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Influence of noncontact dissipation in the tapping mode: Attempt to extract
guantitative information on the surface properties with the local force
probe method
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UniversiteBordeaux |, 351 Cours de la Liberation, F-33405 Talence, France

(Received 20 October 2000; accepted 21 December)2000

In the Tapping mode, a variation of the oscillation amplitude and phase as a function of the tip
sample distance is the necessary measurement to access quantitatively to the properties of the
surface. In the present work, we give a systematic comparison between experimental data recorded
on two surfaces, phase and amplitude, and theoretical curves. With an interaction between the tip
and the surface taking into account an attractive and a repulsive term, the analytical approach is
unable to properly describe the relationship between the phase variation and the oscillation
amplitude variation. When an additional dissipation term is involved, due to the attractive
interaction between the tip and the surface, the model gives a good agreement with the recorded
data. Particularly, the trends in the phase variations related to the noncontact situations have been
found to be amenable to an analysis based upon a simple viscoelastic behavior of the surface.

[l

I. INTRODUCTION cussing image as a function of nanomechanical properties of
the sample probed by this mode. Several theoretical ap-
There are numerous experimental evidence that dynamigroaches have been dedicated to the Taptﬁﬁjg",some of
force microscopy is an appropriate tool to probe nanomethem being numerical simulations. For example, phase con-
chanical properties of soft objects at the nm scale. Experitrast can be explained in terms of energy dissipation into the
mentally, the use of an oscillating tip-cantilever systemtip—sample contac?*
(OTCL) to probe surface properties at the local scale, from  The main difference between the two modes is a purely
the nanometer to the picometer, is done with two differentechnical one and only concerns the different ways changes
operating modes. of the oscillating behavior as a function of the tip surface
One mode keeps the oscillating amplitude constli@-  distance are detected. The Tapping mode records amplitude
AFM), and recording image is obtained by moving up andand phase variations while the NC AFM records resonance
down the surface to keep a chosen resonance frequency shiféquency shift and damping coefficient variations.
constant. The experiment is performed without any contact Besides, when the tip approaches the surface, the attrac-
between the tip and the surfate.With the second mode, a tjve force between the tip and the sample can be as high as 1
drive frequency is chosen. The feedback loop is used tQN, a rather large force. Therefore, one has to take into ac-
maintain constant the amplitude Of the OTCL. The recordeq:ount the Work performed on the Surface and a possib'e dis_
images are the vertical displacements needed to keep thgyation even without any contacts between the tip and the
oscillation amplitude constant. This mode, commonly calleds face.
Tapping, is often used in intermittent contd¢t), that is, In NC-AFM, experiments show a change of the damping
during a part of the oscillating period the tip touches thecoefficient that depends abruptly on the tip—sample
surface but images can also be recorded without any contacdjstance!??-2° Since the tip does not touch the sample, a
This mode had been conceived mainly to reduce the shegjyestion rises on the physical origin of the increase of the
forces at the interface between the tip and the surface. Conjyss of energy. A few recent works have been specially dedi-
panion theoretical developments demonstrate that the higlated to the study of the microlever energy loss in
sensitivity of these two modes is due to the nonlinear dynC-AFM.22-26 |n Ref. 26, the local deformation of the
namical behavior of the OTCL at proximity of the surfd8.  sample under the action of the oscillating tip is considered as
Therefore, a new area was open in which soft materialsyeing the leading term to explain the physical origin of the
polymers, and biological systems can be investigated withoWqgitional dissipation. A comparison between the NC-AFM

producing significant damages. Numerous experimental répgyits performed on a graphite surface and theoretical pre-
sults have shown the ability of this mode to image soft mayjctions provide an excellent agreemé&ht.

terials. Among them, images of lgopolymers are quite con-  The present paper is an attempt to derive analytical ex-
vincing of its great potent|aI|t§79‘. However, recording & pressions for the Tapping mode describing the influence of
true topography is far to be achieved, it is often worth dis-the mechanical properties of the sample as an additional dis-
sipation term in noncontact situations. There are several rea-
dElectronic mail: jpaime@frbdx11.cribx1.u-bordeaux.fr sons that make an analytical description of the local sample




properties difficult to achieve. The first one is an appropriateprocess was not considered in the previous analysis.
description of the locality of the mechanical response of the In the present paper we first discuss the level of approxi-
surface; in many cases numerical simulations are requireghation required to use the Lagrangian formalism, and the
based orab initio calculations’’?® The second is a proper usefulness of such an approximation for experimental re-
description of the action of the oscillating nanotip above thesults. Then a comparison with recorded approach-retract
sample. Let us consider that the tip sample interaction isurves giving the variation of the amplitude and phase as a
correctly described with a power la@/[D—x(t)]", where function of the cantilever sample distance is ddRey. 1).

C andn are functions of the type of interaction and of the Such curves, similar to the force curves in contact AFM, are
geometry and size of the tifD is the distance between the necessary preliminary experiments to choose the experimen-
cantilever at rest and the surface at(d) is the tip location tal conditions to record images. A special discussion will be
(x(t) can be suitably described witk(t)=A(D)codwt  dedicated to noncontact and intermittent contact situations.
+$(D)]F19. An exact description of the force acting on the When intermittent contact situations occur, analytical expres-
sample requires Fourier series leading to a rather complesions can be derived both for the phase and the oscillation
mathematical development. Nevertheless, by considering tr@mplitude, while for noncontact situations an analytical ex-
asymptotic regimes analytical expressions are obtained, apression is only obtained for the variation of the phase.
lowing the experimental results to be fitted and, in turn, pro- ~ The last part of the paper is dedicated to a comparison
viding the opportunity to extract quantitative information between the theoretical development and experimental re-
from AFM measurements. The characteristic time scale ogults. Two surfaces were investigated: a silica surface and a
the sample relaxation controls the two asymptotic regimesgrafted surface with AminopropylsilanefAPTES. The
With a sample relaxation time much greater than that of the@nalysis of the experimental data is followed by an attempt
oscillation period(a few microseconds the action of the !0 extract quantitative information.

oscillating tip can be reduced to the zero frequency compo-

nent of the Fourier series. Such an approximation is suitable

for highly viscous materials like a glassy polymer. In Ref.

29, a simple approximation was employed that describes the

action of the oscillating tip as a rectangular periodic func-!l- MODELING THE OTCL’S BEHAVIOR

tion, then the variation of the oscillation amplitude is inter- ] ) o
preted as the result of the growth of a polymer nanoprotu- ~ 1h€ present paragraph is dedicated to a description of
berance under the action of the oscillating tip. Thethe ap_proxmqhon used, .allowmg analytical expressions to
characteristic time of the polymer being larger than that ofoe derived to fit 'Fhe experimental Qata. Theoretical curves are
the oscillation period of the cantilever, the action of the tipcalculated for driven frequency slightly below the resonance
was reduced to its average static component. Such an sﬁne' but the equations can be used for any chosen driven

proximation allows an analytic expression to be derived fronfréduency and aiso for the NC resonant contact idde.
a self-consistent equation that describes the viscoelastic bé1® computation at a driven frequency below the resonance

havior of the polymer nanoprotuberance. The opposite situ@N€ Provides, first, an easy way to determine the experimen-

ation occurs when relaxation times are faster than that of thi#! conditions sgeparating the noncontact and intermittent con-
oscillation period, as it happens with a graphite surface. ifact snuatpné. Second, from a practical point of view the )
that case it is easy to show that the action of the tip can b se of a driven frequency slightly below the resonance one is

suitably ascribed as a pul&Then using the Fourier trans- '€ MOSt accurate way to locate the surfésee Sec. Il
form of a pulse, an analytical expression is obtained thai. Attractive regime

explains the additional dissipation as a direct consequence of In this part we recall the results describing variations of

the local mechanical response of the surfZc&his latter - . . .

. . . the phase and of the oscillation amplitude in the dominant

approach is used as an attempt to describe the influence @ . 19y :
tractive regimé® Using a sphere-plan geometry with an

tSrLeerICCéSd.lssmanon In Tapping mode measurements on halr?\ttractive van der Waals intergction, the attractive force be-
Ouir first goal in the present work is an attempt to under—tWeen the tip and the surface is
stand the origin of the discrepancy between theoretical de-
velopment based on the Lagrangian formalism and the ex-
perimental data. While the general nonlinear behavior of the
oscillator at the proximity of the surface is properly

described;'"**there were still robust quantitative discrepan- yhereH is the Hamaker constarR the tip's apex radiusD
cies between prec_iicted variations and expe_rimental ones. F_gqe distance between the sample and the equilibrium position
example, theoretical curves always predicted a hysteresig rest of the OTCL, and(t) = A cosft+ ¢), the location of

loop in which the amplitude must reach the resonance ongpe tip at timet. The principle of least action leads to the two
which is never observed experimentallyAlso, the relation- equations?

ship between the amplitude and phase jumps at the bifurca-

tion spot cannot be understood by uniquely considering the

attractive and repulsive interaction in intermittent contact cosd;:Qa(l—uZ)—%L, (2a)
situations. Such discrepancies clearly show that a physical 3 (d?>—a?)%?

F attractivd X(1) ]= — 1

6[D—x(t)]?’



Oscillation Amplitude (nm) singg=—au, (2b)

16 [ : : :
where ¢ is the phase of the oscillatof, the resonant am-
15 + plitude, anda, d, and u are the reduced values with
=AIAy, d=D/Ay, andu=w/wy. kz=HR/kA3 is a di-
14 - mensionless parameter wikh the cantilever stiffness. Vary-
ing k, with Ag is equivalent to varying the strength of the
| attractive interaction: for example, a largamall A, corre-
13 sponds to a smalllarge «,. Qualitatively the influence of
the oscillation amplitude can be described as follows: for a
12 - given closest distand®@—A, because the oscillation period is
a constant, the time during which the tip is at proximity of
1 + the surface depends on the oscillation amplitude. At large
oscillation amplitudes this time, which can be called a resi-
10 F dence time, is smaller than the one at small oscillation am-
plitudes. Therefore, the average attractive interaction during
9 - an oscillation period is a function of the oscillation ampli-
tude. With a first-order expansion, one can demonstrate that
: ‘ the average zero frequency force component varies as
8 1/\/K.29
(@) 8 10 120 (nm) 14 16 18 Phase variations as a function Bfor A are readily ob-
tained with one of the two equations, while the use of the
trigonometric relation sifcog=1 gives the relationship
Phase (°) between the distand® and the oscillation amplituda:
-40 T : t T
2/3
Qx
dp. = a2+ 2 )
-60 1
3| Q(1-ud)F \/5—u?
a
-80
The signs plus and minus correspond to the two
A branches of a bistable stdt&*!°Consequently, at a given
e d5,;:*? | tip surface distance a bifurcation from one stable oscillation
100 r e ¢ _ state to a bistable one occurs leading to jumps of amplitude
e &
Mﬁ" ﬁj and phase. Equatiof8) for the amplitude and Eqg2a) or
M o (2b) for the phase gives suitable expressions to describe
120 Mﬁ > A qualitatively the experimental features. But, as noted in Ref.
= 17, Egs.(1) and (2) are unable to reproduce quantitatively
variations of the amplitude and the observed relationship be-
140 ‘ ‘ J tween amplitude and phase jumps. Everything happens as if
' an additional dissipation was not considered when the tip
®) 8 10 12D(nm) 14 16 18 approaches the surface.

In the Appendix is given the main mathematical devel-
opment leading to the expression of an additional effective
FIG. 1. () Calculated approach retract curves for noncontact situationsdamping coefficieniBq¢(A,A), with A«D—A, when the tip
variation of the amplitude. The common parameters for the three curves ardoes not touch the sample. Strictly, the approach is only
HR=5x10"*"Jm, u=0.9989 Q=470, k;=40Nm%, resonance ampli- \,iq when the amplitudd is kept constant and fak <A. If

tude Ap=16 nm, working amplitudeA;..=11.2 nm. Arrows indicate the . . . . . .
size of the loop hysteresis. The continuous line is calculated without anf‘ varies, as it happens with the Tapping mode, the situation

additional dissipatio{Eq. (3)]. The two other curves are calculated by IS more complicated. For example, for a soft material, one
solving Egs.(6a) and (6b) with a Mapple routine, with a local stiffress  has to solve a self-consistent equation to take into account
=1.2Nm * (open circlg andk=0.6 Nm * (filled circle). Note that when  the amplitude evolutioR® Nevertheless, if the condition

the dissipation increases, the cycle of hysteresis reduces and almost disa

pears for the highest dissipation. Also, the amplitude jump during the ap-%A remains verified throughout the variation of the ampli-

proach is reduced by half the nanomet®. Variations of the phase corre- tudeA, the approach given below might be of some use. This
sponding to the three cases displayedan For the two first cases, at the approximation can only be supported by the ability of the
bifurcation spot the phase jumps below ther/2 value, while for the high- expressionSAGa) and(A6b) to describe the genera| behavior

est dissipation the phase jumps to a value arow¥d°. The additional id ; . tal diticigec. 11). U
dissipation strongly reduces the nonlinear behavior of the oscillator and, ilﬁ)ver a wige range or experimental condi 'd c. Il). Us-

turn, the distortion of the resonance peak. ing the effective damping coefficiefEq. (A6b)]:



ing the noncontact dissipation have been solved numerically
: (4 with Mapple using Eqs(6a and(6b). In accordance with the
known result that dissipation reduces the influence of the

A wo (HR)Z 1 1
Ber(A)~ k. 36k A% AZ

then Ben(A,A) is added in the Lagrangian: nonlinear termg the most obvious effect is the drastic reduc-
L=T—U+W tion of the size of the hysteresis loop as a function of the
1 dissipation. The main difference appears at the bifurcation

= Em);z_ (%kxz—xf cog wt) — m) spot where the amplitude jump is slightly frustrated. In Fig.
_ 1(b) are shown the calculated phases with the equa&aen
—(Bot Bei( A,A))XX, (5)  [or (2b)] and the equatior(6b). As expected, a marked
where B, is the oscillator's damping coefficient whe change on the phase behavior is shown when the effective
damping coefficient due to the attractive interaction is in-

—o. A means that to calculate the effect of an additional o T .

A I . . . cluded. The additional dissipation reduces the influence of
dissipation, the oscillation amplitude included in the expres- o X .
. ¢ AA. | t varied when th tion is minimized the strength of the attractive interaction between the tip and
sm: 0 Beﬁ(l 't' ), 'ant?] vatn?_ W ent te a%llon 's minimize %ﬁe sample, thus the distortion of the resonance peak, so that

and Is a sofution of the stationary state. 1he above approagy, phase shift is significantly reduced belows/2. For

IS rem|n|sce_nt .Of the one dong tq de_scnbe what is called ‘Parge dissipation, the phase jump disappears and the phase
structural dissipation. Such dissipation can occur for th otates continuously over the /2 value
0 .

large deformation of a plate or a rod. In that case because th
dissipation becomes a function of the deformation, this nonB. Repulsive regime
linear behavior, which is different than the one considered
with a Van der Pol oscillator, is often solved through the
introduction of an effective damping coefficient in which is
included a fixed deformation.

Applying the variational principle as described in Ref.
19 gives the set of two equations:

The intermittent contact situation includes both attractive
and repulsive interactions. Thus, a more complex situation
occurs requiring an additional hypothe&isHere it is as-
sumed that the tip experiences a repulsive interaction during
a short time of its oscillating period and the attractive inter-
action is averaged on the whole oscillating period. The as-

_ 2 _% a sumption is only valid for small indentation®y— D <A.
cos¢=Qa(1-u) 3 (d°—a%)¥ €3 Practically, such an assumption corresponds to approach re-
— tract curves for which the slope giving the rate of variation of
sing=—au| 1+ M) (6b)  the amplitude versus the cantilever surface distance is equal
Bo to onel® The repulsive interaction is assumed to have a

Inserting the expression @.«(AA) [Eq. (4)]in Eq.(6b)  Simple harmonic fornt gepuisivé X(t) ] =ks[x(t) — D] with kg
and combining Eqs(6a) and (6b) to get the amplitude varia- the con'Fact s_tlffness. For small |nden_tat|ora;,—(d)<a, the
tion leads to a complex polynomial equation that can only b&alculation gives the couple of equatiofis:

solved numerically. Therefore, uniquely E@b) is of some 4.2 d\ 32
use to fit the experimental data, in the present case the phase €0 ¢)=Qa(1—u?)+ 3, QKsa| 1— 5)
variation, for noncontact situations.
In Fig. 1(a) is reported the variation of the amplitude B Qxa
with and without additional dissipation. Variation of the am- 6\/582’2\/5’
plitude without dissipation is straightforwardly obtained with sin(¢)=—ua, @)

Eq. (3). Since there is no analytical expression available for
the relationship betwee andA, theoretical curves includ- leading to the relationship betweeranda:

2/3

Qa(u?— 1)+ - (uars 2oL
37 612d%? \Ja

: ®

dAR:a 1-

4\/5 Qxsa

Wklere the attractive contribution is evaluated fdr=a sin(¢)=—au 1+ Bu(A,A)/B,]. For hard surfaces, the inden-
+d,, i.e., at the closest NC distance from the surface, whereation depth into the surface becomes negligible, of the order
ac is the reduced coordinate df, the contact distance be- of d., and the expression @.«(A,A) can be simplified. It is
tween most of the organic materiald,=0.165nm* ac enough to consider a constant effective tip surface distAnce
=d./Ay. The repulsive term contains the parameier, below which the action of the tip becomes significant, typi-
which is a reduced stiffness given by the ratio between theally A~0.5nm. Doing so, it uniquely remains in th&
contact stiffnesk and the cantilever onk,: k=ks/k;. expression an explicit dependence as a function of the varia-
As for noncontact situations, E€zb) can be replaced by tion of the amplitude:



€)

HR)Z 1 1
Bu(A)~| 22 R )

ke, 36k A% A?

Therefore the solution giving the relationship betwé&eand A can be obtained by replacing in Eqg) and (8) the product
au by au[ 1+ Bex(A) Bol:

Bett 2 Qkra 1 2
) - Qa(u2_1)+ \/1— ua 1+E } +ﬁd§/2ﬁ
dag=al 1— NG Oraa , (109
. Q (HR?1 1
sin(¢)=—aul 1+ s W E E) ) , (10b)

with the substitutiorQ = wy/B,. Equationg10) give the set  (Fig. 3). The phase variation at the bifurcation spot can be
of equations that should be able to describe more approprisnderstood as follows: when the oscillator experiences a
ately the experimental results in intermittent contact situadominant attractive regime, the resonance peak distorts to-
tions, thus explaining the discrepancy between the variatioward the low frequency®'* Because we use a drive fre-
of amplitude and phase. quency slightly below the resonance one, the amplitude jump
In Fig. 2 are reported the theoretical curves deduceaccurs by crossing the 7/2 value. When the oscillator ex-
from Egs.(7) and (8) and from Eqgs.(10). As soon as the periences a dominant repulsive regime, the resonance peak
slope is equal to one, that is, fQrxs>101° the variations of ~ distorts mainly toward the high frequency and the phase re-
the amplitude become insensitive to the relative strength ofmains above the-7/2 value.
the attractive interaction or the amount of additional dissipa-  The strength of the attractive interaction, the dimension-
tion. This is a direct consequence of the fact that a slopéess parametex, scaling asH R/Ag, will decide whether or
equal to one cannot discriminate between an infinite harehot the oscillator is in a dominant repulsive or attractive
surface or a surface with a finite value of the local stiffnessegime. Therefore, at low oscillation amplitudes one may
with Q«¢>10. In other words, amplitude curves are useful toexpect to have a large, thus an attractive regime, while at
extract quantitative values of the contact stiffness only whertarge oscillation amplitudess, may become small enough
materials are soft enough to produce slopes smaller than ongo that a dominant repulsive regime controls the behavior of
Therefore, most of the information is obtained on the phasg¢he oscillator. Consequently, for two different surfaces and
variations.

IIl. COMPARISON WITH EXPERIMENTAL DATA g5 Soiation Amplitude (nm)  Phase ()

The resonance frequencyig= 185500 Hz, the quality
factor is Q=470, the experiments were performed wat 1-10
=vlvy=0.9989, corresponding to a phage=—45°, and 20
Aqree=Ao /2 for D—o, whereA, is the amplitude at the
resonance frequency. The AFM is set in a glove box in .30
which the PPM of water is achieved allowing the OTCL to
keep a stable behavior. Two surfaces have been investigated: -40
a silica surface and a silica grafted with aminopropylsilane
(APTES. The surface treatment is given in detall -50
elsewheré! APTES was chosen because of its ability to
stick DNA molecules onto a surface, while the silica surface -60
is used as a reference. The experiments were performed with
the same tip without any evidence of change of the size of -70
the tip or change of the tip pollution. Since the strength of

-80

the attractive interaction is governed by the oscillation am-
plitude, approach retract curves were recorded at different
working amplitudesAgee, ranging from 53 down to 4 nm.

10 15 20 25 30 35 40 45
D (nm)

FIG. 2. Amplitude and phase curves computed with Ef8). corresponding
to intermittent contact situations. The parameters are identical to the ones
used for Figs. 1, except the resonance amplittige 50 nm and the work-

: ; ; ing amplitudeAe=35 nm. The phase curv@) is calculated with Eq(7b)
The first step is to estimate the proditR for the wo (&0 1 o) esipationwhile the phase curve) and(3) are cal-

surfaces. A_qua”tative _picture is readily obtained by lookingcyjated with Eq.(10b). Contrary to the noncontact situations, the phase
at the amplitude at which the phase crosses-th#2 value  jump increases as the additional dissipation increases.

A. Noncontact situations: Evaluation of the attractive
interaction between the tip and the surface



Oscillation amplitude (nm)

16 T T T
| 14
12
10
- - o} .
100 8 -
-120 1 6
4k
-140 ‘ ’ ' ’ 5
10 15 20 25 30 35 40 & ) \
D (nm) 2
0 5 10 15 20 25
FIG. 3. Phase experimental curves obtained on sifiled circle) with a (a) D(nm)
working amplitudeAq..=15nm and APTES surfac@pen circle with a
working amplitudeA;.= 22. The variation of the phase indicates a noncon- Oscillation amplitude (nm)

tact situation for the APTES and an intermittent contact situation for the o4 . ; T
silica surface. In spite of the fact that the working amplitude is larger for the
APTES than that of the silica, the tip surface interaction is large enough to
reduce the amplitude at the proximity of the surface without the need of a 29
contact.

. _ . , - 20
with the same oscillation amplitude, if one surface indicates

a dominant attractive regime while the other indicates a
dominant repulsive one, that will mean that the former sur- 18
face does have a larger produdR than the latter one. In
addition, if we do use the same tip, thus the same ralius  1g
such a comparison provides direct information about the
relative strength of the Hamaker constant of the two surfaces
characterizing the tip sample interaction.

The amplitudes at which the NC situation occurs are
Anee=32nm (Ag=44nm) for the grafted surface with the 12
amine group and\q..=13nm (A;=19nm) for the silica.
Because the tip’s size is a constant, this result immediately 8
indicates that the interaction is much larger for the grafted 10 15 20 25 30 35

14

surface, particularly for silanes with amine groups in which (p) D (nm)
an additional Debye interaction due to the amonium group is
present. FIG. 4. A comparison between experimental approach curves and theoreti-

. . . cal ones calculated without including an additional dissipafttean (3)]. (a)
An attempt to obtain a more quantitative evaluation cang: - < rface WithAgoc=4 1M, Agey=9 NM, Agec—11 nm. (b) APTES sur-

be done by comparing the experimental curves to the thegace with Agee=11 nm, Agec=16 NM, Agec=18 nm. The theoretical curves
retical ones. As shown in Fig(d) the energy loss due to the are calculated with the experimental paramet@rsi, andA, (see the text
attractive interaction strongly modify the hysteresis loop andand k;=40Nm*, HR=11.5<10"*Jm for the APTES andHR=5

to a lesser extent, acts on the variation of the amplitude neaf 10 '3 m for the silica.

the surface. However, the very beginning of the amplitude

variation, corresponding to the increase of the amplitude be-

fore the bifurcation spot, is only slightly modified. Therefore, also get a rather good agreement with values 20% higher.
the use of Eq(3) becomes of some help in evaluating the The fit with Eq. (3) also provides the opportunity to
productHR. We focus on curves for which the noncontact locate the surface. The example shown in Fig. 5 gives a
situation occurs for the whole variation of the amplitude andbifurcation spot at 1.7 nm while after the bifurcation the
phase. In Figs. 4 are reported several comparisons betweeiosest distance is about 1.3 nfRig. 5. These approach
experimental curves and theoretical ones. With a cantileveretract curves correspond to a large attractive interaction on
stiffnessk,=40 Nm !, the productsHR are 5x10 2" and  the grafted surface with a working amplitudg,..=9 nm.
11.5< 10 23 m for the silica and the grafted surface, respecThe comparison with a theoretical curve including the dissi-
tively. The estimated error is difficult to evaluate; one maypation does show a noticeable difference. The experimental



oscillation amplitude nm Phase (°)

T -30 T T
1.3 nm

: -90 1

5 10 15 20 20 25 3

D (nm) 40 45

A

FIG. 5. A comparison between the experimental amplitude variation of ther|g, 6. Example showing the influence of the noncontact dissipation for the
APTES (open circlg at the working amplitudé\.=9 nm and theoretical  jntermittent contact situation. The continuous line is obtained by calculating
curves. Curves without dissipation calculated with E2).and the experi- e phase withp=sin"{uA/A,) [Eq. (7b)], the filled circles are given by a

mental parametens=0.9989,Q=470,k.=40 Nm*, resonance amplitude it with Eq. (10b. The experimental datéopen circlé correspond to the
Ao=13nm, working amplitudeAs..=9 nm and the input parametétR APTES surface withA;ee=31 nm.

=11.5x10"2"J m (continuous ling The curve including the dissipation
with k=1 Nm™* (dotted ling. The location of the surfac@lashed ling
account a possible contribution of the elastic displacement of
the surface, but also a contribution due to a slight contact
curve exhibits a slope larger than the theoretical one. Suchwith the surface, which is not taken into account. Neverthe-
situation occurs if the sample displacement under the actioless, while at intermediary amplitudes the agreement is fairly
of the tip becomes large enough to modify significantly thegood, the overall behavior is quite well reproduced.
tip sample distance. Note that the local stiffness of a surface
is the product of an intrinsic property, the elastic moduls B, |ntermittent contact situations
and the diameter of the area involved in the interaction, . _ o .
thusk~G. This is a general problem of the local probe The action of the oscillating nanotip is described as a

method, which is sensitive to intrinsic properties of materiald?t/Se based on time scale considerations, with the basic as-
with a number of elementary units difficult to evaluate. In theSUMPtion of a rectangular per|oc21|c function sustained by the
present calculation, the value used for the kit 1 Nm 2, fact that the forcdHR/6[ D —x(t) ] can be suitably replaced
might correspond to an elastic modulus of® N2 if by HR/6A?- A is a fixed effective distance between the tip
=10 nm or 16 Nm~2 if ¢=1 nm. and the surface giving an order of magnitude of the strength
As stated in Sec. Il, including the surface displacement,Of the attractive interaction. To simplify our evaluation, we
does not lead to a simple analytical expression to describgonsider an effective distance=0.5nm. Also, because the
the dissipation. While the surface displacement under th&lope on those surfaces is equal to one, the indentation depth
action of the tip is the driving term controlling the amount of is very small, and we set arbitrarily the contact distance at
additional dissipation, the theoretical description neglects th® —A=0.165nm at the jump value of the amplitude during
magnitude of this surface displacement. Such an assumptidhe approachisuch a procedure gives a good estimation of
may become a rough one when a strong attractive interactiofie surface location for a hard surfac&herefore, for inter-
occurs as it happens at a low oscillation amplitude. As it ismittent contact situationd) — A is less than the percent of
shown below, for a weaker attractive interaction leading tathe amplitude, and<A. Using the results obtained in Sec.
intermittent contact situations, the analytical expression usetl A and with A=0.5nm gives an average attractive interac-

to fit the experimental data gives a good agreement. tion of 3.2x10"° and 7.6< 10" ° N for the silica and grafted
Equation (6b) contains three unknown parameters: thesurface, respectively.
productHR, the tip—surface distanck, and the surface me- In Fig. 6 is displayed an observed phase variation and

chanical responde The first parameter is now evaluated, thethe calculated curves using E@b) and Eq.(10b). The dif-
second is also approximately estimated, and the third is dderence is striking; the influence of the additional dissipation
termined with the intermittent contact situations by setting ardue to the attractive interaction is unambiguously shown.
arbitrary value ofA (see Sec. Ill B. The dominant repulsive Two main effects are emphasized: the first one concerns the
regime, with well-defined intermittent contact situations, isphase jump, Eq(7b) gives a jump of 5° while the experi-
easier to fit because of B— A distance remaining constant mental results and Eq10b), with the adjusted mechanical
throughout the variation of the amplitude. With the dominantresponsé, gives a jump of 40°. The second one concerns the
attractive regime, as mentioned above, one has to take inteariation of the phase. EquatiofiOb) reproduces with a
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FIG. 8. Variation of the mechanical susceptibilkyof the surface control-

ling the amount of noncontact dissipation. The values are obtained from fits
with Eq. (10b) (see Fig. Jwith A=0.5 nm. Open circle: silica surface; filled
triangle: grafted surface.

ence between the two power laws is due to the ratio between
the characteristic time of the surface and the residence time
Tres (€€ the Appendix An A~%2 power law will be ob-
served for rather slow relaxation processes.

The mechanical susceptibilities extracted from the fits
exhibit a plateau throughout the range of amplitude investi-
gated(Fig. 8). This is in good agreement with the prediction
of the model using an average effective distaAceonstant
and a negligible contribution of the elastic displacement of
the surface. This result strongly supports the working hy-
pothesis employed to derive the equati@fb). Also, it does
appear that the large increase of dissipation on APTES is

i |
| | . . .
i | mainly due to an increase of the strength of the attractive

_90 1 1 1 1 1 1 Il . .
20 25 30 35 40 45 50 55 60 interaction through the_ square of the_ prodtiR [E_q_. _(9)].
(b) D (nm) Therefore, the same kind of mechanical susceptibilities con-

trol the amount of additional dissipation for the two surfaces.
FIG. 7. Variations of the phase in intermittent contact situations fordifferentSUCh a result is not really surprising since both ends of the
working amplitudes. A comparison with calculated curves: Black dotsShort APTES molecules can interact with the silica surface,
power lawA 2, Eq. (10b); gray dots power lawA 52 [Eq. (7a)]. Silica  thus giving a surface morphology nearly identical with
surfaceAyee: 35, 31, 22, 18 nniFig. 83, APTES surfacé\.: 44, 35,31 tightly bounded molecules. In addition, it is known that two
nm (Fig. 8b. or three water layers in a glassy or “solid” state are strongly
adsorbed onto the silica surfatethus modifying the me-
chanical propertie¥’ One can expect that these few layers
good agreement the phase variation. This good correspomvith an amorphouslike behavior might be the origin of the
dence suggests that the influence of the decrease of the adissipating effect in the dominant attractive regime.
cillation be correctly ascribed through the power |aw?. While the above analytical expressions are useful to
A comparison between calculated curves and experimercompare the properties of different surfaces, there remain
tal ones are displayed in Fig. 7. Also are included curvesome difficulties related to the use of the local probe method.
obtained with the power lavA~%2. Fits performed on the One is that the parameters fitted are always the product of
curves measured on the silica surface do not allow the twéwo quantities. For an estimation of the strength of the at-
power laws to be separated unambiguodiig. 7(a)], while tractive interaction, the produ¢iR is evaluated, such that
the comparison done with the curves recorded on the graftednly a guess of the tip size gives an estimation of the Ha-
surface provides an unambiguous ansyégs. 1b)]. This  maker constant. For example, a radius of the tip of 50 nm
may be due to a much larger strength of the attractive interleads to a Hamaker constant of 8J. In the same way, the
action on the grafted silica surface, thus providing the opporfit of the additional dissipation gives a value of the product
tunity to discriminate between the two regimes. The differ-A%k. Thus, the choice of an average distance of 0.5 nm gives



a mechanical susceptibility of 0.6 Nrhwhile a value of 1  represented with a spring constanfNm™?) and a damping

nm will give a value 16 times smaller. factor y (kgs %) in parallel. For example, we may consider
that the locality of the coupling between the oscillating tip
V. CONCLUSION and the surface is described by a local elastic response of the

Th i K it it K titati surface with a stiffnes& that is coupled to a surrounding
€ present work was an attempt {0 make a quantitaliVee, o i, of masavl with an intrinsic molecular relaxation

analysis of the variation of the phase and of the oscillatiory, = — 71, thus a damping termy=MB. With this
m ’ .

amplitude in the Tapping mode for hard surfaces. To do SOsimple description of the surface, a highly dissipating mate-

an add|t|onz_;1| dissipation due tq the attracnye Interaction pefial with large relaxation times has a surface displacement
tween the tip and the surface is included in the Lagrangia

. . roportional to 1§ while a weakly dissipating material with
formalism. A simple model based on a pulse rectangula b ¥ y pating

: X . . . short relaxation times has a surface displacement propor-
function to describe the action of the tip and a V|scoelast|(ii

behavior 1o take int nt the mechanical 1 " f i onal to 1k. Thus, the corresponding amount of dissipated
enhavior fo take into account tn€ mechanica; response o nergy, which is a function of the surface deformation, must
surface is used. This simplified approach allows analytica

. . . . _~sh imil havi Eqgs(A "(w) is gi
solutions to be derived. In spite of these crude assumptions, ow a similar behavidisee Eqs(A6)] x'(«) is given by

this phenomenological approach is able to reproduce most of Wy
the observed features. Particularly, the expressions obtained y"(w)= ——F—. (A2)
. . . k2+ 2(02
are able to reproduce with a good agreement the relationship Y
between phasg apd a”?p'““de when t-he ti_p Is at proxir_n.ity OTnserting(AZ) in expressionAl) leads to the result
the surface or in intermittent contact situations. The ability to
fit experimental variations of the oscillation amplitude and (HR)?2 1 Trek
phase as a function of the tip surface distance should give us <Ediss>T:W k 1—exr{ - )
the opportunity to obtain more accurate information on the I
properties of the underneath surface. Two asymptotic regimes, which are determined by the values
of the ratio 7,.k/y, are extracted from Eq(A3). The
APPENDIX asymptotic regimes correspond to two limiting cases of the
sample mechanical response.
For 7ek/y<1, Eq.(A3) can be by replaced by

. (A3)

The time during which the tip is close to the surface is
called the residence time; following the approach given in

Ref. 29, one can consider an average tip—sample distance 2 2

at proximity of the surface such that the residence time is  (E )1~ (HR) Tres ARy 1 V2 : (Ada)
given by .= (T/7)y2A/A with the period T=27/wg. 36A% y 1872 AMZ ywo

Therefore, the action of the oscillating tip can be described . TS

as a rectangular periodic function of width.s and height whereTres has been substituted by (&) V2A/A,
Fex=HR/6A2.2 For fast relaxation times of the protuber- while for 7iek/y>1, one gets

anceB !, with 8> wy/2m, the action of the oscillating tip (HR)2 1

can be described as a pulse of widt{h, and one can use an (Egis9 T~ A4 K- (Adb)

integration instead of the Fourier series. The dissipated en-
ergy due to the attractive interaction between the tip and tthuation(4b) means that the average dissipation energy per

sample is pulse is mainly governed by the magnitude of the local stiff-
w do ness, while Eq(4a) exhibits explicitly the viscous process.
<Edis§T:J wX"(w)|fw|27- (A1)  Equation(4a would be more suitable for material having a
0 dominant friction behavior and, or dissipating processes due
With the Fourier coefficient fo to diffusion motion, while Eq(4b) is more likely to describe
=2F ox(siMw(red2)]/ w) at the frequencyw and ¥"(w) the  hard surface behavior with phonon assisted dissipation.
imaginary part of the generalized susceptibilify=x’ We now have to express that the oscillator loses this

+ix". Equation(Al) expresses that part of the work per- energy during a period. The simplest way to describe the loss
formed by the oscillating tip on the sample is not restored taf energy is to use an equivalent damping coefficignfthat

the oscillator and vanished in the bulk. Due to the attractivebecomes a function of the closest tip—sample distancéhe

tip surface interaction, which can be as large as 1 nN, &nergy dissipated during a period is given by

surface displacement, the growth of a nanoprotuberance, oc-
curs with a phase delay if the surface is not a pure elastic
one. Such an approach remains correct if the vertical surface

displacement remains sméafl.From Eq.(Al) one gets the ] ) ] o
result that the amount of dissipated energy varies as th&herek is the cantilever stiffness. Combining E¢a4) and

square of the attractive fordsee also Ref. 34 therefore a ('_A‘5) gives an expression of the equivalent damping coeffi-

A2
(Eqgis9T=M7Bed A) 0oA’ =K 7Bed A) @y’ (AS)

dependence in M is expectedsee Eq(A3)]. cient.
The next step is to expresg(w). To do so we use a ZHR? 1 1
simple phenomenological model describing the surface prop- Bed A)=| = L = (A63)

erties with a viscoelastic mechanical response that can be ' ° mKe 18y AT pSR2)’
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