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ABSTRACT
We measure the anisotropy of dark matter flows on small scales (∼500 kpc) in the near
environment of haloes using a large set of simulations. We rely on two different approaches
to quantify the anisotropy of the cosmic infall: we measure the flows at the virial radius of
the haloes while describing the infalling matter via fluxes through a spherical shell; and we
measure the spatial and kinematical distributions of satellites and substructures around haloes
detected by the subclump finder ADAPTAHOP described for the first time in the appendix. The
two methods are found to be in agreement both qualitatively and quantitatively via one- and
two-point statistics.

The peripheral and advected momenta are correlated with the spin of the embedded halo at
levels of 30 and 50 per cent. The infall takes place preferentially in the plane perpendicular to
the direction defined by the spin of the halo. We computed the excess of equatorial accretion
both through rings and via a harmonic expansion of the infall.

The level of anisotropy of infalling matter is found to be ∼15 per cent. The substructures
have their spin orthogonal to their velocity vector in the rest frame of the halo at a level of
about 5 per cent, suggestive of an image of a flow along filamentary structures, which provides
an explanation for the measured anisotropy. Using a ‘synthetic’ stacked halo, it is shown that
the positions and orientations of satellites relative to the direction of spin of the halo are not
random even in projection. The average ellipticity of stacked haloes is 10 per cent, while the
alignment excess in projection reaches 2 per cent. All measured correlations are fitted by a
simple three-parameter model.

We conclude that a halo does not see its environment as an isotropic perturbation, we
investigate how the anisotropy is propagated inwards using perturbation theory, and we discuss
briefly the implications for weak lensing, warps and the thickness of galactic discs.

Key words: galaxies: formation – galaxies: haloes – dark matter.

1 I N T RO D U C T I O N

Isotropy is one of the fundamental assumptions in modern cos-
mology and is widely verified on very large scales, both in large
galaxy surveys and in numerical simulations. However, on scales of
a few megaparsecs, the matter distribution is structured in clusters
and filaments. The issue of anisotropy down to galactic and clus-
ter scales has long been studied, as it is related to the search for
large-scale structure in the near environment of galaxies. For exam-
ple, both observational studies (e.g. West 1994; Plionis & Basilakos
2002; Kitzbichler & Saurer 2003) and numerical investigations (e.g.

�E-mail: aubert@astro.u-strasbg.fr

Faltenbacher et al. 2002) showed that galaxies tend to be aligned
with their neighbours and support the vision of anisotropic merg-
ers along filamentary structures. On smaller scales, simulations of
rich clusters showed that the shape and velocity ellipsoids of haloes
tend to be aligned with the distribution of infalling satellites, which
is strongly anisotropic (Tormen 1997). However, the point is still
moot and recent publications did not confirm such an anisotropy
using resimulated haloes; they proposed 20 per cent as a maximum
for the anisotropy level of the distribution of satellites (Vitvitska
et al. 2002).

When considering preferential directions within the large-scale
cosmic web, the picture that comes naturally to mind is one involv-
ing these long filamentary structures linking large clusters to one
other. The flow of haloes within these filaments can be responsible
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for the emergence of preferential directions and alignments. Previ-
ous publications showed that the distributions of spin vectors are not
random. For example, haloes in simulations tend to have their spin
pointing orthogonally to the direction of the filaments (Faltenbacher
et al. 2002). Furthermore, down to galactic scales, the angular mo-
mentum remains mainly aligned within haloes (Bullock et al. 2001).
Combined with the results suggesting that the spins of haloes are
mostly sensitive to recent infall (van Haarlem & van de Weygaert
1993), these alignment properties fit well with accretion scenarios
along special directions: angular momentum can be considered as a
good marker to test this picture.

Most of these previous studies focused on the fact that alignments
and preferential directions are consequences of the formation pro-
cess of haloes. However, the effects of such preferential directions
on the inner properties of galaxies have been less addressed. It is
widely accepted that the properties of galaxies partly result from
their interactions with their environments. While the amplitude of
the interactions is an important parameter, some issues cannot be
studied without taking into account the spatial extension of these
interactions. For example, a warp may be generated by the torque
imposed by infalling matter on the disc (Ostriker & Binney 1989;
López-Corredoira, Betancort-Rijo & Beckman 2002): not only the
direction but also the amplitude of the warp are a direct consequence
of the spatial configuration of the perturbation. Similarly, it is likely
that disc thickening due to infall is not independent of the incom-
ing direction of satellites (e.g. Quinn, Hernquist & Fullagar 1993;
Huang & Carlberg 1997; Velazquez & White 1999).

Is it possible to observe the small-scale alignment? In particular,
weak lensing deals with effects as small as the level of detected
anisotropy (if not smaller) (e.g. Croft & Metzler 2000; Heavens,
Refregier & Heymans 2000; Hatton & Ninin 2001); hence it is im-
portant to put quantitative constraints on the existence of alignments
on small scales. Therefore, the present paper also addresses the is-
sue of detecting preferential projected orientations on the sky of
substructures within haloes.

Our main aim is to provide quantitative measurements to study
the consequences of the existence of preferential directions on the
dynamical properties of haloes and galaxies, and on the observation
of galaxy alignments. Hence our point of view is more galactocen-
tric (or cluster-centric) than previous studies. We search for local
alignment properties on scales of a few hundred kiloparsecs. Using a
large sample of low-resolution numerical simulations, we aim to ex-
tract quantitative results from a large number of halo environments.
We reach a higher level of statistical significance while reducing
the cosmic variance. We applied two complementary approaches to
study the anisotropy around haloes: the first one is particulate and
uses a new substructure detection tool ADAPTAHOP; the other one is
the spherical galactocentric fluid approach. Using two methods, we
can assess the self-consistency of our results.

After a brief description of our set of simulations (Section 2), we
describe the galactocentric point of view and study the properties
of angular momentum and infall anisotropy measured at the virial
radius (Section 3). In Section 4 we focus on anisotropy in the dis-
tribution of discrete satellites and substructures, and we study the
properties of the satellites’ proper spins, which provide an explana-
tion for the detected anisotropy. In Section 5 we discuss the level
of anisotropy as seen in projection on the plane of the sky. We then
investigate how the anisotropic infall is propagated inwards and dis-
cuss the possible implications of our results to weak lensing and to
the dynamics of the disc through warp generation and disc thicken-
ing (Section 6). Conclusions and prospects follow. The Appendix
describes the substructures detection tool ADAPTAHOP together with

the relevant aspects of one-point centred statistics on the sphere.
We also formally derive there the perturbative inward propagation
of infalling fluxes into a collisionless self-gravitating sphere.

2 S I M U L AT I O N S

In order to achieve a sufficient sample and ensure convergence of
the measurements, we produced a set of ∼500 simulations. Each
of them consists of a 50 h−1 Mpc3 box containing 1283 particles.
The mass resolution is 5 × 109 M�. A �CDM cosmogony (�m =
0.3, �� = 0.7, h = 0.7 and σ 8 = 0.928) is implemented with
different initial conditions. These initial conditions were produced
with GRAFIC (Bertschinger 2001), where we chose a BBKS (Bardeen
et al. 1986) transfer function to compute the initial power spectrum.
The initial conditions were used as inputs to the parallel version of
the tree code GADGET (Springel, Yoshida & White 2001b). We set the
softening length to 19 h−1 kpc. The halo detection was performed
using the halo finder HOP (Eisenstein & Hut 1998). We employed the
density thresholds suggested by the authors (�outer = 80, δ saddle =
2.5δouter, δpeak = 3δouter) As a check, we computed the halo mass
function at z = 0 defined as (Jenkins et al. 2001):

f (σ (M)) = M

ρ0

dn

d ln σ−1
. (1)

Here n(M) is the abundance of haloes with a mass less than M and
ρ 0 is the average density, while σ 2(M) is the variance of the density
field smoothed with a top-hat filter at a scale that encloses a mass M.
The simulations mass function is shown in Fig. 1 and compared to
the Press–Schechter model (see Press & Schechter 1974) and to the
fitting formula given by Jenkins et al. (2001). The Press–Schechter
model overestimates the number of small haloes by a factor of 1.7
as already demonstrated by, for example, Gross et al. (1998). The
fitting formula seems to be in better agreement with the measured
mass function with an accuracy of ∼10 per cent for masses below
3 × 1014 M�.

As another means to check our simulations and to evaluate the
convergence ensured by our large set of haloes, we computed the
probability distribution of the spin parameter λ′, defined as (Bullock
et al. 2001)
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Figure 1. Top: the mass function f (σ (M)) of haloes (thin full line) com-
pared to the Press–Schechter model (thick dashed line) and to the fitting
formula of Jenkins et al. (2001) (thick full line). Bottom: relative residuals
between the fitting formula and the mass function.
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Figure 2. The distribution of the spin parameter λ′ defined as λ′ ≡
J/(

√
2MV R200) computed using 100 000 haloes with a mass greater than

5 × 1012 M�. The distribution can be fitted with a log-normal function with
parameters λ′

0 = 0.0347 ± 0.0006 and σ = 0.63 ± 0.02 (solid line). The
curve parametrized by λ′

0 = 0.035 and σ = 0.57 is also shown (dashed line).
The two results are almost coincident, indicating that the value of σ is not
so strongly constrained using a log-normal distribution.

λ′ ≡ J√
2MV R200

. (2)

Here J is the angular momentum contained in a sphere of virial radius
R200 with a mass M and V 2 = GM/R200. The measurement was
performed on 100 000 haloes with a mass larger than 5 × 1012 M�
as explained in the next section. The resulting distribution for λ′ is
shown in Fig. 2. The distribution P(λ′) is well fitted by a log-normal
distribution (e.g. Bullock et al. 2001):

P(λ′) dλ′ = 1

λ′√2πσ
exp

[
− ln2(λ′/λ′

0)

2σ 2

]
dλ′. (3)

We found λ′
0 = 0.0347 ± 0.0006 and σ = 0.63 ± 0.02 as best-fitting

values, consistent with the parameters (λ′ = 0.035 and σ = 0.57)
found by Peirani, Mohayaee & De Freitas Pacheco (2004), but our
value of σ is slightly larger. However, using σ = 0.57 does not lead
to a significantly different result. The value of σ is not strongly
constrained and no real disagreement exists between our and their
best-fitting values. The halo’s spin, on which some of the following
investigations are based, is computed accurately.

3 A G A L AC TO C E N T R I C P O I N T O F V I E W

The analysis of exchange processes between the haloes and the in-
tergalactic medium will be carried out using two methods. The first
one can be described as ‘discrete’. The accreted objects are explic-
itly counted as particles or particle groups. This approach will be
applied and discussed later in this paper. The other method relies on
measuring directly relevant quantities on a surface at the interface
between the halo and the intergalactic medium. In this approach,
the measured quantities are scalar, vector or tensor fluxes, and we
assign to them flux densities. The flux density representation allows
us to describe the angular distribution and temporal coherence of
infalling objects or quantities related to this infall. The formal rela-
tion between a flux density, �(Ω), and its associated total flux, 
,

through a region S is


 ≡
∫

S

�(Ω) · dΩ, (4)

where Ω denotes the position on the surface where � is evaluated
and dΩ is the surface element normal to this surface. Examples of
flux densities are mass flux density, ρvr , or accreted angular mo-
mentum, ρvr ·L. In particular, this description in terms of a spherical
boundary condition is well suited to study the dynamical stability
and response of galactic systems. In this section, these fields are
used as probes of the environment of haloes.

3.1 Halo analysis

Once a halo is detected, we study its environment using a galac-
tocentric point of view. The relevant fields �(Ω) are measured on
the surface of a sphere centred on the halo’s centre of mass with
radius R200 [where 3M/(4πR3

200) ≡ 200ρ] (cf. Fig. 3). There is no
exact, nor unique, definition of the halo’s outer boundary and our
choice of R200 (also called the virial radius) is the result of a com-
promise between a large distance to the halo’s centre and a good
signal-to-noise ratio in the determination of spherical density fields.

We used 40 × 40 regularly sampled maps in spherical angles Ω=
(ϑ , φ), allowing for an angular resolution of 9◦. We take into ac-
count haloes with a minimum number of 1000 particles, which gives
a good representation of high-density regions on the sphere. This
minimum corresponds to 5 × 1012 M� for a halo, and allows us to
reach a total number of 10 000 haloes at z = 2 and 50 000 haloes at
z = 0. This range of mass corresponds to a somewhat high value for
a typical L � galaxy but results from our compromise between reso-
lution and sample size. Detailed analysis of the effects of resolution
is postponed to Aubert & Pichon (2004).

The density, ρ(Ω), on the sphere is computed using the particles
located in a shell with a radius of R200 and a thickness of R200/10
(this is quite similar in spirit to the counts-in-cells techniques widely
used in analysing large-scale structures, but in the context of a sphere
the cells are shell segments). Weighting the density with quantities
such as the radial velocity or the angular momentum of each particle
contained within the shell, the associated spherical fields, ρvr (Ω)
or ρL(Ω), can be calculated for each halo. Two examples of spher-
ical maps are given in Fig. 3. They illustrate a frequently observed
discrepancy between the two types of spherical fields, ρ(Ω) and
ρvr (Ω). The spherical density field, ρ(Ω), is strongly quadrupolar,
which is due to the intersection of the halo triaxial three-dimensional
density field by our two-dimensional virtual sphere. By contrast the
flux density of matter, ρvr (Ω), does not have such a quadrupolar
distribution. The contribution of halo particles to the net flux density
is small compared to the contribution of particles coming from the
outer intergalactic region.

3.2 Two-point statistics: advected
momentum and the halo’s spin

The influence of infalling matter on the dynamical state of a galaxy
depends on whether or not the infall occurs inside or outside the
galactic plane. If the infalling matter is orbiting in the galactic plane,
its angular momentum is aligned with the angular momentum of
the disc. Taking the halo’s spin as a reference for the direction of
the ‘galactic’ plane, we want to quantify the level of alignment
of the orbital angular momentum of peripheral structures (i.e. as
measured on the virial sphere) relative to that spin. The inner spin
S is calculated using the positions and velocities (r part, vpart) of the
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Figure 3. A galactocentric point of view of the density field, ρ(Ω) (top),
and of the flux density of mass, ρvr (Ω), surrounding the same halo (bot-
tom). This measurement was extracted from a �CDM cosmological simu-
lation. The considered halo contained about 1013 M� or 2000 particles. The
high-density zones are darker. The density’s spherical field shows a strong
quadrupolar component with high-density zones near the two poles while
this component is less important for the mass flux density field measured
on the sphere. This discrepancy between the two spherical fields is common
and reflects the shape of the halo as discussed in the main text.

particles inside the R200 sphere in the centre-of-mass rest frame
(r 0, v0):

S =
∑
part

(r part − r 0) × (vpart − v0). (5)

Here r 0 is the position of the halo centre of mass, while v0 stands
for the average velocity of the halo’s particles. This choice of rest
frame is not unique; another option would have been to take the most
bounded particle as a reference. Nevertheless, given the considered
mass range, no significant alteration of the results is to be expected.
The total angular momentum, LT (measured at the virial radius,
R200) is computed for each halo using the spherical field ρL(Ω):

LT =
∫

4π

ρL(Ω) · dΩ. (6)

The angle, θ , between the spin of the inner particles S and the
total orbital momentum LT of ‘peripheral’ particles is then easily
computed:

θ = cos−1

(
LT·S

|LT||S|

)
. (7)

Measuring this angle θ for all the haloes of our simulations al-
low us to derive a raw probability distribution of angle, d r(θ ). An

isotropic distribution corresponds to a non-uniform probability den-
sity d iso(θ ). Typically d iso is smaller near the poles (i.e. near the
region of alignment), leading to a larger correction for these angles
and to larger error bars in these regions (see Fig. 4): this is the con-
sequence of smaller solid angles in the polar regions (which scales
like ∼sin θ ) than in equatorial regions for a given θ aperture. The
true anisotropy is estimated by measuring the ratio:

dr(θ )/diso(θ ) ≡ 1 + ξL S(θ ), (8)

Here, 1 + ξ LS(θ ) measures the excess probability of finding S and
LT away from each other, while ξ LS(θ ) is the cross-correlation of the
angles of S and LT. Thus having ξ LS(θ )>0 (respectively, ξ LS(θ )<0)
implies an excess (respectively, a lack) of configurations with a θ

separation relative to an isotropic situation.
To take into account the error in the determination of θ , each count

(or Dirac distribution) is replaced with a Gaussian distribution and
contributes to several bins:

δ(θ − θ0) → N (θ0, σ0) = 1

σ0

√
2π

exp

[
− (θ − θ0)2

2σ 2
0

]
, (9)

where N stands for a normalized Gaussian distribution and where
the angle uncertainty is approximated by σ 0 ∼ (4π/N )1/2 using N
particles as suggested by Hatton & Ninin (2001). If N v is equal to
the number of particles used to compute ρL(Ω) on the virial sphere
and if N h is the number of particles used to compute the halo’s spin,
the error we associated to the angle between the angular momentum
at the virial sphere and the halo’s spin is

σ0 =
√

(4π/Nv) + (4π/Nh) ∼
√

(4π/Nv), (10)

because we have N v � N h. Note that this Gaussian correction
introduces a bias in mass: a large infall event (large N v, small σ 0)
is weighted more for a given θ 0 than a small infall (small N v, large
σ 0). All the distributions are added to give the final distribution:

dr(θ ) =
Np∑
p

N (θp, σp), (11)

where Np stands for the total number of measurements (i.e. the total
number of haloes in our set of simulations). The corresponding
isotropic angle distribution is derived using the same set of errors
randomly redistributed:

diso(θ ) =
Np∑
p

N
(
θ iso

p , σp

)
. (12)

Fig. 4 shows the excess probability, 1 + ξ LS(θ ), of the angle
between the total orbital momentum of particles at the virial radius
LT and the halo’s spin S. The solid line is the correlation deduced
from 40 000 haloes at redshift z = 0. The error bars were determined
using 50 subsamples of 10 000 haloes extracted from the whole set
of available data. An average Monte Carlo correlation and a Monte
Carlo dispersion σ is extracted. In Fig. 4, the symbols stand for the
average Monte Carlo correlation, while the vertical error bars stand
for the 3σ dispersion.

The correlation in Fig. 4 shows that all angles are not equivalent
since ξ LS(θ ) �= 0. It can be fitted with a Gaussian curve using the
following parametrization:

1 + ξL S(θ ) = a1√
2πa3

exp

(
− θ − a2

2

2a2
3

)
+ a4. (13)

The best-fitting parameters are a1 = 2.351 ± 0.006, a2 = −0.178 ±
0.002, a3 = 1.343 ± 0.002 and a4 = 0.6691 ± 0.0004. The
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Figure 4. Excess probability, 1 + ξ LS(θ ), of the angle, θ , between the
halo’s spin (S) and the angular momentum (LT for total, or LA for accreted)
measured on the virial sphere using the fluid located at the virial radius.
Here LT represents the total angular momentum measured on the virial
sphere (solid line and circles) and LA the total accreted angular momentum
measured on the sphere (dashed line and diamonds). The error bars represent
the 3σ dispersion measured on subsamples of 10 000 haloes. The correlation
takes into account the uncertainty on the angle determination due to the
small number of particles at the virial radius. Here ξ LS(θ ) ≡ 0 would be
expected for an isotropic distribution of angles between S and L while the
measured distributions indicate that the aligned configuration (θ ∼ 0) is
significantly more likely. The two excess probability distributions are well
fitted by Gaussian functions (almost coincident red curves in Synergy: see
main text).

maximum being located at small angles, the aligned configura-
tion, L̂T·S ∼ 0, is the most enhanced configuration (relative to
an isotropic distribution of angle θ ). The aligned configuration of
LT relative to S is 35 per cent [ξ LS(0) = 0.35], more frequent in
our measurements than for a random orientation of LT. As a conse-
quence, matter is preferentially located in the plane perpendicular
to the spin, which is hereafter referred to as the ‘equatorial’ plane.

The angles, (ϑ , φ), are measured relative to the z- and x-axes of the
simulation boxes and not relative to the direction of the spin. Thus
we do not expect artificial LT–S correlations due to the sampling
procedure. Nevertheless, it is expected on geometrical grounds that
the aligned configuration is more likely since the contribution of
recent infalling dark matter to the halo’s spin is important. As a
check, the same correlation was computed using the total advected
orbital momentum:

LA =
∫

4π

Lρvr (Ω) · dΩ. (14)

The resulting correlation (see Fig. 4) is similar to the previous one
but the slope towards small values of θ is even stronger and for
example the excess of aligned configuration reaches the level of
50 per cent [ξ LS(0) ∼ 0.5]. The correlation can be fitted following
equation (13) with a1 = 3.370 ± 0.099, a2 = −0.884 ± 0.037,
a3 = 1.285 ± 0.016 and a4 = 0.728 ± 0.001. This enhancement
confirms the relevance of advected momentum for the build-up of
the halo’s spin, though the increase in amplitude is limited to 0.2 for
θ = 0. The halo’s inner spin is dominated by the orbital momentum
of infalling clumps (given the larger lever arm of these virialized
clumps and their high radial velocities) that have just passed through
the virial sphere, as suggested by Vitvitska et al. (2002) (see also

Appendix D). It reflects a temporal coherence of the infall of matter
and thus of angular momentum, and a geometrical effect: a fluid
clump that is just being accreted can intersect the virtual virial
sphere, being in part both ‘inside’ and ‘outside’ the sphere. Finally
a small fraction of the accreted momentum may come from ma-
terial that has already passed once through the R200 sphere. This
component would be aware of the dynamical properties of the inner
halo. Thus it is expected that the halo’s spin S and the momenta
LT and LA at the virial radius are correlated since the halo’s spin
is dominantly set by the properties of the angular momentum in its
outer region. The anisotropy of the two fields LT and LA do not
have the same implication. The spatial distribution of advected an-
gular momentum, LA, contains stronger dynamical information. In
particular, the variation of the angular momentum of the halo plus
disc is induced by tidal torques but also by accreted momentum for
an open system. For example, the anisotropy of Lρvr should be
reflected in the statistical properties of warped discs as discussed
later in Sections 6.1 and 6.2.

3.3 One-point statistics: equatorial infall anisotropy

The previous measurement does not account for dark matter falling
into the halo with a very small angular momentum (radial orbits). We
therefore measured the excess of equatorial accretion, δm, defined
as follows. We can measure the average flow density of matter, 
r ,
in a ring centred on the equatorial plane:


r ≡ 1

Sr

∫
−π/8<θ−π/2<π/8

ρvr (Ω) · dΩ, (15)

where Sr = ∫
−π/8<θ−π/2<π/8

dΩ. The ring region is defined by
the area where the polar angle satisfies θ pol = π/2 ± π/8, which
corresponds to about 40 per cent of the total covered solid angle.
The larger this region is, the better the convergence of the average
value of 
r , but the lower the effects of anisotropy, since averaging
over a larger surface leads to a stronger smoothing of the field. This
value of ±π/8 is a compromise between these two contradictory
trends. In the next section and in the Appendix, we discuss more
general filtering involving spherical harmonics that are related to the
dynamical evolution of the inner component of the halo. We also
measure the flow averaged over all the directions 
:


 ≡ ρvr ≡ 1

4π

∫
4π

ρvr (Ω) · dΩ. (16)

Since we are interested in accretion, we computed 
r and 
 using
only the infalling part of the density flux of matter, where ρvr (Ω) ·
dΩ < 0, ignoring the outflows. The fraction of outflowing material
decreases from 20 per cent of the total integrated flux at z = 0 to
10 per cent at z = 2. We define δm as

δm ≡ 
r − 




. (17)

This number quantifies the anisotropy of the infall. It is positive
when infall is in excess in the galactic equatorial plane, while for
isotropic infall δm ≡ 0. The quantity δm can be regarded as being
the ‘flux density’ contrast of the infall of matter in the ring region
(formally it is the centred top-hat-filtered mass flux density contrast
as shown in Appendix C1). This measurement, in contrast to those of
the previous section, does not rely on some knowledge of the inner
region of the halo but only on the properties of the environment.

Fig. 5 displays the normalized distribution of δm measured for
50 000 haloes with a mass in excess of 5 × 1012 M� and for dif-
ferent redshifts (z = 1.8, 1.5, 0.9, 0.3, 0.0). The possible values for
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Figure 5. Top: normalized probability distributions (PDF) of the excess of
equatorial infall, δm, measured at the virial radius. The quantity 1+ δm stands
for the ratio between the flux of matter through the equatorial subregion of the
R200 sphere and the average flux of matter through the whole R200 sphere.
The equatorial subregion is defined as being perpendicular to the direction
of the halo’s spin. It formally corresponds to the top-hat-smoothed mass
flux density contrast. The value δm = 0 is expected for an isotropic infall of
matter through the virial sphere. The average value of δm is always greater
than zero, indicating that the infall of matter is, on average, more important
in the direction orthogonal to the halo’s spin vector than in other directions.
Bottom: the antisymmetric part of the δm distribution. Being positive for
positive values of δm, the antisymmetric part of the δm distributions shows
that accretion in the equatorial plane is in excess relative to that expected
from isotropic accretion of matter.

δm range between δm ∼ −1 and ∼1.5. The average value 〈δm〉 of
the distributions is statistically larger than zero (see also Fig. 6).
Here 〈〉 stands for the statistical expectation, which in this paper is
approximated by the arithmetic average over many haloes in our
simulations. The antisymmetric part of the distribution of δm is pos-
itive for positive δm. The probability distribution function (PDF) of
δm is skewed, indicating an excess of accretion through the equa-
torial ring. The median value for δm is δmed = 0.11, while the first
25 per cent haloes have δm < δ25 ≡ −0.11 and the first 75 per cent
haloes have δm < δ75 ≡ 0.37. Therefore we have (δ75 − δmed)/(δ25 −
δmed) = 1.13, which quantifies how the distribution of δm is posi-
tively skewed. The skewness S3 = 〈(δ− δ̄)3〉/〈(δ− δ̄)2〉3/2 is equal to
0.44. Combined with the fact that the average value 〈δm〉 is always

linear fit
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Figure 6. The redshift evolution of 〈δm〉. The average 〈〉 is performed on
a set of 40 000 haloes at z = 0 and 10 500 haloes at z = 1.8. The error bars
stand for the error on the estimation of 〈δm〉 with � = σ (δm)/

√
N , where

N is the number of haloes needed to compute 〈δm〉. The value of 〈δm〉 is
always positive and indicates an excess of accretion in the equatorial plane.
This redshift evolution can be fitted as 〈δm〉 (z) = 0.0161(± 0.0103)z +
0.147(± 0.005). This excess is detected for every redshift smaller than z =
2, which indicates an excess of accretion in the equatorial region. We applied
a mass threshold of 5 × 1012 M� to our haloes for every redshift. Then,
the halo population is different from one redshift to another. This selection
effect may dominate the observed time evolution.

positive, this shows that the infall of matter is larger in the equatorial
plane than in the other directions.

This result is robust with respect to time evolution (see Fig. 6). At
redshift z = 1.8, we have 〈δm〉 = 0.17, which falls to 〈δm〉 = 0.145
at redshift z = 0. This redshift evolution can be fitted as 〈δm〉 (z) =
0.0161(± 0.0103)z + 0.147(± 0.005). This trend should be taken
with caution. For every redshift z we take in account haloes with
a mass bigger than 5 × 1012 M�. Thus the population of haloes
studied at z = 0 is not exactly the same as the one studied at z = 2.
Actually, at z = 0, there is a strong contribution of small haloes (i.e.
with a mass close to 5 × 1012 M�) that have just crossed the mass
threshold. The accretion on small haloes is more isotropic as shown
in more details in Appendix D2. One possible explanation is that
they experienced less interactions with their environment and have
since had time to relax, which implies a smaller correlation with
the spatial distribution of the infall. Also bigger haloes tend to lie in
more coherent regions, corresponding to rare peaks, whereas smaller
haloes are more evenly distributed. The measured time evolution of
the anisotropy of the infall of matter therefore seems to result from a
competition between the trend for haloes to become more symmetric
and the bias corresponding to a fixed mass cut.

In short, the infall of matter measured at the virial radius in the
direction orthogonal to the halo’s spin is larger than expected for an
isotropic infall.

3.4 Harmonic expansion of anisotropic infall

As mentioned earlier (and demonstrated in Appendix A), the dynam-
ics of the inner halo and disc is partly governed by the statistical
properties of the flux densities at the boundary. Accounting for the
gravitational perturbation and the infalling mass or momentum re-
quires projecting the perturbation over a suitable basis such as the
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spherical harmonics:

� (Ω) =
∑
�,m

αm
� Y m

� (Ω). (18)

Here, � stands for the mass flux density, the advected momentum
flux density, or the potential perturbation, for example. The result-
ing αm

� coefficients correspond to the spherical harmonic decompo-
sition in an arbitrary reference frame. The different m correspond
to the different fundamental orientations for a given multipole �. A
spherical field with no particular orientation gives rise to a field av-
eraged over the different realizations that appear as a monopole, i.e.
〈α�m〉 = 0 for � �= 0. Having constructed our virial sphere in a refer-
ence frame attached to the simulation box, we effectively performed
a randomization of the orientation of the sphere. However, since the
direction of the halo’s spin is associated to a general preferred orien-
tation for the infall, it should be traced through the α�m coefficients.
Let us define the rotation matrix, R, which brings the z-axis of the
simulation box along the direction of the halo’s spin. The spherical
harmonic decomposition centred on the spin of the halo, am

�, is
given by (e.g. Varshalovich, Moskalev & Khersonskii 1988):

am
� = R

[
αm′

�′
] ≡

∑
�′m′

Rm,m′
�,�′ (ϑ, ϕ)αm′

�′ . (19)

If the direction of the spin defines a preferential plane of accretion,
the corresponding am

� will be systematically enhanced. We therefore
expect the equatorial direction (which corresponds to m = 0 for
every �) not to converge to zero.

We computed the spherical harmonic decomposition of ρvr(ϑ ,
ϕ) given by equation (18) for the mass flux density of 25 000 haloes
at z = 0, up to � = 15. For each spherical field of the mass density
flux, we performed the rotation that brings the halo’s spin along
the z-direction to obtain a set of ‘centred’ am

� coefficients. We also
computed the related angular power spectra C �:

C� ≡ 1

4π

1

2� + 1

�∑
m=−�

∣∣am
�

∣∣2 = 1

4π

1

2� + 1

�∑
m=−�

∣∣αm
�

∣∣2 . (20)

Let us define the normalized ãm
� (or harmonic contrast, see

Appendix C1),

ãm
� ≡

√
4π

am
�

a0
0

= am
�

sign
(

a0
0

)√
C0

. (21)

This compensates for the variations induced by our range of masses
for the halo. For each �, we present in Fig. 7 the median value,
|〈Re{ãm

� }〉| for � = 2, 4, 6, 8 computed for 25 000 haloes. All the
ãm

� have converged towards zero, except for the ã�0 coefficients.
The imaginary parts of ãm

� have the same behaviour, except for the
Im{ã�0} coefficients, which vanish by definition (not shown here).
The m = 0 coefficients are statistically non-zero. We find 〈ã0

2〉 =
−0.65 ± 0.04, 〈ã0

4〉 = 0.12 ± 0.02, 〈ã0
6〉 = −0.054 ± 0.015 and

〈ã0
8〉 = 0.0145 ± 0.014. Errors stand for the distance between the

5th and the 95th percentile. The typical pattern corresponding to
an m = 0 harmonic is a series of rings parallel to the equatorial
plane. This confirms that accretion occurs preferentially in a plane
perpendicular to the direction of the halo’s spin.

The spherical accretion contrast 〈δ[ρvr ](ϑ, φ)〉 can be recon-
structed using the 〈ãm

� 〉 coefficients (as shown in the Appendix):

δ[ρvr ](ϑ, ϕ) =
∑
�,m

ãm
� Y m

� (ϑ, ϕ) − 1. (22)

In Fig. 8, the polar profile〈
δ[ρvr ](ϑ)

〉 ≡
∑
�,m

〈
ãm

�

〉
Y m

� (ϑ, 0) − 1 (23)
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Figure 7. The convergence of the modulus of the real part of 〈ãm

�
〉, for

� = 2, 4, 6, 8. The ãm
�

decomposition was computed for 25 000 haloes, and
each coefficient has been normalized with the corresponding C 0 (see text
for details). Here, 〈〉 stands for the median while the error bars stand for the
distance between the 5th and 95th percentiles. The median value of 〈ãm

�
〉 is

zero except for the 〈ã0
�
〉 coefficient: this is a signature of a field invariant to

azimuthal rotations.
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Figure 8. An illustration of the convergence of ã�m presented in Fig. 7.
The solid line stands for the azimuthal average of the spherical contrast of
accretion computed using equation (23), the dotted line for the spherical field
reconstructed with � � 5. The insert represents the reconstructed spherical
field using the expansion of the ã�m of the mass flux measured at the virial
sphere. The sphere presents an excess of accretion in the equatorial region
because of the non-zero average value of ã�0 coefficients (for even values
of �).
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of this reconstructed spherical contrast is shown. This profile has
been obtained using the 〈ãm

� 〉 coefficients with � � 5 and � � 15.
The contrast is large and positive near ϑ = π/2 as expected for an
equatorial accretion. The profile reconstructed using � � 5 is quite
similar to the one using � � 15. This indicates that most of the
energy involved in the equatorial accretion is contained in a typical
angular scale of 36◦ (a scale that is significantly larger than π/20
corresponding to the cut-off frequency in our sampling of the sphere
as mentioned earlier).

Using a spherical harmonic expansion of the incoming mass flux
density (equation 8), we confirmed the excess of accretion in the
equatorial plane found above. This similarity was expected since
these two measurements (using a ring or using a spherical harmonic
expansion) can be considered as two different filterings of the spher-
ical accretion field as demonstrated in Appendix C. The main asset
of the harmonic filtering resides in its relevance for the description
of the inner dynamics as discussed in Section 6.

3.5 Summary

To sum up, the two measurements of Sections 3.2 and 3.3 (or 3.4)
are not sensitive to the same effects. The first measurement (in-
volving the angular momentum ρL at the virial radius) is mostly a
measure of the importance of infalling matter in building the halo’s
proper spin. The second and the third measurements (involving the
excess of accretion in the equatorial plane, δm, using rings and har-
monic expansion) are quantitative measures of coplanar accretion.
The equatorial plane of a halo is favoured relative to the accretion
of matter (compared to an isotropic accretion) to a level of ∼12 per
cent between z = 2 and z = 0. Down to the halo scale (∼500 kpc),
anisotropy is detected and is reflected in the spatial configuration of
infalling matter.

4 A N I S OT RO P I C I N FA L L
O F S U B S T RU C T U R E S

To confirm and assess the detected anisotropy of the matter infall on
haloes in our simulations, let us now move on to a discrete framework
and measure related quantities for satellites and substructures. In the
hierarchical scenario, haloes are built up by successive mergers of
smaller haloes. Thus if an anisotropy in the distribution of infalling
matter is to be detected, it seems reasonable that this anisotropy
should also be detected in the distribution of satellites. The previous
galactocentric approach for the mass flow does not discriminate be-
tween an infall of virialized objects and a diffuse material accretion,
and therefore is also sensitive to satellites merging: one would need
to consider, say, the energy flux density. However, it is not clear if
satellites are markers of the general infall and Vitvitska et al. (2002)
did not detect any anisotropy at a level greater than 20 per cent.

The detection of substructures and satellites is performed us-
ing the code ADAPTAHOP, which is described in detail in the Ap-
pendix. This code outputs trees of substructures in our simulations,
by analysing the properties of the local dark matter density in terms
of peaks and saddle points. For each detected halo we can extract the
whole hierarchy of subclumps or satellites and their characteristics.
Here we consider the leaves of the trees, i.e. the most elementary
substructures that the haloes contain. Each halo contains a ‘core’,
which is the largest substructure in terms of particle number, and
‘satellites’, corresponding to the smaller ones. We call the ensemble
of core plus satellites the ‘mother’ or the halo. Naturally the number
of substructures is correlated with the mother’s mass. The bigger
the number of substructures, the bigger the total mass. Because the

resolution in mass of our simulations is limited, smaller haloes tend
to have only one or two satellites. Thus in the following sections we
will discriminate cases where the core has less than four satellites.
A total of 50 000 haloes have been examined, leading to a total of
about 120 000 substructures.

4.1 Core spin–satellite orbital momentum correlations

In the mother–core–satellite picture, it is natural to regard the core
as the central galactic system, while satellites are expected to join
the halo from the intergalactic medium. One way to test the effect of
large-scale anisotropy is to compare directly the angle between the
core’s spin, Sc, and the satellites’ angular momentum, Ls, relative to
the core. These two angular momenta are chosen since they should
be less correlated with each other than, for example, the halo’s spin
and the angular momentum of its substructures. Furthermore, par-
ticles that belong to the cores are strictly distinct from those that
belong to satellites, thus preventing any ‘self-contamination’ effect.
As a final safeguard, we took into account only satellites with a dis-
tance relative to the core larger than the mother’s radius. The latter
quantity is computed using the mean square distance of the parti-
cles belonging to the mother, and thus we focus only on ‘external’
satellites. The core’s spin is

Sc =
∑

p

(r p − r c) × (vp − vc), (24)

where r p and vp (respectively r c and vc) stand for the particles’
positions and velocities (respectively the core’s centre-of-mass po-
sition and velocity) and where

rp < dc, (25)

where d c is the core’s radius. The angular momentum for a satellite is
computed likewise, with a different selection criterion on particles,
namely

|r p − r s| < ds, (26)

where r s stands for the satellite’s centre-of-mass position and d s is
its radius.

Fig. 9 displays the reduced distribution of the angle, θ cs, between
the core’s spin and the satellites’ orbital momentum, where θ cs is
defined by

θcs = cos−1

(
Ls·Sc

|Ls||Sc|

)
. (27)

The Gaussian correction was applied as described in Section 3.2, to
take into account the uncertainty on the determination of θ cs.

The correlation of θ cs indicates a preference for the aligned con-
figuration with an excess of ∼12 per cent of aligned configurations
relative to the isotropic distribution. We ran Monte Carlo realiza-
tions using 50 subsamples of 10 000 haloes extracted from our whole
set of substructures to constrain the error bars. We found a 3σ er-
ror of 6 per cent: the detected anisotropy exceeds our errors, i.e.
ξ cs(θ cs) is not uniform with a good confidence level. The variations
with the fragmentation level (i.e. the number of satellites per sys-
tem) remains within the error bars. The best-fitting parameters for
the measured distributions of systems with at least one satellite are
a1 = 0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 = 0.8814 ±
0.0055 and a4 = 0.9389 ± 0.0002 (see equation 13 for parametriza-
tion). Not surprisingly, a less structured system shows a stronger
alignment of its satellites’ orbital momentum relative to the core’s
spin. In the extreme case of a binary system (one core plus a satel-
lite), it is common for the two bodies to have similar masses. Since
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Figure 9. Excess probability, 1 + ξcs(θcs), of the angle between the core’s
spin and the orbital momentum of satellites. Cores have at least one satel-
lite (solid line), four satellites (dashed line) and 10 satellites (dotted line).
These curves have been normalized by the expected isotropic distribution
and the Gaussian correction was applied to account for errors on the angle
determination. Here ξcs(θ ) = 0 is expected for an isotropic distribution of
angles between the core’s spin and the orbital momentum. All satellites are
external to the core, yet an excess of alignment is present. The triangles
represent the angle distribution, the error bars stand for the 3σ dispersion
for 50 subsamples of 10 000 satellites (out of 35 000) while the dash-dotted
curve (red in the online version of this article on Synergy) stands for the
best Gaussian fit of the distribution for systems with at least one satellite
(see equation 13 for parametrization). The best-fitting parameters are: a1 =
0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 = 0.8814 ± 0.0055 and a4 =
0.9389 ± 0.0002. The isotropic case is excluded with a good confidence
level, even for systems with a large number of satellites.

the two bodies are revolving around each other, a natural preferen-
tial plane appears. The core’s spin will be likely to be orthogonal to
this plane. Increasing the number of satellites increases the isotropy
of the satellites’ spatial distribution (the distribution’s maxima are
lower and the slope towards low values of θ cs is gentler), but switch-
ing from at least four satellites to at least 10 satellites per system
does not change significantly the overall shape distribution. This
suggests that convergence, relative to the number of satellites, has
been reached for the θ cs distribution.

As the measurements of the anisotropy factor δm indirectly sug-
gested, satellites have an anisotropic distribution of their directions
around haloes. Furthermore the previous analysis of the statistical
properties of δ (Section 3.3) indicated an excess of aligned config-
uration of 15 per cent, which is consistent with the current method
using substructures. While the direction of the core’s spin should
not be influenced by the infall of matter, we still find the existence
of a preferential plane for this infall, namely the core’s equatorial
plane.

4.2 Satellite velocity–satellite spin correlation

The previous sections compared the properties of haloes with those
of satellites. In a galactocentric framework, the existence of this
preferential plane could only be local. In the extreme each halo
would then have its own preferential plane without any connection
to the preferential plane of the next halo. Taking the satellite itself as
a reference, we have analysed the correlation between the satellite’s

average velocity in the core’s rest frame and the structure’s spin.
Since part of the properties of these two quantities are consequences
of what happened outside the galactic system, the measurement of
their alignment should provide information on the structuration on
scales larger than the halo scale, while sticking to a galactocentric
point of view.

For each satellite, we extract the angle, θ vs, between the velocity
and the proper spin and derive its distribution using the Gaussian
correction (see Fig. 10). The satellite’s spin Ss is defined by

Ss =
∑

p

(r p − r s) × (vp − vs), (28)

where r s and vs stands for the satellite’s position and velocity in the
halo core’s rest frame. The angle θ vs between the satellite’s spin and
the satellite’s velocity is

θvs = cos−1

(
Ss·vs

|Ss||vs|

)
. (29)

Only satellites external to the mother’s radius are considered
while computing the distribution of angles. This leads to a sam-
ple of about 40 000 satellites, at redshift z = 0. The distribution
ξ (θ vs) was calculated as sketched in Section 2. An isotropic distri-
bution of θ vs would as usual lead to a uniform distribution ξ (θ vs) =
0. The result is shown in Fig. 10. The error bars were computed
using the same Monte Carlo simulations described before with
50 subsamples of 10 000 satellites.

We obtain a peaked distribution with a maximum for θ vs = π/2
corresponding to an excess of orthogonal configuration of 5 per cent
compared to a random distribution of satellite spins relative to their
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Figure 10. Excess probability, 1 + ξ vs, of the angle between the sub-
structures’ spin and their velocities in the mother’s rest frame. The Gaus-
sian correction was applied to take into account uncertainty on the angle
determination. The distribution was measured for all mothers (solid line),
mothers with at least four substructures (dotted line) and mothers with at
most three substructures (dashed line). The triangles represent the mean an-
gle distribution. The error bars represent the Monte Carlo 3σ dispersion for
50 subsamples of 10 000 haloes (out of 35 000). The dash-dotted curve (red
in the online version of this article on Synergy) stands for the best fit of the
distribution with a Gaussian function for systems with at least one satellite
(see equation 13 for parametrization). The best-fitting parameters are: a1 =
0.2953 ± 0.0040, a1 = 1.5447 ± 0.0015, a2 = 0.8045 ± 0.0059 and a3 =
0.9144 ± 0.0010. In the core’s rest frame, the satellites’ motion is orthogo-
nal to the direction of the satellites’ spin. This configuration would fit in a
picture where structures move along filamentary directions.
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velocities. The substructure’s motion is preferentially perpendicular
to their spin. This distribution of angles for systems with at least
one satellite can be fitted by a Gaussian function with the following
best-fitting parameters (see equation 13): a1 = 0.2953 ± 0.0040,
a1 = 1.5447 ± 0.0015, a2 = 0.8045 ± 0.0059 and a3 = 0.9144 ±
0.0010. The variation with the mother’s fragmentation level is within
the error bars. However, the effect of an accretion orthogonal to the
direction of the spin is stronger for satellites that belong to less
structured systems. This may again be related to the case where two
comparable bodies revolve around each other, but from a satellite
point of view. The satellite spin is likely to be orthogonal to the
revolution plane and consequently to the velocity’s direction.

This result was already known for haloes in filaments
(Faltenbacher et al. 2002), where their motion occurs along the fila-
ments with their spins pointing outwards. The current results show
that the same behaviour is measured down to the satellite’s scale.
However, this result should be taken with caution since Monte Carlo
tests suggest that the error (deduced from the 3σ dispersion) is about
4 per cent.

This configuration where the spins of haloes and satellites are
orthogonal to their motion fits with the image of a flow of structures
along the filaments. Larger structures are formed out of the merging
of smaller ones in a hierarchical scenario. Such small substructures
should have small relative velocities in order eventually to merge
while spiralling towards each other. The filaments correspond to
regions where most of the flow is laminar, hence the merging be-
tween satellites is more likely to occur when one satellite catches up
with another, while both satellites move along the filaments. During
such an encounter, shell crossing induces vorticity perpendicular to
the flow as was demonstrated in Pichon & Bernardeau (1999). This
vorticity is then converted to momentum, with a spin orthogonal to
the direction of the filament.

Finally, the flow of matter along the filaments may also provide
an explanation for the excess of accretion through the equatorial
regions of the virial sphere. If a sphere is embedded in a ‘laminar’
flow, the density flux detected near the poles should be smaller than
that detected near the ‘equator’ of the sphere. The flux measured
on the sphere is larger in regions where the normal to the surface
is collinear with the ‘laminar’ flow, i.e. the ‘equator’. On the other
hand, a nil flux is expected near the poles since the vector normal
to the surface is orthogonal to the direction of the flow. The same
effect is measured on Earth, which receives the Sun’s radiance: the
temperature is larger in the tropics than near the poles. Our observed
excess of accretion through the equatorial region supports the idea
of a filamentary flow orthogonal to the direction of the halo’s spin
down to scales �500 kpc.

5 P RO J E C T E D A N I S OT RO P Y

5.1 Projected satellite population

We looked directly into the spatial distributions of satellites sur-
rounding the cores of the haloes to confirm the existence of a pref-
erential plane for the satellite locations in projection. In Fig. 11,
we show the compilation of the projected positions of satellites in
the core’s rest frame. The result is a synthetic galactic system with
100 000 satellites in the same rest frame. We performed suitable ro-
tations to bring the spin axis collinear to the z-axis for each system
of satellites, and then we added all these systems to obtain the actual
synthetic halo with 100 000 satellites. The positions were normal-
ized using the mother’s radius (which is of the order of the virial
radius). A quick analysis of the isocontours of the satellite distri-
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Figure 11. The projected distribution of satellites around the core’s centre
of mass. We used the position of 40 000 satellites around their respective core
to produce a synthetic halo plus satellites (a ‘mother’) system. The projection
is performed along the x-axis. The y and z coordinates are given in units of
the mother’s radius. The z-axis is collinear to the direction of the core’s spin.
Top: the isocontours of the number density of satellites around the core’s
centre of mass present a flattened shape. The number of satellites is lower
in darker bins than in lighter bins. The flattened isocontours indicate that
satellites lie preferentially in the plane orthogonal to the direction of the spin.
Bottom: the excess number of satellites surrounding the core. We compared
the distribution of satellites measured in our simulations to an isotropic
distribution of satellites. Light zones stand for an excess of satellites in these
regions (compared to an isotropic distribution) while dark zones stand for a
lack of satellites. The satellites are more numerous in the equatorial region
than expected in an isotropic distribution of satellites around the core. Also,
there are fewer satellites along the spin’s axis than expected for an isotropic
distribution of satellites.

butions indicates that satellites are more likely to be found in the
equatorial plane, even in projection. The axial ratio measured at
one mother’s radius is ε(Rm) ≡ a/b − 1 = 0.1 with a > b. We
compared this distribution to an isotropic ‘reference’ distribution of
satellites surrounding the core. This reference distribution has the
same average radial profile as the measured satellite distributions
but with isotropically distributed directions. The result of the sub-
traction of the two profiles is also shown in Fig. 11. The equatorial
plane (perpendicular to the z-axis) presents an excess in the number
of satellites (light regions). Meanwhile, there is a lack of satellites
along the spin direction (dark regions). This confirms our earlier
results obtained using the alignment of orbital momentum of satel-
lites with the core’s spin, i.e. satellites lie more likely in the plane
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orthogonal to the halo’s spin direction. Qualitatively, these results
have already been obtained by Tormen (1997), where the major axis
of the ellipsoid defined by the satellites’ distribution is found to be
aligned with the cluster’s major axis. This synthetic halo is more di-
rectly comparable to observables since, unlike the dark matter halo
itself, the satellites should emit light. Even though �CDM predicts
too many satellites, its relative geometrical distribution might still
be correct. In the following sections, our intent is to quantify this
effect more precisely.

The propensity of satellites to lie in the plane orthogonal to the
direction of the core’s spin appears as an ‘anti-Holmberg’ effect.
Holmberg (1974) and more recently Zaritsky et al. (1997) have
found observationally that the distribution of satellites around discs
is biased towards the pole regions. Thus if the orbital momentum
vector of galaxies is aligned with the spin of their parent haloes, our
result seems to contradict these observations. One may argue that
satellites are easier to detect out of the galactic plane. Furthermore
our measurements are carried far from the disc while its influence
is not taken in account. Huang & Carlberg (1997) have shown that
the orbital decay and the disruption of satellites are more efficient
for coplanar orbits near the disc. This would explain the lack of
satellites in the disc plane. Thus our distribution of satellites can
still be made consistent with the ‘Holmberg effect’.

5.2 Projected satellite orientation and spin

In addition to the known alignment on large scales, we have shown
that the orientation of structures on smaller scales should be different
from that expected for a random distribution of orientations. Can
this phenomenon be observed? The previous measurements were
carried in 3D while this latter type of observation is performed in
projection on the sky. The projection ‘dilutes’ the anisotropy effects
detected using 3D information. Thus an effect of 15 per cent may be
lowered to a few per cent by projecting on the sky. However, even if
the deviation from isotropy is as important as a few per cent, as we
will suggest, this should be relevant for measurements involved in
extracting a signal just above the noise level, such as weak lensing.

To see the effect of projection on our previous measurements,
we proceed in two steps. First, every mother (halo core plus satel-
lites) is rotated to bring the direction of the core’s spin to the z-axis.
Secondly, every quantity is computed using only the y and z com-
ponents of the relevant vectors, corresponding to a projection along
the x-axis.

The first projected measurement involves the orientation of satel-
lites relative to their position in the core’s rest frame. The spin of a
halo is statistically orthogonal to the main axis of the distribution
of matter of that halo (Faltenbacher et al. 2002), and assuming that
this property is preserved for satellites, their spin Ss is an indica-
tor of their orientation. The angle, θ P (in projection), between the
satellites’ spin and their position vector (in the core’s rest frame) is
computed as follows:

θP = cos−1

(
Sy,z

s ·r y,z
sc∣∣Sy,z

s

∣∣∣∣r y,z
sc

∣∣
)

, (30)

with

r sc = r s − r c, (31)

where r s and r c stand respectively for the position vector of the
satellite and the core’s centre of mass. Two extreme situations can
be imagined. The ‘radial’ configuration corresponds to a case where
the satellite’s main axis is aligned with the radius joining the core’s
centre of mass to the satellite centre of mass (spin perpendicular
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Figure 12. Excess probability, 1 + ξ P, of the projected angles between the
direction of the spin of substructures and their position vector in the core’s
rest frame. The projection is made along the x-axis where the z-axis is co-
incident with the core’s spin direction. The solid line represents the average
distribution of projected angles of 50 subsamples of 50 000 substructures
(out of 100 000 available substructures). The error bars represents the 3σ

dispersion relative to these 50 subsamples. An isotropic distribution of ori-
entation would correspond to a value of 1 for 1 + ξ P. The projection plus
the reference to the position vector instead of the velocity’s direction lowers
the anisotropy effect. The dashed curve stands for the best Gaussian fit of the
excess probability (see equation 13 for parametrization). The best-fitting pa-
rameters are: a1 = 0.0999 ± 0.0030, a2 = 1.5488 ± 0.0031, a3 = 0.8259 ±
0.0131 and a4 = 0.9737 ± 0.0007. It seems that on average the projected
orientation of a substructure is orthogonal to its projected position vector.

to the radius, or θ P ∼ π/2). The ‘circular’ configuration is the case
where the satellite main axis is orthogonal to the radius (spin parallel
to the radius, θ P ∼ 0 [π]). These reference configurations will be
discussed in what follows.

The resulting distribution, 1 + ξ P(θ P), is shown in Fig. 12.
As before, an isotropic distribution of orientations would lead to
ξ P(θ P) = 0. The distribution is computed with 100 000 satellites,
without the cores, while the error bars result from Monte Carlo sim-
ulations on 50 subsamples of 50 000 satellites each. As compared
to the distribution expected for random orientations, the orthogonal
configuration is present in excess of ξ P(π/2) ∼ 0.02. If the spin of
satellites is orthogonal to their principal axis, the direction vector
in the core’s rest frame is more aligned with the satellites’ principal
axes than one would expect for an isotropic distribution of satellite
orientations. This configuration is ‘radial’. The peak of the distri-
bution is slightly above the error bars: �ξ P(θ P ∼ π/2) ∼ 0.02. The
distribution can be fitted by the Gaussian function given in equa-
tion (13) with the following parameters: a1 = 0.0999 ± 0.0030,
a2 = 1.5488 ± 0.0031, a3 = 0.8259 ± 0.0131 and a4 = 0.9737 ±
0.0007. The alignment seems to be difficult to detect in projection.
With 50 000 satellites, we barely detect the enhancement of the or-
thogonal configuration at the 3σ level, and thus we do not expect a
detection of this effect at the 1σ level for less than 6000 satellites.
Nevertheless, the distribution of the satellites’ orientation in projec-
tion seems to be ‘radial’ on dynamical grounds, without reference
to a lensing potential.

Our previous measurement was ‘global’ since it does not take
into account the possible change of orientation with the relative
position of the satellites in the core’s rest frame. In Fig. 13, we
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Figure 13. Radial and azimuthal grid of the excess probability, 1 + ξ P,
of the projected angles between the direction of the spin of substructures
and their direction relative to the central position of the core (as shown on
average in Fig. 12). The projection is made along the x-axis where the z-
axis is coincident with the direction of the core’s spin. Each row represents a
distance relative to the central core in the mother’s radius units (from bottom
to top): R ∈ [0, 0.4[, R ∈ [0.4, 0.8[, R ∈ [0.8, 1.2[, R ∈ [1.2, 1.6[ and R
∈ [1.6, 2[. Each column represents an angular distance (in degrees) relative
to the direction of the core’s spin (z-axis): φ s ∈ ]0, 36], φ s ∈ [36, 72[, φ s

∈ [72, 108[, φ s ∈ [108, 144[ and φ s ∈ [144, 180[. The isotropic orientation
distribution corresponds to a value of 1. Each sector presents a preferential
direction that depends on its position relative to the spin direction of the
central core. The distributions are computed using 50 samples of 50 000
satellites each. In each sector, the points represents the distribution averaged
over the 50 samples. The error bars represent the 3σ Monte Carlo dispersion
of the distribution over these 50 samples.

explore the evolution of 1 + ξ P with the radial distance relative to
the core’s centre of mass and with the angular distance relative to the
z-axis, i.e. relative to the direction of the core’s spin. The previous
synthetic halo was divided into sectors and, for each sector, 1 + ξ P

can be computed. The sectors are thus defined by their radius (in
the mother’s radius units): R � 0.4, 0.4 < R � 0.8, 0.8 < R � 1.2,
1.2 < R � 1.6 and 1.6 < R � 2; and by their polar angle relative to
the direction of the core’s spin (in degrees): φ s � 36, 36 < φ s � 72,
72 < φ s � 108, 108 < φ s � 144 and 144 < φ s � 180. Each of the
previous Monte Carlo subsamples can also be divided into sectors
in order to compute the dispersion σ for the distributions within the
subsamples. The error bars still represent the 3σ dispersions.

Fig. 14 is a qualitative representation of the results presented in
Fig. 13. Each sector with R � 1 in Fig. 13 is represented by an ellipse
at its actual position. The orientation of the ellipse is given by the
angle of the maximum of the corresponding 1 + ξ P(θ P) function. We
chose to represent the spin’s direction perpendicular to the ellipse’s
major axis. We also chose to scale the ellipse axial ratio with the
signal-to-noise ratio of 1 + ξ P(θ P). Indeed large errors lead to weak
constraints on the spin orientation and the galaxy would be seen as
circular on average. Conversely a strongly constrained orientation
leads to a typical axial ratio of 0.5.

R=0.2
R=0.6

R=1

Figure 14. Geometric configuration of mean satellites around their core
galaxy; each panel of Fig. 13 is represented by an ellipse at its log radius and
angle around the core galaxy. The axial ratio of the ellipses is proportional
to the peak-to-peak amplitude of the corresponding correlation (accounting
for the relative signal-to-noise ratio), while its orientation is given by the
orientation of the maximum of 1 + ξ P.

Two effects seem to emerge from this investigation. For some
sectors, the orthogonal configuration is in excess compared to an
isotropic distribution of satellites’ orientation relative to the radial
vector. This seems to be true especially for radii smaller than the
mother’s radius but the effect is still present at larger distances,
especially near φ s ∼ π/2. Switching from low values to high values
of φ s changes the slope of the 1 + ξ P(θ ) distribution. This may be a
marker of a ‘circular configuration’ of the orientation of satellites.

The existence of a ‘radial’ component in the orientation of the
satellites was expected, both from the unprojected measurements
made in the previous sections and from the global distribution ex-
tracted from the projected data. The fact that the ‘radial’ signature
is stronger around the equatorial plane (72 < φ s < 108 in Fig. 13)
may be further evidence for a filamentary flow of satellites, even in
projection. It seems that the existence of a ‘circular’ component was
mostly hidden in the previous measurements by the dominant sig-
nature of the ‘radial’ flow. Nevertheless, the dominance of ‘circular’
orientations near the poles fits with the picture of a halo surrounded
by satellites with their spin pointing orthogonally to the filament
directions.

The ‘circular’ flow may alternatively be related to the flow of
structures around clusters located at the connection between fila-
ments. There are observations of such configurations (Kitzbichler
& Saurer 2003), where galaxies have their spin pointing along their
direction of accretion, and these observations could be consistent
with our ‘circular’ component.

6 A P P L I C AT I O N S

Let us give here a quick overview of the implications of the previous
measurements for the inner dynamics of the halo down to galactic
scales. In particular, let us see how the self-consistent dynamical
response of the halo propagates anisotropic infall inwards, and then
briefly and qualitatively discuss the implications of anisotropy on
galactic warps, disc thickening and lensing.
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6.1 Linear response of galaxies

In the spirit of Kalnajs (1971) or Tremaine & Weinberg (1984),
for example, we show in Appendix A and elsewhere (Aubert &
Pichon 2004) how to propagate dynamically the perturbation from
the virial radius into the core of the galaxy using a self-consistent
combination of the linearized Boltzmann and Poisson eqnarrays
under the assumption that the mass of the perturbation is small
compared to the mass of the host galaxy. Formally, we have

r (x, t) = R[F,Ω, x, t − τ ](� (Ω, τ )), (32)

where R is a linear operator that depends on the equilibrium state of
the galactic halo (plus disc) characterized by its distribution function
F, and r(x, t) represents the self-consistent response of the inner halo
at time t due to a perturbation � (Ω, τ ) occurring at time τ . Here
� represents formally the perturbed potential on the virial sphere
and the flux density of advected momentum, mass and kinetic en-
ergy at R200. A ‘simple’ expression for R is given in Appendix A
for the self-consistent polarization of the halo. The linear operator,
R, follows from eqnarrays (A6), (A13) and (A16). These eqnarrays
generalize the work of Kalnajs (1971) in that it accounts for a con-
sistent infall of advected quantities at the outer edge of the halo. It
is shown in particular in Appendix A that self-consistency requires
the knowledge of all 10 (scalar, vector and symmetric tensor) fields
� ρ(Ω, τ ), � ρv(Ω, τ ) and �ρσi σ j (Ω, τ ).

When dealing with disc broadening, R could be the velocity or-
thogonal to the plane of the disc, or, for the warp, its amplitude, as a
function of position in the disc, x (or the orientation of each ring if
the warp is described as concentric rings). More generally, it could
correspond to the perturbed distribution function of the disc plus
halo. The whole statistics of R is relevant. The average response
〈r (x, t)〉 can be written as

〈r (x, t)〉 = R〈� (Ω, τ )〉 =
∑
�m

RY m
� (Ω)

〈
am

�

〉
. (33)

Since the accretion is anisotropic, 〈am
� 〉 do not converge towards

zero (see Section 3.4) inducing a non-zero average response. Most
importantly the two-point correlation of the response will tell us
qualitatively what the correlation length and the rms amplitude of the
response will be. For the purpose of this section, and to keep things
simple, we will ignore temporal issues (discussed in Appendix A)
altogether, for both the mean field and the cross-correlations. The
two-point correlation of r(x) then depends linearly on the two-point
correlation of � :

〈r (x) · rT(y)〉 = R〈� (Ω) · � T(Ω′)〉RT, (34)

where T stands for the transposition. Clearly, if the infall, � (Ω), is
anisotropic, the response will be anisotropic. As was discussed in
Section 3.4, when the infall is not isotropic, we have〈∣∣ãm

�

∣∣2〉 �= 〈∣∣α̃m
�

∣∣2〉 = 1

2� + 1

m=�∑
m=−�

〈∣∣α̃m
�

∣∣2〉. (35)

Let us therefore introduce

�R̃m
� ≡ 〈∣∣ãm

�

∣∣2〉− 〈∣∣α̃m
�

∣∣2〉, (36)

which would be identically zero if the field were stationary on the
sphere. Here �R̃m

� represents the anisotropic excess for each har-
monic correlation. In particular, the excess polarization of the re-
sponse induced by the anisotropy reads

�〈r (x) · rT(y)〉 =
∑
�m

RY m
� (Ω)�R̃m

� Y m
� (Ω′)RT. (37)
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Figure 15. The residual anisotropic harmonic power spectra, �R̃m
�

, intro-
duced in equation (36) as a function of m for � = 1, 2, 3, 4. These residuals
will serve as input to the computation of the dynamical response of the halo.

Fig. 15 displays �R̃m
� , for � = 1, 2, 3, 4. The different �R̃m

� clearly
converge towards different non-zero values. Consequently the re-
sponse should reflect the anisotropic nature of the external pertur-
bations.

It is beyond the scope of this paper to pursue the quantitative
exploration of the response of the inner halo to a given anisotropic
infall, since this would require an explicit expression of the response
operator, R, for each dynamical problem investigated.

6.2 Implication for warps, thick discs and lensing

In this paper, the main emphasis is on measured anisotropies. It turns
out that it never exceeds 15 per cent in accretion. For a whole class of
dynamical problems where anisotropy is not the dominant driving
force, it can be ignored at that level. Here we now discuss qual-
itatively the implication of the previous measurements to galactic
warps, thick discs and weak lensing where anisotropy is essential.

6.2.1 Galactic warps

The action of the torque applied on the disc of a galaxy is differ-
ent for different angular and radial positions of the perturbation.
Consequently the warp’s orientation and its amplitude are functions
of the spatial configuration of the external potential. For example,
López-Corredoira et al. (2002) found that the warp’s amplitude due
to an intergalactic flow is dependent on the direction of the incoming
‘beam’ of matter. Having modelled the intergalactic flow applied to
the Milky Way, they found that the warp amplitude rises steeply as
the beam leaves the region coplanar to the disc and this warp am-
plitude reaches a maximum for an inclination of 30 degrees relative
to the disc’s plane. As the beam direction becomes perpendicular
to the galactic plane, the warp amplitude decreases slowly. In this
context, the existence of a typical spatial configuration for the in-
coming intergalactic matter or infalling satellites may induce a kind
of ‘typical’ warp in the disc of galaxies.

The existence of a preferential plane for the accretion of angular
momentum also implies that the recent evolution of the halo’s spin
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has been rather smooth. Bullock et al. (2001) have shown that the
angular momentum tends to remain aligned within haloes. Further-
more, the accretion of matter by haloes is preferentially performed
on plunging radial orbits; thus the inner parts of haloes are aware of
the properties of the recently accreted angular momentum. There-
fore, a disc embedded in the halo would also ‘feel’ this anisotropic
accretion. Ostriker & Binney (1989) have shown that the misalign-
ment of the accreted angular momentum and the disc’s spin forces
the latter to slew the symmetry axis of its inner parts. The warp
line of nodes is also found to be aligned with the axis of the torque
applied to the disc. As stressed by Binney (1992), a non-straight
line of nodes can be associated with changes in the direction of the
accreted angular momentum. Using a sample of 12 galaxies, Briggs
(1990) established rules of thumb for galactic warps, one of them
being that the line of nodes is straight in the inner region of a disc
while it is wound in the outer parts. If the angular momentum is
accreted along a stationary preferential direction, as we suggest,
the warp line of nodes should remain mostly straight. However, if
the accretion plane differs slightly from the disc plane, more than
one direction of accretion become possible (by symmetry around
the vector defining the disc plane) and, as a consequence, different
directions are possible for the torque induced by accreted matter. We
may then consider a varying torque along accretion history, with an
accreted angular momentum ‘precessing’ around the halo’s spin but
close to its direction. In this scenario, the difference in the behaviour
of the warp line of nodes between the inner and outer regions of the
galaxies may be explained.

6.2.2 Galactic disc thickening

Thin galactic discs put serious constraints on merging scenarios,
since their presence implies a fine tuning between the cooling mech-
anisms (e.g. coplanar infall of gas) and the heating processes (merg-
ing of small virialized objects, deflection of spirals on molecular
clouds). It has been shown that small mergers can produce a thick
disc (e.g. Quinn, Hernquist & Fullagar 1993; Walker, Mihos &
Hernquist 1996). However, the presence of old stars within the thin
disc cannot be explained in the framework of the merging scenario
unless a fraction of the accretion took place within the equatorial
plane of the galaxy. Furthermore, the geometric characteristic of
the infall is essential in the formation process of a thick disc. In
Velazquez & White (1999), numerical simulations of interactions
between galactic discs and infalling satellites show that the heat-
ing and thickening is more efficient for coplanar satellites. They
also stressed the differences between the effect of prograde or ret-
rograde orbits of infalling satellites (relative to the rotation of the
disc): prograde orbits induce disc heating while retrograde orbits in-
duce disc tilting. Our results indicate that the infall is preferentially
prograde and coplanar relative to the halo’s spin: if we consider an
alignment between the halo’s spin and the galaxy’s angular momen-
tum, the thickening process may be more efficient than that expected
in an isotropic configuration of infalling matter. Furthermore, our
estimate of the fraction of coplanar accretion at the virial scale may
be considered as a lower bound near the disc since the presence of a
disc will focus the infall closer to the galactic plane. In fact, Huang
& Carlberg (1997) found that the disc tends to tilt towards the orbital
plane of infalling prograde low-density satellites. This effect would
also contribute to enhance the excess of coplanar accretion down to
galactic scales.

However, the nature of infalling virialized objects was shown to
affect their ability to heat or destroy the disc. Huang & Carlberg

(1997) found that the presence of low-density satellites should in-
duce preferentially a tilting of the disc instead of a thickening: one
needs to enhance the relative mass of the satellite (∼30 per cent of
the disc mass) to produce an observable thickening in the inner parts
of the galaxy. Unfortunately such a massive satellite has a destruc-
tive impact on the outer parts of the disc. The relationship between
the excess of accretion and the satellite mass should be constrained
but our limited mass resolution prevents us from performing such a
quantitative analysis. We should therefore aim at achieving higher
angular resolution of the virial sphere and higher mass resolution in
order to describe rather compact virialized objects.

6.2.3 Gravitational lensing

The first detection of cosmic shear was reported by four different
groups in 2000 (Bacon, Refregier & Ellis 2000; Kaiser, Wilson &
Luppino 2000; Van Waerbeke et al. 2000; Wittman et al. 2000). One
of the basic assumptions made by cosmic shear studies is that the
intrinsic ellipticities of galaxies are expected to be uncorrelated, and
that the observed correlations are the results of gravitational lensing
induced by the large-scale structures between those galaxies and
the observer. Hence, the detection of a weak lensing signal assumes
a gravitationally induced departure from a random distribution of
galactic shapes. Consequently, if there exists intrinsic alignments or
preferential patterns in galactic orientations, this would potentially
affect the interpretation from weak lensing measurements. Several
papers have already considered the ‘contamination’ of the weak
lensing signal by intrinsic galactic alignment. Using analytic argu-
ments, Catelan, Kamionkowski & Blandford (2001) have shown
that such alignments should exist. The issue of the amplitude of
the intrinsic correlations compared to the correlation induced by the
cosmic shear has also been explored by Croft & Metzler (2000) and
Heavens et al. (2000). The ‘intrinsic’ correlations may overcome
the shear-induced signal in surveys with a narrow redshift range.
We have shown that the orientation of satellites around haloes is
not randomly distributed, which is a clear indication of intrinsic
correlations for our considered scales (∼500 kpc). Taking zm = 1
as a typical median redshift for large lensing surveys, the corre-
sponding angular scale is 1 arcmin in the cosmogony of our simula-
tions. Furthermore, the prospect of studying the redshift evolution
of gravitational clustering via shear measurements will require the
investigation of narrower redshift bins and, as such, small-scale
dynamically induced polarization might become an issue. As rec-
ommended by Catelan et al. (2001), our measurement may also be
used as a ‘numerical’ calibration of the relation between elliptic-
ity and tidal fields. Interestingly, they suggested to compensate for
the finite number of galaxies around clusters by ‘stacking’ several
clusters, which is precisely the procedure we followed to extract sig-
nal from our simulations. Finally, weak lensing predicts no ‘curl’
component in the shear field (e.g. Pen, Lee & Seljak 2000) and such
‘curl’ configurations would serve to extract the intrinsic signal. Even
though satellites exhibit both ‘circular’ and ‘radial’ configurations
in our simulations, we do not observe a clear signature of a ‘curl’
component of orientations at our level of detection.

7 C O N C L U S I O N A N D P RO S P E C T S

7.1 Conclusion

Using a set of 500 �CDM simulations, we investigated the proper-
ties of the spatial configuration of the cosmic infall of dark matter
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around galactic ≈L� haloes. The aim of the present work was to find
out if the existence of preferential directions existing on large scales
(such as filaments) is reflected in the behaviour of matter accreted
by haloes, and the answer is a clear quantitative yes.

Two important assumptions were made in the present paper. We
did not consider different classes of halo mass (except for Fig. D2),
but instead applied normalizations to includes all haloes in our mea-
surements (considering, for example, the statistical average of con-
trasts). We also did not take into account outflows and focused on
accreted quantities.

First we looked at the angular distribution of matter at the interface
between the intergalactic medium and the inner regions of the haloes.
We measured the accreted mass and the accreted angular momentum
at the virial radius, describing these quantities as spherical fields.

(i) The total (respectively, advected) angular momentum mea-
sured at the virial radius is strongly aligned with the inner spin of
the halo with a proportion of aligned configuration 30 per cent (re-
spectively, 50 per cent) more frequent than expected in an isotropic
distribution of accreted angular momentum [1 + ξ LS(0) ∼ 1.5]. This
result reflects the importance of accreted angular momentum in the
building of the inner spin of the haloes.

(ii) The accretion of mass measured at the virial radius in the
ring-like region perpendicular to the direction of the halo’s spin is
∼15 per cent larger than the one expected in the case of an isotropic
infall of matter. We also detected the excess of accretion at the same
level in the equatorial plane using a spherical harmonic expansion
of the mass density flux.

(iii) In the spin’s frame, the average of the harmonic a�0 coef-
ficients does not converge towards zero, indicating that there is a
systematic accretion structured in rings parallel to the equatorial
plane. Using the substructure detection code ADAPTAHOP, we con-
firmed that the existence of a preferential plane for the infalling mass
is reflected in the distribution of satellites around haloes.

(iv) Investigating the degree of alignment between the orbital
momentum of satellites and the central spin of the halo, it is shown
that the aligned configuration is present in excess of ∼12 per cent.
Satellites tend to revolve in the plane orthogonal to the direction of
the halo’s spin. The two methods (using spherical fields and detec-
tion of satellites) yield consistent results and suggest that the image
of a spherical infall on haloes should be reconsidered at the quoted
level. We studied the distribution of the angle between the direction
of accretion of satellites and their own spin.

(v) An orthogonal configuration is 5 per cent more frequent than
would be expected for an isotropic distribution of spin and directions
of accretion. Satellites tend to be accreted in the direction orthog-
onal to their own spin. These findings are interpreted as the results
of the filamentary flows of structures, where satellites and haloes
are accreted along the main direction of filaments with their spins
orthogonal to this preferential direction. The flow along filaments
also explains why matter is accreted preferentially in the equatorial
plane at the virial radius. The halo points its spin perpendicular to
the flow and sees a larger flux in the regions normal to the flow
direction, i.e. near the equator. Thus, it appears that the existence
of preferential directions on large scales is still relevant on galac-
tic scales and should have consequences for the inner dynamics of
the halo. We addressed the issue of observing these alignments in
projection.

(vi) The distribution of satellites projected on to the sky is flat-
tened, with an axial ratio of 1.1 at the virial radius.

(vii) It seems that the orientation of satellites around their haloes
is not random, even if the 2D representation dilutes the effects of

Table 1. Summary of the fitting parametersa for the angular correlations.

Angle a1 a2 a3 a4

θ ρL 2.351 ± 0.006 −0.178 ± 0.002 1.343 ± 0.002 0.669 ± 0.000
θ ρvrL 3.370 ± 0.099 −0.884 ± 0.037 1.285 ± 0.016 0.728 ± 0.001
θ cs 0.399 ± 0.003 0.059 ± 0.008 0.881 ± 0.005 0.938 ± 0.000
θ vs 0.295 ± 0.004 1.544 ± 0.001 0.804 ± 0.005 0.914 ± 0.001
θ P 0.099 ± 0.003 1.548 ± 0.003 0.825 ± 0.013 0.973 ± 0.000

Note. aHere θ ρL is the angle between the halo’s spin and the angular
momentum measured on the virial sphere; θ ρvrL is the angle between the
halo’s spin and the accreted angular momentum measured on the virial
sphere; θ cs is the angle between the core’s spin and the satellite’s orbital
momentum; θ vs is the angle between the satellite’s velocity in the core’s
rest frame and the satellite’s spin; θ P is the projected angle between the
satellite’s spin and its direction relative to the core’s position. The fitting
model we used is 1 + ξ (θ ) = [a1/(

√
2πa3)] exp[−(θ − a2)2/(2a2

3 )] + a4.

Table 2. Summary of other quantitiesa related to anisotropic
accretion.

〈δm〉(z) 0.0161(± 0.0103)z + 0.147(± 0.005)
S3(δm) 0.44
ε(Rm) 0.1
ã20 −0.65 ± 0.04
ã40 0.12 ± 0.02
ã60 −0.054 ± 0.015
ã80 0.0145 ± 0.0014

Note. aHere 〈δm〉(z) is the redshift evolution of the average
excess of accretion in the plane orthogonal to the direction
of the spin; S3(δm) is the skewness of the distribution of
excess of accretion; ε(Rm) is the axial ratio a/b − 1 with
a > b of the projected satellite distribution; and ã20, ã40, ã60

and ã80 are the normalized harmonic coefficients of the
‘equatorial’ modes.

alignments. The ‘radial’ orientation, where the satellites main axis is
aligned with the line joining the satellite to the halo centre, is ∼5 per
cent more frequent than the one expected in a completely random
distribution of orientation. The ‘circular’ configuration, where the
satellites main axis is perpendicular to the line joining the satellite
to the halo centre, is also present in excess compared to a random
distribution near the pole of the host galaxy.

All corresponding fits are summarized in Tables 1 and 2, while
Fig. 16 gives a schematic view of the measurements we carried out.

We investigated how the self-consistent dynamical response of
the halo would propagate anisotropic infall down to galactic scales.
In particular, we gave the corresponding polarization operator in
the context of an open system. We have shown in Appendix A that
accounting for dark matter infall required knowledge of the first
three moments of the flux densities, � ρ(Ω, τ ), � ρv(Ω, τ ) and
�ρσi σ j (Ω, τ ).

It is suggested that the existence of a preferential plane of ac-
cretion of matter, and thus of angular momentum, should have an
influence on warp generation and disc thickening. If the anisotropic
properties of infalling matter measured in the outer parts of haloes
are conserved in the inner region of galaxies, there may exist a ‘typ-
ical’ warp amplitude and this anisotropic accretion of matter may
explain the properties of warp line of nodes. In the same spirit, the
efficiency of the thickening of the disc may be enhanced or reduced
by equatorial accretion. Finally, our finding of intrinsic alignments
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Figure 16. A schematic representation of all estimates of anisotropic accretion considered in this paper. (1) We measured the distribution of the angle between
the orbital momentum on the virial sphere and the halo’s spin. The average orbital momentum measured on the virial sphere is mostly aligned with the spin
of the halo embedded in the virial sphere (discussed in Section 3.2). (2) We compared the accretion in the plane orthogonal to the direction of the halo’s spin
with the average accretion on the sphere. On the virial sphere, we detected an excess of ring-like or harmonic accretion in the equatorial plane (discussed in
Sections 3.3 and 3.4). (3) In projection, we used a ‘synthetic’ halo to look at the distribution of satellites detected with ADAPTAHOP and at the orientation of their
spin around the direction of the spin. In projection, satellites lie preferentially in the projected equatorial plane (discussed in Section 5.1). (4) We measured
the angle between the halo’s spin and the orbital momentum of each satellite. The orbital momentum of satellites is preferentially aligned with the spin of
their hosting core (discussed in Section 4.1). (5) We compared the orientation of each satellite velocity vector (in the core’s rest frame) with the orientation
of their own spin. The velocity vector of satellites (in the core’s rest frame) is orthogonal to the direction of their spin (discussed in Section 4.2). (6) In the
equatorial plane, the projected orientation of satellites is more ‘radial’, while near the direction of the spin a ‘circular’ configuration of orientation seems to
emerge (discussed in Section 5.2).

on small scales as well as specific orientations of structures should
be relevant for cosmic shear studies on wide and shallow surveys.

7.2 Prospects

The main purpose of our investigation was to provide quantitative
measurements of the level of anisotropy involved in the infall on
scales ∼500 kpc. The next step should clearly involve working out
quantitatively their implications for warp, disc heating, etc., as dis-
cussed in Section 6.

Our measurements were carried out at R200, which on galactic
scales is a long way from the inner region of the galaxy. One should
clearly propagate the infall (and its anisotropy) towards the centre
of the galaxy, and more radial infalling components will play a more
important role and should be weighted accordingly. It should also
be stressed that we did not take into account the extra polarization
induced by the presence of an embedded disc, which will undoubt-
edly reinforce the polarization and the anisotropy of the infall. We
also concentrated on mass accretion, as the lowest-order moment
of the underlying ‘fluid’ dynamics. Clearly higher moments involv-
ing the anisotropically accreted momentum, the kinetic energy, etc.,
are dynamically relevant for the evolution of the central object as
is discussed in Section 6 and in the Appendix. The time evolution

of the statistics of these flux densities is also essential for the in-
ner dynamics of the halo and should be addressed systematically
as well. It will be worth while to explore different cosmologies and
their implications on small-scale dynamics, and on the characteris-
tics of infalling clumps, though we hope that the qualitative results
sketched here should persist.

It should be emphasized that some aspects of the present work
are exploratory only, in that the resolution achieved (M halo > 5 ×
1012 M�) is somewhat high for L � galaxies. In fact, it would be
interesting to see if the properties of infall changes for lower mass
(M halo < 5 × 1010 M�) together with the intrinsic properties of
galaxies. In addition, a systematic study of biases induced by the es-
timators of angular correlations should be conducted, e.g. the mass-
weighted errors we introduced in Section 3.2.

Observationally, the synthetic halo described in Section 5.1 could
be compared to stacked satellite distributions relying on galactic
surveys such as the SDSS. Once the anisotropy has been propa-
gated to the inner regions of the galactic halo following the method
sketched in Section 6, we should be in a position to compile a syn-
thetic edge-on galactic disc and compare the flaring of the disc with
the corresponding predictions. The residual preferred orientation of
galactic discs around more massive objects discussed in Section 5.2
should be observed on the scales �500 kpc.
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Using larger simulations will allow us to combine high resolu-
tion with the statistics required to detect the anisotropic accretion of
mass and angular momentum. A wide range of halo masses will be-
come accessible and the halo mass dependence of our findings will
be constrained without suffering from the lack of statistics. Better
angle determinations will naturally follow from a better resolution
and will improve the accuracy of our quantitative results. Resimu-
lations (zoom simulations) should give access to a larger range of
satellite masses, while we were here mostly sensitive to the biggest
substructures. Large infalling objects are likely to feel differently the
effects of tidal forces or dynamical friction than smaller satellites.
Resimulated haloes allow us to investigate the dependence on the
spatial distribution of satellites with their masses corresponding to
a given cosmological environment. However, using only a few res-
imulations may not be sufficient to overcome cosmic variance and,
given the difficulty to produce a large number of high-resolution
haloes, such a project remains challenging.

The inclusion of gas physics in these simulations and their im-
pact on the results is the natural following step. For example, gas
filaments are known to be narrower than dark matter filaments, thus
we would expect to see a higher level of anisotropy in the distri-
bution of gas accreted by the haloes. Furthermore, the transmission
of angular momentum from one parcel of gas to another (or to the
underlying dark matter) may be highly effective and would lead
to higher homogeneity of the properties of the accreted angular
momentum direction, enhancing the effect of spin alignments. The
loss of angular momentum from the gas to the halo will lead to a
modification of our pure dark matter findings. Yet, the inclusion of
gas physics in simulations would force us to address issues such as
overcooling, and the requirement to take star formation and related
feedback processes into account. It remains that, in the longer term,
the inclusion of gas physics cannot be avoided and will give new
insights into the anisotropic accretion of matter by haloes.
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A P P E N D I X A : L I N E A R R E S P O N S E O F A
S P H E R I C A L H A L O TO I N FA L L I N G DA R K
M AT T E R F L U X E S

In the following section, we extend to open spherical stellar sys-
tems the formalism developed by Tremaine & Weinberg (1984) and
Murali (1999) by adding a source term to the collisionless
Boltzmann eqnarray.2 For an open system, the dark matter dynamics
within the R200 sphere is governed by the collisionless Boltzmann
equation coupled with the Poisson eqnarray:

dF

dt
≡ ∂F

∂t
+ {F, H} = se(r ,v, t), and

∇2� = 4πG

∫
d3vF(v), (A1)

2 This is formally equivalent to summing the response of the halo to a point-
like particle for all entering particles.
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where { } is the standard Poisson bracket, F(r, v, t) is the system’s
distribution function (DF) submitted to �(r, t), the total gravita-
tional potential (self-gravity plus external perturbation). The right-
hand side of (A1) is non-zero because of infalling fluxes from the
environment, which require adding a source term, se(r , v, t), to the
Vlazov eqnarray. We may now discriminate between a stationary
part corresponding to the unperturbed state from a weak time-
dependent perturbation induced by the environment. Thus the DF
can be written as F = F 0 + f . Provided the mass of the incoming
flux of dark matter is small compared to the mass of the halo, we may
assume that f is small compared to F 0. Similarly, the Hamiltonian
H of the system can be expanded as H 0 + �H , with �H = ψ e +
ψ where ψ e and ψ stand respectively for the external perturbative
potential and for the small response in potential of the open system.

A1 The Boltzmann equation in action–angle

Given the periodicity of the system, the most adequate represen-
tation of a spherical halo corresponds to action–angle variables
(Goldstein 1950). The linearized Boltzmann equation in such a rep-
resentation is
∂ fk(I, t)

∂t
+ ik · ω fk(I, t) = ik · dF0

dI
�Hk(I, t) + se

k (I, t). (A2)

The new variables are the actions I and the angles w together with
the angular rates ω ≡ d w/dt . In equation (A2) we have Fourier-
expanded the linearized equation (A1) over the periodic angles:

X (r ,v, t) =
∑

k

Xk(I, t) exp (ik · w), with

Xk(I, t) = 1

(2π)3

∫
d3w exp(−ik · w)X (r ,v, t), (A3)

where X is any function of (r, v, t) with k being the Fourier triple
index corresponding to the three degrees of freedom on the sphere.
The equilibrium state F 0 does not depend on time or angles since it
is assumed to be stationary. Then the solution to (A2) can be written
as

fk(I, t) =
∫ t

−∞
dτ exp[ik · Ω(τ − t)]

×
[

ik · dF0

dI

[
ψk(I, τ ) + ψe

k (I, τ )
]+ se

k (I, τ )

]
, (A4)

where we have written �H k(I, τ ) = ψ k(I, τ ) + ψ e
k(I, τ ). We can

integrate (A4) over velocities and sum over k to recover the density
perturbation:

ρ(r , t) =
∑

k

∫ t

−∞
dτ

∫
d3v

{
exp[ik · ω(τ − t) + ik·w]

×
[

ik · dF0

dI

[
ψk(I, τ ) + ψe

k (I, τ )
]+ se

k (I, τ )

]}
.

(A5)

Let us expand the potential and the density over a biorthogonal
complete basis function {ψ [n], ρ[n]} such that

ψ(r , t) =
∑

n

an(t)ψ [n](r );

ρ(r , t) =
∑

n

an(t)ρ[n](r );

∇2ψ [n] = 4πGρ[n];∫
d3rψ [n]∗(r )ρ[p](r ) = δn

p. (A6)

The external potential can be expanded along the same basis as

ψe(r , t) =
∑

n

bn(t)ψ [n](r ). (A7)

Note that in equation (A6) the expansion runs over a triple index
n ≡ (n, �, m) corresponding to the radial, azimuthal and altazimuthal
degrees of freedom, while in equation (A6) the three coefficients are
not independent since the radial variation of the external potential
is fixed by its boundary value on the sphere R200. Making use of the
biorthogonality, multiplying (A5) by ψ [p]∗(r ) for some given p and
integrating over R yields

ap(t) =
∑

k

∫ t

−∞
dτ

∫ ∫
d3vd3r exp[ik · ω(τ − t) + ik·w]ψ [p]∗(r )

×
[∑

n

ik · dF0

dI
[an(τ ) + bn(τ )] ψ

[n]
k (I) + se

k (I, τ )

]
.

(A8)

A2 Self-consistency of the response

We may now swap from position–velocity to angle–action variables
since d3v d3r = d3w d3 I. In (A8) only ψ [p](r ) depends on w so we
may carry the w integration over ψ [p]∗, yielding ψ [p]∗k(I), which
leads to

ap(t) =
∑

k

∫ t

−∞
dτ

∫
d3 I exp[ik · ω(τ − t)]

×
[∑

n

ik · dF0

dI
[an(τ ) + bn(τ )] ψ

[p]∗
k (I)ψ [n]

k (I)

+ se
k (I, τ )ψ [p]∗

k (I)

]
.

(A9)

Note that the last term of equation (A9) corresponds to the modu-
lated potential along the unperturbed trajectories weighted by the
number of particles entering with (v, Ω) at time τ . This is expected
since it just reflects the fact that we could have linearly summed over
all incoming individual particles (since the interaction between par-
ticles in a collisionless fluid is purely gravitational). In this sense,
this term corresponds to a ray tracing problem in a variable index
medium. Note also that equation (A9) does not account for dynam-
ical friction since we integrate over the unperturbed trajectories. At
this point, we expand the source term over a complete basis; this
basis should also describe (known) velocity space variations. We
assume that such a basis φ[n](r , v) exists. We write

se(r ,v, t) =
∑

n

cn(t)φ[n](r ,v) so se
k(I, τ )

=
∑

n

cn(τ )σ [n]e
k (I) where σ

[n]e
k (I)

≡ 1

(2π)3

∫
d3wexp(−ik·w)φ[n](r ,v). (A10)

Calling a(τ ) = [a1(τ ), . . . , an(τ )], b(τ ) = [b1(τ ), . . . , bn(τ )], c(τ ) =
[c1(τ ), . . . , cn(τ )] and �(τ ) the Heaviside function, we define two
tensors:

K pn(τ ) = [1 − �(τ )]

×
∑

k

∫
d3 I exp(ik · ωτ )ik · dF0

dI
ψ

[p]∗
k (I)ψ [n]

k (I),

(A11)
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which depends only on the halo equilibrium state via F 0, and

Hpn(τ ) = [1 − �(τ )]

×
∑

k

∫
d3 I exp(ik · ωτ )σ [n]e

k (I)ψ [p]∗
k (I), (A12)

which depends only on the expansion basis. Then equation (A9)
becomes

a(t) =
∫ ∞

−∞
dτ {K (τ − t) · [a(τ ) + b(τ )] + H(τ − t) ·c (τ )}.

(A13)

We now perform a Fourier transform with respect to time. Hence
convolutions become multiplications and we get

â(p) = [I − K̂ (p)]−1 · [K̂ (p) · b̂(p) + Ĥ(p) · ĉ(p)], (A14)

where p stands for the frequency conjugate to time. The computation
of the variance–covariance matrix is straightforward:

〈â · â∗T〉 =
〈(I − K̂ )−1 · [K̂ · b̂ + Ĥ · ĉ] · [K̂ · b̂ + Ĥ · ĉ]T∗ · (I − K̂ )−1∗T〉,

(A15)

where I is the identity matrix. Note that 〈â · â∗T〉 involves autocorre-
lation like 〈b̂ · b̂

∗T〉 and 〈ĉ · ĉ∗T〉 but also cross-correlation terms such
as 〈b̂ · ĉ∗T〉. In other words, recalling that b and c stand respectively
for the expansion coefficients of the external potential, equation
(A7), and the parametrized velocity distribution, equation (A10),
their cross-correlation will modify the correlation of the response
of the inner halo. Two-point statistics are sufficient to characterize
stationary perturbations and therefore the induced response. Nev-
ertheless, higher statistics of the response can be easily expressed
in terms of higher-order correlations of the perturbation if needed.
For example, it can be shown that the three-point correlation func-
tion of the response’s coefficients can be written as a function of
the two- and three-point correlation of the perturbation coefficients.
There are still quite a few caveats involved; for instance, it is not
completely clear today that we have a good understanding of what
the unperturbed distribution function of a halo plus disc should be.

A3 The source term

A possible choice3 for the source term consistent with the first
two velocity moments of the entering matter involves constructing
se(r , v, t) in the following manner:

se(r ,v, t) =
∑

m

Ym(Ω)
δD(r − R200)�̂ρ,m(t)(2π)−3/2

det|�̂ρσi σ j ,m(t)/�̂ρ,m(t)|

× exp

[
−1

2

(
v− �̂ρv,m(t)

�̂ρ,m(t)

)T

×
(
�̂ρσi σ j ,m(t)

�̂ρ,m(t)

)−1(
v− �̂ρv,m(t)

�̂ρ,m(t)

)]
≡
∑

m

Ym(Ω)δD(r − R200)Cm(v, t), (A16)

where m stands for the two harmonic numbers, (�, m) and Y m(Ω) ≡
Y m

� (Ω). Here the Dirac function δD(r − R200) is introduced since
we measure the source terms at the virial radius. The global form is
Gaussian and is constructed using �̂ρ,m, �̂ρv,m, �̂ρσi σ j ,m, the har-

3 An alternative choice is made in Aubert & Pichon (2004) to account for
the bimodality of the velocity distribution.

monic components of respectively the mass flux density field, ve-
locity flux density vector field and the specific kinetic energy flux
density tensor field measured on the R200 sphere. When taking the
successive moments of this flux distribution over velocity, we get∫

d3vse(r ,v) = �ρ(r ),∫
d3vvse(r ,v) = �ρv(r ), (A17)

while∫
d3v

(
vi − �ρv,i

�ρ

)(
v j − �ρv, j

�ρ

)
se(r ,v)

= �ρσi σ j (r ) +
[∑

m

Ym(Ω)δ(r − R200)
�̂ρv,m(t)2

�̂ρ,m(t)
− �ρv(r )2

�ρ(r )

]
≈ �ρσi σ j (r ), (A18)

so that the Ansatz, equation (A16), satisfies the first two moments,
and approximately the third moment of the fluid eqnarrays. Let us
now expand Cm(v, t) over a linear complete basis, say b-splines
covering the radial velocity component and spherical harmonics for
the angle distribution of the velocity vector:

Cm(v, t) =
∑

α

Cm,α(t)bα(v). (A19)

The particular choice of equation (A16) has led to the parametriza-
tion

cn(t) = Cm,α(t) and

φ[n](r ,v) = bα(v)Ym(Ω)δD(r − R200), (A20)

while equation (A10) becomes

σ
[n]e
k (I) = 1

(2π)3

∫
d3wexp(−ik · w)Ym[Ω(I,w)]bα

×(v[I,w])δD(r (I,w) − R200). (A21)

Note that we can make use of the δD function occurring in equa-
tion (A21) since wr ≡ w̃r (r , I). Therefore equation (A21) reads:

σ
[n]e
k (I) =

∫
d2w

(2π)3

∫
dwr exp(−ik · w)Ym[Ω(I,w)]bα

× (v[I,w])
1

|∂w̃r/∂r |−1
δD(wr − w̃r [R200, I]),

=
∫

d2w

(2π)3
exp(−ik · w)Ym[Ω(I,w, w̃r [R200, I])]bα

× (v[I,w, w̃r (R200, I)])
ωr (I)

|ṙ (R200, I)|
× exp(−ikr · w̃r [R200, I]). (A22)

In equation (A22) we sum over all intersections of the orbit I with
the R200 sphere, at the radial phase corresponding to that intersection
(with a weight corresponding to ωr/|ṙ |).

Given eqnarrays (A6), (A16) and (A22), equation (A13) can be
recast formally as

ρ(r , t) = R{F0, t, τ,Ω}
× [ψe(Ω, τ ), �ρ(Ω, τ ), �ρv(Ω, τ ), �ρσi σ j (Ω, τ )],

(A23)

which corresponds to the form given in the main text in equa-
tion (32). It should be emphasized once again that the splitting of
the gravitational field into two components, one outside of R200, and
one inside, via point particles obeying the distribution s e(r , v, t) is
completely arbitrary from the point of view of the dynamics. In fact,
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one should account that ψ e(Ω, t) should be switched on long before
any particles enter R200 since no particle is created at the boundary.
This last constraint is clearly satisfied by our simulations.

A P P E N D I X B : A D A P TA H O P : A
S U B S T RU C T U R E F I N D E R BA S E D O N
S A D D L E P O I N T H A N D L I N G

Dark matter haloes can contain a hierarchy of subhaloes, which
can be viewed as a tree of structures and substructures. Given a
mass resolution (a finite number of particles such as in our N-body
simulations), there is a limit to this hierarchy, which can be formal-
ized as an ensemble of leaves in a tree. The goal here is to draw
this tree by applying the simplest principles of Morse theory (e.g.
Jost 2002). Morse theory basically involves relating the topology of
an excursion, e.g. the regions of space with density above a given
threshold, ρ >ρ t, to the set of critical points it contains, {x, ∇ρ(x) =
0}, and to the field lines connecting these points together, i.e. the
curves obtained by following the gradient of the density field. In
that approach, the smallest substructures, which are the leaves of
the tree, can be identified as peak patches, i.e. ensembles of field
lines converging to the same local maximum. The connectivity be-
tween substructures is ruled by the saddle points, which are local
maxima in the surfaces defining the contours of the peak patches:
from the knowledge of these saddle points and the local maxima they
connect, it is possible to extract the full tree of structures (haloes)
and substructures (subhaloes) in four steps:

(i) In order to eliminate, at least partly, the effects of Poisson noise
and to have an estimate of the local density as close as possible to
a Morse function,4 while conserving as much as possible details of
the distribution, we perform adaptive smoothing of this distribution
with the standard SPH technique (smooth particle hydrodynamics,
e.g. Monaghan 1992). This smoothing assumes that each particle is a
smooth spherical cloud of given radius R, e.g. a spline S(r). For each
particle, the list of its N SPH closest neighbours is found, typically
N SPH of a few tens (here we take N SPH = 64). The distance from the
furthest neighbour fixes R, while the SPH density at the particle of
interest is estimated by a summation over its neighbours with weight
S(r). To find rapidly the closest neighbours of each particle, we
use a standard Oct-tree algorithm, which decomposes hierarchically
space in subcells until they contain zero or one particle.

(ii) The leaves of the tree of structures and substructures are iden-
tified while associating each particle to the peak patch to which it
belongs. This is performed by a simple walk from particle to parti-
cle, while following the gradient until convergence: at each step of
the walk, the SPH density of the particle is compared to its N HOP

closest neighbours (which were stored during the SPH smoothing
step), the particle for the next step of the walk being the one with the
largest SPH density. We take N HOP = 16, as advocated by Eisenstein
& Hut (1998).

(iii) For each leaf of the tree, the connections with the other leaves
are created by searching the saddle points on the intersecting sur-
faces Si j between peak patches i and j. Each surface Si j is made of
particles belonging to one of the peak patches and having at least
one of their closest neighbours among N HOP in the other peak patch,
and vice versa. If the set Si j contains only particles belonging to i or
only particles belonging to j, the connection between i and j is con-
sidered as non-significant (because non-symmetric) and eliminated.

4 That is, a smooth function such that the ensemble of critical points is
discrete and the matrix of second derivatives in their neighbourhood is non-
degenerate.

Saddle points are local maxima in Si j . To establish the connectivity
as a function of a density threshold, only the highest saddle point
matters, when there are several. The search for this saddle point
involves finding the maximum of the SPH density among parti-
cles belonging to Sij. We proceed as follows to estimate accurately
the SPH density in Sij. For each particle A in Sij, say belonging to
peak patch i and with density ρ A, we consider the list of its closest
neighbours among N HOP belonging to peak patch j, with density ρ k ,
k = 1, . . . , Nj � N HOP. The density associated to this particle in
Si j is then given by ρ = min(ρ A, ρ k). By applying this procedure,
we locate accurately Sij and avoid slight overestimation of the SPH
density at the saddle point.

(iv) It is possible to build the tree of structures and substruc-
tures when the list of neighbouring leaves to which a given leaf
is connected is given, as well as the corresponding saddle points.
This is performed recursively by increasing progressively a thresh-
old parameter, ρ t, from an initial value, ρTH, corresponding to the
typical overdensity used to select galaxy haloes, here called struc-
tures. A typical choice for ρTH is ρTH = 81, which corresponds
approximately to friends-of-friends haloes selected with a linking
parameter b = 0.2 (e.g. Eisenstein & Hut 1998). Suppose we are at
step n of the process and let us compute step n + 1. At this point,
we are sitting on a branch of the tree – a structure or a substructure
– and we aim to draw the details of this branch. This (sub)structure
contains a number of peak patches connected by saddle points of
densities ρ s. For the considered value of ρ t, the connections inside
that (sub)structure are examined and destroyed when ρ s < ρ t. The
(sub)structure is then broken into as many components as neces-
sary. During the process, the particles above ρ t belonging to each
subcomponent are tagged, which allows us to determine at any time
various properties of a given (sub)structure, namely the number of
particles it contains, its mass, its average and maximum SPH den-
sity, for possible application to various morphological criteria of
selection. One such criterion is Poisson noise. In order to assess if
a given substructure containing N particles should be considered
as statistically significant compared to Poisson noise, its average
density must be sufficiently significant compared to ρ t:

〈ρ〉substructure > ρt

(
1 + fPoisson√

N

)
, (B1)

where f Poisson is a ‘ f Poissonσ ’ detection parameter, typically a few
units. A good choice is f Poisson = 4. If the substructure is below
this threshold, it disappears, i.e. it is not considered in the next
step of the recursion. At the end of the selection, two situations are
possible: (i) two substructures or more are detected and new nodes
are created in the tree; (ii) the (sub)structure was not broken into
multiple components and nothing happens at this step. The process
is then repeated on the new substructures by increasing locally the
threshold ρ t:

ρt → ρt

(
1 + fPoisson√

N

)
, (B2)

until there is only one peak patch in the (sub)structure. Note that the
Poisson noise selection, equation (B1) is not applied to the haloes
when ρ t = ρTH.

At the end of the process, one obtains a tree of structures and sub-
structures, each node of the tree corresponding to a (sub)structure,
with its position, its number of particles, its mean square radius,
its average and maximum SPH density, and the density ρ s of the
highest saddle point that connects it to another substructure. In ad-
dition, a flag is given to each particle. This flag is a pointer to the
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closest possible node to a leaf (if not a leaf), which allows one to
find recursively the list of particles belonging to any (sub)structure
and thus perform some more elaborate post-treatment, such as some
relying on dynamical prescriptions (boundedness). The difficulty in
that case is to estimate accurately the gravitational potential. Its
computation can be rather costly, since ‘peeling’ the (sub)haloes
requires iterating several forward and backward walks in the tree of
structures and substructures with corresponding calculations of the
gravitational potential. Our prescription is therefore at the present
time purely morphological and does not involve the estimate of the
gravitational potential. The current implementation is rather fast,
most of the CPU time being taken by the SPH smoothing, e.g. 1–3 h
on 16 million particles on current fast scalar processors.

Our algorithm is called ADAPTAHOP since we aim to improve HOP

Eisenstein & Hut (1998): the first two steps above are exactly the
same as in HOP, but the last two are different. Indeed, in HOP, the
idea is to combine information on the saddle point densities, ρ s,
on the local maxima, ρmax, inside a connected set of peak patches
to decide whether it has to be broken into multiple disjoint haloes.
The aim of HOP is indeed to improve standard friends-of-friends
methods in order to obtain more compact and spherical haloes. The
goal of ADAPTAHOP is quite different since it focuses on substructure
detection.

In spirit, ADAPTAHOP is in fact very similar to the substructure
finder of Springel (1999): SUBFIND (see also Springel et al. (2001a)).
Of course, there is a major difference, since SUBFIND has in addition
a sophisticated dynamical prescription involving exact calculation
of the gravitational potential. Springel uses also a slightly more
elegant method to construct the tree of structures and substructures
prior to dynamical post-treatment. After step one above, the idea
is to rank the particles by decreasing density and treat them in this
order. Investigating the distribution of particles in such a way is
equivalent to examining isocontours of decreasing density. It uses
(as in ADAPTAHOP) the closest neighbours of a particle to decide if the
particle examined during the process (i) creates a new (sub)structure
since it is isolated, (ii) belongs to an existing substructure or (iii)
connects two substructures, which makes the construction of the tree
of structures and substructures much simpler than in ADAPTAHOP and
more accurate, since there is no need to use the threshold parameter
ρ t. In SUBFIND, no treatment is made to account for the local Poisson
noise: it is not necessary because of the dynamical post-processing,
which destroys unbounded structures.

It is important to note that since ADAPTAHOP has no dynamical
post-treatment, it gives slightly different results compared to SUB-
FIND in its present form. In particular, for a given sufficiently mas-
sive dark matter halo, SUBFIND (Springel et al. 2001a) describes it in
terms of a large, smooth central component, and a bunch of much
less massive subhaloes. In ADAPTAHOP, the result is quite similar,
except that the central component is much less spatially extended
(it is extended up to the isocontour level corresponding to the saddle
point connecting it to a subhalo), and it is therefore less massive.

Fig. B1 illustrates how well ADAPTAHOP performs in one of the
simulations we realized for this work, for the most massive halo
detected in this realization.

A P P E N D I X C : S TAT I S T I C S O N T H E S P H E R E

When dealing with spherical fields, there are different ways to char-
acterize their angular structure. In the present paper, we essentially
deal with centred statistics, i.e. we describe the angular structuration
of scalar or vector fields relative to a specific direction, defined by
the halo or satellite’s spin S. Let us first formally introduce filtering

Figure B1. Illustration of the output of ADAPTAHOP for one of the simulations
of this work. A sphere of radius 5 Mpc centred on the most massive halo
is represented. In the upper panel, the dark matter density is shown using
a logarithmic scale. Darker regions correspond to higher density contrasts.
The lower panel displays the detected subhaloes (i.e. the most elementary
structures corresponding to the peak patches or the leaves of the tree). The
size of the circle scales with M1/3, where M is the mass of the subhalo. Most
of the subhaloes seen on the figure belong to the most massive halo. Clearly,
ADAPTAHOP is rather successful at detecting all the significant substructures.

on the sphere, statistical and angular averages, and present one-point
statistics (probability distribution functions) while postponing two-
point statistics (correlation functions, or excess probability of joint
events) to Aubert & Pichon (2004).

C1 One-point statistics

For any field, x, on the sphere, let us introduce the smoothed field,
(x)α (filtered on scale α), as

(x)α(Ω) ≡ 1∫
�α(Ω′) dΩ′

∫
�α(Ω′ − Ω)x(Ω′) dΩ′ (C1)

≡
∫

wα(Ω − Ω′)x(Ω′) dΩ′, (C2)
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where �αstands for the top-hat function,

�α(Ω) = 1 if |ϑ | � α, (C3)

and wα is defined by equation (C7), the standard top-hat filter on
the sphere.

Consider now the centred top-hat-filtered (on scale α) field, [x]α ,
defined by

[x]α ≡ (x)α(π/2), (C4)

≡ 1∫
�α(Ω′) dΩ′

∫
�α(ϑ ′ − π/2)x(Ω′) dΩ′, (C5)

≡
∫

Wα(Ω′)x(Ω′) dΩ′. (C6)

Note that equation (C6) defines W α . Our filtering is now centred,
in that the average is carried out on a window that is centred at
the equatorial plane (since in this paper we are interested in the
polarization of accretion processes with respect to that plane). Let
us also introduce the average of x on the sphere, as

x̄ ≡ (x)π/2 = 1∫
dΩ

∫
x(Ω) dΩ. (C7)

We may also for a given x define its contrast as

δx ≡ x

x̄
− 1. (C8)

Note that, in contrast to standard cosmology, we expect that x̄ �= 〈x〉,
(i.e. no ergodicity) since the angular average over one virial sphere
is not representative of the whole cosmological set, and since 〈x〉
depends on ϑ whereas x̄ does not. As a consequence,

〈δx 〉 =
〈

x

x̄

〉
− 1 �= 〈x〉

〈x̄〉 − 1.

Consider now the top-hat-filtered centred flux density contrast,
[δ� ]α , defined by

[δ� ]α ≡ (δ� )α(π/2) = 1

�̄

∫
Wα(Ω)� dΩ − 1. (C9)

Since, by construction, [δ� ]α is a filtered version of δ� , it inherits
some of it statistical properties. In particular, the PDFs of δ� (π/2)
and [δ� ]α should be quite similar provided α is small enough.

In the main text, we consider the anisotropic parameter, δm ≡
[δρvr ]π/8, which therefore corresponds formally to the centred top-
hat-smoothed (on scales of π/8) mass flux density contrast. Fol-
lowing the same spirit, we could also consider quantities such as
[δρvr v2 ]π/8, which would measure the anisotropy in the accreted ki-
netic energy: the excess of accreted kinetic energy should allow us
to track the excess of incoming virialized objects in the equatorial
plane without performing their explicit identification. One should
also consider [δρvr L ]π/8, the anisotropy in the accreted momentum,
since this quantity is directly related to the torque applied to the sys-
tem by the infall. More generally still we could investigate (δ� )α(ϑ),
the flux density contrast top-hat-smoothed on a ring of size α centred
on ϑ .

Note that we can think of the harmonic coefficients, am
� , intro-

duced in Section 3.4, as a specific type of filtering, where the window
function, W α , is replaced by an axisymmetric spherical harmonic,
Y 0

� (Ω):

[δ� ]� = 1

�̄

∫
Y 0∗

� (Ω)� (Ω) dΩ = a0
�

�̄
. (C10)

We can also write �̄ in terms of spherical harmonics:

�̄ ≡ 1

4π

∫
� dΩ = 1√

4π

∫
Y 0∗

0 (Ω)� dΩ = a0
0√
4π

. (C11)

Therefore we obtain

[δ� ]� = a0
�

sign
(

a0
0

)√
C0

, (C12)

where C 0 = |a0
0|2/4π is the � = 0 component of the angular power

spectrum C �.
Since a step function can be expanded along spherical harmonics

as

�α(ϑ − π/2) =
∑

�

b�Y 0
� (ϑ, 0), (C13)

then [δ� ]α defined by equation (C9) obeys

[δ� ]α =
∑

�

b�[δ� ]� − 1. (C14)

Taking x = ρvr for example, we have

δ[ρvr ](ϑ, ϕ) =
∑
�,m

dm
� Y m

� (ϑ, ϕ) = ρvr (ϑ, ϕ)

ρvr
− 1, (C15)

where

ρvr = 1

4π

∫
dϑ dϕρvr (ϑ, ϕ) sin ϑ = a0

0√
4π

. (C16)

Since∫
dϑ dϕY m

� (ϑ, ϕ) sin ϑ =
√

4πδl0δm0

(e.g. Varshalovich et al. 1988), we find

dm
� = ãm

� −
√

4πδl0δm0. (C17)

We finally obtain

δ[ρvr ](ϑ, ϕ) =
∑
�,m

ãm
� Y m

� (ϑ, ϕ) − 1. (C18)

A P P E N D I X D : C O N V E R G E N C E I S S U E S

D1 Substructures and spins of haloes

For each tree of substructure satellites, we computed the total spin
inside the mother structure, SM, and the momentum of each sub-
structure inside the mother structure, Ls. Then we compared the
inner satellites and the contribution of the core to the mother’s spin.
The comparison is only made on the components of the substruc-
tures’ momentum parallel to SM. The results are shown in Fig. D1.
We plotted the total contribution of satellites to the mother’s spin
versus the core’s contribution. From the barycentre of the distribu-
tion shown in Fig. D1, it appears that substructures contain about
80 per cent of the total host’s spin, with a satellites’ contribution of
50 per cent and about 30 per cent for the core. The bottom panel
shows the total contribution of substructures to the mother’s mass
versus the contribution of the core. As expected, given the definition
of the core, we found that the relative proportions are almost reversed
compared to the previous plot. A core contains about half of the total
mass while satellites represent about 40 per cent of the total mass.
Clearly the specific angular momentum is larger in satellites than
in the core. The distance of satellites relative to the mother’s centre
and their velocities induce a ‘lever arm’ effect. Even if satellite rem-
nants are light in terms of mass they are important if not dominant
for the spin of the galactic system. This effect also suggests that
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Figure D1. Comparison of the substructure’s and the core’s contributions
to the amplitude of the mother’s spin and to the mother’s mass. Top: Com-
parison of the core’s contribution to the mother’s spin compared to the con-
tribution of all the satellites for each mother detected in our simulations.
Bottom: Same comparison but for the core’s and satellites’ mass relative to
the mother’s total mass. In both figures, the open square symbol indicates
the barycentre of the cloud of points while the thick line’s slope is unity.
While the total mass is dominated by the core’s contribution, the mother’s
spin is dominated by satellites, showing that their specific orbital momentum
is more important than that of the core.
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Figure D2. Comparison of 〈δm〉 for different classes of halo mass at z = 0.
The error bars stand for the 3σ error. The thin lines separate the three classes
of mass: 5 × 1012 M� < m < 1.25 × 1013 M�, 1.25 × 1013 M� < m <

2.5 × 1013 M� and m > 2.5 × 1013 M�. Each class contains 16 500 haloes.

the mother’s spin is aligned with the orbital momentum of infalling
satellites because they determine the direction of the halo’s spin.

D2 Mass dependence of 〈δm〉
We measured the average excess of accretion 〈δm〉 (see Section 3.3)
for three different class of masses at redshift z = 0: 5 × 1012 M�
< m < 1.25 × 1013 M�, 1.25 × 1013 M� < m < 2.5 × 1013

M� and m > 2.5 × 1013 M�. Each class contains approximately
16 500 haloes. The results are shown in Fig. D2. It is found that
〈δm〉 increases with mass but does not change significantly even if
the three classes cover different mass magnitudes. Consequently, no
class of mass dominates when all the haloes are being used in the
computation of 〈δm〉.
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