic and mean field evolutions coincide is not straightforward.

IV. STOCHASTIC APPROACH FOR A TWO-SITE SYSTEM

In order to illustrate the method, we apply it to a simple system with two sites, corresponding to the Hamiltonian

Ĥ =
1

2

∑

σ

[

ĉ†σ1ĉσ2 + ĉ†σ2ĉσ1

]

+ V
[

ĉ†↑1ĉ
†
↓1ĉ↓1ĉ↑1 + ĉ†↑2ĉ

†
↓2ĉ↓2ĉ↑2

]

(31)

where the spin index σ takes the values ↑ and ↓. There is no interparticle interaction when the two particles are in
different wells. A physical system that may be described by this model is a set of two Fermi particles in a double-well
potential.
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0.4

0.6

0.8

n↑1

FIG. 1: Mean value of the population in the state 1 ↑ as a function of time. The solid and dashed lines are evaluated using
the schemes of §III B 1 and §IIIB 2, respectively. The number of realizations is 105 and V = 0.2. The dashed-dotted line is the
BCS mean-field prediction. The widths of the error bars are the standard deviations.

At the initial time, we choose a BCS state with the elements of γ equal to zero, apart from γ1↑,1↓ = −γ1↓,1↑ ≡ γ0 = 2.
The state is a superposition of the vacuum and the state with two atoms in the site 1. The direct numerical solution

of the dynamics is obtained writing the Hamiltonian in the basis of the Fock states of the operators ĉi,s and ĉ†i,s.
The integration is simplified by the fact that the interaction cannot flip the spin and the amplitude of some states
remains zero. In Fig. 1 we report the mean value of the population in the state ↑ 1 as a function of time. We have set
V0 = 0.2. The dashed-dotted line is evaluated with the mean-field equations (as given in Appendix B), the dashed
line is the direct numerical solution and the solid line is the stochastic solution. The widths of the error bars are
the standard deviations. We have used 105 realizations with the scheme of §III B 1. In the mean-field approximation,
the evolution has a damped oscillation with a revival for t > 30. The collapse and revival of the oscillations of the
exact solution occur with a shorter time scale. The stochastic approach is able to display very well this behavior. In
Fig. 2 we report 〈Ω, γ|Ω, γ〉 as a function of time. The solid dashed and dotted lines are evaluated using the schemes
of §III B 1 §III A and §III B 2, respectively. The dashed-dotted line is the upper bound of Eq. (25) for the first two
schemes. As expected, the optimized scheme has a smaller spreading.

Note that the growth rate of M is zero at the initial time for the scheme of §III B 1 (see inset of Fig. 2), because
of the presence of the last term in Eq. (25), which cancels the other contributions in the initial state considered
here of particles localized on a site. The spreading of the trajectories grows exponentially and it increases for larger
interparticle interactions. We have done similar calculations for a stronger interaction, e.g. for V = 2; the stochastic
method agrees with the direct numerical solution, with a higher growth rate of the statistical error for increasing V ,
as expected.

V. CONCLUSIONS

In this article we have shown that the state evolution of a fermionic gas with binary interactions can be obtained
in an exact way as the average of stochastic trajectories of BCS states. We have derived the general Ito stochastic
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0 10 20t
1

10

100

M

0 1 2
t

1

1.1

1.2

M

FIG. 2: Average of M = 〈Ω, γ|Ω, γ〉 over the stochastic realisations, as a function of time, evaluated using the scheme of §III B 1
(solid line), of §III A (dashed line) and of §IIIB 2 (dotted line). The dashed-dotted line is the upper bound of Eq. (25) for the
first two schemes. At the initial time the growth of M is zero for the first scheme (see inset).

equations which give the exact evolution of the system and we have found a condition on some parameters of these
equations to reduce the statistical spreading of the trajectories in the Hilbert space. The upper bound that we have
found on the spreading for a particular scheme is similar to the one obtained for the Hartree-Fock ansatz in [15], with
a smaller value. We have illustrated the method on a two-site model and we have shown that the quantum effects,
which cannot be obtained with a mean-field approximation, are displayed by the results of the stochastic approach.
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APPENDIX A: SOME PROPERTIES OF BCS STATES

First we prove that the BCS states form a complete family for the states with an even number of atoms. The set
of states with a definite number of atoms in each mode constitutes an orthonormal basis of the Hilbert space. It is
sufficient to show that each element of this set is equal to a superposition of BCS states. An element has the following
form

|{kn, ln}〉 ≡
(

Np
∏

n=1

ĉ†kn
ĉ†ln
)

|0〉, (A1)
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where we have grouped the atoms in pairs. The n-th pair has the atoms in the kn and ln modes. Np is the number
of pairs. kn 6= km 6= ln 6= lm when n 6= m, whereas kn 6= lm for every n and m. It is easy to prove that

|{kn, ln}〉 = K

∫ 2π

0

dφ1

∫ 2π

0

dφ2...

∫ 2π

0

dφNp
e−i

∑Np
n=1

[φn+exp(iφn)ĉ†
kn

ĉ†
ln

]|0〉, (A2)

where K is a normalization constant. Thus, the BCS states form a complete family. Actually, it is over-complete.
It is possible to demonstrate that (see Section 2.2 of Ref. [20]) [23]

M̃ ≡ 〈Ω̄, γ̄|Ω, γ〉 = Ω̄∗Ω det[11 + γ̄†γ]1/2 (A3)

and

∂

∂γkl
|Ω, γ〉 = ĉ†k ĉ

†
l |Ω, γ〉, (A4)

ĉk|Ω, γ〉 =
∑

l

γkl ĉ
†
l |Ω, γ〉. (A5)

From Eq. (A3) we have

∂

∂γij
M̃ = −[γ̄†(11 + γγ̄†)−1]ijM̃. (A6)

Using Eqs. (A4-A6) we find that

〈Ω̄, γ̄|ĉlĉ
†
k|Ω, γ〉

〈Ω̄, γ̄|Ω, γ〉
= [(11 + γ̄†γ)−1]kl (A7)

〈Ω̄, γ̄|ĉ†kĉl|Ω, γ〉

〈Ω̄, γ̄|Ω, γ〉
= [γ̄(11 + γ̄†γ)−1γ†]lk (A8)

〈Ω̄, γ̄|ĉkĉl|Ω, γ〉

〈Ω̄, γ̄|Ω, γ〉
= −[γ(11 + γ̄†γ)−1]kl (A9)

〈Ω̄, γ̄|ĉ†l ĉ
†
k|Ω, γ〉

〈Ω̄, γ̄|Ω, γ〉
= [γ̄†(11 + γγ̄†)−1]kl. (A10)

We note that Equation (A8) can be written in various forms using the matrix identities

γ̄†γ(11 + γ̄†γ)−1 = γ̄†(11 + γγ̄†)−1γ = [γ(11 + γ̄†γ)−1γ̄†]T (A11)

where AT is the transpose of matrix A.

APPENDIX B: MEAN-FIELD EQUATIONS

Using the results of section 9.9b of [20], we obtain the following equations of motion for γ in the mean-field
approximation:

γ̇ij = −i
∑

k

(hikγkj +hjkγik)+

[

−i
∑

k

Vik〈ĉ
†
k ĉk〉γij + i

∑

k

Vik〈ĉ
†
k ĉi〉γkj − (i↔ j)

]

+ i
∑

kl

Vkl〈ĉk ĉl〉
∗γkiγjl + iVij〈ĉiĉj〉.
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