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Abstract. Let (E, E) be a countably generated state space, let (Xn)n be an aperiodic and ψ-irreducible

V -geometrically ergodic Markov chain on E, where V is a function from E to [1,+∞[ and ψ is a σ-finite

positive measure on E. Let π be the P -invariant distribution, and let ξ be a real-valued measurable function

on E which is supposed to be dominated by
√
V . We know that σ2 = limn n

−1IEx[(Sn)2] exists for any x ∈ E

(and does not depend on x), and that, in the case σ2 > 0, n−1[ξ(X1) + . . . + ξ(Xn) − nπ(ξ)] converges in

distribution to the normal distribution N (0, σ2).

In this work we prove that, for any initial distribution µ0 satisfying µ
0
(V ) < +∞ and under the condition

σ2 > 0,

- If ξ is dominated by V α with α < 1

4
, then the rate of convergence in the central limit theorem is O( 1

√

n
).

- If ξ is dominated by V α with α < 1

2
, then (ξ(Xn))n satisfies a local limit theorem and a renewal theorem

under a usual non-arithmeticity assumption.

AMS subject classification : 60J05-60F05

Keywords : Markov chains, geometric ergodicity, central limit and renewal theorems, spectral
method.



I. STATEMENTS OF RESULTS

Let (E, E) be a measurable space with countably generated σ-field E , and let (Xn)n≥0 be a Markov
chain on E with transition probability, P . We assume that

Hypothesis. (Xn)n≥0 is aperiodic, ψ-irreducible for a certain positive σ-finite measure ψ on
E, and there exists a function V defined on E, taking values in [1,+∞[, such that (Xn)n≥0 is
V -geometrically ergodic, that is :

- there exists a P -invariant probability measure, π, satisfying π(V ) < +∞

- there exist real numbers κ < 1 and C ≥ 0 such that we have, for all n ≥ 1 and x ∈ E,

(∗) sup

{
|P nf(x) − π(f)| , f : E→C measurable, |f | ≤ V

}
≤ C κn V (x).

Recall that ψ-irreducibility means that, for all x ∈ E and A ∈ E such that ψ(A) > 0, there exists
n = n(x,A) ∈ IN ∗ such that P n1A(x) > 0. Many examples of geometrically ergodic Markov chains
can be found in Meyn and Tweedie (1993).

Let ξ be a real-valued measurable function on E. Excepting theorem III, it will be supposed that
π(ξ) = 0. If not, Theorems I-II will apply to the function ξ − π(ξ). For n ≥ 1, we set

Sn =
n∑

k=1

ξ(Xk).

If ξ is dominated by
√
V , we know that the sequence ( 1

n
IEx[(Sn)2])n converges to a non-negative

real number σ2 (the asymptotic variance) whose value does not depend on the initial condition
X0 = x, x ∈ E, and that, in the case σ2 > 0, the sequence of r.v ( Sn√

n
)n converges in distribution to

the normal distribution N (0, σ2). See for instance Meyn and Tweedie (1993) Chap. 17, Chen, X.
(1999) (case V ≡ 1), and Kontoyiannis and Meyn (2003) for the caracterization of the case σ2 = 0.

Let 0 ≤ α < 1
2 . In this paper, we shall suppose that ξ is dominated by V α, that is

ξ

V α
is bounded

on E, and we intend to establish a CLT with rate of convergence, a local limit theorem and a
renewal theorem under simple additional assumptions on α that will be specified in each of these
statements.

The initial distribution of the chain is denoted by µ
0
. The condition µ

0
(V ) < +∞ used in Theorems

I-III holds for instance when µ
0

= π (stationary case) and µ
0

= δx for any x ∈ E (X0 = x).

Theorem I (T.L.C with rate of convergence). If ξ is dominated by V α, with α < 1
4 , if

π(ξ) = 0 and σ2 > 0, and if µ
0
(V ) < +∞, then there exists a positive constant C such that we

have for all n ≥ 1

sup
u∈IR

∣∣∣∣IP µ
0

[
Sn ≤ uσ

√
n

]
−N (0, 1)(] −∞, u])

∣∣∣∣ ≤ C
1 + µ

0
(V )√
n

.

Recall that A ∈ E is said to be P -invariant if P (a,A) = 1 for all a ∈ A.
In local and renewal theorems (Th. II-III), we shall need the following non-arithmeticity assumption
whose functional meaning will be investigated in Section III.3. Let 0 < θ ≤ 1.
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Hypothesis (N-A)θ. There is no t ∈ IR∗, no P -invariant subset A ∈ E, no λ ∈ C , |λ| = 1, and no
functions w dominated by V θ, with non-zero constant modulus on A, such that we have

∀x0 ∈ A, ∀n ≥ 1, exp

(
it[ξ(x1) + . . .+ ξ(xn)]

)
w(xn) = λnw(x0) Πn

i=1P (xi−1, dxi) − p.s.

Theorem II (local). If (N-A)θ holds for a certain θ ∈]0, 1], if ξ is dominated by V α, with α < 1
2 ,

if π(ξ) = 0 and σ2 > 0, and if µ
0
(V ) < +∞, then we have for every finite interval J = [a, b] of IR

lim
n
σ
√

2πn IP µ
0
([Sn ∈ J ]) = b− a.

For all borel subset B in IR we set : Uµ
0
(B) =

∑

n≥1

IEµ
0
[1B(Sn)].

Theorem III (renewal). If (N-A)1 holds, if ξ is dominated by V α, with α < 1
2 , if π(ξ) > 0 and

σ2 > 0, and if µ
0
(V ) < +∞, then Uµ

0
is a Radon measure on IR, and we have for every finite

interval J = [a, b] of IR

lim
y →−∞

Uµ
0
(J + y) = 0 and lim

y →+∞
Uµ

0
(J + y) =

b− a

π(ξ)
.

In the stationary case, Theorem I is provided by the theorem of Bolthausen, E. (1982) under the
weaker condition π(|ξ|3) < +∞. In Kontoyiannis and Meyn (2003), Theorem I is proved in the
non-stationary case for bounded functions ξ. In Steinsaltz, D. (2001), as in the present work, ξ is
supposed to be dominated by V α, but the rate of convergence obtained by Steinsaltz is O(( ln n

n
)β),

with β = 1
2(α+1) and α ≤ 1

2 . In Fuh, C.D.(1999) the rates of convergence in the CLT, which
are expressed in terms of Paley’s inequalities, are proved in the stationary case and under the

conditon that P (ξ2V )
V

is bounded, but in most cases this last condition requires moment conditions
of exponential type on the transition probability P , See § II.2. Finally, to our knowledge, when ξ

is not bounded, local and renewal theorems have not been investigated in the case of geometrically
ergodic chains.

The proofs of Theorems I-III are based on the spectral method of Nagaev, initiated in Nagaev,
S.V. (1957), and Guivarc’h and Hardy (1988), which consists in applying a perturbation theorem
to the Fourier operators P (t)f = P (eitξf). This method, fully described in Hennion and Hervé
(2001), requires a quasi-compact action of the transition probability P on a certain Banach space B
composed of measurable functions on E. Condition (∗) ensures here that B may be the space B

V
of

measurable functions on E that are dominated by V , equipped with the norm ‖f‖
V

= supx∈E
|f(x)|
V (x) .

Notice that spectral methods in B
V
-type spaces have been already applied in the context of geo-

metrically ergodic chains, in particular in the above cited papers Fuh, C.D.(1999), Kontoyiannis
and Meyn (2003). See also Meyn and Tweedie (1994), Kontoyiannis and Meyn (2005).

If ξ is bounded, then it is easily shown that, for z ∈ C , the (Laplace) kernels Pz(x, dy) = ezξP (x, dy)
define continuous actions Pz on the space B

V
and that the map z 7→ Pz is analytic (use for instance

the proof of Lemma VIII.10 in Hennion and Hervé (2001)). Consequently, if ξ is bounded, the
standard perturbation theory applies to Pz and the general statements in Hennion and Hervé
(2001) provide Theorems I-III and the large deviations theorem under a usual non-arithmeticity
condition. However let us remember that the hypothesis that ξ is bounded is often too restrictive
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in applications.
If ξ is unbounded, there is no guarantee that the fonction t 7→ P (t) is continuous from IR to the
space of bounded operators on B

V
, See Section II.2, so one cannot employ the standard perturbation

theory.

As already exploited in Hennion and Hervé (2004) and Hervé, L. (2005), the use of the perturbation
theorem of Keller and Liverani (1999) greatly enhances the power of the spectral method. Here it
will enable us to relax the boundedness hypothesis on the functional ξ. We shall follow a pattern
similar to that developped in Hennion and Hervé (2004) and in Hervé, L. (2005) :
- In Section II.3, we shall apply to P (t) the theorem of Keller and Liverani ; this will be possible
with the help of a recent work of Hennion, H. concerning quasi-compactness of operators acting on
spaces of bounded functions.
- In Sections II.4, we shall prove Taylor’s expansions of P (t) at t = 0 ; in this part P (t) will be
seen as a bounded linear map between two suitable B

V
-type spaces.

- Then, in Section III, we shall be in a position to apply the techniques of characteristic functions
described in Hennion and Hervé (2001) which are similar to those used for sums of independant
identically distributed random variables.

Finally let us mention that, by using the method developped in Hennion and Hervé (2001) (2004),
Theorems I-III can be extended to the sequence of r.v (Xn, Sn)n.

II. STUDY OF FOURIER KERNELS

II.1 NOTATIONS.

If U is a function defined on E and taking values in [1,+∞[, we denote by (B
U
, ‖ · ‖

U
) the Banach

space of measurable complex-valued functions f on E such that

‖f‖
U

= sup
x∈E

|f(x)|
U(x)

< +∞.

We denote by L(B
U
) the space of bounded operators on B

U
, by B′

U
the topological dual space of

B
U
. If φ ∈ B′

U
and f ∈ B

U
, we set φ(f) = 〈φ, f〉. For simplicity, ‖ · ‖

U
equally stands for the norm

on B′
U

and the operator norm on L(B
U
). Finally we set 1 = 1E .

Observe that a probability measure µ on E defines an element of B ′
U

if µ(U) < +∞ ; in particular
we have π ∈ B′

V
by hypothesis. Besides, the fact that f is dominated by V α is equivalent to

f ∈ B
V α . Finally Hypothesis (∗) can be rewritten as

(∗∗) ∀n ≥ 1, ∀f ∈ B
V
, ‖P nf − π(f)1‖

V
≤ C κn ‖f‖

V
.

Equivalently this means that P is a power-bounded quasi-compact operator on B
V

and that 1 is a
simple eigenvalue and the unique eigenvalue of modulus one.

For 0 < θ ≤ 1, we set B
θ

= B
V θ

and ‖ · ‖
θ

= ‖ · ‖V θ , in particular B
1

= B
V

and ‖ · ‖
1

= ‖ · ‖
V
.

Lemma 1. For all 0 < θ ≤ 1, (Xn)n≥0 is V θ-geometrically ergodic, that is : there exist real
numbers κ

θ
< 1 and C

θ
≥ 0 such that

(∗ ∗ ∗) ∀n ≥ 1, ∀f ∈ B
θ
, ‖P nf − π(f)1‖

θ
≤ C

θ
κn

θ
‖f‖

θ
.
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Proof. This is a well-known result whose we briefly recall the proof. Under the aperiodicity and
ψ-irreducibility hypotheses, condition (∗) is equivalent to the so-called drift criterion, See Meyn
and Tweedie (1993) : there exist r < 1, M ≥ 0, a petite set C ∈ E , and a positive function W

on E, satisfying c−1 V ≤ W ≤ c V with c ∈ IR∗
+, such that PW ≤ rW + M1C . Since u 7→ uθ is

concave, we get by Jensen’s inequality P (W θ) ≤ (rW +M1C)θ ≤ rθW θ +M θ1C . It follows that
(Xn)n≥0 is V θ-geometrically ergodic. 2

II.2. FOURIER KERNELS AND PRELIMINARY REMARKS

The starting point in the spectral method is given by the following formula

(F ) ∀t ∈ IR, IEµ
0
[eitSn ] = µ

0
(P (t)n1) (cf. Prop. 3, Sect. III.1),

where µ
0

is the initial distribution and the P (t)’s denote the Fourier kernels associated to P and
ξ, defined by

t ∈ IR, x ∈ E, P (t)f(x) = P (eitξf)(x) =

∫

E
eitξ(y) f(y)P (x, dy),

where f is any P (x, ·)-integrable function.
The spectral method requires a perturbation theorem that enables to generalize to P (t) the proper-
ties (∗∗) or (∗ ∗ ∗) of Section II.1. Unfortunately, when ξ is unbounded, the standard perturbation
theory does not apply in general. Actually, establishing even the continuity of the function P (·),
taking values in L(B

V
), seems to be difficult. Indeed observe that we have for f ∈ B

V

(C) |P (t)f − Pf | ≤ P (|eitξ − 1| |f |) ≤ ‖f‖
V
P (|eitξ − 1|V ) ≤ |t| ‖f‖

V
P (|ξ|V ),

hence, under the condition |ξ| ≤ DV α, with D ∈ IR+,

‖P (t) − P‖
V

≤ |t| sup
x∈E

P (|ξ|V )(x)

V (x)
≤ D |t| sup

x∈E

P (V 1+α)(x)

V (x)
.

If α > 0, then in general the function PV 1+α

V
is not bounded on E. Let us observe that this problem

always occurs in the specral method when ξ is unbounded, See for instance Milhaud and Raugi
(1989), Hennion and Hervé (2001) (2004), Hervé, L. (2005).

As mentionned in Section I, it is supposed in Fuh, C.D.(1999) that P (ξ2V )
V

is bounded. Notice
that, under this condition, one can apply to P (t) the standard perturbation theory (use the above
inequalities). However this hypothesis is quite restrictive, actually it seems that it only holds
for exponential-type functions V provided that the transition probability satisfies some moment
conditions of exponential type.

II.3. PERTURBATION THEOREM OF KELLER-LIVERANI

As in Hennion and Hervé (2004) and in Hervé, L. (2005), the perturbation theorem of Keller and
Liverani (1999) can be used in this work as a substitute for the standard perturbation theory. This
theorem ensures the following spectral properties for which it is only assumed that ξ is measurable
on E :
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Proposition 1. Let 0 < θ ≤ 1. There exist an open interval I
θ

containing t = 0, some real
numbers C

θ
∈ IR+ and ρ

θ
< 1, and lastly some functions λ(·), v(·), φ(·), and N(·), defined on I

θ

and taking values in respectively C , B
θ
, B′

θ
and L(B

θ
), such that we have, for all n ≥ 1, t ∈ I

θ
,

and f ∈ B
θ

P (t)nf = λ(t)n 〈φ(t), f〉 v(t) + N(t)nf,

with lim
t→ 0

λ(t) = λ(0) = 1, lim
t→ 0

v(t) = v(0) = 1, lim
t→ 0

φ(t) = φ(0) = π, ‖N(t)n‖
θ
≤ C

θ
ρn

θ
,

〈φ(t), v(t)〉 = 1, N(t)v(t) = 0, φ(t)N(t) = 0, 〈π, v(t)〉 = 1.

Furthermore let ρ′
θ

be any real number such that ρ
θ
< ρ′

θ
< 1, and let R

θ
be the subset of the

complex plane defined by

R
θ

= {z : z ∈ C , |z| ≥ ρ
θ
, |z − 1| ≥ 1 − ρ′

θ
}.

Then

M
θ

= sup

{
‖(z − P (t))−1‖

θ
, t ∈ I

θ
, z ∈ R

θ

}
< +∞.

Since P (t) is seen as an operator on B
θ
, the above eigen-element of P (t) should be denoted by λ

θ
,

v
θ
, φ

θ
, and N

θ
. But, since for θ′ ≤ θ the canonical embedding from B

θ′
into B

θ
is continuous, it is

easily seen that these elements do not depend on θ.

The results in Keller and Liverani (1999) require the notion of essential spectral radius whose we
recall the definition. Let B be a Banach space, let T ∈ L(B), and let r(T ) be the spectral radius of
T . We denote by T|G the restriction of T to any T -invariant subspace G of B.
The essential spectral radius of T , denoted by re(T ), is the greatest lower bound of r(T ) and the
real numbers r ≥ 0 for which there exists a decomposition into closed T -invariant subspaces

B = Fr ⊕Hr,

where Fr has finite dimension, each eigenvalue of T|Fr
is of modulus ≥ r, while r(T|Hr

) < r.
In particular T is quasi-compact if and only if re(T ) < r(T ).

Proposition 1 derives from the theorem of Keller and Liverani (1999) which can be applied with
the help of the following statement. We conserve the notations of Lemma 1.

Proposition 2. Let 0 < θ ≤ 1. For all t ∈ IR, P (t) is a bounded operator on B
θ
, and the conditions

of Keller-Liverani theorem hold, that is :

(KL1) ∀t ∈ IR, ∀n ≥ 1, ∀f ∈ B
θ
, ‖P (t)nf‖

θ
≤ C

θ
κn

θ
‖f‖

θ
+ ‖1‖

θ
π(|f |).

(KL2) There exists ϑ
θ
< 1 such that, for all t ∈ IR, the essential spectral radius of P (t) acting on

B
θ

satisfies re(P (t)) ≤ ϑ
θ
.

(KL3) ∀t ∈ IR, ∀f ∈ B
θ
, ∀n ≥ 1, π(|P (t)nf |) ≤ π(|f |)

(KL4) lim
t→ 0

sup

{
π (|P (t)f − Pf |) , f ∈ B

θ
, ‖f‖

θ
≤ 1

}
= 0.
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Proof of (KL1), (KL3) and (KL4). It is easily proved by induction that |P (t)nf | ≤ P n|f | for all
f ∈ B

θ
and n ≥ 1. Since P ∈ L(B

θ
) (Lemma 1), this inequality applied with n = 1 implies that

P (t) ∈ L(B
θ
). By using the inequality (∗ ∗ ∗) of Lemma 1, and the invariance of π, the above

inequality easily provides (KL1), and (KL3). Moreover observe that

π(|P (t)f − Pf |) ≤ π(P (|eitξ − 1| |f |)) = π(|eitξ − 1| |f |) ≤ ‖f‖
θ
π(|eitξ − 1|V ).

Then (KL4) follows from hypothesis π(V ) < +∞ and from Lebesgue’s theorem. 2

In order to establish (KL2), we shall use a recent result of Hennion, H. Denote by (B̃, ‖ · ‖
0
)

the space of bounded measurable complex-valued functions on E, equipped with its usual norm
‖g‖

0
= sup

x∈E
|g(x)|.

Let Q be a bounded positive kernel on E, and let ν be a probability measure on E. We assume
that there exist η > 0, ϑ < 1 and ` ≥ 1 such that

(D) ∀A ∈ E ,
[
ν(A) ≤ η

]
⇒

[
∀x ∈ E, Q`(x,A) ≤ ϑ`

]
.

If Q is markovian, then this hypothesis corresponds to the well-known Doeblin condition.
Now let χ be a bounded measurable complex-valued function on E×E, and let Qχ be the bounded

operator on B̃ defined by (Qχg)(x) =

∫

E
g(y)χ(x, y)Q(x, dy).

Theorem. [See Lemma III.4 in Hennion H.]
Under Condition (D), we have re(Qχ) ≤ ϑ sup

x,y∈E
|χ(x, y)|.

Proof of (KL2). For T ∈ L(B
θ
) and g ∈ B̃, we set T̃ g = V −θ T (V θ g). Then

Lemma 2. We have re(T ) = re(T̃ ).

Proof. Let r ≥ 0. Assume that Fr and Hr are closed T -invariant subspaces of B
θ

such that

B
θ

= Fr ⊕Hr,

where dimFr < +∞, each eigenvalue of T|Fr
is of modulus ≥ r, and r(T|Fr

) < r. Then

F̃r = {g = V −θf, f ∈ Fr} and H̃r = {g = V −θf, f ∈ Hr}

are clearly closed T̃ -invariant subspaces of B̃. We have dim F̃r = dimFr < +∞, and B̃ = F̃r ⊕ H̃r.
Moreover, if g ∈ F̃r is an eigen-function for T̃ , then so is the function V θ g ∈ Fr with respect
to T and the same eigenvalue. Thus T̃|F̃r

has only eigenvalues of modulus ≥ r. Lastly, from the

definition of H̃r and ‖ · ‖
θ
, we get ‖(T̃|H̃r

)n‖
0

= ‖(T|Hr
)n‖

θ
, thus r(T̃|H̃r

) < r. Hence re(T̃ ) ≤ re(T ).

On the same way we have re(T ) ≤ re(T̃ ). 2

Lemma 3. The positive kernel P̃ (x, dy) = V −θ(x)V θ(y)P (x, dy) satisfies the condition (D) with

respect to the probability measure ν
θ

defined by ν
θ
(A) =

1

π(V θ)
π(V θ 1A) for all A ∈ E.
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Proof. Observe that P̃ n = (P̃ )n. Then Lemma 3 is an easy consequence of the inequality (∗ ∗ ∗) of
Lemma 1 and the fact that V θ ≥ 1. 2

Now let t ∈ IR, and apply the above theorem with Q = P̃ and χ(x, y) = eitξ(y) (the variable x does

not occur here). We have Qχ = P̃ (t) and |χ| = 1, thus re(P̃ (t)) ≤ ϑ
θ
, where ϑ

θ
is a real number

in ]0, 1[ which is given by Lemma 3 (notice that ϑ
θ

does not depend on t). Then, by Lemma 2, we
get re(P (t)) ≤ ϑ

θ
. 2

II.4. TAYLOR’S EXPANSIONS OF P (t) AND OF ITS EIGEN-ELEMENTS

In order to establish limit theorems of Section I, we have to obtain some expansions at t = 0 of
the functions λ(·), v(·), φ(·) and N(·) introduced in Proposition 1. We proceed as in Hennion and
Hervé (2004).

Let ‖ · ‖
θ′,θ

be the operator norm in the space L(B
θ′
,B

θ
) of bounded linear maps from B

θ′
to B

θ
.

We assume that ξ is dominated by V α, with 0 < α ≤ 1
2 , that is there exists D ∈ IR+ such that we

have for all x ∈ E

|ξ(x)| ≤ DV α(x).

For 0 < θ′ < θ and n ∈ IN , we introduce the following condition on α

Un(θ′, θ) : θ ∈ ]θ′ + nα, 1],

and we shall write TE(n) for Taylor’s expansion of order n. In the next Lemma, ρ
θ′

denotes the
real number in ]0, 1[ defined in Proposition 1 (applied to P (t) acting on B

θ′
).

Lemma 4.
(a) For n ∈ IN , under condition Un(θ′, θ), P (t) has a TE(n) at t = 0 in L(B

θ′
,B

θ
).

(b) Under condition U1(θ
′, θ), there exist some real numbers a, b satisfying ρ

θ′
< a < b < 1, and a

continuous function z 7→ R′
z from R = {z : z ∈ C , |z| ≥ a, |z − 1| ≥ 1 − b} to L(B

θ′
,B

θ
) such that

lim
t→0

1

|t| sup
z∈R

∥∥∥∥(z − P (t))−1 − (z − P )−1 − tR′
z

∥∥∥∥
θ′,θ

= 0.

(c) Under condition U 2(θ
′, θ), there exist some real numbers a, b satisfying ρ

θ′
< a < b < 1, and

some continuous functions z 7→ R′
z and z 7→ R′′

z from R = {z : z ∈ C , |z| ≥ a, |z − 1| ≥ 1 − b} to
L(B

θ′
,B

θ
) such that

lim
t→0

1

t2
sup
z∈R

∥∥∥∥(z − P (t))−1 − (z − P )−1 − tR′
z −

t2

2
R′′

z

∥∥∥∥
θ′,θ

= 0.

Proof. (a) The proof of (a) is easy, let us give it for n = 1. Define the kernel

Lf(x) = iP (ξf)(x).

Let ε ∈]0, 1]. From the inequality |eiu − 1 − iu| ≤ Cε|u|1+ε that is valid for all u ∈ IR, we get for
f ∈ B

θ′

|P (t)f − Pf − tLf | ≤ P

(
|eitξ − 1 − itξ| |f |

)

≤ Cε|t|1+ε ‖f‖
θ′
P

(
|ξ|1+εV θ′

)
≤ D1+εCε|t|1+ε ‖f‖

θ′
P

(
V θ′+α(1+ε)

)
.
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With ε such that θ′ +α(1+ ε) ≤ θ, we have PV θ′+α(1+ε) ≤ PV θ ≤ ‖P‖
θ
V θ. Consequently we have

‖P (t)f − Pf − itLf‖
θ
≤ D1+εCε|t|1+ε ‖P‖

θ
‖f‖

θ′
. This proves (a) for n = 1.

The proof of Assertions (b)-(c) is based on the following relation which holds for all bounded
operators U and V on a Banach space such that U and U − V are invertible :

(A) (U − V )−1 =
n∑

k=0

(U−1V )kU−1 + (U−1V )n+1(U − V )−1.

((A) is an easy consequence of the formula I −W n+1 = (I −W )
∑n

k=0W
k).

To prove (b), let us apply (A) with n = 1, U = z−P , V = P (t)−P , thus U −V = z−P (t). Using
the notations

R(z, t) = (z − P (t))−1 and R(z) = (z − P )−1,

and those of Proposition 1 (applied to P (t) acting on B
θ′

), we obtain for z ∈ R
θ′

and t ∈ I
θ′

R(z, t) = R(z) +R(z)(P (t) − P )R(z) +R(z)(P (t) − P )R(z)(P (t) − P )R(z, t).

Since by hypothesis θ′ + α < θ, one may choose θ1 such that θ′ < θ1 ≤ θ1 + α < θ. Thus assertion
(a) applies to (θ′, θ1) and n = 0 :

lim
t→0

‖P (t) − P‖
θ′,θ1

= 0.

Since condition U1(θ1, θ) holds, Assertion (a) applied to (θ1, θ) and n = 1 involves

P (t) − P = tL+ Υ(t), with L,Υ(t) ∈ L(B
θ1
,B

θ
) and lim

t→0
|t|−1‖Υ(t)‖

θ1 ,θ
= 0.

Now let us write
R(z, t) = R(z) + tR′

z + Θ1(z, t) + Θ2(z, t),

with R′
z = R(z)LR(z), and

Θ1(z, t) = R(z)Υ(t)R(z), Θ2(z, t) = R(z)(P (t) − P )R(z)(P (t) − P )R(z, t).

The real numbers a, b of the statement are chosen such that the corresponding domain R is con-
tained in each set R

θ′
,R

θ1
,R

θ
(See Prop. 1). Besides consider the interval I = I

θ′
∩ I

θ1
∩ I

θ
.

Since we have L ∈ L(B
θ1
,B

θ
) ⊂ L(B

θ′
,B

θ
), and since R(·) is continuous from R to both L(B

θ′
) and

L(B
θ
), the function z 7→ R′

z is continuous from R to L(B
θ′
,B

θ
).

Using the preceding and the last assertion of Proposition 1, we obtain for t ∈ I and z ∈ R

|t|−1‖Θ1(z, t)‖θ′ ,θ
≤ |t|−1‖Θ1(z, t)‖θ1 ,θ

≤ |t|−1M
θ
‖Υ(t)‖

θ1 ,θ
M

θ1
,

|t|−1‖Θ2(z, t)‖θ′ ,θ
≤M

θ

(
‖L‖

θ1 ,θ
+ |t|−1‖Υ(t)‖

θ1 ,θ

)
M

θ1
‖P (t) − P‖

θ′,θ1
M

θ′
.

The last members in these inequalities do not depend on z ∈ R and converge to 0 when t → 0.
This proves Assertion (b) of Lemma.
For assertion (c), we can proceed in the same way by applying (A) with n = 2 (use the estimations
of Hennion and Hervé (2004) adapted to B

θ
-type spaces). 2
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As in the standard perturbation theory, the eigen-elements v(t), φ(t), and N(t) are obtained in
Keller and Liverani (1999) with the help of the projections defined by

Πj(t) =
1

2iπ

∫

Γj

(z − P (t))−1dz, j = 0, 1,

where the line integrals are considered on some suitable oriented circles Γ1 and Γ0 respectively
centered at z = 1 and z = 0 . More precisely, denoting by Π1(t)

∗ the conjugate operator of Π1(t),
we get from Keller and Liverani (1999)

φ(t) = Π1(t)
∗π, v(t) = 〈π,Π1(t)1〉−1Π1(t)1, and for n ≥ 1, N(t)n =

1

2iπ

∫

Γ0

zn (z − P (t))−1dz.

From Assertions (b) and (c) of Lemma 4 and by integration, we easily deduce the following prop-
erties (See Hennion and Hervé (2004)) :

Lemma 5.
(b’) Under condition U 1(θ

′, θ), the functions v(·), φ(·), and N(·) admit a TE(1) at t = 0 in
respectively (B

θ′
, ‖ · ‖

θ
), B′

θ′
and L(B

θ′
,B

θ
). Moreover there exist some constants K > 0 and ρ < 1

(which depend on (θ′, θ)) such that

∀n ≥ 1, ∀t ∈ I, ‖N(t)n −N(0)n‖
θ′,θ

≤ K |t| ρn.

(c’) Under condition U 2(θ
′, θ), the functions v(·), φ(·) and N(·) admit a TE(2) at t = 0 in

respectively (B
θ′
, ‖ · ‖

θ
), B′

θ′
and L(B

θ′
,B

θ
). Moreover we have, for all t ∈ I and n ≥ 1,

N(t)n = N(0)n + tN1,n +
t2

2
N2,n + t2εn(t),

with, for j = 1, 2 : Nj,n, εn(t) ∈ L(B
θ′
,B

θ
), lim

t→ 0
sup
n≥1

‖εn(t)‖
θ′,θ

= 0, and sup
n≥1

‖Nj,n‖θ′,θ
< +∞.

III. PROOF OF LIMIT THEOREMS

Using the previous preparations, we shall provide in Section III.1 Taylor’s expansions of the charac-
teristic function of Sn. Then Theorems I-III will derive from the usual Fourier transform techniques
which are similar to those employed for sums of independant identically distributed random vari-
ables. These techniques are presented in Hennion and Hervé (2001) and we shall indicate in Sections
III.2-4 what parts of this work may be used to establish Theorems I-III.

The spaces B
θ

and the Fourier kernels P (t) have been defined in Sections II.1-2. The functions
λ(·), v(·), φ(·) and N(·) have been introduced in Proposition 1 ; for a given 0 < θ ≤ 1, they are
defined from an open interval I

θ
containing t = 0 to respectively C , B

θ
, B′

θ
and L(B

θ
). Recall that

‖ · ‖
θ′,θ

denotes the operator norm in L(B
θ′
,B

θ
).

We assume that ξ is dominated by V α, that is ξ ∈ Bα ; the conditions imposed to α will be specified
in the next statements.

III.1. EXPANSIONS OF THE CHARACTERISTIC FUNCTION OF Sn

The proposition below will be only used in the case f = 1 afterwards. By applying this proposition
to f ∈ B

θ
, f ≥ 0, with suitable θ, one may generalize Theorems I-III to the sequence of r.v (Xn, Sn)n

as in Hennion and Hervé (2001) (2004).
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Recall that µ
0

is the initial distribution of the chain, we shall suppose that µ
0
(V ) < +∞.

Since α ≤ 1
2 in the following statements, the real number m = π(ξ) and the asymptotic variance

σ2 (See Sect. I) are defined.

Proposition 3.
(1) If α < 1

2 , then, for every real number θ such that α < θ < 1 − α, there exists a function A(·)
from I

θ
to L(B

θ
) such that we have, for n ≥ 1, t ∈ I

θ
, and f ∈ B

θ

(F ′) IEµ
0

[
f(Xn)eitSn

]
= 〈µ

0
, P (t)nf〉 = λ(t)n

(
π(f)+ < µ

0
, A(t)f >

)
+ 〈µ

0
, N(t)nf〉.

For all t ∈ I
θ
, we have |λ(t)| ≤ 1, there exists S ∈ C such that 1

λ(t) = 1 + imt− S
t2

2
+ o(t2),

and, if m = π(ξ) = 0, we have S = σ2.
Furthermore there exist some constants K ≥ 0 and ρ < 1 which depend on θ such that we have the
following properties for n ≥ 1, t ∈ I

θ
and f ∈ B

θ
:

(i) If , either f = 1, or f ∈ B
θ

and µ
0

= π, then

|〈µ
0
, N(t)nf〉| ≤ K ρn |t|µ

0
(V ) ‖f‖

θ

(ii) ‖N(t)n‖
θ
≤ K ρn,

(iii) ‖A(t)‖
θ,1

≤ K |t|.

Moreover, if m = 0 and σ2 > 0, then, for each real number t such that t
σ
∈ I

θ
, we have

(iv) |λ(
t

σ
)| ≤ e−

t2

4 .

(2) If α < 1
4 , and if m = 0 and σ2 > 0, then there exists a constant C such that we have, for each

real number t satisfying t
σ
√

n
∈ I

θ
,

(v) |λ(
t

σ
√
n

)n − e−
t2

2 | ≤ C√
n
|t|3e− t2

4 .

For the proof of Proposition 3, we proceed as in Hennion and Hervé (2004), we shall just recall the
main arguments.

Proof of Proposition 3.
(1) Since α < 1

2 and α < θ < 1 − α, one may find θ2 such that 0 < θ2 ≤ θ2 + α < θ ≤ θ + α < 1.
The conditions U1(θ, 1) and U1(θ2, θ) of Section II.4 then hold. This yields the following properties
(by Lemmas 4-5) :

(R1) The functions v(·), φ(·), and N(·) have a TE(1) at t = 0 in respectively (B
θ
, ‖ · ‖

1
), B′

θ
and

L(B
θ
,B1), and there exist some constants K ≥ 0 and ρ < 1 such that we have, for all n ≥ 1 and

t ∈ I
θ
, ‖N(t)n −N(0)n‖

θ,1
≤ K |t| ρn.

(R2) P (·) has a TE(1) at t = 0 in L(B
θ2
,B

θ
).

1It can be proved that S ∈ IR+ and S ≥ m2, See for instance Hennion and Hervé (2004) (Lemma 9.5).
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The first equality in (F’) easily follows from the Markov property, See for instance Hennion and
Hervé (2001), the second one results from Proposition 1 by setting A(t)f = 〈φ(t), f〉v(t) − 〈π, f〉1.
The conditions in Assertion (i) involve that 〈µ

0
, N(0)nf〉 = 0, consequently the inequality in (i) is

an immediate consequence of (R1). The inequality (ii) has already been stated in Proposition 1.
The inequality (iii) can be proved by observing that, since φ(·) and v(·) have a TE(1) at t = 0 in
respectively B′

θ
and (B

θ
, ‖ · ‖

1
), there exist some constants C1 and C2 such that we have for f ∈ B

θ

‖A(t)f‖
1

≤ |〈φ(t), f〉| ‖v(t) − 1‖
1

+ |〈φ(t) − π, f〉| ‖1‖
1

≤ C1 |t| ‖φ(t)‖
θ
‖f‖

θ
+ C2 |t| ‖f‖θ

‖1‖
1
.

It remains to prove the properties concerning λ(·). We know that λ(0) = 1 and λ(t)n = 〈π, P (t)nv(t)〉
(Prop. 1). From the invariance of π, it follows that |λ(t)|n ≤ 〈π, P n|v(t)|〉 = 〈π, |v(t)|〉 for all n ≥ 1,
hence |λ(t)| ≤ 1. Now set

p(t) = 〈φ(t),1〉, π̂(t) = 〈π, P (t)1〉 = π(eitξ) and u(t) = P (t)1 − π̂(t)1,

notice that u(0) = 0 and 〈π, u(t)〉 = 0. Besides it follows from (R2) that P (·)1 and 〈π, P (·)1〉 have
a TE(1) at t = 0 in respectively B

θ
and C . Thus u(·) has a TE(1) at t = 0 in B

θ
.

In order to prove the stated expansion for λ(·), we shall use the following properties (R3)-(R4)
whose proof is easy (use Prop 1. for (R3) and Lebesgue Theorem for (R4)) :

(R3) λ(t) =
1

p(t)
〈φ(t) − π, u(t)〉 + π̂(t).

(R4) If nα ≤ 1, then π̂(·) is of class Cn, and π̂(k)(0) = ikπ(ξk) for k = 1, . . . , n.

Lemma 6. Let S = π(ξ2) − 2〈φ′(0), u′(0)〉. Then λ(t) = 1 + imt − S t2

2 + o(t2). Moreover, if
m = π(ξ) = 0, then S = σ2.

Proof. By (R4), from the fact that α < 1
2 , we have π̂(t) = 1 + imt − π(ξ2) t2

2 + o(t2). We have
φ(t) − π = φ(t) − φ(0) = tφ′(0) + o(t) in B′

θ
, u(t) = tu′(0) + o(t) in B

θ
, and p(t) = 1 +O(t) in C .

Setting c = 2〈φ′(0), u′(0)〉, we get

1

p(t)
〈φ(t) − π, u(t)〉 =

(
1 +O(t)

)(
c
t2

2
+ o(t2)

)
= c

t2

2
+ o(t2).

Combining in (R3) the previous expansions, we obtain λ(t) = 1 + imt− S t2

2 + o(t2).
The equality S = σ2, under the condition m = 0, is a well-known fact when the standard perturba-
tion theory of operators is applied, See for instance Ney and Nummelin (1987), Kontoyiannis and
Meyn (2003). The arguments used in these papers easily extend to the present context. 2

To prove the property (iv) of Proposition 3, observe that, if m = 0 and σ2 > 0, then we have, for

small |t|, |λ( t
σ
)| ≤ 1 − t2

2 + t2

4 ≤ e−
t2

4 .

To prove Assertion (2) of Proposition 3, it suffices to establish that λ(t) = 1 − σ2 t2

2 + O(t3), See
for instance Hennion and Hervé (2001), Section VI.2. For that, notice that, under the condition
α < 1

4 , there exist θ4 and θ2 such that 0 < θ4 ≤ θ4 + 2α < θ2 ≤ θ2 + 2α < 1. So the conditions
U2(θ2, 1) and U2(θ4, θ2) hold, and we get by Lemmas 4-5 : φ(t)−π = tφ′(0)+ t2φ2 +o(t2) in B′

θ2
and

u(t) = tu′(0)+ t2u2 +o(t2) in B
θ2

. Hence 1
p(t) 〈φ(t)−π, u(t)〉 = (1+O(t))(c t2

2 +O(t3)) = c t2

2 +O(t3).

Since π̂(·) is of class C4 by (R4), the stated expansion for λ(t) follows from (R3). 2

12



III.2 PROOF OF THEOREM I.

To make easier the link with the proofs given in Hennion and Hervé (2001), let us specify that
Proposition 3 exactly corresponds to Proposition VI.2 in the previously cited work. Let us just
notice that λ = 1 is here the unique peripheral eigenvalue of P acting on B

θ
; the perturbed

eigenvalue λ(t) is denoted by λ1(t) in Hennion and Hervé (2001).
Besides observe that, for all θ ∈]0, 1], we have 1 ∈ B

θ
, and µ

0
∈ B′

θ
since µ

0
(V ) < +∞.

Following the proof of Section VI.3 in Hennion and Hervé (2001), Theorem I is a consequence of
Proposition 3 applied with f = 1.

III.3 PROOF OF THEOREM II.

In order to establish Theorems II-III, we shall investigate the link between the condition (N-A)
θ

of
Section I and the spectral properties of P (t).

Lemma 7. Let 0 < θ ≤ 1. Assume that the condition (N-A)
θ

holds. Then, for all compact subset
K of IR∗, there exist c

K,θ
≥ 0 and ρ

K,θ
< 1 such that we have, for all n ≥ 1,

(N-A)′
θ

sup
t∈K

‖P (t)n‖
θ
≤ c

K,θ
ρn

K,θ
.

In particular, if µ
0
(V ) < +∞, then we have sup

t∈K
|〈µ

0
, P (t)n1〉 | ≤ c

K,θ
µ

0
(V ) ‖1‖

θ
ρn

K,θ
.

Theorem II then results from Proposition 3 (applied with f = 1) and from Lemma 7 which enable
to employ the Fourier transform techniques presented in Section VI.4 in Hennion and Hervé (2001).
Notice that, in Theorems II-III, the hypothesis (N-A)

θ
may be replaced with (N-A)′

θ
.

Proof of lemma 7. Let r(P (t)) be the spectral radius of P (t) acting on B
θ
.

1. For all t ∈ IR∗, we have r(P (t)) < 1.
From the inequality (KL1) of Proposition 2, we obtain that the sequence (P (t)n)n is bounded in
L(B

θ
). Thus r(P (t)) ≤ 1. Suppose now that r(P (t)) = 1 : then P (t) is quasi-compact by (KL2),

thus there exists an eigenfunction w ∈ B
θ

corresponding to an eigenvalue λ ∈ C of modulus one,
but this is impossible under the condition (N-A)

θ
(See for instance Hennion and Hervé (2001) Prop.

V.2).

2. Let K be a compact subset of IR∗. We have rK = sup{r(P (t)), t ∈ K} < 1.
Suppose that rK = 1. Then there exists a sequence (τk)k in K such that limk r(P (τk)) = 1. For
k ≥ 1, denote by λk a spectral value of P (τk) such that |λk| = r(P (τk)). By compactness, one may
assume that the sequences (τk)k and (λk)k converge. Let t0 = limk τk and λ = limk λk ; observe
that t0 ∈ K, thus t0 6= 0, and |λ| = 1. Besides, when t→ t0, the family {P (t), t ∈ IR} equally
verifies the conditions of Proposition 2 (that is, (KL1) (KL2) (KL3) hold in the same way, and it
is easily seen that (KL4) remains valid when t→ t0 and P is replaced with P (t0)). Then it follows
from Keller and Liverani (1999) (p. 145) that λ is a spectral value of P (t0). But, since t0 6= 0 and
|λ| = 1, this contredicts assertion 1.

3. There exist c
K
≥ 0 and ρ

K
< 1 such that we have, for all n ≥ 1, sup

t∈K
‖P (t)n‖

θ
≤ c

K
ρn

K
.
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Let ρ
K

be such that rK < ρ
K
< 1, and let Γ be the oriented circle {|z| = ρ

K
} in C . We have

P (t)n =
1

2iπ

∫

Γ
zn(z − P (t))−1dz.

Let t0 ∈ K. The results of Keller and Liverani (1999), applied as above with t→ t0, ensures that
there exists an open interval It0 containing t0 such that sup{‖(z − P (t))−1‖

θ
, t ∈ It0 , |z| = ρ

K
} <

+∞. From compactness it follows that sup{‖(z − P (t))−1‖
θ
, t ∈ K, |z| = ρ

K
} < +∞. The

property 3 then derives from the above integral formula. 2

III.4 PROOF OF THEOREM III.

For φ ∈ B′
θ

and v ∈ B
θ
, we denote by v ⊗ φ the element of L(B

θ
) defined by v ⊗ φ(f) = 〈φ, f〉 v.

Proposition 4. If α < 1
2 and if the condition (N-A)1 holds, then there exists 0 < θ2 < 1

such that the function R1(·) = (1 − P (·))−1P (·) is of class C1 from IR∗ to L(B
θ2
,B

1
), and there

exists an open interval I containing t = 0 such that the functions R2(·) = (1 − N(·))−1N(·) and
R3(·) = λ(·) v(·) ⊗ φ(·) are of class C1 from I to L(B

θ2
,B

1
).

Proposition 3 (with f = 1), Proposition 4, and Lemma 7 enable to establish Theorem III with the
help of the Fourier transform techniques described in Hennion and Hervé (2001), Chapter VII. 2

Proof of Proposition 4. Let θ2, θ be such that 0 < θ2 ≤ θ2 + α < θ ≤ θ + α < 1. The conditions
U1(θ, 1) and U1(θ2, θ) hold. Then it is easily seen that Proposition 4 derives from Lemmas 8-9 below
(for the study of λ(·), in addition of these two lemmas, use the properties (R3) (R4) introduced in
the proof of Proposition 3). 2

Lemma 8. Assume that the condition U `(θ
′, θ) holds with either ` = 0, or ` = 1. Then

(a) P (·) is of class C` from IR to L(B
θ′
,B

θ
).

(b) v(·), φ(·) and N(·) are of class C` from a certain open interval I containing t = 0 to respectively
(B

θ′
, ‖ · ‖

θ
), B′

θ′
and L(B

θ′
,B

θ
).

Lemma 9. Suppose that the condition U 1(θ
′, θ) holds. Then

(i) (1 −N(·))−1 is of class C1 from a certain open interval I containing t = 0 to L(B
θ′
,B

θ
).

(ii) If moreover the condition (N-A)1 holds, then (1−P (·))−1 is of class C1 from IR∗ to L(B
θ′
,B

θ
).

Proof of Lemma 8. We just establish the assertions of this lemma for ` = 1 ; the easier case ` = 0
can be obtained in the same way.
(a) Let Lt0f = iP (ξeit0ξf). We have for t0, h ∈ IR

|P (t0 + h)f − P (t0)f − hLt0f | ≤ P (|eihξ − 1 − ihξ| |f |) ≤ Cε|h|1+εP (|ξ|1+ε|f |).

Under the condition U 1(θ
′, θ), by proceeding as in the proof of Lemma 4(a), we obtain that P (·),

regarded as a function taking values in L(B
θ′
,B

θ
), has a derivative at t = t0. Furthermore, since

|Lt+hf − Ltf | ≤ P (|ξ| |eihξ − 1| |f |) ≤ Dε|h|εP (|ξ|1+ε|f |), the condition U 1(θ
′, θ) also involves the

continuity of t 7→ Lt (taking values in L(B
θ′
,B

θ
)).

2To make easier the reading of this chapter and the link with the present context, notice that λ(t) is here the unique
peripheral perturbed eigenvalue, so one will give the value 0 to the complex numbers λ2(t), . . . , λs(t) introduced in
Hennion and Hervé (2001).
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(b) Here we proceed as in the proof of Lemmas 4-5 (that correspond to the case t0 = 0). More
exactly, for z ∈ R

θ′
and t0, t0 + h ∈ I

θ′
(see not. of Prop. 1), let us apply formula (A) with n = 1,

U = z−P (t0), V = P (t0 +h)−P (t0). Then we obtain with the notations of the proof of Lemma 4

R(z, t0 + h) = R(z, t0) +R(z, t0)

(
P (t0 + h) − P (t0)

)
R(z, t0)

+ R(z, t0)

(
P (t0 + h) − P (t0)

)
R(z, t0)

(
P (t0 + h) − P (t0)

)
R(z, t0 + h).

Since Condition U1(θ
′, θ) holds, we can choose θ1 such that θ′ < θ1 ≤ θ1+α < θ. Let I = I

θ′
∩I

θ1
∩I

θ
.

By using the same arguments as in the proof of Lemma 4(b), one can prove that

lim
h→0

1

|h| sup
z∈R

∥∥∥∥R(z, t0 + h) −R(z, t0) − hR′(z, t0)
∥∥∥∥

θ′,θ

= 0,

with R′(z, t0) = R(z, t0)Lt0R(z, t0) and R = {z : z ∈ C , |z| ≥ a, |z − 1| ≥ 1 − b}, where a, b
are suitable real numbers such that ρ

θ′
< a < b < 1. Moreover R′(·, t0) = R(·, t0)Lt0R(·, t0) is

continuous from R to L(B
θ′
,B

θ
).

By integration we deduce that the functions Π0(·) and Π1(·) defined before Lemma 5 are differen-
tiable from I to L(B

θ′
,B

θ
), and that their derivatives are given by

j = 0, 1, Π′
j(t) =

1

2iπ

∫

Γj

R′(z, t)dz.

To establish assertion (b), it remains to prove that Πj(·) is of class C1 from I to L(B
θ′
,B

θ
), that

is, Π′
j(·) is a continuous function from I to L(B

θ′
,B

θ
). For z ∈ R and t ∈ I, we have

‖R′(z, t)‖
θ′ ,θ

≤ ‖R(z, t)‖
θ
‖Lt‖θ′,θ

‖R(z, t)‖
θ′
≤M

θ
EM

θ′
,

with M
θ
,M

θ′
defined in Proposition 1, and with E = supt∈I ‖Lt‖θ′,θ

< +∞ since t 7→ Lt is
continuous from I to L(B

θ′
,B

θ
). Now let θ2 be such that θ′ < θ1 ≤ θ1 +α < θ2 < θ. The conditions

U0(θ
′, θ1) and U0(θ2, θ) then hold. For any z0 in Γ0 or Γ1, by applying formula (A) with n = 0 and

U, V as above, one gets

R(z0, t0 + h) −R(z0, t0) = R(z0, t0)

(
P (t0 + h) − P (t0)

)
R(z0, t0 + h).

Then it follows from (a) and from the last assertion of Proposition 1 that R(z0, ·) is continuous
from I to both L(B

θ′
,B

θ1
) and L(B

θ2
,B

θ
). Finally the condition U 1(θ1, θ2) ensures that t 7→ Lt is

continuous from I to L(B
θ1
,Bθ2

). Consequently t 7→ R′(z0, t) = R(z0, t)LtR(z0, t) is continuous
from I to L(B

θ′
,B

θ
). The continuity of Π′

i(·) then derives from Lebesgue’s theorem. 2

Proof of Lemma 9. (i) Set S(t) = (1 −N(t))−1 for t ∈ I
θ
. By Proposition 1, for all θ ∈]0, 1], there

exists a constant C ′
θ

such that we have for t ∈ I
θ

‖S(t)‖
θ
≤

∑

k≥0

‖N(t)k‖
θ
≤ C ′

θ
.
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Let I = I
θ′
∩ I

θ
, and suppose that U1(θ

′, θ) holds. By applying the equality (A) (see the proof of
Lemma 4) with n = 1, U = 1 −N(t0) and V = N(t0 + h) −N(t0), we get

S(t0 + h) = S(t0) + S(t0)

(
N(t0 + h) −N(t0)

)
S(t0)

+ S(t0)

(
N(t0 + h) −N(t0)

)
S(t0)

(
N(t0 + h) −N(t0)

)
S(t0 + h).

By choosing θ1 such that θ′ < θ1 ≤ θ1 +α < θ and by using arguments which have been repeatedly
employed, we can prove that the function S(·) is of class C1 from I to L(B

θ′
,B

θ
), and that its

derivative is given by S ′t) = S(t)N ′(t)S(t), where N ′(t) denotes the derivative of N(·) in L(B
θ1
,B

θ
)

whose existence is given by Lemma 8(b).
Finally let θ2 be such that θ′ < θ1 ≤ θ1 + α < θ2 < θ : then the conditions U 0(θ

′, θ1) and U0(θ2, θ)
hold, and since

S(t0 + h) − S(t0) = S(t0)

(
N(t0 + h) −N(t0)

)
S(t0 + h)

(by (A) with n = 0 and U, V as previously), it follows that S(·) is continuous from I to both
L(B

θ′
,B

θ1
) and L(B

θ2
,B

θ
). Since the condition U 1(θ1, θ2) holds, N ′(·) is continuous from I to

L(B
θ1
,B

θ2
), hence S ′(·) is continuous from I to L(B

θ′
,B

θ
).

(ii) From Lemma 7, under the condition (N-A)1 which implies (N-A)
θ

for all θ ∈]0, 1], we know that,
for t 6= 0, the spectral radius r(P (t)) of P (t) acting on B

θ
verifies r(P (t)) < 1, thus (1−P (t))−1 is

defined in L(B
θ
).

On the other hand, if K is any closed finite interval in IR∗, then there exists a constant c′K,θ such
that we have for all t ∈ K

‖(1 − P (t))−1‖
θ
≤

∑

k≥0

‖P (t)k‖
θ
≤ c′

K,θ
.

Then we can conclude as in (i) by replacing I, N(·) with respectively K, P (·). 2
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