
HAL Id: hal-00008369
https://hal.science/hal-00008369

Preprint submitted on 2 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Further examples of explicit Krein representations of
certain subordinators

Catherine Donati-Martin, Marc Yor

To cite this version:
Catherine Donati-Martin, Marc Yor. Further examples of explicit Krein representations of certain
subordinators. 2005. �hal-00008369�

https://hal.science/hal-00008369
https://hal.archives-ouvertes.fr


cc
sd

-0
00

08
36

9,
 v

er
si

on
 1

 -
 2

 S
ep

 2
00

5

Further examples of expliit Kreinrepresentations of ertain subordinatorsC. Donati-Martin(1), M.Yor(1),(2)

(1) Laboratoire de Probabilités et Modèles Aléatoires,Université Paris VI et VII, 4 Plae Jussieu - Case 188,F-75252 Paris Cedex 05
(2) Institut Universitaire de Frane
Abstrat : In a previous paper [1℄, we have shown that the gamma subordi-nators may be represented as inverse loal times of ertain di�usions. In thepresent paper, we give suh representations for other subordinators whoseLévy densities are of the form C

(sinh(y))γ
, 0 < γ < 2, and the more generalfamily obtained from those by exponential tilting.Keywords : Subordinators, Krein orrespondene, inverse loal times.
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1 Aim of the paper and summary of [1℄1.1 In this paper, we ontinue the program started in [1℄, that is : torepresent as many subordinators (Sℓ, ℓ ≥ 0), i.e : inreasing Lévy proesses,started at 0, as possible as inverse loal times (τℓ, ℓ ≥ 0) of some partiular
R+-valued di�usion (Xt), suh that 0 is regular for itself (relatively to X).More preisely, assume that :

E[exp(−λSℓ)] = exp(−ℓΨ(λ)) ,where : Ψ(λ) =

∫ ∞

0

ν(dy)(1−e−λy), and ν(dy) - the Lévy measure assoiatedwith (Sℓ, ℓ ≥ 0) - is of the form :
ν(dy) = h(y)dy , with h(y) =

∫ ∞

0

dλ(x) e−xy ,for some positive σ-�nite measure λ(dx) on R+, then, it is known, as aonsequene of Krein's theory (f : Knight [5℄, Kotani-Watanabe [6℄), thatthere exists a unique di�usion (Xt) taking values in R+, suh that its inverseloal time at 0, (τℓ, ℓ ≥ 0), is distributed as (Sℓ, ℓ ≥ 0).Finding X when ν is given is alled (here) Krein representation problem.In our paper [1℄, we ould �ll in the followingTable 1
h(y) Generator of (Xt) Distribution

C
yα+1 L−α = 1

2
d2

dx2 + δ−1
2x

d
dx

; δ = 2(1 − α) P δ

(0 < α < 1)

C
yα+1 e−µy Lµ↓

−α = L−α +
√

2µ K̂ ′
α(

√
2µx)

K̂α(
√

2µx)

d
dx

P δ;µ↓

(0 < α < 1; µ > 0) where K̂α(y) = yαKα(y), y > 0

C
y
e−µy Lµ↓

0 = 1
2

d2

dx2 +
(

1
2x

+
√

2µ
K ′

0

K0
(
√

2µx)
)

d
dx

P 2;µ↓

(µ > 0)
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1.2 Details of Table 1In fat, the result for the �rst row goes bak at least to Molhanov-Ostrovski[8℄, the result for the seond row is dedued from that in the �rst row withthe help of the following disussion, whih relates Essher transforms (ofsubordinators) to Girsanov transforms (of di�usions).If (Xt)t≥0 is a R+-valued di�usion, whose inverse loal time at 0 :
τℓ = inf{t : Lt > ℓ}, ℓ ≥ 0 ,admits Lévy measure ν(dy), and Lévy exponent (Ψ(θ), θ ≥ 0), and if onede�nes :

ϕθ↓(x) = Ex[exp(−θT0(X))] ,then, there is another di�usion, whih we shall denote by (Xθ↓
t , t ≥ 0), withlaws (P θ↓

x , x ≥ 0), suh that :
P θ↓

x|Ft
=

ϕθ↓(Xt)

ϕθ↓(x)
exp(Ψ(θ)Lt − θt).Px|Ft

(1.1)whose inverse loal time (τℓ, ℓ ≥ 0) under P θ↓
0 satis�es :

Eθ↓
0 (exp−λτℓ) = exp(−ℓ(Ψ(λ + θ) − Ψ(θ)))i.e : this inverse loal time is the θ-Essher transform of (τℓ, ℓ ≥ 0) under

P0 : its Lévy measure (under P θ↓
0 ) is : e−θyν(dy).It is also noteworthy that, under some adequate restrition of their domains,the in�nitesimal generators Lθ↓ and L are related by :

Lθ↓ = L +
d

dx
(log(ϕθ↓(x))) . d

dxFinally, the result for the third row was dedued by letting α → 0 in theseond row, while taking are of the hoie1 of the loal times made for
L−α , µ↓. (A ompendium of hoies of loal times for Bessel-like di�usions ismade in [2℄).1.3 In the present paper, we wish to omplete the preeding Table 1, byonsidering the 3 parameter family of Lévy measures on R+ :

νµ, α, k(dy) = C
(

µ

sinh(µy)

)α+1

exp(µky) dy (1.2)1As is well-known, the loal time in a standard Markovian set up, at a given level, isunique up to a multipliative onstant, whih for our studies, needs to be hosen arefully.3



(The "true" parameters are : µ > 0, k, and α; as before, C is simply thereto ensure an additional degree of freedom, if neessary).In order that νµ, α, k(dy) be a Lévy measure, i.e : it must satisfy
∫ ∞

0

(x ∧ 1) νµ, α, k (dx) < ∞ , we need : 0 ≤ α < 1 ; k < 1 + α .We now reall that, from Pitman-Yor [11℄ formulae (16), p. 276), if Qδ, µ
z , for

0 < δ ≡ 2(1 − α) < 2, and µ > 0, denotes the distribution of the squaredradial Ornstein-Uhlenbek proess, with "dimension" δ, and parameter µ,started from z, i.e : the solution of :
dZt = 2

√
ZtdBt + (δ − 2µZt)dt ; Zt ≥ 0 , Z0 = z ,then, under Qδ,µ

0 , the inverse loal time (τℓ, ℓ ≥ 0) admits as its Lévymeasure :
C
(

µ

sinh(µy)

)α+1

exp(µ
δ

2
y) dy (1.3)whih is a partiular ase of (1.2), with k =

δ

2
= (1 − α).In the next setion, we shall show, essentially with the help of the reipe(1.1), how to onstrut a di�usion, indexed by the 3 parameters (α, µ, k),whih solves the Krein representation problem for νµ, α, k.1.4 Some among the new di�usions we are �nding as solutions of Krein'sproblem are related to the di�usions we found in [1℄ by time hanging. We�rst disovered this relationship by applying the analytial identity :

W0, β(z) =

√
z

π
Kβ

(z

2

) (1.4)between W0, β , a Whittaker funtion with parameters (0, β), and Kβ (seeAppendix). Thus, a part of our present disussion may be onsidered asgiving a probabilisti interpretation to (1.4).We also develop a similar disussion for the analytial identity
M0, β(z) = 4βΓ(β + 1)

√
z Iβ

(z

2

)
.2 Solving Krein's problem for νµ, α, k2.1 We take up the notation in (1.3); in fat, it is more onvenient toonsider the family of radial Ornstein-Uhlenbek proesses (and not their4



squares), whih we shall denote as (Rδ, µ(t), t ≥ 0) and their laws (P δ, µ
r ,

r ≥ 0). It will be helpful, for the sequel, to have the following formula athand, for the in�nitesimal generator L−α, µ of Rδ, µ :
L−α, µ =

1

2

d2

dx2
+

(
δ − 1

2x
− µx

)
d

dx
(2.1)It is well-known (see, e.g., Pitman-Yor [9℄, p. 454, formula (6.b)) that thereis the relationship :

Rδ, µ(t) = e−µtRδ

(
e2µt − 1

2µ

)
, t ≥ 0 , (2.2)where, on the RHS, (Rδ(u), u ≥ 0) denotes a δ-dimensional Bessel proess.Thus, we obtain :

(
e2µT0 − 1

2µ
; P δ, µ

x

)
(law)
=
(a)

(T0 ; P δ
x)

(law)
=
(b)

x2

2γα

(2.3)where, on the RHS, γα denotes a gamma variable with parameter α. [(a)follows from (2.2), while (b) is well-known, and goes bak to Getoor [3℄, see,e.g., Yor [13℄, for some variants...℄.We thus dedue the following formula from (2.3), with the help of elementaryomputations :
Eδ, µ

x (exp(−θT0)) =
1

Γ(α)(µx2)
θ
2µ

∫ ∞

0

tα−1+ θ
2µ e−t

(1 + t
µx2 )

θ
2µ

dt

=
Γ(α+ θ

2µ
)

Γ(α)
(µx2)

α−1
2 eµx2

2 W (1−α)− θ
µ

2
, α

2

(µx2) for − 2αµ < θ (2.4)where Wa, b denotes the Whittaker funtion, with parameters (a, b).2.2 We now write :
νµ, α, k(dy) = C

(
µ

sinh(µy)

)α+1

exp(µky)dy

≡ C
(

µ

sinh(µy)

)α+1

exp(µ
δ

2
y) exp(−θy)dy ,where : θ = µ

(
δ

2
− k

)
, k < 1 + α.Aording to the preeding omputation, we now �nd that the di�usion within�nitesimal generator :

Lθ↓
−α, µ ≡ L−α, µ +

d

dx
log

{
(µx2)

α−1
2 eµx2

2 W (1−α)− θ
µ

2
, α

2

(µx2)

} . d

dx
(2.5)5



solves Krein's representation problem for νµ, α, k. (We note in fat that :
(1 − α) − θ

µ

2
=

k

2
, so that : W (1−α)− θ

µ
2

, α
2

(ξ) ≡ W k
2
, α

2
(ξ)).The ase where k = 0 is partiularly interesting, sine, on one hand :

νµ, α, 0(dy) = C
(

µ

sinh(µy)

)α+1

dy ,and on the other hand (see Appendix) :
W0, α

2
(ξ) =

√
ξ

π
Kα

2

(
ξ

2

) (2.6)so that the di�usion whih solves Krein's representation problem for νµ, α, 0(dy)is the solution to :
dXt = dBt +

[
δ − 1

2Xt

+ µXt

(
K̂ ′

α
2

K̂α
2

)(
µ

X2
t

2

)]
dt (2.7)Here, we need to give some details about this omputation :a) We dedue from formula (2.5), in the partiular ase k = 0, i.e : θ =

δµ

2with the help of formula (2.6), that :
Lθ↓

−α, µ = L−α, µ +



α

x
+ µx + µx

K ′
α
2

(
µx2

2

)

Kα
2

(
µx2

2

)



 . d

dxb) Now, trivially :
L−α, µ + µx

d

dx
= L−α ,and, equally simply :

α

x
+ µx

K ′
α
2

(
µx2

2

)

Kα
2

(
µx2

2

) = µx
K̂ ′

α
2

K̂α
2

(
µ

x2

2

)whih translates into the stohasti di�erential equation form of for-mula (2.7).
6



As an introdution to the next disussion, we write downTable 2
h(y) Generator of (Xt) Distribution
C

yα+1 e−µy Lµ↓
−α = L−α +

√
2µ K̂ ′

α

K̂α
(
√

2µx) d
dx

P δ;µ↓

(0 < α < 1; µ > 0) (δ = 2(1 − α))

C
(

µ

sinh(µy)

)α+1

eµ δ
2
y L−α, µ ≡ L−α − µx d

dx
P δ,µ

0 < δ = 2(1 − α) < 2; µ > 0

C
(

µ

sinh(µy)

)α+1

Lθ↓
−α, µ ≡ L−α + µx

K̂ ′
α
2

K̂ α
2

(
µx2

2

)
d
dx

P δ,µ; δµ
2
↓

(
θ = δµ

2

)The �rst row is simply taken from Table 1 (seond row there).As said above, the seond row follows from Pitman-Yor [11℄. In the thirdrow, we have written Lθ↓
−α, µ for the in�nitesimal generator of the proesswhih is de�ned as : the radial Ornstein-Uhlenbek proess, with dimension

δ = 2(1 − α), and drift parameter (−µ), pushed downwards with parameter
θ =

δµ

2
. That this in�nitesimal generator may be expressed in terms of K̂α

2will be disussed after (2.7).2.3 We shall now prove a remarkable relationship between the two familiesof di�usions whose in�nitesimal generators are found on the RHS of Table2. This relationship explains preisely why (Row 1) may be dedued from(Row 2), and vie-versa.Proposition.The following relationship holds with : θ =
δµ

2
:

X2
−α, µ; θ↓(t) = X−α

2
;
(

µ2

8

)
↓

(
4

∫ t

0

X2
−α, µ; θ↓(u) du

) (2.8)7



meaning that : starting from X ≡ X−α, µ; θ↓ on the LHS, there exists(
X−α

2
; µ2

8

(u), u ≥ 0
) suh that the relationship (2.8) holds.Comment about our notationIn formula (2.8), and possibly several times below, we have written Xi; θ↓,et... instead of Xθ↓
i , for some index i. It seemed more appropriate here,beause of the power 2 on the left-side of (2.7).There should be no onfusion between the di�erent di�usions Xi, θ and Xi; θ↓.ProofWe start from the stohasti di�erential equation satis�ed by (X−α, µ; θ↓(t),

t ≥ 0) as desribed (impliitly) in Row 2 of Table 2.Then, taking squares, we obtain :
X2

t = x2 + 2

∫ t

0

XsdBs + δt + 2

∫ t

0

(µX2
s )

K̂ ′
α
2

K̂α
2

(
µ

X2
s

2

)
dsWe now de�ne (Yu ≡ Y (u), u ≥ 0) via :

X2
t = Y

(
4

∫ t

0

X2
s ds

)
, (t ≥ 0)and �nd that Y satis�es :

Yu = x2 + βu +

(
δ

4

)∫ u

0

ds

Ys

+
1

2

∫ u

0

µ
K̂ ′

α
2

K̂α
2

(µ

2
Ys

)
dssine δ

4
=

δ̂ − 1

2
, with δ̂ = 2 − α = 2(1 − α

2
), we �nd that (Yu, u ≥ 0) ispreisely the di�usion with in�nitesimal generator Lν↓

−α
2
, with √

2ν =
µ

2
, i.e

ν =
µ2

8
.

�We now remark that the proof we have just given for the Proposition re-lies upon the identi�ation of the in�nitesimal generator of the di�usion
X−α, µ; ( δµ

2 )↓ as given in Table 2; this identi�ation was obtained from an an-alytial identity between W0,. and K.. (see formula (2.5)).We now explain and prove the Proposition without relying on suh identities,but rather on absolute ontinuity relationships between the di�erent laws in-volved. 8



We now �nd it a little more onvenient to refer to the laws {Qδ, µ
z } and themain absolute ontinuity result we need is :

Qδ, µ

z|Ft
= exp

(
−µ

2
(Zt − δt − z) − µ2

2

∫ t

0

Zsds

) .Qδ
z|Ft

. (2.9)Here, (Zt, t ≥ 0) denotes the oordinate proess on the anonial spae
C(R+, R+).We now ombine this relation (2.9) with that of the "push downwards" withparameter θ, so that, with notations whih we shall explain after writing theformula :

Qδ, µ; θ↓
z|Ft

(2.10)
=

ϕθ↓(Zt)

ϕθ↓(z)
exp(Ψ(θ)Lt − θt) exp

(
−µ

2
(Zt − δt − z) − µ2

2

∫ t

0

dsZs

) .Qδ
z|Ftand we note that for preisely : θ =

δµ

2
, this relation simpli�es as :

Q
δ, µ; ( δµ

2 )↓
z|Ft

=
exp

(
−µ

2
Zt

)
ϕθ↓(Zt)

exp
(
−µ

2
z
)
ϕθ↓(z)

exp

(
Ψ(θ)Lt −

µ2

2

∫ t

0

dsZs

) .Qδ
z|Ft(2.11)(The due explanation of the formula (2.10) is that we have ombined the"push-downwards" formula (1.1), relative to {Qδ, µ

z }, - i.e. the funtion ϕθ↓and Ψ(θ) are relative to that di�usion - with the preeding formula (2.9)).From now on, we keep : θ =
δµ

2
.2.4 We now onsider what beomes of formula (2.11), one we time hangeboth sides with the inverse of (4

∫ t

0

Zudu, t ≥ 0

), so that, by a slight abuseof notation, the proess of referene is now (Ẑ(h), h ≥ 0), with Ẑ de�nedby :
Zt = Ẑ

(
4

∫ t

0

Zudu

) (2.12)Thus, we obtain :
Q̂

δ, µ; ( δµ
2 )↓

z|
F̂u

=
exp

(
−µ

2
Ẑu

)
ϕθ↓(Ẑu)

(
e−

µ
2
zϕθ↓(z)

) exp

(
Ψ(θ)L̂u − µ2

8
u

) . Q̂δ
z|

F̂u

(2.13)From the well-known property of time hange for Bessel proesses (see [12℄,Chap.XI, Prop.1.11), Q̂δ
z is the distribution of a Bessel proess of index α/2,9



i.e. of dimension δ̂ = 2 − α, that is Q̂δ
z = P δ̂

z . Again, with obvious notation,the right-hand side of (2.13) may be written :
ϕ̂µ2

8
↓(Ẑu)

ϕ̂µ2

8
↓(z)

exp

(
Ψ̂

(
µ2

8

)
L̂u − µ2u

8

) . Q̂δ
z|

F̂u

,and we disover that :





ϕ̂µ2

8
↓(z) = e−

µ
2

zϕθ↓(z)

Ψ̂
(

µ2

8

)
= Ψ(θ)

(2.14)and Q̂
δ, µ; ( δµ

2 )↓
z = P

δ̂; µ2

8
↓

z .Again, let us explain, very muh in the same spirit, e.g : the �rst relation :
ϕ̂µ2

8
↓(z) = e−

µ
2

zϕθ↓(z) in (2.14).This translates as :
Êz

(
exp−µ2

8
T0(Ẑ)

)
= e−

µ
2
zEz

(
e−

δµ
2

T0(Z)
) (2.15)where Ẑ simply denotes a BES proess with dimension δ̂, and Z a proesswith law Qδ, µ

z . This may be well understood by onsidering the absoluteontinuity relationship (2.9), when we replae t by T0(Z). Then, it followsfrom that relationship that :
Qδ,−µ

z

(
exp

(
−δµ

2
T0(Z)

))
= e

µz
2 Qδ

z

(
e−

µ2

2

∫ T0
0 ds Zs

)

= e
µz
2 Qδ̂

z

(
e−

µ2

8
T0(Ẑ)

)
,whih is preisely (2.15).Now, it is well known (see [3℄, [4℄, [10℄) that the Laplae transform of T0,under the distribution P δ̂

z of a Bessel proess, is given by:
ϕ̂µ2

8
↓(z) := E δ̂

z

(
exp(−µ2

8
T0)

)
= 21−α

2 Γ(
α

2
)−1
(µz

2

)α
2
Kα

2

(µz

2

)
. (2.16)Using (2.14), we an reover the expression of ϕθ↓ for θ =

δµ

2
obtained in(2.4) using the identity (2.6). 10



2.5 We now develop a disussion similar to that made in (2.8), but with thedownwards arrows ↓ now hanged into upwards arrows ↑ (for the de�nitionof these pushed upwards and downwards proesses obtained from a di�usion,see Pitman-Yor [10℄).The analogue of formula (2.10) is now :
Qδ, µ; θ↑

z|Ft
(2.17)

=
ϕθ↑(Zt)

ϕθ↑(z)
exp(−θt) exp

(
−µ

2
(Zt − δt − z) − µ2

2

∫ t

0

dsZs

) .Qδ
z|Ftand we note again that, preisely for : θ =

δµ

2
, this relation simpli�es as :

Q
δ, µ; δµ

2
↑

z|Ft
=

exp
(
−µ

2
Zt

)
ϕθ↑(Zt)

exp
(
−µ

2
z
)
ϕθ↑(z)

exp

(
−µ2

2

∫ t

0

dsZs

) .Qδ
z|Ft

(2.18)(We note that this formula is even simpler than (2.11) sine here there is noloal time ontribution).We now ontinue to develop an analogous disussion to that made in subse-tion (2.8).Thus, we time-hange both sides of the absolute ontinuity relation (2.18)with the inverse of 4

∫ t

0

Zu du , t ≥ 0, with Ẑ, as de�ned from Z in (2.12).We obtain :̂
Q

δ, µ; ( δµ
2

)↑
z|

F̂u

=
exp

(
−µ

2
Ẑu

)
ϕθ↑(Ẑu)

exp
(
−µ

2
z
)
ϕθ↑(z)

exp

(
−µ2u

8

) . Q̂δ
z|

F̂uWith obvious notation, this right-hand side may be written :
ϕ̂µ2

8
↑(Ẑu)

ϕ̂µ2

8
↑(z)

exp

(
−µ2u

8

) . Q̂δ
z|

F̂uwith :
ϕ̂µ2

8
↑(z) = e−

µ
2
zϕθ↑(z) (2.19)

Q̂
δ, µ; ( δµ

2
)↑

z is the distribution of a Bessel proess of dimension δ̂ = 2− α withdrift µ2

8
, i.e.

Q̂
δ, µ; ( δµ

2
)↑

z = P
δ̂; µ2

8
↑

z .11



The analytial ounterpart of (2.19) is the ompanion formula of (2.6) (seeAppendix):
M0,−α

2
(ξ) = 4−

α
2 Γ(1 − α

2
)
√

ξ I−α
2

(
ξ

2

)
;while the ompanion formula of (2.16) is:

ϕ̂µ2

8
↑(z) :=

1

E δ̂
0

(
exp(−µ2

8
Tz)
) = 2−

α
2 Γ(1 − α

2
)
(µz

2

)α
2
I−α

2

(µz

2

)a well-known formula whih goes bak to Kent [4℄, Pitman-Yor [10℄.Appendix : On the Whittaker and Bessel -M Donald funtionsThe following formulae involving these lassial speial funtions are foundin Lebedev [7℄, to whih we refer with numberings suh as : (N)∗ ...a) The Whittaker funtions Mk, µ(z) and Wk, µ(z) are a pair of solutionsof Whittaker's equation :
u′′ +

(
−1

4
+

k

z
+

(1
4
− µ2)

z2

)
u = 0(p. 279∗).b) Wk, µ admits the integral representation :

Wk, µ(z) =
zk e−

z
2

Γ(µ − k + 1
2
)

∫ ∞

0

e−t tµ−k− 1
2

(
1 +

t

z

)µ−k+ 1
2

dt(see Problem 17∗, p. 279∗).)
W0, µ(z) =

√
z

π
Kµ

(z

2

)(see Problem 19∗, p. 279∗).d) In terms of the on�uent hypergeometri funtion Ψ, there are therelations :
Wk, µ(z) = zµ+ 1

2 e−
z
2 Ψ

(
1

2
− k + µ, 2µ + 1; z

)12



(see (9.13.16)∗, p. 274∗).
Kµ(z) =

√
π(2z)µ e−zΨ

(
µ +

1

2
, 2µ + 1; 2z

)(see (9.13.15)∗, p. 274∗).Taking k = 0 in the above formula for Wk, µ, one reovers ).e) In terms of the on�uent hypergeometri funtion Φ, there are therelations :
Mk, µ(z) = zµ+ 1

2 e−
z
2 Φ

(
1

2
− k + µ, 2µ + 1; z

)(see (9.13.16)∗, p. 274∗).
Iµ(z) =

(z/2)µ

Γ(µ + 1)
e−zΦ

(
µ +

1

2
, 2µ + 1; 2z

)(see (9.13.14)∗, p. 274∗).Taking k = 0 in the above formula for Mk,µ, we obtain:
M0, µ(z) = 4µΓ(µ + 1)

√
z Iµ

(z

2
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