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Abstract. Total electronic correlation correction to the binding energies of the isoelectronic series of Beryl-
lium, Neon, Magnesium and Argon, are calculated in the framework of relativistic multiconfiguration Dirac-
Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased.
The Breit interaction is treated fully self-consistently. The final results can be used in the accurately
determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

PACS. 31.30.Jv – 31.25.Eb

1 Introduction

The determination of an accurate value for the fine struc-
ture constant α and of accurate mass values has received
latelly special attention due to recent works on highly ion-
ized atoms using Penning traps [1,2,3]. The relative uncer-
tainties of such experimental results can vary from 10−7

to 10−10, depending on the handled ionic species, on the
lifetime of the nucleus and on the experimental apparatus.

When calculating the atomic mass from the experi-
mentally observed ion mass with this technique, one has
to account for the mass qme of the q removed electrons
and their atomic binding energy EB. Therefore, the mass
of atom X is given by

mX = mXq+ + qme −
EB

c2
(1)

The influence of the binding energy uncertainties on
the mass determination depends on the specific atom, and
increases with the Z value. For example, in the Cs mass
determination, an uncertainty of about 10 eV in the cal-
culated K-, Ar-, and Cl-like Cs ions binding energies [4]
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originates an uncertainty of the order of 10−11 in the mass
determination [1].

This means that for the largest uncertainties a sim-
ple relativistic calculated value, in the framework of the
Dirac-Fock (DF) approach, is more than sufficient. How-
ever, if the experimental apparatus provides values with
an accuracy that approaches the lower side of the men-
tioned interval, one has to perform more sofisticated the-
oretical calculations, such as the ones that use the Multi-
Configuration Dirac-Fock (MCDF) model which includes
electronic correlation, in order to achieve a comparable
accuracy in the binding energy determination.

In this article we provide accurate correlation contribu-
tion to the binding energy for the Be-like, Ne-like, Mg-like
and Ar-like systems for atomic numbers up to Z = 95. We
also study self-energy screening effects. The correlation en-
ergies provided here are designed to correct the Dirac-Fock
results of Ref. [5] for relativistic correlation effects. In that
work, Dirac-Fock energies for all iso-electronic series with
3 to 105 electrons, and all atomic numbers between 3 and
118 are provided, using the same electron-electron inter-
action operator described in Sec. 2. In Sec. 2 we give the
principle of the calculations, namely a brief description of
the MCDF method used in these calculations and the enu-
meration of the radiative corrections included. In Sec. 3



2 J. P. Santos et al.: Relativistic correlation energy. . .

we present the results of calculations and the conclusions
are given in Sec. 4. All numerical results presented here
are evaluated with values of the fundamental constants
from the 1998 adjustment [6].

2 Calculations

To perform theoretical relativistic calculations in atomic
systems with more than one electron, the Brown and Raven-
hall problem [7], related to the existence of the E < −mc2

continuum, must be taken in account. To overcome this
situation, Sucher [8] sugested that a proper form of the
electron-electron interaction with projection operators onto
the E > mc2 continuum must be used, leading to the so
called no-pair Hamiltonian,

Hno pair =

N
∑

i=1

HD(ri) +
∑

i<j

V(|ri − rj|), (2)

where HD is the one electron Dirac operator and Vij =

Λ++
ij VijΛ

++
ij is an operator representing the electron-electron

interaction of order α [9,10]. Here Λ++
ij = Λ+

i Λ+
j is an

operator projecting onto the positive energy Dirac eigen-
states to avoid introducing unwanted pair creation effects.
There is no explicit expression for Λ++, except at the Pauli
approximation [11]. The elimination of the spurious con-
tributions from the E < −mc2 continuum in the MCDF
method [9] is achieved by solving the MCDF radial dif-
ferential equations on a finite basis set and keeping in the
basis set expansion only the solutions whose eigenvalues
are greater than −mc2 in order to remove the negative
continuum. The basis set used is made of B-Splines. The
method of Ref. [9] suffers however from limitations and in-
accuracies due to limitations of the B-Spine basis. When
the number of occupied orbitals is increased, these nu-
merical errors prevent convergence. In that case we had
to calculate without projecting. However this problem is
not very severe, as the role of the negative energy contin-
uum becomes less and less important when the number
of electrons increases. In the 4 isoelectronic series studied
here, only the Be-like sequence was sensistive to the pres-
ence of the projection operator even at relatively low Z. In
the other series, only the case with Z = 95 involving the
6h shell would have required it. In the latter case conver-
gence was impossible whether a projection operator was
used or not.

The electron-electron interaction operator Vij is gauge
dependent, and is represented in the Coulomb gauge and
in atomic units, by:

Vij =
1

rij

(3a)

−
αi · αj

rij

(3b)

−
αi · αj

rij

[cos
(ωijrij

c

)

− 1]

+c2(αi · ∇i)(αj · ∇j)
cos

(ωijrij

c

)

− 1

ω2
ijrij

, (3c)

where rij = |ri − rj | is the inter-electronic distance, ωij

is the energy of the exchanged photon between the two
electrons, αi are the Dirac matrices and c = 1/α is the
speed of light. The term (3a) represents the Coulomb in-
teraction, the second one (3b) is the Gaunt (magnetic)
interaction, and the last two terms (3c) stand for the re-
tardation operator [12,13]. In the above expression the ∇

operators act only on rij and not on the following wave
functions. By a series expansion in powers of ωijrij/c ≪ 1
of the operators in expressions (3b) and (3c) one obtains
the Breit interaction, which includes the leading retarda-
tion contribution of order α2. The Breit interaction is the
sum of the Gaunt interaction (3b) and of the Breit retar-
dation

BR
ij =

αi · αj

2rij

−
(αi · rij) (αj · rij)

2r3
ij

. (4)

In the present calculation the electron-electron inter-
action is described by the sum of the Coulomb and the
Breit interaction. The remaining contributions due to the
difference between Eqs. (3c) and (4) were treated only as
a first order perturbation.

2.1 Dirac-Fock method

A first approach in relativistic atomic calculations is ob-
tained through the relativistic counterpart of the non-
relativistic Hartree-Fock (HF) method, the Dirac-Fock method.
The principles underlying this method are virtually the
same as those of the non-relativistic one. In the DF method
the electrons are treated in the independent-particle ap-
proximation, and their wave functions are evaluated in the
Coulomb field of the nucleus and the spherically-averaged
field from the electrons. A natural improvement of the
method is the generalization of the electronic field to in-
clude other contributions, such as the Breit interaction.

The major limitation of this method lies in the fact
that it makes use of the spherically-averaged field of the
electrons and not of the local field; i.e., it does not take
into account electronic correlation.

2.2 Multiconfiguration Dirac-Fock method

To account for electron correlation not present at the DF
level, one may add to the initial DF configuration, config-
urations with the same parity and total angular momen-
tum, involving unoccupied (virtual) orbitals This is the
principle of the Multiconfiguration Dirac-Fock method.

The total energy of an atom, or ion, is the eigenvalue
of the following equation:

Hno pairΨΠ,J,M (. . . , ri, . . .) = EΠ,J,MΨΠ,J,M (. . . , ri, . . .),
(5)

where Π is the parity, J2 is the total angular momentum
with eigenvalue J and its projection on the z axis Jz, with
eigenvalue M . The MCDF method is defined by the par-
ticular choice of the total wave function ΨΠ,J,M (..., ri, ...)
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as a linear combination of configuration state functions
(CSF):

| ΨΠ,J,M 〉 =
∑

ν

cν | νΠJM〉. (6)

The CSF are chosen as eigenfunctions of Π , J2, and Jz.
The label ν stands for all other numbers (principal quan-
tum number, coupling, ...) necessary to define unambigu-
ously the CSF. For a N -electron system, the CSF is a
linear combination of Slater determinants

| νΠJM〉 =
∑

i

di

∣

∣

∣

∣

∣

∣

∣

Φi
1(r1) · · · Φi

N (r1)
...

. . .
...

Φi
1(rN ) · · · Φi

N (rN )

∣

∣

∣

∣

∣

∣

∣

, (7)

where the Φ-s are the one-electron wave functions. In the
relativistic case, they are the Dirac four-component spinors:

Φnκµ(r) =
1

r

[

Pnκ(r)χκµ(θ, φ)
iQnκ(r)χ−κµ(θ, φ)

]

(8)

where χκµ(θ, φ) is a two component Pauli spherical spinors
[14] and Pnκ(r) and Qnκ(r) are the large and the small
radial components of the wave function, respectively. The
functions Pnκ(r), Qnκ(r) are the solutions of coupled inte-
gro-differential equations obtained by minimizing Eq. (5)
with respect to each radial wave function. The coefficients
di are determined numericaly by requiring that each CSF
is an eigenstate of J2 and Jz, while the coefficients cν are
determined by diagonalization of the Hamiltonian matrix
(for more details see, e.g., Refs. [15,14,16]).

The numerical methods as described in Refs. [9,16],
enabled the full relaxation of all orbitals included and the
complete self-consistent treatment of the Breit interaction,
i.e., in both the Hamiltonian matrix used for the deter-
mination of the mixing coefficients cν in Eq. (6) and of
the differential equations used to obtain the radial wave
functions. To our knowledge, this is a unique feature of
the MCDF code we used, since others only include the
Breit contribution in the determination of the mixing co-
efficients (see, e.g., [17]).

2.3 Radiative Corrections

The present work is intended to provide correlation ener-
gies to complement the results listed in Ref. [5]. Radiative
corrections are already included in Ref. [5]. However, we
give here a discussion of the self-energy screening correc-
tion, in view of a recent work [18], to compare the un-
certainty due to approximate evaluation of multi-electron
QED corrections and those due to correlation.

The radiative corrections due to the electron-nucleus
interaction, namely the self-energy and the vacuum po-
larization, which are not included in the Hamiltonian dis-
cussed in the previous sections, can be obtained using var-
ious approximations. Our evaluation, mostly identical to
the one in Ref. [5] is described as follows.

One-electron self-energy is evaluated using the one-
electron results by Mohr and coworkers [19,20,21] for sev-
eral (n, ℓ), and corrected for finite nuclear size [22]. Self-
energy screening and vacuum polarization are treated with

the approximate method developed by Indelicato and cowork-
ers [23,24,25,26]. These methods yield results in close
agreement with more sophisticated methods based on QED
[27,28,29]. More recently a QED calculation of the self-
energy screening correction between electrons of quantum
numbers n ≤ 2, ℓ = 0, 1, has been published [18], which
allows to evaluate the self-energy screening in the ground
state of 2- to 10-electron ions. In the present work we use
these results to evalute the self-energy screening in Be-like
and Ne-like ions.

3 Results and Discussion

3.1 Correlation

To obtain the uncorrelated energy we start from a Dirac-
Fock calculation, with Breit interaction included self-con-
sistently. This correspond to the case in which the expan-
sion (6) has only one term in the present work since we
study ions with only closed shells.

The active variational space size is increased by en-
abling all single and double excitations from all occu-
pied shells to all virtual orbitals up to a maximum n and
ℓ = n − 1 including the effect of the electron-electron in-
teraction to all-orders (see [4] for further details). For
example, in the Be-like ion case both the 1s and 2s occu-
pied orbitals are excited up to 2p, then up to 3d, 4f , 5g,
and 6h. We can then compare the difference between suc-
cessive correlation energies obtained in this way, to assess
the convergence of the calculation. When calculating cor-
relation corrections to the binding energy it is obviously
important to excite the inner shells, as the correlation con-
tribution to the most bound electrons provides the largest
contribution to the total correlation energy. However this
leads to very large number of configuration when the num-
ber of occupied orbitals is large.

In the present calculations we used a virtual space
spanned by all singly and doubly-excited configurations.
For the single excitations we excluded the configurations
in which the electron was excited to an orbital of the same
κ as the initial orbital (Brillouin orbitals). In the present
case, where there is only one jj configuration in the ref-
erence state, those excitations do not change the total en-
ergy, according to the Brillouin theorem (see, e.g., [30,31,
32]). That would not be true in cases with open shells in
the reference state as it was recently demonstrated [33].
The choice of single and double substitutions is due to
computation reasons and is justified by the overwhelming
weight of these contributions.

For all iso-electronic sequences considered here, we in-
cluded all configurations with active orbitals up to 6h,
except sometimes for the neutral case or for Z = 95,
for which convergence problems were encountered. The
generation of the multiconfiguration expansions was auto-
matically within the mdfgme code. The latest version can
generate all single and double excitations from all the oc-
cupied levels in a given configuration to a given maximum
value of the principal and angular quantum numbers. The
number of configurations used to excite all possible pairs
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Table 1. Number of jj configurations within a given virtual
space identified by the correlation orbital with the highest
(n, ℓ) quantum numbers.

2p 3d 4f 5g 6h

Be-like 8 38 104 218 392
Ne-like 84 386 1007 2039
Mg-like 84 486 1359 2838
Ar-like 56 712 2422 5505

of electrons to the higher virtual orbitals considered is
shown in Table 1. This table shows the rapid increase of
the number of configurations with the number of electrons.

In Table 2 we provide a detailed study of the contribu-
tions to the correlation energy of Be-like ions for Z in the
range 4 ≤ Z ≤ 95. We compare several cases. In the first
case the Coulomb correlation energy is evaluated using
only the operator given by Eq. (3a). In the second case,
the wavefunctions are evaluated with the same operator in
the SCF process, and used to calculate the mean-value of
the Breit operator (4). Finally, we include the Breit oper-
ator both in the differential equation used to evaluate the
wavefunction (Breit SC) and in the Hamiltonian matrix.
For high-Z, relativistic corrections dominate the correla-
tion energy, which no longer behaves as A + B/Z + ..., as
is expected in a non-relativistic approximation. The con-
tribution from the Breit operator represents 34 % of the
Coulomb contribution. It is thus clear that any calculation
claiming sub-eV accuracy must include the effect of Breit
correlation. Obviously higher-order QED effects, not ob-
tainable by an Hamiltonian-based formalism, can have a
similar order of magnitude.

In Tables 3 to 5 we list the correlation energy for the
Ne-, Mg- and Ar-like sequence with fully self-consistent
Breit interaction, for different sizes of the active space.
Double excitations from all occupied orbitals to all pos-
sible shells up to 3d, 4f , 5g and 6h are included, except
when it was not possible to reach convergence.

In Fig. 1 to 4 we present the evolution of the correlation
energy Ec (in eV), defined by the diference between the
total binding energy obtained with the MCDF method
and the one obtained by the DF method, with the increase
of the virtual space for each isoelectronic series studied.
We notice, as expected, a decrease of the energy with the
increase of the atomic number and the increase of the
number of virtual orbitals.

An inspection of Fig. 1 to 4 and of Tables 3 to 5 gives
a clear indication of the importance of including a specific
shell in the calculation for the value of the correlation, i.e.,
if a new curve, corresponding to the inclusion of a specific
shell, is close to the previous curve, obtained through the
inclusion of shells of lower principal quantum number, it
means that we have included the major part of the corre-
lation in the energy calculation. We can also see the effect
of including or not the Breit interaction in the SCF pro-
cess. Our calculation is accurate within a few 0.01 eV for
low-Z Be-like ions up to 0.15 eV at high-Z. For Ne-like
ions, we find respectively 0.4 eV and 1 eV, for Mg-like

Table 2. Details of the results for the correlation energy of Be-
like ions as a function of the operator used in the evaluation
of the wavefunction and of the size of the active space (see
explanations in the text). “all → nℓ”: double excitations from
all occupied orbitals to all shells up to nℓ are included.

Coulomb Correlation, Coulomb SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g
4 -1.192 -1.192 -2.172 -2.306 -2.392
10 -3.323 -3.328 -4.364 -4.586 -4.688
15 -4.867 -4.876 -5.939 -6.171 -6.274
18 -5.710 -5.720 -6.796 -7.031 -7.136
25 -7.340 -7.353 -8.457 -8.700 -8.807
35 -8.755 -8.774 -9.921 -10.176 -10.286
45 -9.399 -9.427 -10.618 -10.887 -11.000
55 -9.741 -9.778 -11.016 -11.299 -11.417
65 -10.013 -10.057 -11.351 -11.649 -11.775
75 -10.273 -10.321 -11.689 -12.007 -12.142
85 -10.556 -10.607 -12.078 -12.421 -12.568
95 -11.042 -11.094 -12.717 -13.095 -13.257

Total Correlation, Coulomb SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g
4 -1.192 -1.192 -2.176 -2.310 -2.396
10 -3.325 -3.330 -4.390 -4.617 -4.722
15 -4.873 -4.882 -6.003 -6.246 -6.357
18 -5.720 -5.731 -6.890 -7.142 -7.257
25 -7.367 -7.382 -8.648 -8.923 -9.048
35 -8.813 -8.835 -10.298 -10.612 -10.753
45 -9.480 -9.513 -11.217 -11.575 -11.734
55 -9.829 -9.874 -11.863 -12.269 -12.445
65 -10.103 -10.159 -12.483 -12.933 -13.147
75 -10.381 -10.446 -13.172 -13.678 -13.926
85 -10.720 -10.794 -14.011 -14.585 -14.878
95 -11.308 -11.392 -15.236 -15.897 -16.245

Total Correlation, Breit SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g all → 6h

4 -1.192 -1.192 -2.176 -2.310 -2.396
10 -3.325 -3.330 -4.406 -4.616 -4.723 -4.759
15 -4.873 -4.882 -6.004 -6.245 -6.360 -6.380
18 -5.721 -5.732 -6.887 -7.136 -7.254 -7.303
25 -7.367 -7.382 -8.658 -8.936 -9.066 -9.122
35 -8.814 -8.836 -10.334 -10.659 -10.811 -10.879
45 -9.483 -9.517 -11.308 -11.692 -11.870 -11.951
55 -9.836 -9.884 -12.048 -12.502 -12.710 -12.805
65 -10.116 -10.179 -12.813 -13.353 -13.594 -13.707
75 -10.402 -10.481 -13.712 -14.355 -14.638 -14.771
85 -10.750 -10.847 -14.843 -15.618 -15.951 -16.109
95 -11.349 -11.473 -16.467 -17.415 -17.812

ions we find 0.9 and 1.4 eV, and for Ar-like ions these
numbers are 2.3 and 3 eV. It is thus clear that the max-
imum value of n and ℓ one should go to reach uniform
accuracy increases with the number of electrons. However
the uncertainty due to this limitation of our calculation is
probably negligible compare to neglected QED corrections
like the contribution from negative energy continuum, box
diagram and two-loop QED corrections.

In order to provide values for arbitrary atomic numbers
within each isoelectronic series we have fitted polynomials
to the best correlation curves. The equations for these fits
are given in Table 6.

We present in Table 7 the different terms contributing
to the total atomic binding energy of Be-like ions with
Z = 4, 45 and 85, to illustrate their relative importance.

3.2 Self-energy screening

In Table 8 we compare the self-energy screening correc-
tion evaluated by the use of Ref. [18] and by the Welton
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Table 3. Calculated total correlation energy for the Ne sequence, for different sets of SCF. “all → nℓ”: double excitations from
all occupied orbitals to all shells up to nℓ are included. Results with Breit self consistent included in the calculation.

Z all → 3d all → 4f all → 5g all → 6h

10 -5.911 -8.306 -9.339 -9.709
15 -5.989 -8.712 -9.838 -10.280
25 -6.374 -9.310 -10.494 -10.967
35 -6.710 -9.850 -11.099 -11.609
45 -7.074 -10.482 -11.816 -12.372
55 -7.515 -11.269 -12.710 -13.322
65 -8.067 -12.260 -13.833 -14.511
75 -8.752 -13.375 -15.247 -16.007
85 -9.772 -15.119 -17.056 -17.916
95 -11.160 -17.231 -19.429 -20.415
105 -13.061 -20.129 -22.689

Table 6. Fit to the ground state total correlation energy ∆E of the Be, Ne, Mg and Ar isoelectronic sequences, with correlation
orbitals up to 6h

Series Fit

Be ∆E = 1.421329 × 10−7Z4
− 7.019909 × 10−5Z3 + 9.159169 × 10−3Z2

− 5.474933 × 10−1Z − 7.191674 × 10−2

Ne ∆E = 5.523943 × 10−8Z4
− 2.760868 × 10−5Z3 + 2.214132 × 10−3Z2

− 1.324244 × 10−1Z − 8.627745
Mg ∆E = −2.156149 × 10−8Z4

− 1.529410 × 10−5Z3 + 2.928077 × 10−3Z2
− 2.903759 × 10−1Z − 8.078404

Ar ∆E = 5.696195 × 10−7Z4
− 1.529548 × 10−4Z3 + 1.589991 × 10−2Z2

− 9.710181 × 10−1Z − 3.406304

Table 7. Contributions to the atomic binding energy for for ions of different Z in the Beryllium isoelectronic serie (in eV).

Z=4 Z=45 Z=85

Coulomb -398.91260 -68961.32493 -272463.59996
Magnetic 0.01430 39.84888 310.21457
Retardation (order ω2) 0.00105 -0.58860 -6.10695
Higher-order retardation (> ω2) 0.00000 0.00000 0.00000
Hydrogenlike self-energy 0.01310 62.62419 610.43890
Self-energy screening -0.00291 -1.76962 -13.44919
Vacuum polarization (Uheling) α(Zα) -0.00039 -7.46054 -139.37727
Electronic correction to Uheling 0.00004 0.03290 0.33323
Vacuum polarization α(Zα)3 0.00000 0.12368 6.14067
Vac. Pol. (Källèn & Sabry) α2(Zα) 0.00000 -0.06042 -1.07200
Recoil 0.00000 -0.00805 -0.06221
Correlation -2.39600 -11.95100 -16.10900
Total Energy -401.28341 -68880.53351 -271712.6492B e � l i k e i o n s

	 2 0	 1 5	 1 0	 50
0 2 0 4 0 6 0 8 0 1 0 0ZC orrel ati onenergy( eV) 2 s 2 + 2 p 2a l l & > 2 pa l l & > 3 da l l & > 4 fa l l & > 5 g2 s 2 + 2 p 2 B S Ca l l & > 2 p B S Ca l l & > 3 d B S Ca l l & > 4 f B S Ca l l & > 5 g B S Ca l l & > 6 h B S C

Fig. 1. Evolution of the correlation energy Ec (in eV) for Be-
like ions, defined by the diference between the total binding
energy obtained with the MCDF method and the one obtained
by the DF method, with the increase of virtual space.

method. Direct evaluation of the screened self-energy dia-
gram using Ref. [18], includes relaxation only at the one-
photon exchange level. The Welton method include relax-

N e 5 l i k e i o n s
< 2 5< 2 0< 1 5< 1 0< 5

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0ZC orrel ati onenergy( eV) a l l < > 3 d B S Ca l l < > 4 f B S Ca l l < > 5 g B S Ca l l < > 6 h B S C
Fig. 2. Evolution of the correlation energy Ec (in eV) for Ne-
like ions, defined by the diference between the total binding
energy obtained with the MCDF method and the one obtained
by the DF method, with the increase of virtual space.

ation at the Dirac-Fock or MCDF level. In the case of Be-
like ions we also performed a calculation including intra-
shell correlation to have an estimate of the effect of corre-
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Table 4. Details of the results for the correlation energy of Mg-
like ions as a function of the operator used in the evaluation
of the wavefunction and of the size of the active space (see
explanations in the text). “all → nℓ”: double excitations from
all occupied orbitals to all shells up to nℓ are included.

Coulomb Correlation, Coulomb SC
Z all → 3d all → 4f all → 5g all → 6h
12 -3.372 -7.823 -9.741
20 -5.211 -9.724 -11.809 -12.640
25 -5.878 -10.470 -12.582 -13.442
35 -6.852 -11.588 -13.768 -14.638
45 -7.477 -12.349 -14.597 -15.477
55 -7.845 -12.810 -15.185 -16.071
65 -8.063 -13.179 -15.642 -16.541
75 -8.220 -13.596 -16.081 -17.001
85 -8.378 -14.006 -16.598 -17.550
95 -8.597 -14.560 -17.307 -18.305

Total Correlation, Coulomb SC
Z all → 3d all → 4f all → 5g all → 6h

12 -3.379 -7.836 -9.786
20 -5.241 -9.792 -11.971 -12.833
25 -5.932 -10.598 -12.855 -13.768
35 -6.977 -11.891 -14.351 -15.338
45 -7.702 -12.902 -15.614 -16.693
55 -8.200 -13.668 -16.753 -17.933
65 -8.580 -14.424 -17.879 -19.172
75 -8.934 -15.374 -19.112 -20.523
85 -9.328 -16.401 -20.572 -22.117
95 -9.833 -17.718 -22.422

Total Correlation, Breit SC
Z all → 3d all → 4f all → 5g all → 6h
12 -3.379 -7.864 -9.734
20 -5.241 -9.793 -11.972 -12.830
25 -5.932 -10.599 -12.857 -13.762
35 -6.976 -11.899 -14.356 -15.325
45 -7.701 -12.932 -15.611 -16.676
55 -8.198 -13.808 -16.799 -17.939
65 -8.577 -14.677 -18.009 -19.247
75 -8.928 -15.670 -19.375 -20.772
85 -9.319 -16.939 -21.062
95 -9.826 -18.695 -23.244

Table 5. Details of the results for the correlation energy of
Ar-like ions as a function of the size of the active space (see
explanations in the text). “all → nℓ”: double excitations from
all occupied orbitals to all shells up to nℓ are included. Results
with Breit self consistent included in the calculation.

Z all → 3d all → 4f all → 5g all → 6h

18 -3.258 -10.462 -13.886
20 -4.003 -11.700 -15.203 -17.557
25 -5.441 -13.851 -17.755 -19.994
35 -7.689 -16.982 -21.292 -23.578
45 -9.482 -19.441 -24.093 -26.472
55 -10.844 -21.455 -26.486 -28.985
65 -11.746 -23.077 -28.564 -31.213
75 -12.197 -24.380 -30.426 -33.257
85 -12.254 -25.499 -32.229 -35.278
95 -12.002 -26.644 -34.207

lation on the self-energy screening. The change due to the
method is much larger than the effect of even strong intra-
shell correlation. The difference between the two evalua-
tions of the self-energy screening can reach ≈ 2 eV at
Z=95.

M g � l i k e i o n s

 2 5
 2 0
 1 5
 1 0
 50

0 2 0 4 0 6 0 8 0 1 0 0ZC orrel ati onenergy( eV) a l l 
 > 3 d B S Ca l l 
 > 4 f B S Ca l l 
 > 5 g B S Ca l l 
 > 6 h B S C
Fig. 3. Evolution of the correlation energy Ec (in eV) for Mg-
like ions, defined by the diference between the total binding
energy obtained with the MCDF method and the one obtained
by the DF method, with the increase of virtual space.A r . l i k e i o n s

6 4 06 3 56 3 06 2 56 2 06 1 56 1 06 50
0 2 0 4 0 6 0 8 0 1 0 0ZC orrel ati onenergy( eV) a l l 6 > 3 d B S Ca l l 6 > 4 f B S Ca l l 6 > 5 g B S Ca l l 6 > 6 h B S C

Fig. 4. Evolution of the correlation energy Ec (in eV) for Ar-
like ions, defined by the diference between the total binding
energy obtained with the MCDF method and the one obtained
by the DF method, with the increase of virtual space.

4 Conclusions

We have presented relativistic calculations of the corre-
lation contribution to the total binding energies for ions
of the Beryllium, Neon, Magnesium and Argon isoelec-
tronic series. We have shown that accurate results can be
achieved if excitations to all shells up to the n = 6 shell
are included.We have also compared two different methods
for the evaluation of the self-energy screening. Combined
with the results of Ref. [5] our results will provide binding
energies with enough accuracy for all ion trap mass mea-
surements to come, involving ions with the isolelectronic
sequences considered here.
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Table 8. Comparison of the screened self-energy contribution in Be-like and Ne-like ions obtained by different methods.

Be-like Ne-like
Ref. [18] Welton model Ref. [18] Welton model

Z 2s2 2s2 + 2p2 2s2 2s2 + 2p2

4 -0.004 -0.004 -0.003 -0.003
10 -0.047 -0.046 -0.036 -0.035 -0.081 -0.050
15 -0.132 -0.129 -0.104 -0.101 -0.229 -0.155
25 -0.466 -0.458 -0.384 -0.375 -0.835 -0.614
35 -1.066 -1.053 -0.917 -0.903 -1.973 -1.519
45 -1.995 -1.976 -1.801 -1.783 -3.825 -3.060
55 -3.349 -3.323 -3.190 -3.165 -6.659 -5.530
65 -5.282 -5.248 -5.317 -5.279 -10.888 -9.388
75 -8.054 -8.012 -8.562 -8.499 -17.178 -15.373
85 -12.130 -12.080 -13.546 -13.439 -26.659 -24.737
95 -19.176 -19.109 -21.347 -21.162 -41.114 -39.721
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