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NOMENCLATURE

hr = rigid gap

h[p] = effective gap (including deformation)

h0 = minimum thickness of the rigid gap

R = sphere or cylinder section radius

k = Hertz kernel

p = pressure

p0, p1... = approximations of the pressure

θ = saturation

θ0 = microscopic average saturation

Θi, Θ = macro-average saturations

x = (x1, x2) = space variables

y = (y1, y2) = microscale variables

Y =]0, 1[×]0, 1[ = rescaled microcell

(A⋆
[p])ij, B

(i,⋆)
[p] = average coefficients

w
(i)
[p0]

, χ
(i,0)
[p0]

= auxiliary functions defined on Y

α = piezoviscosity coefficient

∂/∂n = normal derivative

ε = roughness spacing

· Y = average operator with respect to y

L = length of the journal bearing

Rb, Rj , Rm = bearing radius, journal radius, mean radius

Γa, Γ0, Γ♯, Γ⋆ = boundaries of the device

c, ρ = clearance, eccentricity of the bearing

pa = supply pressure

µ = viscosity

v0 = velocity of the bearing

ar = amplitude of the roughness

W = load

θin = supply flow
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1 Introduction

In this paper, it is explained how the double scale procedure, already used to
obtain average equations with periodic roughness in the case of rigid bearings
[1–3], can be extended to EHD problems including cavitation and starvation.
The JFO mass flow preserving model is used, including pressure and satura-
tion as unknown functions. This model takes into account both microcavita-
tion (due to the microroughness) and macrocavitation (due to the diverging
part of the gap). The average equation can be easily solved for some spe-
cific roughness patterns (transverse, longitudinal) exactly in the same way as
the initial EHD problem with cavitation. Numerical results are given for both
purely hydrodynamic and EHD point-contact problems, for a two dimensional
device.

2 Basic equations

Our studied cavitation model, like the Elrod algorithm and its variants [4,5],
views the film as a mixture. It does not, however, make the assumption of
liquid compressibility in the full film area as in [6] and some other papers [7].
In this general framework, the effective gap between the two close surfaces,
denoted h[p], contains a given rigid contribution hr and an elastic one, which
strongly depends on the main unknown p (lubricant pressure) in the following
nonlocal form:

h[p](x) = hr(x) +
∫

Ω

k(x, z)p(z) dz,

the kernel k depending on the kind of contact. The classical approximation of
the rigid gap [8] is given by the expression

hr(x) =















h0 +
x2

1 + x2
2

2R
, for point contacts,

h0 +
x2

1

R
, for line contacts,

(1)

that represents a parabolic approximation for a given sphere-plane (point con-
tact) or cylinder-plane (line contact) gap, R being the sphere or cylinder sec-
tion radius. In the point contact case, the positive constant h0 corresponds to
the gap at the point nearest to contact while, in the line contact case, it in-
cludes a constant related to the logarithmic kernel (see [9] for instance). Now,
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let us introduce the general property of the kernel k:

k(x, z) =



















c0 log
∣

∣

∣

c1 − z1

x1 − z1

∣

∣

∣, for line contacts,

c0
√

(x1 − z1)2 + (x2 − z2)2
, for point contacts,

(2)

where c0 > 0 and c1 ≥ max{
∣

∣

∣x1

∣

∣

∣, x ∈ Ω}. The flow obeys the following

“universal” Reynolds equation (here written in a dimensionless form):

2
∑

i=1

∂

∂xi

(

h3
[p] e−αp ∂p

∂xi

)

=
∂ θh[p]

∂x1

, (3)

p ≥ 0, 0 ≤ θ ≤ 1, p (1 − θ) = 0, (4)

p is the pressure (assumed to be a positive function), θ is the relative mixture
density, h[p] the real film thickness, x1 is the direction of the effective relative
shear velocity of the device, while x2 is the transverse direction. Here, the
pressure cavitation is assumed to be zero. Moreover, the lubricant is piezovis-
cous so that the viscosity obeys the Barus law (notice that other laws may be
taken into account), α being the piezoviscosity parameter.

3 Asymptotic expansion

3.1 General case in the elastohydrodynamic configuration

Let us suppose that the roughness is periodically reproduced in the two x1 and
x2 directions from an elementary cell Y (or “miniature bearing” in Tonder’s
terminology). Relatively to this elementary cell Y , we define the microscopic

εY
Y

y1

y2

x1

x2

y =

x

ε

Fig. 1. Macroscopic domain and elementary cells
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variables y = (y1, y2) such that Y = {0 < y1 < 1, 0 < y2 < y2} which is used
to describe the oscillatory effects (see Fig. 1).

Let us now consider gaps that can be written as hr(x, y). In this section, we use
the two-scale analysis which has been widely developped for the hydrodynamic
case in [3]. The equations should be read as

2
∑

j=1

∂

∂xj

{

(

h[p] (x, y)
)3

e−αp(x) ∂p

∂xj
(x)

}

=
∂

∂x1

{

θ(x) h[p] (x, y)
}

,

p(x) ≥ 0, 0 ≤ θ(x) ≤ 1, p(x) (1 − θ(x)) = 0,

with the additional notation:

h[p] (x, y) = hr (x, y) +
∫

Ω

k(x, z) p(z) dz.

Let us introduce the parameter ε which denotes the period of the roughness
patterns: the fast variables (y1, y2) describe oscillatory effects induced by the
roughness patterns, namely

(y1, y2) :=
(

x1

ε
,
x2

ε

)

Thus, similarly to the hydrodynamic case (studied in [3]), we shall look for an
asymptotic expansion of the solutions:

p(x) = p0(x) + εp1 (x, y) + ε2p2 (x, y) + ..., (5)

θ(x) = θ0 (x, y) , (6)

p0 being a positive function, and each unknown pi (i ≥ 1) and θ0 being function
of (x, y). The problem of the boundary conditions to be satisfied by the pi is
somewhat difficult but may be summarized so:

(i) The natural boundary conditions on (p, θ) are assigned to p0 and an equiv-
alent saturation linked to θ0.

(ii) The functions pi, i ≥ 1, are Y periodic, i.e. periodic in the two variables y1,
y2, for each value of (x1, x2).

To be noticed that, unlike of p, we do not introduce an asymptotic expansion
for θ. This can be explained by observing the evolution of p and θ as ε tends
to 0. Clearly, the oscillations of the pressure are decreasing and p tends to
a smooth function (namely p0 which, actually, does not depend on the fast
variable). This is not the case for θ and an asymptotic smooth limit cannot be
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considered. Moreover, from the initial properties of the pressure-saturation,
the following ones hold:

p0(x) ≥ 0, 0 ≤ θ0(x, y) ≤ 1, p0(x, y) (1 − θ0(x, y)) = 0. (7)

Using the two-scale analysis [1,3], we obtain the micro-macroscopic link be-
tween the unknowns p0, p1 and θ0:

p1(x, y) = eαp0(x) χ
(1,0)
[p0]

(x, y) −
2
∑

i=1

∂p0

∂xi
(x) w

(i)
[p0]

(x, y), (8)

in which w
(i)
[p0]

, χ
(i),0
[p0]

(and, additionally, χ
(i,⋆)
[p0]

) (i = 1, 2) are the Y periodic
solutions (up to an additive constant) of the following local problems (see [3]
for the rigorous introduction of these local problems):

2
∑

j=1

∂

∂yj



h3
[p0]

e−αp0

∂w
(i)
[p0]

∂yj



 =
∂h3

[p0]

∂yi

, (9)

2
∑

j=1

∂

∂yj



h3
[p0]

e−αp0

∂χ
(i,0)
[p0]

∂yj



 =
∂θ0h[p0]

∂yi
, (10)

2
∑

j=1

∂

∂yj



h3
[p0]

e−αp0

∂χ
(i,⋆)
[p0]

∂yj



 =
∂h[p0]

∂yi

. (11)

Notice that, contrary to the local problems in the purely hydrodynamic case
which have been studied in [3], the local problems in the EHL problem highly
depend on the macroscopic pressure p0, which is due to the piezoviscosity and
elastic deformation. These local problems describe the link between the un-
knowns at the microscopic scale, the macroscopic one playing the role of a
parameter. To complete the results, we obtain the following average Reynolds
equation, taking into account the roughness effects. There are now three lead-
ing unknowns (p0, Θ1, Θ2) satisfying the following equations:

2
∑

i,j=1

∂

∂xi

{

(

A⋆
[p0]

)

ij
e−αp0

∂p0

∂xj

}

=
2
∑

i=1

∂

∂xi

{

ΘiB
(i,⋆)
[p0]

}

, (12)

p0 ≥ 0, p0(1 − Θi) = 0, (i = 1, 2), (13)
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where the average coefficients are given by:

(

A⋆
[p0]

)

ij
= h3

[p0]
δij − h3

[p0]

∂w
(i)
[p0]

∂yj

Y

,

B
(i,⋆)
[p0]

= h[p0] δ1i − h3
[p0]

∂χ
(1,⋆)
[p0]

∂yi

Y

,

δij denoting the Kronecker symbol (δij has value 1 for i = j, 0 for i 6= j).
Equations (12) and (13) deal with any periodic roughness pattern. To be
noticed is the fact that the differential operator is no more of the Reynolds
type since extra terms ∂2p0/∂xi∂xj appear. The right-hand side also contains
an additive term in the x2 direction. Moreover, it is possible to prove in a
rigorous way [10] that there exists a solution with an isotropic saturation
Θ = Θ1 = Θ2 and 0 ≤ Θ ≤ 1. Under some additional assumptions (see [3]),
we can even prove some complementary results, which are presented in the
next subsections.

3.2 Particular cases in the elastohydrodynamic configuration

When dealing with transverse roughness and longitudinal roughness, the aver-
age coefficients can be easily simplified and given in an explicit form. In both
cases, the asymptotic system has the same structure than the initial (smooth)
one, i.e.

2
∑

i=1

∂

∂xi

{

A
(i,⋆)
[p0]

e−αp0
∂p0

∂xi

}

=
∂ΘB

(1,⋆)
[p0]

∂x1
, (14)

p0 ≥ 0, 0 ≤ Θ ≤ 1, p0 (1 − Θ) = 0. (15)

⊲ Transverse roughness: the average coefficients are

A
(1,⋆)
[p0]

=
1

h−3
[p0]

Y , A
(2,⋆)
[p0]

= h3
[p0]

Y
, B

(1,⋆)
[p0]

=
h−2

[p0]

Y

h−3
[p0]

Y ,

the link between the macroscopic saturation Θ and the microscopic one θ0

being given by:

Θ =
1

h−2
[p0]

Y

( θ0

h2
[p0]

)

Y

.
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⊲ Longitudinal roughness : the average coefficients are

A
(1,⋆)
[p0]

= h3
[p0]

Y
, A

(2,⋆)
[p0]

=
1

h−3
[p0]

Y , B
(1,⋆)
[p0]

= h[p0]
Y
,

the link between the macroscopic saturation Θ and the microscopic one θ0

being given by:

Θ =
θ0h[p0]

Y

h[p0]
Y .

All the earlier results are valid for both elastohydrodynamic and hydrody-
namic cases and, thus, generalize the ones that have been stated in [3]. As an
important feature, Θ is not the average of the microscopic saturation θ0 but
contains some anisotropic effects due to the roughness direction.

3.3 Particular cases in the hydrodynamic configuration

In the purely hydrodynamic case, one can prove some additional results, cor-
responding to a wide class of two dimensional roughness patterns. Indeed,
suppose that hr can be written under the form

hr(x, y) = h1 (x, y1)h2 (x, y2) ,

then we get the following (hydrodynamic) average equation

2
∑

i=1

∂

∂xi

{

A
(⋆)
ii

∂p0

∂xi

}

=
∂

∂x1

{

ΘB(1,⋆)
}

,

p0 ≥ 0, 0 ≤ Θ ≤ 1, p0(1 − Θ) = 0,

with

A
(⋆)
ii =

h3
j

Y

h−3
i

Y , for i, j = 1, 2 and i 6= j, B(1,⋆) =
h−2

1

Y

h−3
1

Y h2
Y
,

the link between the micro-macroscopic saturations being given by

Θ =
1

h2
Y

h−2
1

Y

(

θ0h2

h2
1

)Y

.
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4 Numerical results

In this section, the numerical simulation of a micro(elasto)hydrodynamic con-
tact is performed to illustrate the theoretical results of convergence stated in
the previous sections. For the numerical solution of the ε-dependent prob-
lems and their corresponding average one, the algorithm is based on the
Bermudez-Moreno method : a characteristics method coupled to a duality
method, adapted to steady state problems dealing with a finite element spatial
discretization, is used in order to treat the nonlinearity related to cavitation
phenomena. Piezoviscous effects and elastic deformation of the surfaces are
taken into account by a standard fixed-point method. These numerical tech-
niques have been already successfully used in previous papers dealing with
hydrodynamic aspects (see [11,12]), and elastohydrodynamic aspects (see, for
instance, [13,14]). It has been proved that, for small loads, it is a rigorous
method whose numerical solution converges to the continuous one, as the
mesh size tends to 0. In Table 1, we present the functional coefficients

A
(1,⋆)
[p0]

, A
(2,⋆)
[p0]

, B
(1,⋆)
[p0]

that appear in the average problem for purely transverse and purely longi-
tudinal roughness cases which have been partially computed with MAPLE.
Suppose that the domain to be considered is a rectangular one (a, b) × (c, d),
and that the rough (elasto)hydrodynamic gap can be written under the form

h[p]

(

x,
x

ε

)

= hr(x)+hd[p](x)+















α1 sin
(

2π

ε

x1 − a

b − a

)

, (transverse roughness)

α2 sin
(

2π

ε

x2 − c

d − c

)

, (longitudinal roughness)

where hr (resp. hd[p]) denotes the smooth rigid (resp. elastic) contribution to
the gap and the remaining term describes the roughness patterns in the purely
transverse or longitudinal case.

Transverse roughness Longitudinal roughness

h[p](x, y) hr(x) + hd[p](x) + α1 sin (2πy1) hr(x) + hd[p](x) + α2 sin (2πy2)

A
(1,⋆)
[p0]

2

(

(hr + hd[p])2 − α2
1

)5/2

2(hr + hd[p])2 + h2
r

(hr + hd[p])3 +
3

2
(hr + hd[p]) α2

2

A
(2,⋆)
[p0]

(hr + hd[p])3 +
3

2
(hr + hd[p]) α2

1 2

(

(hr + hd[p])2 − α2
2

)5/2

2(hr + hd[p])2 + α2
2

B
(1,⋆)
[p0]

2(hr + hd[p])
(hr + hd[p])2 − α2

1

2(hr + hd[p])2 + α2
1

hr + hd[p]

Table 1
Elastohydrodynamic average coefficients
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4.1 Hydrodynamic case

We adress the numerical simulation of journal bearing devices with circum-
ferential supply of lubricant. The mechanical characteristics of the device are
given by:

• length: L = 0.019 m,
• bearing radius: Rb = 0.0164975 m,
• journal radius: Rj = 0.01647 m,
• mean radius: Rm = 0.5 (Rb + Rj),
• clearance : c = Rb − Rj ,
• eccentricity: ρ = 0.2.

The physical characteristics of the regime are the following ones:

• supply pressure: pa = 283000 Pa,
• lubricant viscosity: µ = 0.02 Pa.s,
• shear velocity: v0 = 17.247 m/s.

The earlier problem leads to the following set of equations

2
∑

i=1

∂

∂xi

(

h3 ∂p

∂xi

)

= Λ
∂ θh

∂x1
,

p ≥ 0, 0 ≤ θ ≤ 1, p (1 − θ) = 0,

with Λ = 6µv0, and the real smooth gap shoud be read as

h(x) = c (1 + ρ cos (x1/Rm)) .

The equations have to be solved on the domain (0, 2πRm) × (0, L/2) (see the
developped configuration on Fig.2) with the following boundary conditions:

• p = pa on Γa, p = 0 on Γ0,

• conditions on Γ♯: p and Λ θh − h3 ∂p

∂x1

are 2πRmx1 periodic.

To be noticed is the fact that the corresponding average boundary conditions
can be written as follows (using the terminology of Table 1):

• p0 = pa on Γa, p0 = 0 on Γ0,

• conditions on Γ♯: p0 and Λ ΘB(1,⋆) − A(1,⋆) ∂p0

∂x1
are 2πRmx1 periodic.
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x1

x2

Γ♯ Γ♯

Γa

Γ0

2πRm

L

2

Fig. 2. Journal bearing domain

Actually, we consider transverse roughness patterns and the gap should be
read as:

h
(

x,
x

ε

)

= c
(

1 + ρ cos (x1/Rm) + ar sin
(

2π

ε

x1

Rm

))

with ar/ρ = 0.2, ar denoting the amplitude parameter of the roughness. Nu-
merical tests have been made with a mesh grid containing 201*51 elements,
which is proved to be sufficient in terms of numerical convergence. As there is
at most 30 roughness patterns in the x1 direction, this has lead to a mesh dis-
cretization of 7 points at least for each roughness pattern. Moreover, numerical
results remain the same when using meshes with size 401*51 or 201*101.

Fig.3 and 4 (resp. 5 and 6) show the pressure and saturation profiles for
ε = 1/15 (resp. ε = 1/30) compared to the average solution, at a fixed
x0

2 = L/4. Thus, it allows to observe the roughness effects in the x1 direc-
tion. The amplitude of the pressure oscillations tend to be damped, although
the amplitude of the saturation oscillations stay the same in cavitated areas.
As it was noticed in [3], it points out the fact that when the number of rough-
ness patterns increases, the pressure behaves as a smooth function, namely
p0(x), while the saturation behaves as a highly oscillating function, namely
θ0(x, x/ε). Thus, the pressure tends to a smooth one as ε tends to 0, while
the saturation is always oscillating. To be noticed on Fig.4 and 6 is the fact
that the cavitation area is made of two macrocavitation zones (for ε = 1/15,
x1 > 0.06 and x1 < 0.01) and a lot of microcavitation zones. Fig.7 and 8
represent the average pressure and saturation in the real domain.

Let us notice that the average process, that we have presented here, only allows
a macroscopic description of the microscopic roughness effects as the number
of patterns is large: in particular, interasperity cavitation cannot be predicted
in the average model, which only describes the (macro-) cavitation regions for
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Fig. 3. Hydrodynamic pressure for ε = 1/15 at x0
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Fig. 4. Hydrodynamic saturation for ε = 1/15 at x0
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Fig. 5. Hydrodynamic pressure for ε = 1/30 at x0
2 = L/4
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Fig. 6. Hydrodynamic saturation for ε = 1/30 at x0
2 = L/4
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Fig. 8. Average hydrodynamic saturation in the whole device
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a large number of roughnesses. Additional information on interasperity cavi-
tation is contained in the supplementary terms of the asymptotic expansion
of the pressure, namely p1(x, y), for which little information is known.

4.2 Elastohydrodyamic case

The numerical tests deal with a dimensionless problem, as described in Sec-
tion 2: the domain is (−4, 2)× (2, 2). The considered rigid contribution to the
gap is a normalized one:

h0 +
x2

1 + x2
2

2
where h0 denotes the minimum thickness. Since a point contact has been
considered, we choose the following Hertz model:

k(x, z) =
2

π2

1
√

(x1 − z1)2 + (x2 − z2)2

The equations are:

2
∑

i=1

∂

∂xi

(

h[p]3 e−αp ∂p

∂xi

)

=
∂ θh[p]

∂x1
,

p ≥ 0, p (1 − θ) = 0 0 ≤ θ ≤ 1,

The boundary conditions are the following ones:

x1

x2

Γ⋆

6

4

Fig. 9. Normalized EHL domain

• flow condition on Γ⋆: θh[p] − h[p]3
∂p

∂x1
= θinh[p], with θin = 0.3,

• p = 0 elsewhere.

The corresponding average boundary conditions can be written as:
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• flow condition on Γ⋆: ΘB
(1,⋆)
[p0]

−A
(1,⋆)
[p0]

∂p0

∂x1
= θinC

(⋆)
[p0]

, with C
(⋆)
[p0]

= (hr + hd[p])|Γ⋆

.

• p0 = 0 elsewhere.

The chosen values of h0 and α will be discussed further.

4.2.1 Transverse roughness

Numerical tests deal with the following rigid contribution to the gap:

h0 +
x2

1 + x2
2

2
+ h0 sin

(

2π
x1 + 4

6 ε

)

with h0 = 0.5 and different values of ε. Moreover, the piezoviscosity has been
taken to α = 1. This numerical configuration corresponds to a very small load
contact. Computations have been made for different values of ε (with at most
1/ε = 30 roughness patterns), and the mesh grid which has been used contains
201*51 elements, as in the hydrodynamic case. The average coefficients in the
transverse roughness cases are deduced from Table 1 (see page 9).

Fig.10–11 (resp. 12–13) provide the pressure-saturation profiles at x0
2 = 0

with ε = 1/20 (resp. ε = 1/30) compared to the average solution. To be ob-
served is the fact that the average profiles give a satisfying approach of the
roughness effects (ε = 1/30): indeed, the pressure profiles given in Fig.10 and
12 evidence the fact that the average pressure is a smooth version of the rough
pressure. Similarly, by Fig.11 and 13, the average saturation can be seen as an
average version of the rough saturation, up to anisotropic effects. On Fig.16,
we observe that the deformation corresponding to ε = 1/30 nearly coincides
with the average one: this is due to the regularizing effects of the Hertz kernel.
In fact, the deformation profile has a rate of convergence which is much greater
than the pressure profile. Fig.14, 15 and 17 represent the average pressure,
saturation and deformation in the domain.

Again, similarly to the hydrodynamic computations, the average model does
not provide any information of cavitation occurring at the microscopic level:
it only means that the effective pressure is closer and closer to the average
(smooth) pressure as the number of roughness patterns increases (i.e. ε tends
to 0) but it does not provide information of micro-cavitation for a given value
of ε.
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Fig. 10. EHL pressure with transverse patterns at x0
2 = 0, ε = 1/20
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Fig. 11. EHL saturation with transverse patterns at x0
2 = 0, ε = 1/20
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Fig. 12. EHL pressure with transverse patterns at x0
2 = 0, ε = 1/30
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Fig. 13. EHL saturation with transverse patterns at x0
2 = 0, ε = 1/30
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Fig. 14. EHL average pressure with transverse patterns in the whole domain
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Fig. 15. EHL average saturation with transverse patterns in the whole domain
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Fig. 16. EHL deformation with transverse roughness patterns at x0
2 = 0
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Fig. 17. Average EHL deformation in the whole domain
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4.2.2 Longitudinal roughness

Numerical tests have been made for the following rigid contribution to the
gap:

h0 +
x2

1 + x2
2

2
+ h0 sin

(

2π
x2 + 2

4 ε

)

with h0 = 0.5 and different values of ε. Moreover, the piezoviscosity has been
taken to α = 1. Let us notice that, again, average coefficients in the transverse
roughness cases are deduced from Table 1 (see page 9).

Computations have been made for different values of ε (with at most 1/ε = 30
roughness patterns), with a mesh grid which containing 51*201 elements: the
discretization has been refined in the x2 direction in order to take into account
the roughness effects in this direction.

Fig.18 and 19 represent the pressure and deformation profiles at x0
1 = −0.4,

in the x2 direction (in order to observe the roughness effects). This choice
corresponds to the maximum pressure in the average case, which is attained
at (x0

1, x
0
2) = (−0.4, 0). Of course, the saturation profile is omitted, for all

corresponding saturation functions would be identically equal to 1 (no cavi-
tation in this part of the domain). Significantly, the size of the oscillations for
the pressure are damped easily, and convergence of the rough solution to the
average one is illustrated on both figures. Similarly, pressure / saturation /
deformation curves are omitted, for they are similar to the ones observed in
the transverse roughness case.

4.2.3 Influence of the roughness effects in EHL and hydrodynamic cases

Fig.20 and 21 show the difference of roughness effects between a purely hydro-
dynamic (isoviscous) configuration and an elastohydrodynamic (piezoviscous)
configuration. The numerical and physical data are the same as in the trans-
verse roughness case (see Subsection 4.2.1), except for the rough gap whose
amplitude of roughness patterns is modified in order to prevent contact be-
tween the surfaces in the hydrodynamic case: thus, the gap is

h0 +
x2

1 + x2
2

2
+ 0.7 h0 sin

(

2π
x1 + 4

6 ε

)

,

all other numerical data being the same as before (in particular for the value
of h0 and the piezoviscosity parameter α). It can be noticed that the elevation
of the pressure due to the roughness patterns is less important in the EHL
case than in the purely hydrodynamic case. This is due to the fact that the
elastic deformation tends to damp the additional load corresponding to the
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Fig. 18. EHL pressure with longitudinal patterns at x0
1 = −0.4
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Fig. 19. EHL deformation with longitudinal patterns at x0
1 = −0.4

22



roughness. It has little influence over the saturation distribution, although the
homogenization process does not allow to get microcavitation effects which do
exist when a deterministic rough pattern is considered. Though, this analysis
also states that microcavitation effects tend to vanish as ε tends to 0.

4.2.4 Influence of the roughness over the load

Numerical tests have been made for the following rigid contribution to the
gap:

h0 +
x2

1 + x2
2

2
+ ar sin

(

2π
x1 + 4

6 ε

)

with h0 ∈ {0.5, 1, 1.5, 2} and ar/h0 ∈ {0.2, 0.4, 0.6, 0.8, 1}. Moreover, the elas-
tic contribution to the gap is the one given at the beginning of Subsection
4.2, and piezoviscosity has been taken to α = 0 (isoviscous case). Results have
been obtained with a mesh grid 101*101. They are given on Fig.22, showing
the influence of the minimum thickness hr − ar over the load W for different
values of h0. Results are taken from the analysis of the corresponding average
solution.

4.2.5 Influence of the piezoviscosity

We focus on the behaviour of the solution with respect to the piezoviscosity
parameter α. Numerical and physical data are the same than in the elastohy-
drodynamic case with transverse roughness (Subsection 4.2.1), except that we
take into account piezoviscous properties of the lubricant: α = 0, 1, 2 or 3.

Fig.23 and 24 represent the pressure and deformation profiles at x0
2 = 0 in the

average case. They illustrate the trend induced by the piezoviscosity parame-
ter: the peak pressure and the peak deformation increase with α. Only a few
variations affect the saturation distribution (for this reason, the corresponding
curves are omitted).

Table 2 (resp. Table 3) gives the variation of the peak pressure (resp. de-
formation) with respect to the isoviscous case (α = 0) in different rough cases
(including smooth and average ones).
The relative variation of the peak pressure is denoted

∆p/p =
max(pα) − max(p0)

max(p0)

where pα (resp. p0) denotes the pressure distribution corresponding to the
piezoviscous regime α 6= 0 (resp. isoviscous regime α = 0). Similarly, the
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Fig. 20. Transverse roughness effects over the pressure in purely hydrodynamic and
elastohydrodynamic cases at x0

2 = 0
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Fig. 21. Transverse roughness effects over the saturation in purely hydrodynamic
and elastohydrodynamic cases at x0

2 = 0
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Fig. 22. Influence of the roughness over the load

relative variation of the peak deformation is denoted

∆d/d =
max(dα

f ) − max(d0
f)

max(d0
f)

where dα
f (resp. d0

f) denotes the deformation distribution corresponding to the
piezoviscous regime α 6= 0 (resp. isoviscous regime α = 0).

∆p/p α = 1 α = 2 α = 3

smooth 0.0817 0.2633 0.4449

ε = 1/10 0.1035 1.8646 2.8203

ε = 1/20 0.2447 0.6551 1.0192

ε = 1/30 0.1855 0.5161 1.3783

average 0.1041 0.3030 0.5543

Table 2
Maximum pressure elevation due to piezoviscosity
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Fig. 23. Influence of the piezoviscosity over the (average) pressure
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Fig. 24. Influence of the piezoviscosity over the (average) deformation
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∆d/d α = 1 α = 2 α = 3

smooth 0.0540 0.1716 0.2787

ε = 1/10 0.0584 0.5742 0.6034

ε = 1/20 0.1078 0.2497 0.4532

ε = 1/30 0.0907 0.2198 0.4386

average 0.0732 0.1895 0.3320

Table 3
Maximum deformation elevation due to piezoviscosity

5 Conclusion

Numerical simulations of EHL problems are important for the design of both
components and lubricants. On the one hand, th key numerical methods used
in EHL solvers are the multigrid method [15] and multilevel multi-integration
[16], which have proved robust and highly desirable in terms of reducing the
time spent in solving EHL problems, at least for a moderated number of rough-
ness patterns. On the other hand, accurate solutions of micro-EHL problems
with realistic surface roughness requires such a high spatial resolution that
even a single solution may be a large computational task [17]. Thus, as ε tends
to 0, it seems more relevant to use the solution procedure that we have pro-
posed because it deals with smooth coefficients. However, this average method
may be coupled to multigrid methods (especially for the computation of the
coefficients at the lowest grid resolution). The average method is valid for
transverse or longitudinal roughness patterns. Further investigation has to be
made in order to take into account anisotropic two dimensional effects.
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