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We study the transversal spin-spin correlations in the non-equilibrium steady state of the XY chain constructed by coupling a finite cutout of the chain to the two infinite parts to its left and right acting as thermal reservoirs at different temperatures. We prove that the spatial decay of these correlations is at least exponentially fast.

Introduction

The XY chain is the one-dimensional integrable spin system, introduced in [START_REF] Lieb | Two soluble models of an antiferromagnetic chain[END_REF] (see also [START_REF] Bratteli | Operator algebras and quantum statistical mechanics 2[END_REF]), whose formal Hamiltonian is specified by

H = - 1 4 ∑ x∈Z (1 + γ) σ (x) 1 σ (x+1) 1 + (1 -γ) σ (x) 2 σ (x+1) 2 + 2λ σ (x) 3 , (1.1) 
where σ (x) j denotes the Pauli matrix at site x ∈ Z in the transversal directions, j = 1, 2, and in the longitudinal direction, j = 3. The parameter γ ∈ (-1, 1) describes the anisotropy of the spin-spin coupling whereas λ ∈ R stands for an external magnetic field.

Since the discovery of their ideal thermal conductivity, quasi-one-dimensional Heisenberg spin-1/2 systems, made from different materials, have been intensively studied experimentally (see [START_REF] Sologubenko | Thermal conductivity and specific heat of the linear chain cuprate Sr 2 CuO 3 : Evidence for the thermal transport via spinons[END_REF][START_REF] Sologubenko | Heat transport by lattice and spin excitations in the spin-chain compounds SrCuO 2 and Sr 2 CuO 3[END_REF]; SrCuO 2 and Sr 2 CuO 3 are often considered to be the best physical realizations of onedimensional XYZ Heisenberg models).

Not only this highly unusual transport property motivates the theoretical study of such nonequilibrium models, but the XY chain also represents one of the simplest non-trivial testing grounds for the development of general ideas in rigorous non-equilibrium theory.

Already in [START_REF] Lieb | Two soluble models of an antiferromagnetic chain[END_REF], for vanishing external magnetic field λ = 0, the transversal spin-spin correlations in the ground state and at nonzero temperature could be expressed by means of determinants of large truncated Toeplitz matrices. Moreover, bounds on these correlations implied vanishing long-range order, at least in the isotropic case γ = 0. Later, in [START_REF] Mccoy | Spin correlation functions of the X -Y model[END_REF], this study was continued yielding an asymptotic evaluation of the transversal correlations with the help of Szegö's theorem. Afterwards, in [START_REF] Barouch | Statistical mechanics of the XY model. II. Spin-correlation functions[END_REF], almost the complete phase diagram in γ and λ for the behavior of the correlation functions both in the longitudinal and in the transversal directions were obtained, and so for zero and nonzero temperature: The result of this study for the case of nonzero temperature is that all the correlation functions are asymptotically exponentially decaying with a decay rate which depends on the magnetic field λ and the anisotropy γ.

In this note, we study the large n behavior of the transversal spin-spin correlations,

C j (n) = ω(σ (0) j σ (n) j ), j = 1, 2, n ∈ N, (1.2) 
in the non-equilibrium steady state (NESS) ω constructed in [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF] (and already in [START_REF] Araki | Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain[END_REF] for γ = 0) in a setting which has become to serve as paradigm in non-equilibrium statistical mechanics: a "small" system which is coupled to two infinite reservoirs which are in thermal equilibrium at different inverse temperatures β L and β R . We prove that the spatial decay of C j (n) is at least exponentially fast. This behavior contrasts with the one generally expected by the folklore which predicts quasi-long-range order out of equilibrium.

In the following section, we give a brief informal description of our non-equilibrium setting for the XY chain. We refer to [START_REF] Aschbacher | Topics in non-equilibrium quantum statistical mechanics[END_REF][START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF][START_REF] Jakšić | Mathematical theory of non-equilibrium quantum statistical mechanics[END_REF] for a precise formulation within the framework of C * algebraic quantum statistical mechanics.

The non-equilibrium setting for the XY chain

Consider the XY chain described by the Hamiltonian (1.1) and remove the two bonds at the sites ±M, M > 0. Doing so, the initial chain divides into a compound of three noninteracting subsystems. This configuration is what we call the free system whose Hamiltonian

H 0 = H L + H S + H R is built as in (1.1) according to the union Z L ∪ Z S ∪ Z R , where Z L = {x ∈ Z | x ≤ -M -2}, Z R = {x ∈ Z | x ≥ M + 1}, and Z S = {x ∈ Z | -M ≤ x ≤ M -1}.
The infinite pieces Z L and Z R will play the role of thermal reservoirs to which the finite system on Z S is coupled by means of V = H -H 0 . In contrast, the configuration described by H, i.e. the original XY chain on the whole of Z, is considered to be the perturbed system.

In order to construct a NESS in the sense of [START_REF] Ruelle | Entropy production in quantum spin systems[END_REF], we choose the initial state ω 0 to be composed of (τ j , β j )-KMS states ω j on Z j , j = L, R, and of the normalized trace state ω S on Z S (τ j denotes the time evolution generated by H j , and β j is the inverse temperature), i.e. we set

ω 0 = ω L ⊗ ω S ⊗ ω R .
It is well-known that the Jordan-Wigner transformation maps the XY model on a model of free fermions with annihilation and creation operators c x , c * x . Using scattering theory on the 1particle Hilbert space of these fermions, the NESS ω w.r.t. the initial state ω 0 and the perturbed time evolution τ t have been constructed in [5],

ω(c x ) = lim t→ +∞ ω 0 (τ t (c x )).
It has been shown in [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF] that ω is a quasi-free state with 2-point operator S,

ω(B * ( f )B(g)) = ( f , Sg), (2.3) where f , g ∈ l 2 (Z)⊗C 2 ≃ l 2 (Z)⊕l 2 (Z), and 
B( f ) = ∑ x∈Z ( f + (x)c * x + f -(x)c x ) for f = ( f + , f -).
Moreover, S has been explicitly computed in [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF]. In the Fourier picture,

l 2 (Z) ≃ L 2 (T) (with T = {z ∈ C | |z| = 1}), it reads S(ξ ) = 1 + e β h(ξ )+δ k(ξ ) -1 , (2.4) 
with the parameters β and δ given by

β = 1 2 (β R + β L ) , δ = 1 2 (β R -β L ) .
(2.5)

The 1-particle operators h and k have the form

h(ξ ) = (cos ξ -λ ) ⊗ σ 3 -γ sin ξ ⊗ σ 2 , k(ξ ) = sign(κ(ξ )) µ(ξ ) ⊗ σ 0 ,
where the functions κ(ξ ) and µ(ξ ) are defined by

κ(ξ ) = 2λ sin ξ -(1 -γ 2 ) sin 2ξ , µ(ξ ) = (cos ξ -λ ) 2 + γ 2 sin 2 ξ 1/2 . (2.6)
Furthermore, σ 0 is the identity on C 2 , and σ 1 , σ 2 , σ 3 denote the Pauli matrices,

σ 0 = 1 0 0 1 , σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 . (2.7)

Exponential decay of the correlation function

Let us now state our result.

Theorem Let ω be the quasi-free NESS characterized by (2.3), and C j (n), j = 1, 2, the correlation functions (1.2). For all values of the parameters 0 ≤ δ < β < ∞, γ ∈ (-1, 1), and λ ∈ R, the transversal spin-spin correlations C j (n) decay at least exponentially fast, and

lim sup n→∞ log C j (n) n ≤ 1 2 2π 0 dξ 2π log [th(β L µ(ξ )/2) th(β R µ(ξ )/2)] < 0.
Remarks 1) If the temperature difference of the reservoirs vanishes, i.e. δ = 0, the total system is in thermal equilibrium at inverse temperature β L = β R , and our bound estimates from above the asymptotically exponentially decaying behavior from [START_REF] Barouch | Statistical mechanics of the XY model. II. Spin-correlation functions[END_REF].

2) For δ = 0, the correlation in the 3-direction decays like 1/n 2 at infinity for all γ ∈ (-1, 1), λ ∈ R, see [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF]. In contrast to this result, our theorem does not confirm the folklore about the change in the type of decay -from short range to long range -when passing from equilibrium to non-equilibrium.

Before we begin the proof of the theorem, we rewrite the correlation function C j (n) as the determinant of a 2n × 2n block Toeplitz matrix, in the same way as it has been done at zero and non-zero temperature in [START_REF] Barouch | Statistical mechanics of the XY model. II. Spin-correlation functions[END_REF][START_REF] Lieb | Two soluble models of an antiferromagnetic chain[END_REF]. The reader not familiar with Toeplitz theory may consult Appendix A before entering the proof. We restrict our attention to the transversal correlation function C 1 (n) ≡ C(n) in the 1-direction (the 2-direction being analogous, see the Jordan-Wigner transformation for σ 2 in (3.8) below),

C(n) = ω(σ (0) 1 σ (n) 1 ), n ∈ N.
The well-known Jordan-Wigner transformation expresses the spins σ

(x) 1 , σ (x) 2 , σ (x) 
3 , x ∈ Z, by means of fermionic creation and annihilation operators c

♯ x (= c * x , c x ), σ (x) 1 = T S (x) (c x + c * x ), σ (x) 2 = iT S (x) (c x -c * x ), σ (x) 3 = 2c * x c x -1, (3.8) 
where

S (x) = σ (1) 
3 . . . σ (x-1) 3

for x > 1, S (1) = 1, and

S (x) = σ (x) 3 . . . σ (0) 
3 for x < 1, see for example [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF]. The element T stems from Araki's C * crossed product extension of the CAR algebra for the two-sided chain, see [START_REF] Araki | On the XY-model on two-sided infinite chain[END_REF]. It has the properties T 2 = 1, T c ♯ 0 = -c ♯ 0 T , and T c ♯ x = c ♯ x T for x > 0. Plugging the Jordan-Wigner transformation (3.8) into the product σ (0)

1 σ (n) 1 , we find σ (0) 1 σ (n) 1 = (-1) n a (0) -a (1) + a (1) -a (2) + a (2) -• ... • a (n-1) + a (n-1) - a (n) + ,
where a

(x) ± = c *
x ± c x . Moreover, we define η ± = (1, ±1) ∈ C 2 and α (x) ± = δ x ⊗ η ± (with δ x ∈ l 2 (Z), δ x (y) = 1 for y = x and zero otherwise). With the linear map

B introduced in [1], l 2 (Z) ⊕ l 2 (Z) ∋ f = ( f + , f -) → B( f ) = ∑ x∈Z ( f + (x)c * x + f -(x)c x ), we have a (n) ± = B(α (n) ± )
. Hence, we can express the correlation function C(n) as

C(n) = (-1) n ω(B(α (0) -) B(α (1) + )B(α (1) -) • ... • B(α (n-1) + )B(α (n-1) - ) B(α (n) + )).
Since ω is quasi-free [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF], the correlation function C(n) is a Pfaffian,

C(n) = Pf Ω(n),
where the matrix (Ω(n) jk ) 2n j,k=1 ∈ C 2n×2n is defined to be skew-symmetric, and, for j < k,

Ω(n) jk = ω(B( f j )B( f k )) with f 2i-1 = α (i-1) - , f 2i = α (i) + , i = 1, 2, ..., n.
The Pfaffian Pf A of a matrix A ∈ C 2n×2n is defined by Pf A = ∑ π sign(π) ∏ n k=1 A π 2k-1 ,π 2k with the sum running over all π in the permutation group S 2n which satisfy π 2k , π 2k+1 > π 2k-1 . If A is skew-symmetric, A T = -A (A T denotes the transpose of A), the Pfaffian of A is related to the determinant of A through (Pf A) 2 = det A. Thus, we are led to study the large n asymptotics of the determinant of Ω(n),

C(n) 2 = det Ω(n).
(3.9)

In order to cast Ω(n) into the form of a truncated block Toeplitz matrix, we compute the matrix entries

A jk ±± = ω(B(α ( j) ± )B(α (k) ± )), 1 ≤ j < k ≤ n. (3.10)
For this purpose, we rewrite the 2-point operator S(ξ ) on L 2 (T) ⊗ C 2 from (2.4) as

S(ξ ) = s 0 (ξ ) ⊗ σ 0 + 3 ∑ k=1 s k (ξ ) ⊗ σ k , (3.11) 
using the Pauli matrices from (2.7). The first component s 0 (ξ ) looks like

s 0 (ξ ) = 1 2 + 1 2 sign(κ(ξ )) ϕ δ (ξ ), (3.12) 
and s(ξ ) = (s 1 (ξ ), s 2 (ξ ), s 3 (ξ )) has the form

s(ξ ) = 1 2 ϕ β (ξ ) r(ξ ), r(ξ ) = 1 µ(ξ ) (0, -γ sin ξ , cos ξ -λ ), (3.13) 
with the functions κ(ξ ) and µ(ξ ) from (2.6). Moreover, we used the definition

ϕ α (ξ ) = sh(α µ(ξ )) ch(β µ(ξ )) + ch(δ µ(ξ )) , α ∈ R. (3.14) 
Let us start with the computation of A jk ++ in (3.10). Using the property [START_REF] Aschbacher | Non-equilibrium steady states of the XY chain[END_REF], and the expressions in (3.11), (3.12), and (3.13), we find, for 1 ≤ j < k ≤ n, and with the definition e j (ξ ) = e -i jξ , that

B * ( f ) = B(J f ) for J : f = ( f + , f -) → ( f-, f+ ) from
A jk ++ = (e j ⊗ η + , S e k ⊗ η + ) L 2 ⊗C 2 = 2 2π 0 dξ 2π s 0 (ξ )e -i(k-j)ξ = 2π 0 dξ 2π sign(κ(ξ )) ϕ δ (ξ ) e -i(k-j)ξ . The computation of A jk --yields A jk --= -A jk ++ . Next, the entry A jk +-looks like A jk +-= (e j ⊗ η + , S e k ⊗ η -) L 2 ⊗C 2 = 2 2π 0 dξ 2π (s 3 (ξ ) + is 2 (ξ ))e -i(k-j)ξ = 2π 0 dξ 2π cos ξ -λ -iγ sin ξ µ(ξ ) ϕ β (ξ ) e -i(k-j)ξ . Finally, A jk -+ = -A k j +-. Due to translation invariance, we can define A x ±± = A j j+x ±± with x ∈ Z. Using A x --= -A x ++ , A x -+ = -A -x
+-, and the symmetry property A -x ++ = -A x ++ , we can write Ω(n) in (3.9) in the form of a 2n × 2n truncated block Toeplitz matrix with 2 × 2 blocks a x ,

Ω(n) =      a 0 a -1 . . . a -(n-1) a 1 a 0 . . . a -(n-2) . . . . . . . . . . . . a n-1 a n-2 . . . a 0      , (3.15) 
where the blocks are given by

a x = A x ++ -A x-1 +- A -x-1 +- -A x ++ , x ∈ Z. (3.16)
Using the relations a x = 2π 0 dξ /(2π) a(ξ )e -ixξ from (A.20), we can extract from (3.16) the symbol a(ξ ) a(ξ ) = sign(κ(ξ )) ϕ δ (ξ ) -q(ξ ) ϕ β (ξ ) q(ξ ) ϕ β (ξ ) -sign(κ(ξ )) ϕ δ (ξ ) .

(3.17)

Here, ϕ α (ξ ) is defined in (3.14), κ(ξ ), µ(ξ ) in (2.6), and q(ξ ) is the complex conjugate of

q(ξ ) = cos ξ -λ -iγ sin ξ µ(ξ ) e iξ .
Therefore, denoting by T [a] the block Toeplitz matrix associated with the symbol a given by (3.17), we can write Ω(n) as a truncated block Toeplitz matrix (see (A.23)),

Ω(n) = T n [a] = P n T [a]P n .
Proof of the Theorem For n ∈ N, let s

(n) 1 ≤ s (n) 2 ≤ . . . ≤ s (n)
2n be the singular values of T n [a], and denote by N ε,n the number of singular values in [0, ε], 0 < ε < 1, including multiplicity. From the above computations, we have

|C(n)| 2 = | det Ω(n)| = | det T n [a]| = 2n ∏ j=1 s (n) j ≤ ε N ε,n 2n ∏ j=N ε,n +1 s (n) j Thus, log | det T n [a]| ≤ 2n ∑ j=N ε,n +1 log s (n) j ≤ 2n ∑ j=1 χ ε (s (n) j ) log s (n) j ,
where 0 ≤ χ ε ≤ 1 is a smooth characteristic function with support in (ε, T [a] + 1) and value 1 on [ε + ε 2 , T [a] ]. Since the symbol a of T n [a] has the two singular values ϕ β -ϕ δ and ϕ β + ϕ δ , the Avram-Parter theorem [8, p.203] (see also (A.26)) yields lim sup

n→∞ 1 n log | det T n [a]| ≤ 2π 0 dξ 2π tr [(χ ε log)(|a(ξ )|)] = 2π 0 dξ 2π (χ ε log)(ϕ β (ξ ) -ϕ δ (ξ )) + (χ ε log)(ϕ β (ξ ) + ϕ δ (ξ )).
Since the inequality holds for all ε > 0, and since for all ξ ∈ [0, 2π] we have 0

< ϕ β (ξ ) - ϕ δ (ξ ) ≤ ϕ β (ξ ) + ϕ δ (ξ ) < 1, we obtain lim sup n→∞ 1 n log | det T n [a]| ≤ 2π 0 dξ 2π log [th(β L µ(ξ )/2) th(β R µ(ξ )/2)] (3.18)
which concludes the proof.

Remarks 3) We do not provide a lower bound in our proof (but see remark 1 for δ = 0). Due to the lack of results on the invertibility of block Toeplitz matrices T [a], the behavior of the singular values of T n [a] close to zero is, in general, rather difficult to control. (see [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF] 

A Toeplitz operators

Toeplitz operators [8, p.185] Let N ∈ N. We define the space l 2 N of all C N -valued sequences

f = { f i } ∞ i=1 , f i ∈ C N , by l 2 N = { f : N → C N | f < ∞}, f = ∞ ∑ i=1 f i 2 C N 1/2 , (A.19)
where • C N denotes the l 2 norm on C N . We write l 2 ≡ l 2 1 . Let {a x } x∈Z be a sequence of N × N matrices, a x ∈ C N×N . The Toeplitz operator defined through its action on elements of l 2 N by f → {∑ ∞ j=1 a i-j f j } ∞ i=1 is a bounded operator on l 2 N , if and only if 

a x =

4 )

 4 In the critical regime of the XY chain, γ = 0, λ ∈ [-1, 1], and γ = 0, λ = ±1, where the nonnegative function µ(ξ ) from (2.6) can have zeroes on [0, 2π], the bound (3.18) remains finite due to the integrability of log x at the origin.5) A straightforward proof using the inequalities| det T n [a]| ≤ T n [a] 2n and T n [a] ≤ T [a] = ess sup ξ ∈T a(ξ ) L (C N ) = ess sup ξ ∈T s 2 (a(ξ ))

  )e -ixξ (A.20) for some a ∈ L ∞ N×N (see[8, p.186]), where we define (withT = {z ∈ C | |z| = 1}) L ∞ N×N = {φ : T → C N×N | φ i j ∈ L ∞ (T), i, j = 1, ..., N}. (A.21)In this case, we write the Toeplitz operator as -1 a -2 ... a 1 a 0 a -1 ... a 2 a 1 a 0 ... ... ... ... ...

  and (A.24)-(A.25)) yields the weaker bound| det T n [a]| ≤ th 2n (β R µ ∞ /2) which, in contrast to(3.18), is valid for all n. On the other hand, in the limit β R → ∞, this bound is void whereas (3.18) still implies exponential decay as long as β L < ∞.
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The function a ∈ L ∞ N×N is called the symbol of T [a]. If N = 1 the symbol a ∈ L ∞ ≡ L ∞ 1×1 and the Toeplitz operator T [a] are called scalar, whereas for N > 1 they are called block.

For n ∈ N, let P n be the projections on l 2 N , P n ({x 1 , ..., x n , x n+1 , ...}) = {x 1 , ..., x n , 0, 0, ...}.

With the help of these P n , we define the truncated Nn × Nn Toeplitz matrices as

Norm of Toeplitz operators [8, p.186] The norm of a Toeplitz operator is related to its symbol,

where a ∞ is defined to be the operator norm of the multiplication operator acting on ⊕ N 1 L 2 (T) by multiplication with the matrix function a ∈ L ∞ N×N . From [7, p. 95], we have

where

is the operator norm induced by the l 2 norm on C N .

Avram-Parter theorem [8, p.203