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ADDITIVE FUNCTIONALS OF A NON-DIVERGENCE
DIFFUSION IN A RANDOM MEDIUM

By François Delarue

Université Paris 7

We study the asymptotic properties of a diffusion process associ-
ated to a pure non-divergence second order operator with stationary
and ergodic coefficients. We first remind the reader of the ergodic
properties of the so-called environment seen from the particle as es-
tablished in the earlier papers of Papanicolaou and Varadhan [27],
Yurinskij [35] and Zhikov [37], and then investigate the underlying
rate of convergence. We establish more specifically a central limit
theorem for additive functionals driven by suitable stationary fields.

Our analysis relies on earlier results for adjoint solutions to second
order non-divergence elliptic and parabolic equations.

1. Introduction. Homogenization theory for random second order dif-
ferential operators goes back to the earlier papers of Papanicolaou and
Varadhan [26], [27] and Kozlov [16] and extends the previous analyses for pe-
riodic structures (see e.g. Bensoussan, Lions and Papanicolaou [5]). It can be
briefly described as follows: the action of a differential operator with highly
oscillating coefficients (or, in other words, of a rescaled operator) driven
by a stationary and ergodic random medium can be approximated, under
certain conditions, by the one of a non-standard Laplacian operator driven
by a suitable effective diffusion matrix. From a probabilistic point of view,
this amounts to establish the weak convergence of the underlying rescaled
diffusion process towards a non-standard Brownian motion. We refer to the
monograph of Zhikov, Kozlov and Olejnik [36] for various applications of
this theory.

The basic strategy for stochastic homogenization relies on the central
limit theorem for martingales and on the ergodic properties of the so-called
environment seen from the particle, i.e. of the canonical Markov process with
values in the random medium and governed by the non-rescaled diffusion
kernel. In the case of an operator of pure divergence type, as considered
by Papanicolaou and Varadhan [26], Kozlov [16] and Zhikov et al. [36],
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2 F. DELARUE

Chapter VII, the invariant measure of the environment seen from the particle
exactly matches the measure of the random medium itself. Of course, the
general setting is far from being so trivial and the long run behaviour of the
environment seen from the particle remains a widely open question in most
of the cases. However, in the pure non-divergence framework, Papanicolaou
and Varadhan [27], Yurinskij [35] and Zhikov [37] proved the existence and
uniqueness of an absolutely continuous ergodic invariant measure. The main
argument follows from the earlier Aleksandrov and Pucci estimates for the
Green functions of a pure non-divergence elliptic operator.

Beside the homogenization property, the ergodic theorem provides for al-
most every realization of the medium a law of large number for additive
functionals of the environment seen from the particle. A natural question
then consists in investigating a central limit theorem for such additive func-
tionals. In the reversible case, Kipnis and Varadhan [15] provided a positive
answer for a large class of stationary fields driving the additive functional.
Several extensions to the non-symmetric case have been investigated for the
past twenty years (see for example Osada [25], Oelschläger [23] or the recent
review of Olla [24]). The most famous one applies under a suitable assump-
tion that is usually referred as “the strong sector condition” (see again Olla
[24], Chapter I, Section 5). Generally speaking, there is no way to apply
the strong sector condition or a variant of it to the pure non-divergence
framework except several specific cases where the density of the invariant
measure is bounded from above and from below by positive constants (see
e.g. Osada [25]). In practice, such bounds hold for periodic structures (see
e.g. Bensoussan, Lions and Papanicolaou [5], Chapter III) or in the one-
dimensional setting (for which the density of the invariant measure can be
explicitly written down).

In the current paper, we focus in a deeper way on the pure non-divergence
framework. We provide several new estimates for the density of the invari-
ant measure of the environment seen from the particle and then propose
a central limit theorem for additive functionals when driven by suitable
stationary fields. The strategy takes advantage of crucial estimates for the
adjoint solutions to non-divergence elliptic and parabolic equations (see e.g.
Bauman [4] and Escauriaza [7]). In short, when normalized by the density of
the invariant measure, these solutions satisfy a Harnack inequality that only
refers to the ellipticity and supremum bounds for the underlying diffusion
matrix. In the same way, the normalized kernel associated to the existing
operator fulfills a suitable version of the famous Aronson estimates.

Our result just holds when the initial distribution of the environment
seen from the particle matches the invariant measure. At this stage of our
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research, we are not able to establish a similar extension to the one proposed
by Kipnis and Varadhan [15] for Dirac initial distributions. This restriction
follows from our specific strategy: for technical reasons, we need to focus on
the time reversal of the environment seen from the particle, and thus, to
limit our investigation to the equilibrium situation.

Of course, our analysis leaves completely open the non-zero drift case,
for which the homogenization problem remains widely unsolved (see how-
ever Bricmont and Kupiainen [6] and Sznitman and Zeitouni [33] for deep
discussions on the topic). The basic difference between both cases can be
explained as follows: a given scaling procedure leaves unchanged the global
structure of a pure non-divergence operator but induces an explosive drift
in the general case.

The organization of the paper is the following. In Section 2, we remind
the reader of the properties of the random medium and introduce the basic
objects for our analysis. We expose the main results as well as the strategy in
Section 3. The sequel of the paper is then devoted to the proof of the central
limit theorem. Crucial properties for the adjoint solutions to non-divergence
operators are detailed in Section 4. Section 5 deals with the homogenization
property for pure non-divergence operators. In Sections 6 and 7, we aim to
apply the strategy due to Kipnis and Varadhan [15] to the time reversal of
the environment seen from the particle. We finally complete the proof in
Section 8 and then discuss several conceivable extensions.

2. General Notation and Assumption.

2.1. Random Medium. Our standing definition of the random medium
follows from the ealier paper of Kozlov [16] and may be found in Zhikov et
al. [36], Chapter VII, and in the review of Olla [24], Chapter II, Section 7.
The standard set-up of the medium is denoted by (Ξ,G, (Tx)x∈Rd , µ), where
Ξ stands for a Polish space, G for its Borel σ-algebra, µ for a probability
measure on the couple (Ξ,G) and d for an integer greater than two. The
family (Tx)x∈Rd denotes a group of transformations acting in a stationary
and ergodic way on (Ξ,G). This writes:

(RM1)(Stationarity) ∀(A, x) ∈ G × R
d, µ(TxA) = µ(A).

(RM2)(Ergodicity) ∀A ∈ G, (∀x ∈ R
d,TxA = A) ⇒ µ(A) ∈ {0, 1}.

(RM3)(Measurability) For any measurable function g on (Ξ,G, µ), the
function (x, ξ) 7→ g(Txξ) is measurable with respect to the product algebra
B(Rd) ⊗ G.

The expectation under µ is denoted by E . For a measurable field g, we
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denote (except very specific cases) by g : (x, ξ) 7→ g(Txξ) the realization
mapping.

According to the previous references (see in particular Subsection 7.1 in
Zhikov et al. [36]), the structure (RM1-2-3) induces a strongly continuous
unitary group on L2(Ξ, µ) given by ∀x ∈ R

d, Tx : g ∈ L2(Ξ, µ) 7→ g(Tx·) ∈
L2(Ξ, µ). As a bypass product, the group (Tx)x∈Rd is stochastically contin-
uous, i.e.

(RM4)(Continuity) For every measurable function g : Ξ → R and for
every δ > 0 :

lim
h→0

µ
{

ξ ∈ Ξ, |g(Thξ) − g(ξ)| ≥ δ} = 0.

For every i ∈ {1, . . . , d}, the infinitesimal generator of the one-parameter
group (Tλei

)λ∈R (ei denotes the ith vector of the canonical basis) is de-
noted by Di. The intersection of the domains D1, . . . , Dd is denoted by
H(Ξ, µ). For every g ∈ H(Ξ, µ), for µ almost every ξ ∈ Ξ, the function
x 7→ g(x, ξ) ≡ g(Txξ) belongs to H1

loc(R
d) and satisfies, for i ∈ {1, . . . , d},

∂g/∂xi(x, ξ) = Dig(Txξ) almost everywhere. We denote by Dg the gradient
field (D1g, . . . , Ddg).

Recall then the following integration by parts formula:

(2.1) ∀f ,g ∈ H(Ξ, µ), ∀i ∈ {1, . . . , d}, E [(Dif)g] = −E(fDig).

The group (Tx)x∈Rd is in fact strongly continuous (and unitary) on ev-
ery Lq(Ξ, µ), q ≥ 1. In particular, the generators D1, . . . , Dd may be seen
as unbounded operators on Lq(Ξ, µ). The intersection of their domains is
denoted by W 1,q(Ξ, µ). Of course, W 1,q(Ξ, µ) ⊂ W 1,q′(Ξ, µ) for q′ ≤ q, and
Dih, with i ∈ {1, . . . , d} and h ∈W 1,q(Ξ, µ), coincides with Dih if h is seen
as an element of W 1,q′(Ξ, µ).

We finally define the space S∞ of smooth functions on Ξ:

S∞ ≡ Span
{

g ? ϕ : ξ 7→
∫

Rd
g(Txξ)ϕ(x)dx, g ∈ L∞(Ξ, µ), ϕ ∈ C∞

c (Rd)
}

,

where C∞
c (Rd) denotes the space of smooth functions on R

d with compact
support (for g = g̃ a.s., deduce from Lemma 7.1 in Zhikov et al. [36] that
g ? ϕ = g̃ ? ϕ a.s.). For f ∈ S∞, the mapping x ∈ R

d 7→ f(x, ξ) belongs
to C∞

b (Rd) (space of bounded smooth functions with bounded derivatives
of any order) for every ξ ∈ Ξ (up to the choice of a representative for
f). In particular, S∞ ⊂ ∩q≥1W

1,q(Ξ, µ), and, for g and ϕ as above and
i ∈ {1, . . . , d}, Di(g ? ϕ) = −g ? (∂ϕ/∂xi).
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2.2. Non-divergence Operators. For 0 < λ ≤ Λ, we denote by Ad(λ,Λ)
the set of symmetric matrices of size d whose lowest eigenvalue is bounded
from below by λ and whose largest eigenvalue is bounded from above by Λ.

Assumption (A) We say that a measurable mapping a from (Ξ,G) into
R

d×d fulfills Assumption (A) if there exists three constants 0 < λ ≤ Λ and
K ≥ 0 such that:

(A1) For every ξ ∈ Ξ, a(ξ) ∈ Ad(λ,Λ).

(A2) For every ξ ∈ Ξ, the coordinates of the mapping a(x, ξ) ≡ a(Txξ)
belong to C∞

b (Rd) and their first and second order derivatives are bounded
by K.

Under Assumption (A), the coordinates of the field a belong to W 2,∞(Ξ,
µ) ≡ {g ∈ ∩q≥1W

1,q(Ξ, µ), ∀i ∈ {1, . . . , d}, Dig ∈ L∞(Ξ, µ) ∩ ∩q≥1W
1,q(Ξ,

µ), ∀j ∈ {1, . . . , d}, D2
i,jg ∈ L∞(Ξ, µ)}. For (i, j) ∈ {1, . . . , d}2, Dai,j and

D2ai,j (D2
k,`(·) = Dk(D`(·))) are a.s. bounded by K.

Consider now the canonical Wiener space (Ω,A,P) ≡ (C([0,+∞[,Rd),
B(C([0,+∞[,Rd)),P), where P denotes the Wiener measure. The canoni-
cal process is denoted by (Wt)t≥0. According to Theorems 11.2 and 12.12,
Chapter V, in Rogers and Williams [29], for every ξ ∈ Ξ, the SDE:

(2.2) Xt = x+

∫ t

0
a1/2(Xs, ξ

)

dWs, x ∈ R
d,

is strongly solvable. The solution is denoted by (Xt(x, ξ))t≥0, or just by
(Xt)t≥0 when possible. The operator associated to the process X is given
by:

Lξ ≡
1

2

d
∑

i,j=1

ai,j(x, ξ)
∂2

∂xi∂xj
.

Since X can be defined through an iteration procedure of Picard type, the
mapping (x, ξ) ∈ R

d×Ξ 7→ X(x, ξ) ∈ Ω is jointly measurable with respect to
(x, ξ) ∈ R

d × Ξ (due to (A2), it is even continuous in x, see Theorem 13.1,
Chapter V, in Rogers and Williams [29]). Moreover, thanks to the strong
uniqueness property of (2.2):

(2.3) X(x, ξ) = x+X(0,Txξ).

Moreover, from Aronson [1] or from Theorem 4.5, Chapter VI, in Fried-
man [12], for every ξ ∈ Ξ, there exists a fundamental solution q(t, x, y; ξ) to
the Markov process X(·, ξ). It satisfies Gaussian lower and upper bounds,
but locally in time (see also Stroock [31] and [32]):
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Proposition 2.1. There exists a constant C2.1 > 0 such that for all
ξ ∈ Ξ and (t, x, y) ∈]0,+∞[×R

d × R
d,

C−1
2.1t

−d/2 exp
[

−C2.1t− C2.1t
−1|x− y|2

]

≤ q(t, x, y; ξ) ≤ C2.1t
−d/2 exp

[

C2.1t− C−1
2.1t

−1|x− y|2
]

.

Due to (A2), q(t, x, y; ξ) is continuous in (t, x, y). Due to the measurability
of X(x, ξ) with respect to (x, ξ), it is well-seen that q is jointly measurable
with respect to (t, x, y, ξ) ∈]0,+∞[×R

d ×R
d ×Ξ endowed with the product

σ-algebra. Derive also from (2.3):

(2.4) ∀z ∈ R
d, q(t, x, y;Tzξ) = q(t, x+ z, y + z; ξ).

In the same way, note from Bass [2], Chapter V, Section 5, that, for every
ξ ∈ Ξ and for every (z,R) ∈ R

d×]0,+∞[, Lξ admits a Green function with
respect to the ball B(z,R) (ball of center z and of radius R). It is denoted
by γ(x, y;R, z, ξ). Thanks to the Feynman-Kac formula and to the measura-
bility property of X(x, ξ) in (x, ξ), γ(x, y;R, z, ξ) is jointly measurable with
respect to (x, y, ξ). Moreover, standard computations show that for every
u ∈ R

d:

(2.5) γ(x, y;R, z,Tuξ) = γ(x+ u, y + u;R, z + u, ξ).

2.3. Environment Seen from the Particle. Following the review of Olla
(see [24], Chapter II, Section 7), we define the so-called environment seen
from the particle by setting:

(2.6) ∀ξ ∈ Ξ, ∀t ≥ 0, ηt(ξ) = TXt(0,ξ)ξ.

Under the measure P, the process (ηt(ξ))t≥0 is a Markov process with
values in Ξ starting from ξ at time 0. The associated semigroup writes:

∀h ∈ L∞(Ξ, µ), Sth(ξ) = E
[

h(ηt(ξ))
]

=

∫

Rd
h(Tyξ)q(t, 0, y; ξ)dy.

From Lemma 7.1 in Zhikov et al. [36], St is perfectly defined (i.e. Sth =
Sth̃ a.s. for h = h̃ a.s.). From Proposition 2.1, we derive:

Lemma 2.2. There exists a constant C2.2 > 0 such that for every h ∈
L∞(Ξ, µ), E|Sth|

2 ≤ C2.2 exp(C2.2t)E|h|
2. In particular, (St)t≥0 extends to

L2(Ξ, µ).
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We now prove that (St)t≥0 is strongly continuous on L2(Ξ, µ). For every
h ∈ L2(Ξ, µ):

E|Sth− h|2

≤ C2.1 exp(C2.1t)t
−d/2E

∫

Rd
|h(Tyξ) − h(ξ)|2 exp

(

−C−1
2.1t

−1|y|2
)

dy

= C2.1 exp(C2.1t)

∫

Rd
E|h(Tt1/2yξ) − h(ξ)|2 exp(−C−1

2.1|y|
2)dy.

Since E|h(Tt1/2yξ)−h(ξ)|2 ≤ 4E|h|2, the continuity of (Tx)x∈Rd (seen as a

group of transformations acting on L2(Ξ, µ)) and the dominated convergence
theorem ensure that (St)t≥0 is strongly continuous on L2(Ξ, µ). Its generator
is denoted by L.

For h ∈W 2,∞(Ξ, µ), the realization mapping h(·, ξ) belongs to the space
W 2,∞(Rd) for a.e. ξ ∈ Ξ. Thanks to Krylov [17], Chapter II, Section 10, The-
orem 1, it comes, for every t ≥ 0, Eh(Xt(0, ξ), ξ) = h(0, ξ) +

∫ t
0 E[Lξh(Xs(0,

ξ), ξ)]ds, so that:

Sth(ξ) = h(ξ) +

∫ t

0
Ss

[

(1/2)
d

∑

i,j=1

ai,jD
2
i,jh

]

(ξ)ds.

Due to the strong continuity of (St)t≥0, h ∈ D(L) and

Lh =
1

2

d
∑

i,j=1

ai,jD
2
i,jh.

For a given probability measure m on (Ξ,G), (ηt)t≥0 is Markov process
with m as initial distribution under the probability measure m⊗ P.

3. Statement of the Main Result and Strategy. The basic objec-
tive of the paper consists in investigating the asymptotic behaviour (for large
r) of additive functionals of the form:

(3.1)

∫ r2

0
f(ηs(ξ))ds,

for a given stationary field f .

3.1. Ergodic Theorem. Referring to Papanicolaou and Varadhan [27],
Yurinskij [35] and Zhikov [37] (see also Chapter X in Zhikov et al. [36]),
we claim:
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Theorem 3.1. Under Assumption (A), the Ξ-valued Markov process
(ηt)t≥0 admits an ergodic invariant measure ν, which is absolutely con-
tinuous with respect to the measure µ. The density of ν with respect to µ
is denoted by p. It is almost-surely positive, belongs to Ld/(d−1)(Ξ, µ) and
is the unique solution in L1(Ξ, µ) to L∗(p) = 0, E(p) = 1 (i.e. ∀v ∈
W 2,∞(Ξ, µ), E(pLv) = 0). In particular, the measures µ and ν are equiva-
lent.

As a bypass product, for every f ∈ L∞(Ξ, µ), for µ-almost every ξ ∈ Ξ :

P − a.s., lim
r→+∞

r−2
∫ r2

0
f(ηs(ξ))ds = E(pf).

3.2. Central Limit Theorem. In this paper, we establish the following
central limit theorem:

Theorem 3.2. Under Assumption (A), the density p belongs to the
space W 1,d/(d−1)(Ξ, µ), and there exists a constant C3.2, depending only on
λ,Λ and K such that, µ almost-surely, p−1|Dp| ≤ C3.2 (where Dp stands
for (D1p, . . . , Ddp)).

Moreover, for every stationary field f ∈ L∞(Ξ, µ) writing f = p−1D`(pg),
for ` ∈ {1, . . . , d} and g ∈ W 1,∞(Ξ, µ) (i.e. g ∈ L∞(Ξ, µ) ∩ ∩q≥1W

1,q(Ξ, µ)
and Dg ∈ L∞(Ξ,G, µ; Rd)), with E(pg) = 0, there exists a real σf ≥ 0 such
that, under ν ⊗ P:

(3.2) r−1
∫ r2

0
f(ηs)ds⇒

D
N (0, σ2

f ) as r → +∞.

As in the divergence case (refer for example to Kozlov [16]), the limit diffu-
sion coefficient σ2

f can be characterized through the solution of an auxiliary
equation (i.e. σ2

f ≡ E(p〈aΨ,Ψ〉) where Ψ satisfies (7.3) for every smooth
field Φ).

3.3. Scaling Procedure. The strategy to investigate the asymptotic be-
haviour of quantities of the form (3.1) highly depends on the scaling prop-
erties of the diffusion process X(0, ξ) for ξ ∈ Ξ. After a time change of
intensity r2, (3.1) writes:

(3.3) r2
∫ 1

0
f(TXr2s(0,ξ)ξ)ds.

Hence, we consider next the rescaled diffusion (r−1Xr2t(0, ξ))t≥0 or equiv-
alently the rescaled diffusion (X̄t(ε; 0, ξ) ≡ εXε−2t(0, ξ))t≥0 for a small pa-
rameter ε. It is then plain to see that the operator associated to the process
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X̄(ε; 0, ξ) writes again in a non-divergence form:

(3.4) L̄ε,ξ ≡
1

2

d
∑

i,j=1

ai,j(ε
−1x, ξ)

∂2

∂xi∂xj
.

The elliptic non-divergence structure of the initial operator is thus pre-
served by the scaling procedure. In particular, Assumption (A1) still holds
true for the underlying diffusion matrix a(ε−1·, ξ). On the opposite, the reg-
ularity properties given in Assumption (A2) completely fail for small values
of ε.

Focus again on (3.3) and note that (3.3) writes as the solution of a linear
parabolic PDE associated to L̄ε,ξ. It is then well-understood that most of the
proof of Theorem 3.2 relies on several a priori estimates for the solutions of
a non-divergence PDE with a uniformly elliptic but discontinuous diffusion
matrix. Among them, the famous Aleksandrov and Pucci estimates (see
for example Theorem 9.1 in Gilbarg and Trudinger [13] and Krylov [17],
Chapter II, Sections 2 and 3) provide an Ld/(d−1) estimate for the L̄ε,ξ Green
functions and the Krylov and Safonov estimates (refer to [19]) provide an a
priori control for the Hölder continuity of the solutions to L̄ε,ξ PDEs.

The Krylov and Safonov estimates apply in a very elegant way to the
homogenization of the operators (L̄ε,ξ)ε. The usual procedure establishes
the pointwise convergence of the solutions to ∂v/∂t − L̄ε,ξ(v) = χ, for a
suitable function χ from R

d into R, towards the solution of a parabolic
equation of the same kind, but associated to the Laplacian operator (up to
a non-trivial effective diffusion coefficient). Due to the Krylov and Safonov
theory, the convergence is also uniform on every compact subset.

This draws the basic background for our strategy. Due to the homoge-
nization property for the family (L̄ε,ξ)ε, the fundamental solutions of the
operators (L̄ε,ξ)ε weakly converge (in (t, y)) towards the solution of a non-
standard Gaussian kernel. These transition densities write:

(3.5) q̄(t, x, y; ε, ξ) ≡ ε−dq(ε−2t, ε−1x, ε−1y; ξ).

As explained in the next Subsection, we then derive that the family
(q̄(t, x, y; ε, ξ))ε (up to a normalizing factor) uniformly converges (in (t, x, y))
on every compact subset of ]0,+∞[×R

d × R
d. Thanks to the backward

Kolmogorov equation satisfied by q̄ in (t, x), we deduce the (local) L2-
convergence of the x-gradients of the (normalized) densities towards the
x-gradient of the limit Gaussian kernel. This result is the key step towards
Theorem 3.2 (see Subsection 3.5).
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3.4. Normalized Solutions. The strategy to establish the uniform con-
vergence of the transition densities relies on an equicontinuity property for
the solutions to the adjoint equations for (L̄ε,ξ)ε. Here is a short summary.

Thanks to the Chapman-Kolmogorov equations, the density q̄(t, x, y; ε, ξ)
satisfies in (t, y) the adjoint equation ∂v/∂t − (L̄ε,ξ)∗(v) = 0. Such adjoint
equations to non-divergence operators have been intensely studied in several
earlier papers. Mention among others Bauman [4], Escauriaza [7] and Fabes
and Stroock [10]. The common idea consists in normalizing the solution v
by a nonnegative solution w to the elliptic equation (L̄ε,ξ)∗(w) = 0 and
to investigate the Hölder continuity of the product w−1v in terms of its
supremum norm. The resulting estimate relies on a relevant version of the
Harnack inequality for such normalized solutions.

In the stationary setting, the functional p(ε−1·; ξ), associated to the den-
sity p of the invariant measure, satisfies the adjoint equation (L̄ε,ξ)∗(p(ε−1·,
ξ)) = 0 and thus plays the role of w. We then derive a uniform bound
(in (x, ε)) for the Hölder continuity (in (t, y)) of the normalized kernel
p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ) in terms of its supremum norm.

In the same way, the normalized fundamental solution p−1(ε−1y, ξ)q̄(t, x,
y; ε, ξ) satisfies a suitable version of the well-known Aronson estimates (see
Escauriaza [7] for this version and Aronson [1] for the original one in the
divergence setting).

Gathering the Harnack inequality for adjoint solutions and the Aronson
estimates for the normalized kernel, we establish that the family of (t, y)
functions p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ) is locally (i.e. on every compact subset)
equicontinuous with respect to the parameters x and ε.

Thanks to the Krylov and Safonov theory (bounds for the Hölder continu-
ity of the solutions to L̄ε,ξ), we manage to establish that the family of (t, x, y)
(and not (t, y)) functions p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ) is locally equicontinuous
with respect to the parameter ε.

3.5. Time Reversal. Forget for the moment the previous Subsections 3.3
and 3.4 and recall from Olla [24], Chapter I, the basic strategy to estab-
lish the central limit theorem for Markov chains. Under the assumptions of
Theorem 3.2, solve the family of auxiliary problems:

(3.6) − L(u(·; ε)) + ε2u(·; ε) = f .

Prove then, as ε tends to zero, that εu(·; ε) vanishes in L2(Ξ,p.µ) and
that Du(·; ε) converges (again in L2(Ξ,p.µ)). Apply Itô’s formula to the
process εu(ε−1X̄(ε; 0, ξ); ε, ξ), with u(x; ε, ξ) ≡ u(Txξ; ε), to reduce (up to
negligible terms) the rescaled additive functional in (3.2) to a martingale.
Derive finally Theorem 3.2 from the central limit theorem for martingales.



NON-DIVERGENCE DIFFUSIONS IN A RANDOM MEDIUM 11

In our frame (see the writing of f in the statement of Theorem 3.2), the
solution u(x; ε, ξ) writes:

(3.7) u(x; ε, ξ) =

∫ +∞

0
exp(−ε2t)

∫

Rd

[

p−1D`(pg)
]

(Tyξ)q(t, x, y; ξ)dydt

Thanks to the rescaling procedure (see (3.5)):

εu(ε−1x; ε, ξ)

= ε−1
∫ +∞

0
exp(−t)

∫

Rd

[

p−1D`(pg)
]

(Tε−1yξ)q̄(t, x, y; ε, ξ)dy dt

= −
∫ +∞

0
exp(−t)

∫

Rd
(pg)(ε−1y, ξ)

∂

∂y`

(

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
)

dy dt.

(3.8)

From Subsections 3.3 and 3.4, we are able to establish the convergence
of the x-gradients (and not y-gradients) of the normalized kernels. Unfortu-
nately, equality (3.8) holds with respect to the y-derivative of the normalized
fundamental solutions.

The strategy then consists in reversing in time the process η. This proce-
dure does not change the asymptotic analysis for (3.3) (see Olla [24], Chapter
I, and Wu [34] for earlier applications of this technique), and leads to focus
on the auxiliary problems (3.6) associated to the normalized adjoint oper-
ator p−1L∗(p·). In particular, the time reversal procedure permits to write
(3.8) with respect to the x-derivative of q̄ instead of the y-derivative. Ac-
cording to the strong convergence property given in Subsections 3.3 and 3.4
and to the ergodic theorem, we derive that the last term in (3.8) vanishes,
as expected. We are then able to recover the classical strategy (at least in
its main lines), provided E(pg) = 0 (see Section 7).

3.6. Boundedness of p. The central limit theorem directly follows from
the factorizing method due to Osada [25] when p is bounded from below and
from above by positive constants. This situation occurs in the periodic frame-
work (see e.g. Bensoussan et al. [5], Chapter III) and in the one-dimensional
setting d = 1, in which p can be explicitly written down: p = a−1/E(a−1).

In the current context, i.e. for d ≥ 2, we are totally unable to predict if
such bounds for p might hold or not.

3.7. Centering Condition. At this early stage of the paper, the reader
may be doubtful about the centering condition E(pg) = 0. Indeed, any
asymptotic property for the quantity p−1D`(pg) remains unchanged by ad-
dition of an extra constant to the product pg, so that the reader might hope
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for an easy extension of Theorem 3.2 to the general case. What we would
need to derive a generalized version of Theorem 3.2 from the centered case
is in fact slightly stronger: to prove the central limit theorem for a given
function f of the form f = p−1D`(pg) (E(pg) being possibly different from
zero), we need to write, up to a suitable pertubation term, pg as the prod-
uct of p times a centered function h ∈ L∞(Ξ, µ). For example, pg always
writes p(g−E(pg))+pE(pg) or p(g−p−1E(pg))+ E(pg). The first trans-
formation (i.e. g 7→ g− E(pg)) does not preserve the asymptotic behaviour
of p−1D`(pg) (since pE(pg) induces a non-trivial term), whereas the sec-
ond one does but maps g onto g− p−1E(pg). This latter function does not
belong to L∞(Ξ, µ) unless p−1 belongs to L∞(Ξ, µ).

As discussed above, there is no clear reason to ensure the boundedness of
p−1 except in the specific case d = 1.

3.8. Frequently Used Notation. In the sequel, the generic notations “C”,
“C ′” and “c” denote constants appearing in the proof of Theorem 3.2. If
nothing mentioned, these constants only depend on the parameters λ, Λ
and K quoted in Assumption (A). Of course, their values may vary from
line to line.

Moreover, for z ∈ R
d and r > 0, we denote by B(z, r) the Euclidean

ball of R
d of center z and radius r. For r = 1, its volume is denoted by

Vd. For t ∈ R, we denote by Q((t, z), r) the cylinder of R
d+1 Q((t, z), r) ≡

]t− r2, t+ r2[×B(z, r).

4. Normalization with respect to the Density. Follow the strat-
egy described in Section 3 and investigate the properties of the normalized
transition densities. To this end, focus first on the density p of the invariant
measure.

4.1. Density of the Invariant Measure. As said in Section 3, the envi-
ronment seen from the particle admits an invariant measure denoted by
ν = p.µ. Thanks to Zhikov [37] and to Zhikov et al. [36], Chapter X, or to
Theorem 3.1, p(·, ξ) = p(T·ξ) satisfies for a.e. ξ ∈ Ξ the adjoint equation
(Lξ)∗(p(·, ξ)) = 0 in the following sense:

∀ϕ ∈ C∞
c (Rd),

d
∑

i,j=1

∫

Rd
ai,j(x, ξ)p(x, ξ)

∂2ϕ

∂xi∂xj
(x)dx = 0, p(·, ξ) ∈ L1

loc(R
d).

(4.1)

Referring to Sjogren [30], Section 3, Lemma 1, for almost every ξ ∈ Ξ,
there exists a continuous version of x 7→ p(x, ξ). This version belongs to
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C2(Rd) and satisfies the adjoint equation in a strong sense (see Theorem 1
and (2.5) in the previous reference). We will always consider this version
in the sequel of the paper. In particular, for almost every ξ ∈ Ξ, p(Txξ) =
p(x, ξ) a.e. in x.

From Escauriaza [7], we can provide an explicit writing for the version
p(x, ξ). Indeed, from Theorem 1.1 in [7], for every ξ ∈ Ξ, there exists a
unique non-negative (continuous) adjoint solution w(x; ξ) to Lξ satisfying:

∫

B(0,1)
w(x; ξ)dx = Vd.

According to the proof of Theorem 1.1 in [7] and to the measurability of
γ, we derive that w is jointly measurable in (x, ξ).

Since p(x, ξ) satisfies, for a.e. ξ, the adjoint equation for Lξ, we claim:

p(x, ξ) = V −1
d

[
∫

B(0,1)
p(Tyξ)dy

]

w(x; ξ).

Up to the choice of the version of p in Ld/(d−1)(Ξ, µ), we can extend
p(x, ξ) to the whole set R

d × Ξ (due to Lemma 7.1 in Zhikov et al. [36],
for two different versions p and p̃, p(·, ξ) = p̃(·, ξ) for a.e. ξ). The resulting
mapping p : R

d × Ξ → R is jointly measurable in (x, ξ) and satisfies the
adjoint equation for every ξ ∈ Ξ.

A first point consists in checking that p(0, ξ) = p(ξ) for almost every
ξ ∈ Ξ:

Lemma 4.1. For every x ∈ R
d, for almost every ξ ∈ Ξ, p(Txξ) = p(x, ξ).

Proof. Assume first without loss of generality that x = 0. Due to the
continuity of (Ty)y∈Rd seen as a group acting on Ld/(d−1)(Ξ, µ), E|Typ−p| →
0 as y → 0. Thus,

h−dE
∫

B(0,h)
|p(Tyξ) − p(ξ)| dy → 0 as h→ 0.

Deduce that:

E

∣

∣

∣

∣

V −1
d h−d

∫

B(0,h)
p(y, ξ)dy − p(ξ)

∣

∣

∣

∣

→ 0 as h→ 0,

so that,

V −1
d h−d

∫

B(0,h)
p(y, ξ)dy − p(ξ)

µ−probability
−→ 0 as h→ 0

Since the function y 7→ p(y, ξ) is continuous for every ξ ∈ Ξ, it comes
p(0, ξ) = p(ξ) for a.e. ξ ∈ Ξ.
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In the periodic framework, the function p(·, ξ) satisfies a Harnack inequal-
ity. As a consequence, it is bounded from below and from above by two
nonnegative constants. The story is rather different in the general setting
since just a few estimates are available for p. The Ld/(d−1) bound given in
Theorem 3.1 follows from the Aleksandrov and Pucci estimates, but is far
from being sufficient to establish Theorem 3.2. On the opposite, we know
from Osada [25] that Theorem 3.2 holds if p is bounded from above and
from below by positive constants.

It is then well-understood that we need to investigate in a deeper way the
density p to establish the central limit theorem. In this paper, we manage to
derive from (4.1) several new local and global properties for p. For example,
we establish the integrability of pα for a small exponent α (see Corollary
4.5) as well as a local Harnack inequality (see Proposition 4.10). Since the
set of definition of p(·, ξ) (i.e. R

d) is not compact, there does not seem to be
any way to derive a global bound for p as done in the periodic case.

The strategy relies on the theory of normalized solutions developed first
by Bauman [3] and [4] and then by Fabes and Stroock [10] and used more
recently by Escauriaza [7]:

Definition 4.2. Let U be a nonnegative weak solution (in the sense of
(4.1)) of (Lξ)∗(U) = 0. A given function u from R

d into R is said to be a
normalized solution with respect to (Lξ)∗ and U if the product function U×u
satisfies (Lξ)∗(U × u) = 0.

This definition extends in a trivial way to a solution u(t, x) of the parabolic
adjoint equation.

Here is a first property of ν:

Proposition 4.3. There exist two constants η4.3 > 0 and C4.3 > 0

such that ν(A) ≥ C4.3µ(A)
η4.3 for all A ∈ G.

In order to prove Proposition 4.3, derive first the following Proposition
from Corollary 2.3 in Fabes and Stroock [10]:

Proposition 4.4. There exist two constants c4.4 > 0 and η4.4 > 0

such that for every ξ ∈ Ξ, for every r > 0 and for every E ∈ B(Rd),
E ⊂ Bd(0, r/4):

∫

E
γ(0, y; r, 0, ξ)dy ≥ c4.4

(

r−d|E|
)η4.4

∫

B(0,r/4)
γ(0, y; r, 0, ξ)dy.
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Proof of Proposition 4.3. Fix r > 0, drop the index 4.4 in the con-
stants c and η in Proposition 4.4 and deduce that for every ξ ∈ Ξ:

(4.2) E

∫ τ(r)

0
1E(Xt)dt ≥ c

(

r−d|E|
)η

E

∫ τ(r)

0
1B(0,r/4)(Xt)dt,

where E denotes a Borel subset of B(0, r/4), Xt stands for Xt(0, ξ) and τ(r)
for the first exit time of X from the ball B(0, r): τ(r) ≡ inf{t ≥ 0, |Xt| ≥ r}.

Choose now A ∈ G and ξ ∈ Ξ. Apply (4.2) to E ≡ {x ∈ B(0, r/4), Txξ ∈
A} (∈ B(Rd) from (RM3)):

r−2
E

∫ τ(r)

0
1A(ηt(ξ))dt

= r−2
E

∫ τ(r)

0
1{x∈Rd, Txξ∈A}(Xt)dt

≥ r−2
E

∫ τ(r)

0
1E(Xt)dt

≥ c
(

r−d|E|
)η
r−2

E

∫ τ(r)

0
1B(0,r/4)(Xt)dt

≥ c

(

r−d
∫

B(0,r/4)
1A(Txξ)dx

)η

r−2
E(τ(r/4)).

(4.3)

Due to the ellipticity assumption (A1), it is plain to see that there exists
a constant C > 0 such that C−1 ≤ r−2

E(τ(r/4)) ≤ C. This provides a lower
bound for the l.h.s. in (4.3) (up to a new constant C):

(4.4) r−2
E

∫ τ(r)

0
1A(ηt(ξ))dt ≥ C−1

(

r−d
∫

B(0,r/4)
1A(Txξ)dx

)η

.

Up to a µ-negligible event, the r.h.s. converges as r tends to +∞ towards
C−14−ηdV η

d µ(A)η . Turn now to the l.h.s. in (4.4). Since the expectations
(r−4

E(τ2(r)))r>0 are uniformly bounded (in (r, ξ)) (apply Itô’s formula to
|Xt|

2, take the square in each side of the formula and integrate w.r.t. P), we
claim:

r−2
E

∫ τ(r)

0
1A(ηt(ξ))dt

≤ r−2
E(τ2(r))1/2

E

[(

τ−1(r)

∫ τ(r)

0
1A(ηt(ξ))dt

)2]1/2

≤ CE

[(

τ−1(r)

∫ τ(r)

0
1A(ηt(ξ))dt

)2]1/2

.

(4.5)
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The term inside the expectation appearing in the above r.h.s. is bounded
by 1. Moreover, thanks to Theorem 3.1, it converges up to a µ-negligible
event P almost-surely towards (ν(A))2 (note that τ(r) explodes P-a.s.). From
(4.4) and (4.5), we derive that ν(A) ≥ C−1µ(A)η .

Deduce the following corollary:

Corollary 4.5. There exists a constant β4.5 > 0 such that p
−β4.5 ∈

L1(Ξ, µ).

Proof. For every t ≥ 0, µ{p−1 ≥ t} ≤ C4.3t
−1/η4.3 . Deduce in particu-

lar that p
−1/(2η4.3)

belongs to L1(Ξ, µ).

4.2. Estimates of the Normalized Densities. The Aronson estimates from
Proposition 2.1 do not apply uniformly to the rescaled transition densities,
since they are just local in time. To obtain uniform bounds in time for the
kernel q, we need to normalize the transition density by p(·, ξ) (see e.g.
Escauriaza [7], Theorem 1.2):

Proposition 4.6. There exists a constant C4.6 > 0 such that for every
ξ ∈ Ξ:

∀(t, x, y) ∈]0,+∞[×R
d × R

d,

C−1
4.6 max

[(
∫

B(x,t1/2)
p(z, ξ)dz

)−1

,

(
∫

B(y,t1/2)
p(z, ξ)dz

)−1]

× exp
[

−C4.6t
−1|x− y|2

]

p(y, ξ)

≤ q(t, x, y; ξ)

≤ C4.6 min

[(
∫

B(x,t1/2)
p(z, ξ)dz

)−1

,

(
∫

B(y,t1/2)
p(z, ξ)dz

)−1]

× exp
[

−C−1
4.6t

−1|x− y|2
]

p(y, ξ).

(4.6)

Proposition 4.6 provides a global Gaussian estimate for the normalized
kernel p−1(y, ξ)q(t, x, y; ξ) since the ergodic theorem yields for x ∈ R

d:
µ−a.s., limt→+∞ td/2/

[∫

B(x,t1/2) p(z, ξ)dz
]

= [VdE(p)]−1 = V −1
d . According

to this global nature, the normalized rescaled kernels (p−1(ε−1y, ξ)q̄(t, x, y;
ε, ξ))ε>0 from (3.5) satisfy a similar version to (4.6), uniformly in ε. Gener-
ally speaking, this amounts to say that the constant C4.6 only depends on
λ and Λ.
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4.3. Harnack Inequality and Hölder Estimate. We now exhibit a local
Harnack inequality for the normalized transition density p−1(y, ξ)q(t, x, y; ξ)
as well as a bound for its Hölder norm.

Recall indeed that q(t, x, y; ξ) satisfies in (t, y) the forward Kolmogorov
equation and refer again to Escauriaza [7], Theorem 3.7 (with r = 1/2 and
τ = 3/2):

Proposition 4.7. There exists a constant C4.7 such that for all ξ ∈ Ξ

and x ∈ R
d:

sup
(t,y)∈[1,5/4]×B(x,1/2)

[

p−1(y, ξ)q(t, x, y; ξ)
]

≤ C4.7 inf
(t,y)∈[1/2,3/4]×B(x,1/2)

[

p−1(y, ξ)q(t, x, y; ξ)
]

.

From Theorem 3.8 in Escauriaza [7], derive the following Hölder property:

Proposition 4.8. There exist two constants α4.8 > 0 and C4.8 such

that for all ξ ∈ Ξ, r > 0 and Q(z, r) ⊂]0,+∞[×R
d, z ∈]0,+∞[×R

d:

∀x ∈ R
d, (t, y), (t′, y′) ∈ Q(z, r/4),

|p−1(y, ξ)q(t, x, y; ξ) − p−1(y′, ξ)q(t′, x, y′; ξ)|

≤ C4.8
[

r−2(|y − y′|2 + |t− t′|
)]α4.8/2

sup
Q(z,r)

[p−1(·, ξ)q(., x, .; ξ)].

Mention carefully that the point (t′, y′) in Theorem 3.8 in [7] coincides
with the center z of the cylinder. To choose, as above, (t′, y′) differently from
z, we need to pick up (t, y) in the smaller cylinder Q(z, r/4).

In the statement of Proposition 4.8, p−1(y, ξ)q(t, x, y; ξ) is seen as a nor-
malized solution (in (t, y)) to the operator ∂t − (Lξ)∗. However, p−1(y, ξ)q(t,
x, y; ξ) also satisfies in (t, x) the parabolic equation [∂t −Lξ](·) = 0. Hence,
the Krylov and Safonov theory (see e.g. [19] and [20]) yields:

Proposition 4.9. There exist two constants α4.9 > 0 and C4.9 such

that for all ξ ∈ Ξ, r > 0 and Q(z, r) ⊂]0,+∞[×R
d, z ∈]0,+∞[×R

d:

∀y ∈ R
d, (t, x), (t′, x′) ∈ Q(z, r/4),

|p−1(y, ξ)q(t, x, y; ξ) − p−1(y, ξ)q(t′, x′, y; ξ)|

≤ C4.9
[

r−2(|x− x′|2 + |t− t′|
)]α4.9/2

sup
Q(z,r)

[p−1(y, ξ)q(., ., y; ξ)].



18 F. DELARUE

Similarly to Proposition 4.6, Propositions 4.8 and 4.9 uniformly apply
to the normalized rescaled kernels (p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ))ε>0 since they
hold in a global way. Again, this amounts to say that the underlying con-
stants α4.8, C4.8, α4.9 and C4.9 do not refer to the regularity of the matrix
a(x, ξ).

4.4. Oscillations of p(·, ξ). To complete the current section, we provide
several estimates for the oscillations of the function p(·, ξ). In particular, we
establish the gradient estimate given in Theorem 3.2.

Choose first t = 1 in Proposition 2.1 and derive from Proposition 4.7 the
following local Harnack inequality for p(·, ξ):

Proposition 4.10. There exists a constant C4.10 > 0 such that for all

ξ ∈ Ξ and x ∈ R
d:

C−1
4.10 ≤ inf

y∈B(x,1/2)

[

p−1(x, ξ)p(y, ξ)
]

≤ sup
y∈B(x,1/2)

[

p−1(x, ξ)p(y, ξ)
]

≤ C4.10.

In particular, for every ξ ∈ Ξ, the growth and the decay of p(·, ξ) are
at most exponential: up to a modification of C4.10, for every x ∈ R

d,

p(0, ξ) exp(−C4.10|x|) ≤ p(x, ξ) ≤ p(0, ξ) exp(C4.10|x|).

Derive now the required estimate:

Proposition 4.11. The density p belongs to W 1,d/(d−1)(Ξ, µ) and there
exists a constant C4.11 such that for a.e. ξ ∈ Ξ: |p−1(ξ)Dp(ξ)| ≤ C4.11.

Proof. Thanks to the smoothness of a(x, ξ) (in x), Equation (4.1) also
writes:

1

2

d
∑

i,j=1

ai,j(x, ξ)
∂2p

∂xi∂xj
(x, ξ) +

d
∑

i,j=1

∂ai,j

∂xj
(x, ξ)

∂p

∂xi
(x, ξ)

+
1

2

[ d
∑

i,j=1

∂2ai,j

∂xi∂xj
(x, ξ)

]

p(x, ξ) = 0.

(4.7)

Note that the function p−1(0, ξ)p(x, ξ) still satisfies (4.7). From Propo-
sition 4.10, it is bounded on B(0, 1/2) by a constant C (C does not de-
pend on ξ). Moreover, thanks to Assumption (A2), the coefficients of order
zero and one in (4.7) are bounded and Lipschitz continuous. Apply Theo-
rem 6.2 in Gilbarg and Trudinger [13], and deduce that the Hölder norms
on B(0, 1/4) of the gradient p−1(0, ξ)∇xp(x, ξ) and of the Hessian matrix
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p−1(0, ξ)∇2
x,xp(x, ξ) are bounded by C. By the mean value theorem and by

Lemma 4.1, p belongs to W 1,d/(d−1)(Ξ, µ) and Dp(ξ) = ∇xp(0, ξ) a.s..

Due to Lemma 4.1, the bound for p−1Dp easily follows.

5. Homogenization Property. We now investigate the convergence
of the family of rescaled kernels (p−1(ε−1y, ξ) q̄(t, x, y; ε, ξ))ε>0. The analysis
can be divided in three different steps.

(First Step.)

Thanks to the ergodic properties of η, we establish the homogenization
property for the family of operators (L̄ε,ξ)ε>0 for a.e. ξ ∈ Ξ. Since these
operators are given in a non-divergence form, the effective diffusion coeffi-
cient just writes as the expectation of the diffusion matrix under the invari-
ant measure p.µ. This proves, for every x ∈ R

d, the weak convergence of
(p−1(ε−1·, ξ)q̄(·, x, ·; ε, ξ))ε>0 towards a Gaussian kernel Γ as ε→ 0:

Proposition 5.1. Denote by Γ the Gaussian kernel associated to the
diffusion matrix a = E(pa). Then, for a.e. ξ ∈ Ξ and for every x ∈ R

d, the
sequence of functions (in (t, y), x being fixed) (p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ))ε>0

weakly converges to Γ(t, x, y) on ]0,+∞[×R
d as ε tends towards zero, i.e.:

∀ϕ ∈ C∞
c (]0,+∞[×R

d),

lim
ε→0

∫ +∞

0

∫

Rd
ϕ(t, y)p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ) dy dt

=

∫ +∞

0

∫

Rd
ϕ(t, y)Γ(t, x, y) dy dt.

(5.1)

(Second Step.)

Due to Proposition 4.6 (bound for the normalized kernel) and to Proposi-
tions 4.8 and 4.9 (Hölder continuity of the normalized kernel), we derive that
the fundamental solutions (p−1(ε−1·, ξ)q̄(·, ·, ·; ε, ξ))ε>0 uniformly converge
on every compact subset of ]0,+∞[ ×R

d × R
d towards the kernel Γ:

Proposition 5.2. For a.e. ξ ∈ Ξ, the family of functions (in (t, x, y))
(p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ))ε>0 uniformly converges on compact subsets of
]0,+∞[×R

d × R
d towards Γ(t, x, y) as ε tends towards zero.

Thanks again to Proposition 4.6, we deduce that the convergence also
holds in the following L2 sense:
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Proposition 5.3. For every compact subset K ⊂ R
d and for every α ∈

]0, 1[, the following convergence holds in µ-probability and in p.µ-probability
(thanks to Theorem 3.1 and Corollary 4.5, both are equivalent) as ε vanishes:

sup
α≤t≤α−1

sup
y∈K

[
∫

Rd
p(ε−1x, ξ)|p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)

− Γ(t, x, y)|2dx

]

(p.)µ−probability
−→ 0.

(Third Step.)

We finally obtain the convergence of the gradients:

Proposition 5.4. For every compact subset K ⊂ R
d and for every α >

0, the following convergence holds in µ and p.µ-probability as ε vanishes:

sup
y∈K

[
∫ +∞

α

∫

Rd
p(ε−1x, ξ)|p−1(ε−1y, ξ)∇xq̄(t, x, y; ε, ξ)

−∇xΓ(t, x, y)|2dx dt

]

(p.)µ−probability
−→ 0.

Moreover, the convergence in Proposition 5.3 is uniform over t ∈ [α,+∞[
and not just over t ∈ [α, α−1].

At this early stage of the paper, the reader can skip (at least for a first
read) the detailed arguments to focus on the sequel of the proof of Theorem
3.2.

5.1. Proof of Proposition 5.1. Consider a smooth function ϕ with a com-
pact support included in ]0, T [×B(0, R), R, T > 0, and a bounded sta-
tionary field h. For ξ ∈ Ξ, consider the following backward Cauchy prob-
lem over [0, T [×R

d (that admits a unique bounded continuous solution in
∩q≥1W

1,2,q
loc ([0, T ] ×R

d), see Theorem 9.1, Chapter IV, in Ladyzhenskaya et
al. [21]):

∂

∂t

[

u(t, x; ε, ξ)
]

+
1

2

d
∑

i,j=1

ai,j(ε
−1x, ξ)

∂2

∂xi∂xj

[

u(t, x; ε, ξ)
]

+ χ(t, x, ε−1x, ξ) = 0, u(T, x) = 0,

with χ(t, x, y, ξ) = ϕ(t, x)h(y, ξ).
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Referring to Theorem 2, Section 10, Chapter II, in Krylov [17], u(0, 0; ε, ξ)
writes:

(5.2) u(0, 0; ε, ξ) = E

∫ T

0
ϕ

(

t, X̄t(ε; 0, ξ)
)

h
(

ε−1X̄t(ε; 0, ξ), ξ
)

dt.

According to the homogenization literature (see e.g. the references in In-
troduction), derive from Theorem 3.1 and from the central limit theorem for
martingale processes (see e.g. Jacod and Shiryaev, Chapter VIII, Section 3)
that, for a.e. ξ ∈ Ξ, X̄(ε; 0, ξ) converges in law on C([0,+∞[,Rd) towards a
non-standard Brownian motion with values in R

d and ā as covariance ma-
trix. Using the tightness of the family (X̄(ε; 0, ξ))ε>0 (see e.g. Pardoux [28]
for the periodic frame) and referring again to Theorem 3.1, it is then plain to
derive from (5.2) that, for a.e. ξ, u(0, 0; ε, ξ) → u(0, 0) as ε vanishes, where
ū denotes the (smooth) solution to the following PDE:

∂ū

∂t
(t, x) +

1

2

d
∑

i,j=1

āi,j
∂2ū

∂xi∂xj
(t, x) + χ̄(t, x) = 0, ū(T, x) = 0,

and χ̄(t, x) the averaged functional E(ph)ϕ(t, x). Of course, the same holds
for every x ∈ R

d: ∀x ∈ R
d, for a.e. ξ ∈ Ξ, u(0, x; ε, ξ) → u(0, x) as ε tends

to zero.

Recall now from Krylov and Safonov [19] that the functions (u(·, ·; ε, ξ))ε,ξ

are uniformly Hölder continuous. Deduce that the expressions “∀x ∈ R
d”

and “for a.e. ξ ∈ Ξ” can be exchanged. In other words, for a.e. ξ ∈ Ξ and
all x ∈ R

d:

lim
ε→0

∫ T

0

∫

Rd
q̄(t, x, y; ε, ξ)ϕ(t, y)h(ε−1y, ξ) dy dt

= E(ph)

∫ T

0

∫

Rd
Γ(t, x, y)ϕ(t, y) dy dt.

(5.3)

We now wish to establish (5.3) with h = p−1. Assume without loss of
generality that ϕ is R+-valued and choose first h = p−1 ∧ n for n ≥ 1.
Deduce from (5.3):

lim inf
ε→0

∫ T

0

∫

Rd
q̄(t, x, y; ε, ξ)p−1(ε−1y, ξ)ϕ(t, y) dy dt

≥ E [p(p−1 ∧ n)]

∫ T

0

∫

Rd
Γ(t, x, y)ϕ(t, y) dy dt.

(5.4)

Let n→ +∞ in (5.3) and derive the lower bound in (5.1).
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The upper bound is more difficult. The strategy relies on Proposition 4.6.
For every ξ ∈ Ξ, for every (t, x, y) ∈]0,+∞[×R

d × R
d:

p−1(y, ξ)q(t, x, y; ξ) ≤ C exp
[

−C−1t−1|x− y|2
]

[
∫

B(x,t1/2)
p(z, ξ)dz

]−1

.

Hence, from (3.5), for a given ε > 0:

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)

≤ C exp
[

−C−1t−1|x− y|2
]

ε−d
[
∫

B(ε−1x,ε−1t1/2)
p(z, ξ)dz

]−1

≤ C exp
[

−C−1t−1|x− y|2
]

[
∫

B(x,t1/2)
p(ε−1z, ξ)dz

]−1

.

(5.5)

Since ϕ vanishes in the neighbourhood of t = 0, there exists α > 0 such
that ϕ(t, x) = 0 for t < α. Deduce from (5.5):

∫ T

0

∫

Rd
q̄(t, x, y; ε, ξ)p−1(ε−1y, ξ)ϕ(t, y) dy dt

≤
∫ T

0

∫

Rd
q̄(t, x, y; ε, ξ)(p−1 ∧ n)(ε−1y, ξ)ϕ(t, y) dy dt

+ C(ϕ, T )

[
∫

B(x,α1/2)
p(ε−1z, ξ)dz

]−1

×
∫

B(0,R)
1]n,+∞[

(

p−1(ε−1y, ξ)
)

dy,

(5.6)

where the constant C(ϕ, T ) may depend on ϕ and T . Plug now (5.3) into
(5.6) with h = p−1 ∧ n and apply the ergodic theorem:

lim sup
ε→0

∫ T

0

∫

Rd
q̄(t, x, y; ε, ξ)p−1(ε−1y, ξ)ϕ(t, y) dy dt

≤ E [p(p−1 ∧ n)]

∫ T

0

∫

Rd
Γ(t, x, y)ϕ(t, y) dy dt

+ C(α,ϕ,R, T )µ{p−1 ≥ n}.

(5.7)

Let n → +∞ in (5.7) and complete the proof (use the separability of
C∞

c (]0,+∞[×R
d) to exchange “∀ϕ” and “a.e.” in (5.1)).

5.2. Proof of Proposition 5.2. For 0 < α < β and a compact subset
K ⊂ R

d, deduce from Proposition 4.6 (see also (5.5)) that for every ξ ∈ Ξ:

sup
[α,β]×K×Rd

[

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
]

≤ C sup
x∈K

[
∫

B(x,α1/2)
p(ε−1z, ξ)dz

]−1

.
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Assume for the moment that there exists y0 ∈ R
d such that K ⊂ B(y0,

α1/2/4). Hence, for every x ∈ K, B(y0, α
1/2/4) ⊂ B(x, α1/2). Thus:

sup
[α,β]×K×Rd

[

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
]

≤ C

[
∫

B(y0,α1/2/4)
p(ε−1z, ξ)dz

]−1

.

Thanks to the ergodic theorem, for a.e. ξ ∈ Ξ:

(5.8) sup
ε∈]0,1]

sup
[α,β]×K×Rd

[

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
]

≤ C(α, ξ),

where the constant C(α, ξ) may depend on α and ξ. Note now that we can
recover a general compact subset K by a finite number of balls of the form
B(y0, α

1/2/4). Hence, (5.8) holds for any compact subset K ⊂ R
d.

Thanks to Propositions 4.8 and 4.9, for a.e. ξ ∈ Ξ, the Hölder norms of
the functions (p−1(ε−1y, ξ) q̄(t, x, y; ε, ξ))ε>0 are uniformly bounded on every
compact subset of ]0,+∞[×R

d×R
d. Apply Proposition 5.1 and deduce that

these functions uniformly converge on compact subsets of ]0,+∞[×R
d ×R

d

towards Γ(t, x, y).

5.3. Proof of Proposition 5.3. To apply Proposition 5.2, write for a cut-
ting function η : R

d → [0, 1], matching 1 on B(0, r) and vanishing outside
B(0, r + 1), r > 0 (remove for the sake of simplicity the index ξ):

∫

Rd
p(ε−1x)|p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)|2dx

=

∫

Rd
p(ε−1x)|p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)|2η(x)dx

+

∫

Rd
p(ε−1x)|p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)|2(1 − η)(x)dx

≡ T (t, y; 1, ε) + T (t, y; 2, ε).

Note that:

sup
α≤t≤α−1

sup
y∈K

T (t, y; 1, ε)

≤ sup
α≤t≤α−1

sup
x∈B(0,r+1)

sup
y∈K

[

|p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)|2
]

×
∫

B(0,r+1)
p(ε−1z)dz.

Thanks to Proposition 5.2 and to the ergodic theorem, supα≤t≤α−1 supy∈K

T (t, y; 1, ε) tends to 0 as ε vanishes (a.s. in ξ).
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Turn now to T (t, y; 2, ε). Recall that the normalized kernel p−1(ε−1y)q̄(t,
x, y; ε) satisfies (5.5) (with respect to the ball B(y, t1/2) instead of the ball
B(x, t1/2), see Proposition 4.6) and that the transition Γ is Gaussian. Hence,

T (t, y; 2, ε) ≤ C

[(
∫

B(y,t1/2)
p(ε−1z)dz

)−2

+ t−d
]

×
∫

Rd
p(ε−1x)(1 − η)(x) exp

[

−C−1t−1|x− y|2
]

dx

≡ T (t, y; 2, 1, ε) × T (t, y; 2, 2, ε).

(5.9)

Assume first that there exists y0 ∈ R
d such that K ⊂ B(y0, α

1/2/4). Then,
for every y ∈ K, B(y0, α

1/2/4) ⊂ B(y, α1/2). Since α ≤ t ≤ α−1, it comes:

T (t, y; 2, 1, ε) ≤ C

[(
∫

B(y0 ,α1/2/4)
p(ε−1z)dz

)−2

+ α−d
]

.

From the ergodic theorem, we derive:

µ−a.s., sup
ε∈]0,1]

sup
α≤t≤α−1

sup
y∈K

T (t, y; 2, 1, ε)

≤ C

[

sup
ε∈]0,1]

(
∫

B(y0,α1/2/4)
p(ε−1z)dz

)−2

+ α−d
]

< +∞.

(5.10)

Finally, consider in (5.9) the supremum of T (t, y; 2, 2, ε) over (t, y) ∈
[α, α−1] ×K. Since |x− y|2 ≥ |x|2/2 − |y|2, we claim:

sup
α≤t≤α−1

sup
y∈K

T (t, y; 2, 2, ε)

≤ exp(Cα−1R2)

∫

Rd
p(ε−1x)(1 − η)(x) exp

[

−C−1α|x|2
]

dx,

with R ≡ supy∈K |y|. Taking the expectation with respect to µ, we get:

E
[

sup
α≤t≤α−1

sup
y∈K

T (t, y; 2, 2, ε)
]

≤ exp(Cα−1R2)

∫

Rd
(1 − η)(x) exp

[

−C−1α|x|2
]

dx.
(5.11)

Let us now conclude. Fix to this end δ > 0. From (5.10), we can find M >
0 (M being independent of η) such that, for all ε ∈]0, 1], supα≤t≤α−1 supy∈K

T (t, y; 2, 1, ε) is bounded by M up to the (µ-)probability δ/3. For this M ,
we can choose r (r + 1 being the radius of the support of η) large enough
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in (5.11) to bound, for all ε ∈]0, 1], supα≤t≤α−1 supy∈K T (t, y; 2, 2, ε) by
δ/(2M) up to the (µ-)probability δ/3. In particular, up to the (µ-)probability
2δ/3, supα≤t≤α−1 supy∈K T (t, y; 2, ε) is bounded for all ε ∈]0, 1] by δ/2.
Choose now ε small enough to bound supα≤t≤α−1 supy∈K T (t, y; 1, ε) by δ/2
up to the (µ-)probability δ/3 and complete the proof when K is included in
B(y0, α

1/2/4). In the general case, the compact set K can be covered with a
finite number of balls of radius α1/2/4.

5.4. Proof of Proposition 5.4. Recall first that for all ξ ∈ Ξ and y ∈
R

d, the function p−1(y, ξ)q(t, x, y; ξ) is a solution (in (t, x)) to the operator
∂t−Lξ. Apply the scaling procedure (3.5) and derive for ε > 0 and (t, x, y) ∈
]0,+∞[×R

d × R
d:

∂
[

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
]

∂t

−
1

2

d
∑

i,j=1

ai,j(ε
−1x, ξ)

∂2
[

p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)
]

∂xi∂xj
= 0.

(5.12)

Apply Theorem 7, Section 6, Chapter IX, in Friedman [11] and note that
q̄(t, x, y; ε, ξ) is a smooth function in (t, x). In particular, (5.12) holds in a
strong sense. Note also that q̄(t, x, y; ε, ξ), ∇xq̄(t, x, y; ε, ξ) and ∇2

x,xq̄(t, x, y;

ε, ξ) are bounded on every set [α, β] × R
d × R

d, β > α, by C(α, β, ε)
exp(−(C(α, β, ε))−1|x− y|2).

Recall that the Gaussian kernel Γ (see Proposition 5.1) satisfies for (t, x, y)
∈]0,+∞[×R

d × R
d:

∂Γ(t, x, y)

∂t
−

1

2

d
∑

i,j=1

ai,j
∂2Γ(t, x, y)

∂xi∂xj
= 0.

We then deduce for (t, x, y) ∈]0,+∞[×R
d × R

d (remove the index ξ):

∂
[

p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)
]

∂t

−
1

2

d
∑

i,j=1

ai,j(ε
−1x)

∂2
[

p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)
]

∂xi∂xj

=
1

2

d
∑

i,j=1

[

ai,j(ε
−1x) − ai,j

]∂2Γ(t, x, y)

∂xi∂xj
.

(5.13)

Thanks to the previous Gaussian bounds and to Proposition 4.10 (growth
of p), we can multiply both sides in (5.13) by p(ε−1x)[p−1(ε−1y)q̄(t, x, y; ε)−
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Γ(t, x, y)] and integrate with respect to x ∈ R
d. Since p(ε−1x, ξ) satisfies in x

the adjoint equation (L̄ε,ξ)∗ (p(ε−1x, ξ)) = 0, an integration by parts yields
for a suitable constant C > 0 and for every t ≥ α:

∫

Rd
p(ε−1x)

[

p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)
]2
dx

+ C−1
∫ t

α

∫

Rd
p(ε−1x)

∣

∣∇x
[

p−1(ε−1y)q̄(s, x, y; ε)
]

−∇xΓ(s, x, y)
∣

∣

2
dx ds

≤
∫

Rd
p(ε−1x)

[

p−1(ε−1y)q̄(α, x, y; ε) − Γ(α, x, y)
]2
dx

+
1

2

d
∑

i,j=1

∫ t

α

∫

Rd

[

p(ε−1x)
[

ai,j(ε
−1x) − ai,j

]

×
∂2Γ(s, x, y)

∂xi∂xj

[

p−1(ε−1y)q̄(s, x, y; ε) − Γ(s, x, y)
]

]

dx ds.

(5.14)

The proof of Proposition 5.4 then follows from Proposition 5.3 and from
the following Lemma:

Lemma 5.5. Under Assumption of Proposition 5.4,

sup
t≥α

sup
y∈K

∣

∣

∣

∣

∫ t

α

[ d
∑

i,j=1

∫

Rd
p(ε−1x)

[

ai,j(ε
−1x) − ai,j

]∂2Γ(s, x, y)

∂xi∂xj

×
[

p−1(ε−1y)q̄(s, x, y; ε) − Γ(s, x, y)
]

dx

]

ds

∣

∣

∣

∣

µ−probability
−→ 0.

Proof. Recall first that the second order derivatives of Γ satisfy for all
(t, x, y) ∈]0,+∞[×R ×K (denote R ≡ supy∈K |y|):

∣

∣∇2
x,xΓ(t, x, y)

∣

∣

≤ Ct−d/2−1[1 + t−1|x− y|2
]

exp(−C−1t−1|x− y|2)

≤ Ct−d/2−1[1 + t−1(R2 + |x|2)
]

exp(Ct−1R2 − C−1t−1|x|2).

(5.15)

Fix now T > α and deduce from the Cauchy-Schwartz inequality and
from Proposition 5.3:

sup
y∈K

[
∫ T

α

∣

∣

∣

∣

d
∑

i,j=1

∫

Rd
p(ε−1x)

[

ai,j(ε
−1x) − ai,j

]∂2Γ(s, x, y)

∂xi∂xj

×
[

p−1(ε−1y)q̄(s, x, y; ε) − Γ(s, x, y)
]

dx

∣

∣

∣

∣

ds

]

µ−probability
−→ 0.

(5.16)
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It thus remains to establish the convergence of the above integral over the
interval [T,+∞[. Follow the proof of Proposition 5.3 (and in particular (5.9))
and assume for the moment that K ⊂ B(y0, T

1/2/4) for a given y0 ∈ R
d.

Then, for t ≥ T ,

sup
y∈K

∫

Rd

[

p(ε−1x)
∣

∣ai,j(ε
−1x) − ai,j

∣

∣

∣

∣

∂2Γ(t, x, y)

∂xi∂xj

∣

∣

×
(

p−1(ε−1y)q̄(t, x, y; ε) + Γ(t, x, y)
)

]

dx

≤ C exp(Ct−1R2)

[

sup
y∈K

(
∫

B(y,t1/2)
p(ε−1z)dz

)−1

+ t−d/2
]

×

[
∫

Rd
p(ε−1x)t−d/2−1[1 + t−1(R2 + |x|2)

]

exp
[

−C−1t−1|x|2
]

dx

]

≤ C exp(CT−1R2)

[

td/2
(

∫

B(y0,t1/2/4)
p(ε−1z)dz

)−1

+ 1

]

×

[
∫

Rd
p(ε−1x)t−d−1[1 + t−1(R2 + |x|2)

]

exp
[

−C−1t−1|x|2
]

dx

]

≡ C exp(CT−1R2) × S(t; 1, ε) × S(t; 2, ε).

(5.17)

Note that S(t; 1, ε) =
(∫

B(t−1/2y0,1/4) p(ε
−1t1/2z)dz

)−1
+ 1.

In particular, following (5.10), we can prove from the ergodic theorem that
supt≥T supε∈]0,1] S(t; 1, ε) is a.s. finite. Similarly to (5.11), the expectation

E [
∫ +∞
T |S(t; 2, ε)|dt] can be made, uniformly in ε, as small as necessary by

choosing T large.

6. Resolvent Equation. In this new section, we investigate the resol-
vent equation −L∗(pu(·; ε)) + ε2pu(·; ε) = pf , ε > 0.

(First Step.)

In this frame, we first prove:

Proposition 6.1. The family (Tx)x∈Rd defines a strongly continuous
group on L2(Ξ,p.µ) (so that the realization of a field in L2(Ξ,p.µ) belongs
to L2

loc(R
d)). The intersection of the domains of the generators D1, . . . , Dd is

denoted by H(Ξ,p.µ) (the definitions of (Dih)1≤i≤d coincide if h ∈ H(Ξ, µ)∩
H(Ξ,p.µ) since the convergences in µ and p.µ-probability are equivalent).

Moreover, for every k ∈ H(Ξ,p.µ), pk ∈ W 1,1(Ξ, µ) with D(pk) ∈
L2(Ξ,p−1.µ; Rd), and the following integration by parts holds for all h ∈
H(Ξ,p.µ) and i ∈ {1, . . . , d}:

(6.1) E
[

p(Dih)k
]

= −E
[

hDi(pk)
]

.
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Finally, for every h ∈ H(Ξ,p.µ), h(·, ξ) ∈ H1
loc(R

d) for a.e. ξ ∈ Ξ and
∇xh(x, ξ) = Dh(Txξ) almost everywhere in x.

We then investigate the resolvent equation:

Theorem 6.2. For a given h ∈ L2(Ξ,p.µ) and for every ε > 0, there
exists a unique stationary field v(·; ε) in the domain of p−1L∗(p·) (adjoint
operator of L with respect to the scalar product induced by p) such that:

−p−1L∗(pv(·; ε)) + ε2v(·; ε) = h.

It writes:

v(ξ; ε) =

∫ +∞

0

[

exp(−ε2t)
∫

Rd
h(Tyξ)p(y, ξ)p

−1(0, ξ)q(t, y, 0; ξ)dy

]

dt.

= ε−2
∫ +∞

0

[

exp(−t)

×
∫

Rd
h(Tε−1yξ)p(ε

−1y, ξ)p−1(0, ξ)q̄(t, y, 0; ε, ξ)dy

]

dt.

(6.2)

Moreover, for every h ∈ L2(Ξ,p.µ), the solution v(·; ε) belongs to the
space H(Ξ,p.µ). In this frame:

(6.3)
1

2
E(p〈aDv(·; ε), Dv(·; ε)〉) + ε2E(p|v(·; ε)|2) = E(pv(·; ε)h).

(Second Step.)

For h = f in Theorem 6.2, we write u(·; ε) for the solution to the resolvent
equation. Since f = p−1D`(pg), derive from (6.1) (since Dg ∈ L∞(Ξ, µ; Rd),
g ∈ H(Ξ,p.µ)) that E(pu(·; ε)f) = −E(pgD`u(·; ε)). Due to Assumption
(A.1), (6.3) yields:

(6.4) sup
ε>0

[

E(p|Du(·; ε)|2) + ε2E(pu2(·; ε))
]

< +∞.

We then prove the following asymptotic property for the family (u(·; ε))ε>0:

Theorem 6.3. For every compact subset K ⊂ R
d, the following conver-

gence holds in µ-probability and p.µ-probability as ε vanishes:

ε2
∫

K
p(ε−1x, ξ)u2(ε−1x; ε, ξ)dx

(p.)µ−probability
−→ 0.
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(Third Step.)

We finally improve Theorem 6.3:

Theorem 6.4. The family (u(·; ε))ε>0 satisfies: lim
ε→0

ε2E(pu2(·; ε)) = 0.

This result is well-known in homogenization theory and usually derives
from the properties of the weak limits of the sequence (Du(·; ε))ε>0. Indeed,
if we manage to prove that every weak limit Ψ ∈ L2(Ξ,p.µ; Rd) of the
sequence (Du(·; ε))ε>0 satisfies E(p〈aΨ,Ψ〉) = −2E(pgΨ`), we easily deduce
that Theorem 6.4 holds true (see e.g. Olla [24], Chapter I). Unfortunately,
we are not able to directly prove such an equality. Too little properties for
the density p are available. The strategy then follows from Theorem 6.3.

6.1. Proof of Proposition 6.1. Consider first a function h ∈ L2(Ξ,p.µ).
Due to Lemma 4.1 and to Proposition 4.10, Txh still belongs to L2(Ξ,p.µ) for
every x ∈ R

d. We then aim to prove that limx→0 E(p(Txh− h)2) = 0. Since
the function h is µ-a.s. finite, h satisfies (RM4) (stochastic continuity of the
group (Tx)x∈Rd). It is then sufficient to prove that the family (p(h(Tx·) −
h)2)x∈B(0,1/4) is uniformly integrable with respect to µ. For A ∈ G:

E
[

1Ap(h(Tx·) − h)2
]

≤ 2E
[

1Aph2(Tx·)
]

+ 2E
[

1Aph2].

There is no difficulty to handle the second term in the r.h.s.. Focus then
on the first one. Thanks to (RM1) (stationarity of the medium), to Lemma
4.1 and to Proposition 4.10, it writes for x ∈ B(0, 1/4):

(6.5) E
[

1Aph2(Tx·)
]

= E
[

1A(T−x·)p(T−x·)h
2] ≤ CE

[

1A(T−x·)ph2].

Since µ(TxA) = µ(A), we derive that the family (p(h(Tx·)−h)2)x∈B(0,1/4)

is U.I. and thus establish the announced strong continuity property.
Turn now to the proof of the integration by parts (6.1). Following the

previous construction of H(Ξ,p.µ), we can define in a similar way the
space H(Ξ,p−1.µ) (mention carefully that p−1.µ is just σ-finite). Since
p ∈ L1(Ξ, µ), it is well seen that H(Ξ,p−1.µ) ⊂ W 1,1(Ξ, µ). In particu-
lar, the notation DiΦ, for Φ ∈ H(Ξ,p−1.µ) and i ∈ {1, . . . , d}, still makes
sense.

From standard computations, we deduce that the product hΦ belongs to
W 1,1(Ξ, µ) if h ∈ H(Ξ,p.µ) and Φ ∈ H(Ξ,p−1.µ). For all i ∈ {1, . . . , d},
Di(hΦ) writes hDiΦ + ΦDih.

Thanks to Propositions 4.10 and 4.11, it is plain to prove that pk ∈
H(Ξ,p−1µ) for k ∈ H(Ξ,p.µ). The integration by parts (6.1) follows easily.

The last assertion follows from Proposition 4.10 and from (7.18) in Zhikov
et al. [36].
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6.2. Proof of Theorem 6.2. Since p.µ is invariant for η, (St)t≥0 defines a
contraction semigroup on L2(Ξ,p.µ) (see Subsection 2.3 for the definition of
(St)t≥0). Following Subsection 2.3, we derive from Proposition 6.1 (strong
continuity of (Tx)x∈Rd on L2(Ξ,p.µ)) that (St)t≥0 is strongly continuous.
The domain of L, seen as an operator on L2(Ξ,p.µ), is denoted by Dp(L).
It contains W 2,∞(Ξ, µ).

We are now in position to construct the semigroup for p−1L∗(p·):

Proposition 6.5. Define for a function h ∈ L1(Ξ,p.µ) and a real t ≥ 0
the following mapping:

Rth : ξ ∈ Ξ 7→
∫

Rd
h(Txξ)p(Txξ)p

−1(ξ)q(t, x, 0; ξ)dx (= h(ξ) if t = 0).

Then, (Rt)t≥0 is a family of contractions on L1(Ξ,p.µ) and induces a fam-
ily of contractions on L∞(Ξ, µ). Moreover, it defines a strongly continuous
contraction semigroup on L2(Ξ,p.µ) whose generator is the adjoint of L seen
as an operator on L2(Ξ,p.µ). This generator writes formally p−1L∗(p·),
where L∗ denotes the adjoint of L seen as an operator on L2(Ξ, µ). Its do-
main is given by:

Dp(p−1L∗(p·))

= {h ∈ L2(Ξ,p.µ), ∃c ≥ 0, ∀l ∈W 2,∞(Ξ, µ), E [phL(l)]2 ≤ cE [p|l|2]},

and for h ∈ Dp(p−1L∗(p·)) and l ∈ Dp(L), E [p(p−1L∗(ph))l] = E [phL(l)].
In particular, W 2,∞(Ξ, µ) is included in Dp(p−1L∗(p·)).

Proof. Note first from Lemma 7.1 in Zhikov et al. [36] that Rth is well
defined for h ≥ 0 (i.e. Rth = Rth̃ a.s. for h = h̃ a.s.).

From (2.4), for all h ≥ 0 and t > 0:

E [p(Rth)] =

∫

Rd

[
∫

Ξ
h(Txξ)p(Txξ)q(t, x, 0; ξ)dµ(ξ)

]

dx

=

∫

Rd

[
∫

Ξ
h(Txξ)p(Txξ)q(t, 0,−x;Txξ)dµ(ξ)

]

dx

=

∫

Rd

[
∫

Ξ
h(ξ)p(ξ)q(t, 0,−x; ξ)dµ(ξ)

]

dx = E(hp).

(6.6)

Recall that q(t, 0,−x; ξ) is a density (in x) over R
d to derive the last equality.

Deduce in particular that Rth defines an element of L1(Ξ,p.µ) for h ∈
L1(Ξ,p.µ). It is then readily seen that Rt is a contraction on L1(Ξ,p.µ).
We now prove that it defines a contraction on L2(Ξ,p.µ) and L∞(Ξ, µ). We
need to this end the following lemma:
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Lemma 6.6. For every ξ ∈ Ξ, the function x ∈ R
d 7→ p−1(0, ξ)p(x, ξ)

q(t, x, 0; ξ) is a density.

Proof of Lemma 6.6. Since p(x, ξ) is at most of exponential growth
(see Proposition 4.10) and is continuous with respect to the first argument,
derive from Theorem 15, Chapter I, in Friedman [11], that for every ξ ∈ Ξ:

(6.7) lim
t→0

∫

Rd
p−1(0, ξ)p(x, ξ)q(t, x, 0; ξ)dx = 1.

Recall now that q(t, x, 0; ξ) is a solution to the operator ∂t − Lξ and
satisfies the bounds given in the proof of Proposition 5.4. Hence,

d

dt

[
∫

Rd
p−1(0, ξ)p(x, ξ)q(t, x, 0; ξ)dx

]

=
1

2

d
∑

i,j=1

∫

Rd
p−1(0, ξ)p(x, ξ)ai,j(x, ξ)

∂2q

∂xi∂xj
(t, x, 0; ξ)dx.

Since p(x, ξ) is a solution to the adjoint equation (Lξ)∗(p(·, ξ)) = 0, the
above l.h.s. is equal to zero. From (6.7), we complete the proof.

End of the Proof of Proposition 6.5. Thanks to Lemmas 4.1 and
6.6, it is readily seen that Rt is a contraction on L∞(Ξ, µ) (recall by the way
that L∞(Ξ, µ) is also L∞(Ξ,p.µ) since µ and p.µ are equivalent). From the
Cauchy-Schwarz inequality, it is also a contraction on L2(Ξ,p.µ).

Thanks to the Chapman-Kolmogorov equation (applied to the kernel
q(t, x, y; ξ)), it is plain to see that (Rt)t≥0 defines a semigroup on L2(Ξ,p.µ).
It thus remains to prove that the semigroup is strongly continuous. For t > 0
and h ∈ L2(Ξ,p.µ), deduce from Lemma 6.6 and Proposition 2.1:

E [p(Rth − h)2]

≤ E

[
∫

Rd
[h(Txξ) − h(ξ)]2p(Txξ)q(t, x, 0; ξ)dx

]

≤ Ct−d/2 exp(Ct)E

[
∫

Rd
p(Txξ)[h(Txξ) − h(ξ)]2 exp(−C−1t−1|x|2)dx

]

= Ct−d/2 exp(Ct)

∫

Rd
E

[

p(ξ)[h(Txξ) − h(ξ)]2
]

exp(−C−1t−1|x|2)dx

= C exp(Ct)

∫

Rd
E

[

p(ξ)[h(Tt1/2xξ) − h(ξ)]2
]

exp(−C−1|x|2)dx.

Following Subsection 2.3, we derive the strong continuity property (apply
Proposition 4.10 to establish the domination condition E(p(ξ)h2(Tt1/2xξ)) ≤
exp(Ct1/2|x|)E(ph2)).
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Compute finally the generator A of (Rt)t≥0. For h, l ∈ L2(Ξ,p.µ), it is
well-seen that E [p(Rth)l] = E [ph(Stl)], where (St)t≥0 denotes the semigroup
associated to L. Hence, for h in the domain of A and l in the domain of L,
E [p(Rth − h)l] = E [ph(Stl − l)]. In particular, E [pA(h)l] = E [phL(l)]. We
easily derive that A matches p−1L∗(p·).

The representation for Dp(p−1L(p·)) given in the statement of Propo-
sition 6.5 is well-known when W 2,∞(Ξ, µ) is replaced by Dp(L). To ob-
tain the announced representation, we need to prove that for every l ∈
Dp(L), there exists (ln)n≥0 ∈ (W 2,∞(Ξ, µ))N, such that (ln,Lln) → (l,Ll)
in L2(Ξ,p.µ; R2). This can be done as follows. Referring to the next para-
graph (end of the proof of Theorem 6.2), we can prove that (I − L)−1 (I
denotes the identity) maps S∞ into W 2,∞(Ξ, µ). Considering a sequence
(hn)n≥0 ∈ SN

∞ converging towards (I − L)l in L2(Ξ,p.µ) (obviously, S∞ is
dense in L2(Ξ,p.µ)), we can choose ln ≡ (I −L)−1(hn), so that ln tends to-
wards (I−L)−1((I−L)l) = l in L2(Ξ,p.µ). Since (I−L)ln = hn → (I−L)l,
we derive that Lln → Ll in L2(Ξ,p.µ).

It now remains to prove that W 2,∞(Ξ, µ) ⊂ Dp(p−1L∗(p·)). Choose h and
l in W 2,∞(Ξ, µ) and investigate E(phLl) = (1/2)

∑d
i,j=1 E(pai,jhD

2
i,jl). It is

clear that hl ∈W 2,∞(Ξ, µ) and that D2
i,j(hl) = hD2

i,jl + lD2
i,jh +DihDjl +

DjhDil. Since L∗(p) = 0, it comes E(phLl) = −E(p(Lh)l)−E(p〈aDh, Dl〉).
Apply the integration by parts (6.1) to complete the proof.

End of the Proof of Theorem 6.2. The first integral writing of v(·; ε)
(see (6.2)) directly follows from Proposition 6.5 and Lemma 4.1 (to identify
p(ξ) with p(0, ξ) in Rth). The second writing follows from an obvious change
of variable.

We now prove, for a given ε > 0, that v(·; ε) belongs toH(Ξ,p.µ). Assume
first that h belongs to the space S∞ and show that v(x; ε, ξ) ≡ v(Txξ; ε) is
a strong solution to the realization of the resolvent equation.

Referring to (4.1) and to the proof of Proposition 4.11, for every ξ ∈ Ξ, the
operator p−1(·, ξ)(Lξ)∗(p(·, ξ)·) develops in a non-divergence form, with a as
diffusion matrix, with a bounded and Hölder continuous drift and with a null
zero order term. Therefore, there exists a bounded classical solution w to
the equation −p−1(x, ξ)(Lξ)∗(p(x, ξ)w(x))+ε2w(x) = h(x, ξ) (see Theorems
4.3.1 and 4.3.2 in Krylov [18]). Since the first order term of the PDE admits
Hölder continuous derivatives, w admits bounded derivatives of order one,
two and three (refer to the Schauder theory, Friedman [11], Chapter III,
Section 3) and the common bound for w, ∇xw, ∇2

x,xw and ∇3
x,x,xw does not

depend on ξ. Moreover, due to Theorem 15, Chapter I, in Friedman [11], w
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writes:

(6.8) w(x) =

∫ +∞

0

[

exp(−ε2t)
∫

Rd
h(y, ξ)p(y, ξ)p−1(x, ξ)q(t, y, x; ξ)dy

]

dt.

Comparing (6.8) to (6.2), v(·; ε, ξ) admits for a.e. ξ ∈ Ξ a smooth version
that satisfies the realization of the resolvent equation in a strong sense. In
the sequel, we identify v(·; ε, ξ) with this version, so that, for every ξ ∈ Ξ,
v(·; ε, ξ) is three times differentiable with bounded derivatives. The bound
for the derivatives does not refer to ξ. Following Lemma 4.1, for every x ∈ R

d,
v(x; ε, ξ) and v(Txξ; ε) coincide for a.e. ξ ∈ Ξ.

Thanks to the mean value theorem, it is then well seen that v (and Dv)
belongs to ∩q>1W

1,q(Ξ, µ) and to H(Ξ,p.µ). Of course, Dv and D2v are
bounded, so that v ∈ Dp(L) ∩ Dp(p−1L∗(p·)). Proposition 6.5 applies:

E
(

p(p−1L∗(pv))v
)

= E(pvL(v)).

Standard computations show that L(v2) = 2vL(v)+ 〈aDv, Dv〉. Since p
satisfies L∗(p) = 0, this proves that:

(6.9) E
(

p(p−1L∗(pv))v
)

= E(pvL(v)) = −(1/2)E(p〈aDv, Dv〉).

Plug (6.9) into the resolvent equation in Theorem 6.2 to get (6.3).
It now remains to conclude when h 6∈ S∞. In this case, there exists

a sequence (hn)n≥0 ∈ SN
∞ converging to h in L2(Ξ,p.µ). Since (ε2I −

p−1L∗(p·))−1 is a bounded operator (I denotes the identity), the regular-
ized solutions vn(·; ε) to the resolvent equation converge in the same space
towards v(·; ε).

Thanks to (6.3) applied to the sequence (vn(·; ε))n≥0, deduce that the
sequence (Dvn(·; ε))n≥0 is bounded in L2(Ξ,p.µ; Rd). Thanks to the Mazur
theorem, there exists a sequence of convex combinations of (Dvn(·; ε))n≥0,
still denoted by (Dvn(·; ε))n≥0, that converges in L2(Ξ,p.µ; Rd). The limit
is denoted by (w1, · · · ,wd). Of course, the re-indexed sequences (hn)n≥0

and (vn(·; ε))n≥0 still converge towards h and v(·; ε) (and sill satisfy the
resolvent equation).

The strategy now consists in identifying w with Dv. We seek first for
uniform controls for Dvn(·; ε) and D2vn(·; ε). Apply to this end Theorem
9.11 in Gilbarg and Trudinger [13] and deduce from Proposition 4.10 (to
obtain the second term in the r.h.s. below):

∫

B(0,1/2)
|∇x,xvn(x; ε, ξ)|2dx

≤ Cp−1(0, ξ)

[
∫

B(0,1)

(

v2
n(x; ε, ξ) + h2

n(x, ξ)
)

p(x, ξ)dx

]

.

(6.10)



34 F. DELARUE

Complete now the proof. For i ∈ {1, . . . , d} and δ ∈ R \ {0}:

E
[

p
∣

∣δ−1(v(Tδei
·; ε) − v(·; ε)

)

−wi

∣

∣

2]

= lim
n→+∞

E
[

p
∣

∣δ−1(

vn(Tδei
·; ε) − vn(·; ε)

)

−Divn(·; ε)
∣

∣

2]

= 4dV −1
d lim

n→+∞
E

[
∫

B(0,1/4)
p(x, ξ)

×
∣

∣δ−1(vn(x+ δei; ε, ξ) − vn(x; ε, ξ)
)

−
∂vn

∂xi
(x; ε, ξ)

∣

∣

2
dx

]

≤ 4dV −1
d lim sup

n→+∞
E

[
∫

B(0,1/4)
p(x, ξ)

×

[
∫ 1

0

[∂vn

∂xi
(x+ λδei; ε, ξ) −

∂vn

∂xi
(x; ε, ξ)

]2
dλ

]

dx

]

≤ 4dV −1
d δ lim sup

n→+∞
E

[
∫

B(0,1/4)
p(x, ξ)

×

[
∫ 1

0

∫ 1

0
|∇2

x,xvn|
2(x+ λµδei; ε, ξ)dλ dµ

]

dx

]

.

Apply again Proposition 4.10 to bound p(x, ξ) by Cp(0, ξ) (at least for δ
small) and (6.10) to bound the partial derivatives of order two:

E
[

p
∣

∣h−1(v(Tδei
·; ε) − v(·; ε)

)

−wi

∣

∣

2]

≤ Cδ lim sup
n→+∞

E [p(|vn|
2(·; ξ)| + |hn|

2)].
(6.11)

From (6.3), bound the r.h.s. in (6.11) and deduce that v(·; ε) ∈ H(Ξ,p.µ).
Apply again (6.3) to the (re-indexed sequences) (hn)n≥0, (vn(·; ε))n≥0 and
(Dvn(·; ε))n≥0 and deduce that (6.3) holds for v(·; ε).

6.3. Strategy to Prove Theorem 6.3. Consider first, for a given ε > 0, the
realization of the resolvent equation −p−1(x, ξ)(Lξ)∗(p(x, ξ)w(x))+ε2w(x) =
f(x, ξ). Since f(x, ξ) is not smooth in x, we cannot solve this PDE in a strong
sense as in the previous discussion. Considering a regularizing sequence for
the bounded function f(x, ξ), we can still build a sequence of regularized
solutions with uniform bounds in ∩q≥1W

2,q
loc (Rd) (apply again Theorem 9.11

in Gilbarg and Trudinger [13]). Extracting a converging subsequence, this
provides a bounded continuous solution in ∩q≥1W

2,q
loc (Rd) to the realization of

the resolvent equation (due to the Sobolev imbedding theorems, its gradient
is also bounded and continuous). Passing to the limit in (6.8), the resulting
solution writes:

(6.12) w(x) =

∫ +∞

0

[

exp(−ε2t)
∫

Rd
f(y, ξ)p(y, ξ)p−1(x, ξ)q(t, y, x; ξ)dy

]

dt.
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Up the choice of a version for the stationary field f , (6.2) and (6.12) permit
to define, for every ε > 0, a smooth version (i.e. bounded and continuous
with a bounded and continuous gradient and with second order derivatives
in ∩q≥1L

q
loc(R

d)) for the realization of the field u(·; ε). The resulting map-
ping u(·; ε, ·) : R

d × Ξ → R is jointly measurable in (x, ξ) and satisfies the
realization of the resolvent equation for every ξ ∈ Ξ. Following Lemma 4.1,
for every x ∈ R

d, u(x; ε, ξ) and u(Txξ; ε) coincide for almost every ξ.
Consider now a given smooth cut-off function η from R

d into [0, 1], match-
ing 1 on B(0, r) and vanishing outside B(0, r + 1), r > 0, and focus on the
product u(y; ε, ξ)η(εy), the environment ξ being fixed. From standard com-
putations, we claim that the cut-off solution satisfies:

− p−1(x, ξ)(Lξ)∗
[

p(x, ξ)u(x; ε, ξ)η(εx)
]

+ ε2u(x; ε, ξ)η(εx)

= f(x, ξ)η(εx)

− ε〈a(x, ξ)∇xu(x; ε, ξ),∇xη(εx)〉

− ε〈B(x, ξ),∇xη(εx)〉u(x; ε, ξ)

−
1

2
ε2〈a(x, ξ),∇2

x,xη(εx)〉u(x; ε, ξ)

≡ f(x, ξ)η(εx) +m(x; ε, ξ),

(6.13)

with Bj(x, ξ) ≡ p−1(x, ξ)
∑d

i=1 ∂[ai,jp]/∂xi(x, ξ), 1 ≤ j ≤ d.
As above, the product u(x; ε, ξ)η(εx) writes:

u(x; ε, ξ)η(εx) =

∫ +∞

0

[

exp(−ε2t)
∫

Rd

(

f(y, ξ)η(εy) +m(y; ε, ξ)
)

× p(y, ξ)p−1(x, ξ)q(t, y, x; ξ)dy

]

dt.

(6.14)

Deduce from an obvious change of variable in (t, x, y):

u(ε−1x; ε, ξ)η(x)

= ε−2
∫ +∞

0

[

exp(−t)
∫

Rd

(

f(ε−1y, ξ)η(y) +m(ε−1y; ε, ξ)
)

× p(ε−1y, ξ)p−1(ε−1x, ξ)q̄(t, y, x; ε, ξ)dy

]

dt.

(6.15)

Assume for the moment the following results:

Proposition 6.7. Define for ξ ∈ Ξ and (t, x) ∈ [0,+∞[×R
d:

m̄(t, x; ε, ξ) ≡ ε−1
∫ t

0
exp(−s)

∫

Rd

[

f(ε−1y, ξ)η(y) +m(ε−1y; ε, ξ)
]

× p(ε−1y, ξ)p−1(ε−1x, ξ)q̄(s, y, x; ε, ξ)dy ds.
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Then, for every r > 0 (recall that r + 1 denotes the radius of the support
of η) and for every δ > 0, there exists α(δ, r) > 0 such that:

∀ε > 0, ∀t ≤ α(δ, r), µ

{
∫

Rd
m̄2(t, x; ε, ξ)p(ε−1x, ξ)dx > δ

}

≤ δ.

Proposition 6.8. For every compact subset K ⊂ R
d and for every δ >

0, there exists r(δ) > 0, such that:

∀α > 0, ∀r > r(δ), ∃ε(δ, α, r) > 0, ∀ε < ε(δ, α, r),

µ

{

ε−1 sup
x∈K

∣

∣

∣

∣

∫ +∞

α
exp(−t)

∫

Rd

[

f(ε−1y, ξ)η(y) +m(ε−1y; ε, ξ)
]

× p(ε−1y, ξ)p−1(ε−1x, ξ)q̄(t, y, x; ε, ξ)dy dt

∣

∣

∣

∣

> δ

}

≤ δ.

Proof of Theorem 6.3. Fix a compact set K ⊂ R
d and a real δ > 0 and

choose r large enough such that B(0, r) ⊃ K and r > r(δ) in Proposition
6.8. Choose then α < α(δ, r) in Proposition 6.7. Choose finally ε < ε(δ, α, r)
in Proposition 6.8. To conclude, note from (6.15) that, for every x ∈ K,
εu(ε−1x; ε, ξ) writes as the sum of the terms considered in Propositions 6.7
and 6.8.

6.4. Proof of Proposition 6.7. Consider ξ ∈ Ξ, ε > 0 and α ∈]0, 1].
Remove for the sake of simplicity the index ξ in the notations m̄ and m. It
is then well seen that m̄ satisfies in ∩q≥1W

1,2,q
loc ([0, α] × R

d) the PDE (see
Theorem 9.1, Chapter IV, in Ladyzhenskaya et al. [21] and Theorem 15,
Chapter I, in Friedman [11]):

∂m̄(t, x; ε)

∂t
−

1

2
p−1(ε−1x)

d
∑

i,j=1

∂2

∂xi∂xj

[(

ai,jp
)

(ε−1x)m̄(t, x; ε)
]

+ m̄(t, x; ε) = ε−1[f(ε−1x)η(x) +m(ε−1x; ε)
]

, (t, x) ∈]0, α] × R
d.

(6.16)

Referring to (6.13), the function fη(ε·)+m(·; ε) is bounded by a constant
Cε > 0 depending on ε (indeed, f is bounded and m is continuous with
a compact support) and vanishes outside B(0, r + 1). From Propositions
2.1 and 4.10, the quantity |m̄|(t, x; ε) can be bounded by Cε exp(Cε(r +
|x|))

∫ t
0

∫

B(0,r+1) s
−d/2 exp(−C−1

ε s−1|x− y|2) dy ds. For |x| > 2(r + 1), every
y ∈ B(0, r + 1) satisfies |x− y| > |x|/2. Hence,

|m̄(t, x; ε)| ≤ Cε exp(Cε(r + |x|) − C−1
ε |x|2/8)

×
∫ t

0
s−d/2

∫

B(0,r+1)
exp(−C−1

ε s−1|x− y|2/2)dy

≤ Cε exp(Cε(r + |x|) − C−1
ε |x|2/8).
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From the gradient estimate in Friedman [11], Chapter VII, Section 2, The-
orem 4, similar bounds hold for large x for the first x-derivatives of m̄(·, ·; ε)
(recall from (A2) that a(x, ξ) is smooth in x). Due to the exponential growth
of p, we can multiply both sides in (6.16) by m̄(t, x; ε)p(ε−1x) and integrate
with respect to (t, x). An integration by parts yields:

1

2

∫

Rd
m̄2(t, x; ε)p(ε−1x)dx−

1

2

∫

Rd
m̄2(0, x; ε)p(ε−1x)dx

+
1

2

d
∑

i,j=1

∫ t

0

∫

Rd

∂

∂xi

[

(ai,jp)(ε
−1x)m̄(s, x; ε)

] ∂m̄

∂xj
(s, x; ε)dx ds

+

∫ t

0

∫

Rd
m̄2(s, x; ε)p(ε−1x)dx ds

= ε−1
∫ t

0

∫

Rd
m̄(s, x; ε)m(ε−1x; ε)p(ε−1x)dx ds

+ ε−1
∫ t

0

∫

Rd
m̄(s, x; ε)(fp)(ε−1x)η(x)dx ds

(6.17)

Since L∗(p) = 0, the second order term in (6.17) writes 1
2

∑d
i,j=1

∫ t
0

∫

Rd

(

ai,j

p
)

(ε−1x)(∂m̄/∂xi)(s, x; ε)(∂m̄/∂xj)(s, x; ε)dx ds. Thanks to (A.1) (elliptic-
ity of a), deduce from the boundary condition m̄(0, x) = 0 that:

T (t; ξ) ≡
1

2

∫

Rd
m̄2(t, x; ε)p(ε−1x)dx

+ C−1
∫ t

0

∫

Rd
p(ε−1x)|∇xm̄|2(s, x; ε)dx ds

+

∫ t

0

∫

Rd
m̄2(s, x; ε)p(ε−1x)dx ds

≤ ε−1
∫ t

0

∫

Rd
m̄(s, x; ε)m(ε−1x; ε)p(ε−1x)dx ds

+ ε−1
∫ t

0

∫

Rd
m̄(s, x; ε)(fp)(ε−1x)η(x)dx ds.

(6.18)

Recall that m is given by (6.13). Plug (6.13) into (6.18) and deduce:

T (t; ξ) ≤ C

∫ t

0

∫

Rd
|∇xu|(ε

−1x; ε)|∇xη|(x)|m̄|(s, x; ε)p(ε−1x)dx ds

+ Cε

∫ t

0

∫

Rd
|u|(ε−1x; ε)|∇2

x,xη|(x)|m̄|(s, x; ε)p(ε−1x)dx ds

−
d

∑

i,j=1

∫ t

0

∫

Rd

∂

∂xi
(ai,jp)(ε

−1x)
∂η

∂xj
(x)u(ε−1x; ε)m̄(s, x; ε)dx ds

+ ε−1
∫ t

0

∫

Rd
m̄(s, x; ε)(fp)(ε−1x)η(x)dx ds.
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Due to the statement of Theorem 3.2, for a.e. ξ ∈ Ξ, pg ∈W
1,d/(d−1)
loc (Rd)

and (pf)(x, ξ) = ∂(pg)/∂x`(x, ξ) almost everywhere in x. Deduce from two
integrations by parts:

T (t; ξ) ≤ C

∫ t

0

∫

Rd
|∇xu|(ε

−1x; ε)|∇xη|(x)|m̄|(s, x; ε)p(ε−1x)dx ds

+ Cε

∫ t

0

∫

Rd
|u|(ε−1x; ε)|∇2

x,xη|(x)|m̄|(s, x; ε)p(ε−1x)dx ds

+ Cε

∫ t

0

∫

Rd
|u|(ε−1x; ε)|∇xη|(x)|∇xm̄|(s, x; ε)p(ε−1x)dx ds

+

∫ t

0

∫

Rd
|∇xm̄|(s, x; ε)(|g|p)(ε−1x)η(x)dx ds

+

∫ t

0

∫

Rd
|m̄|(s, x; ε)(|g|p)(ε−1x)|∇xη|(x)dx ds.

(6.19)

Apply the standard inequality 2yz ≤ y2 + z2 to every term in the above
r.h.s. and remove as a bypass product the gradient terms in m̄ in (6.19)
(compare with T (t; ξ) in (6.18)). Apply then the Gronwall lemma to remove
the m̄ term in the r.h.s. and take finally the expectation w.r.t ξ ∈ Ξ. Derive
that there exists a constant C such that:

E

[
∫

Rd
m̄2(t, x; ε, ξ)p(ε−1x, ξ)dx

]

≤ Cα exp(Cα)
[

E [p|g|2] + E [p|Du(·; ε)|2] + ε2E [p|u(·; ε)|2]
]

×
∫

Rd

[

|η(x)|2 + |∇xη(x)|
2 + |∇2

x,xη(x)|
2]

dx.

From (6.4), this clearly completes the proof.

6.5. Proof of Proposition 6.8. Start first with the following term:

Lemma 6.9. The term :

S(y; ε, ξ) ≡ ε−1
∫ +∞

α

[

exp(−t)
∫

Rd
f(ε−1x, ξ)η(x)

× p(ε−1x, ξ)p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ) dx

]

dt

writes S(y; ε, ξ) ≡ S(y; 1, ε, ξ) + S(y; 2, ε, ξ), with

a) ∀r > 0, ∀α > 0, sup
y∈K

|S(y; 1, ε, ξ)|
(p.)µ−probability

−→ 0,

b) ∀r > 0, ∀α > 0, µ−a.s., lim
ε→0

sup
y∈K

|S(y; 2, ε, ξ)| = 0.
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Proof. Since (pf)(x, ξ) = ∂(pg)/∂x`(x, ξ) almost everywhere in x, de-
rive from an integration by parts that (remove the index ξ):

S(y; ε)

= −
∫ +∞

α
exp(−t)

∫

Rd
η(x)(gp)(ε−1x)

∂

∂x`

(

p−1(ε−1y)q̄(s, x, y; ε)
)

dx dt

−
∫ +∞

α
exp(−t)

∫

Rd

∂η

∂x`
(x)(gp)(ε−1x)p−1(ε−1y)q̄(s, x, y; ε)dx dt

≡ S(y; 0, 1, ε) + S(y; 0, 2, ε).

Start with S(y; 0, 1, ε)

− S(y; 0, 1, ε)

=

∫ +∞

α
exp(−t)

∫

Rd
η(x)(gp)(ε−1x)

[ ∂

∂x`

(

p−1(ε−1y)q̄(s, x, y; ε)
)

−
∂Γ

∂x`
(t, x, y)

]

dx dt

+

∫ +∞

α
exp(−t)

∫

Rd
η(x)(gp)(ε−1x)

∂Γ

∂x`
(t, x, y)dx dt

≡ S(y; 0, 1, 1, ε) + S(y; 0, 1, 2, ε).

Due to Proposition 5.4 (convergence of the gradients), note from the
Cauchy-Schwarz inequality that:

(6.20) ∀r > 0, ∀α > 0, sup
y∈K

|S(y; 0, 1, 1, ε)|
µ−probability

−→ 0.

Turn now to S(y; 0, 1, 2, ε). Since the kernel Γ is Gaussian, derive a bound
for the first derivatives of Γ similar to (5.15). Hence, the ergodic theorem
yields µ-a.s., for all t ≥ α and y ∈ K (with R ≡ supy∈K |y|):

sup
ε∈]0,1]

∣

∣

∣

∣

∫

Rd
η(x)(gp)(ε−1x)

∂Γ

∂x`
(t, x, y)dx

∣

∣

∣

∣

≤ Ct−d/2−1 sup
ε∈]0,1]

∫

Rd
η(x)(|x| +R)p(ε−1x)dx

≤ Cα−d/2−1(R+ r + 1) sup
ε∈]0,1]

∫

B(0,r+1)
p(ε−1x)dx < +∞.

(6.21)

Hence, the ergodic theorem (applied to a sequence of simple functions
approximating the compact support function η∂Γ/∂x`), the dominated con-
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vergence theorem and (6.21) yield for every y ∈ K and µ-a.s.:

lim
ε→0

∫ +∞

α
exp(−t)

∫

Rd
η(x)(gp)(ε−1x)

∂Γ

∂x`
(t, x, y)dx dt

= E(gp)

∫ +∞

α
exp(−t)

∫

Rd
η(x)

∂Γ

∂x`
(t, x, y)dx dt = 0.

(6.22)

Note in fact that the convergence is uniform in y ∈ K, since the derivatives
of S(y; 0, 1, 2, ε) are controlled in the following way (recall that ∂2Γ/∂yi∂x` =
−∂2Γ/∂xi∂x` and apply (5.15)): µ-a.s., for all t ≥ α and y ∈ K:

sup
ε∈]0,1]

∣

∣

∣

∣

∫

Rd
η(x)

(

gp
)

(ε−1x)
∂2Γ

∂xi∂x`
(t, x, y)dx

∣

∣

∣

∣

≤ Ct−d/2−1 sup
ε∈]0,1]

∫

Rd
η(x)

[

t−1(|x|2 +R2) + 1
]

p(ε−1x)dx

≤ Cα−d/2−2 sup
ε∈]0,1]

∫

B(0,r+1)
(r2 +R2 + 1 + α)p(ε−1x)dx < +∞.

(6.23)

Hence, S(y; 0, 1, 2, ε) satisfies b) in the statement of Lemma 6.9. Note
that S(y; 0, 1, 2, ε) satisfies a weaker version of b) if the centering condition
E(pg) = 0 fails (since the integral of the gradient of Γ over R

d vanishes,
S(y; 0, 1, 2, ε) is small for large values of r). This weaker form is still sufficient
to establish Theorem 6.3 so that the centering condition is not crucial at
this stage of the proof.

The term S(y; 0, 2, ε) is treated in a similar way (use the last assertion in
Proposition 5.4).

Lemma 6.10. The term

T (y; ε, ξ) ≡ ε−1
∫ +∞

α

[

exp(−t)
∫

Rd
m(ε−1x; ε, ξ)

× p(ε−1x, ξ)p−1(ε−1y, ξ)q̄(t, x, y; ε, ξ)dx

]

dt,

writes T (y; ε, ξ) ≡ T (y; 1, ε, ξ) + T (y; 2, ε, ξ), with:

a) ∀r > 0, ∀α > 0, sup
y∈K

|T (y; 1, ε, ξ)| −→
(p.)µ−probability

0,

b) ∀δ > 0, ∃r(δ) > 0, ∀r > r(δ), ∀α > 0, ∀ε > 0, E
[

sup
y∈K

|T (y; 2, ε, ξ)|
]

≤ δ.

Proof. Remove the index ξ. According to (6.13), write:

T (y; ε) ≡ −
∫ +∞

α
exp(−t)

[

T (t, y; 1, ε) + T (t, y; 2, ε) + T (t, y; 3, ε)
]

dt,
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with:

T (t, y; 1, ε) ≡
∫

Rd

[

〈a(ε−1x)∇xu(ε
−1x; ε),∇xη(x)〉

× p(ε−1x)p−1(ε−1y)q̄(t, x, y; ε)
]

dx,

T (t, y; 2, ε) ≡
∫

Rd

[

〈B(ε−1x),∇xη(x)〉

× u(ε−1x; ε)p(ε−1x)p−1(ε−1y)q̄(t, x, y; ε)
]

dx,

T (t, y; 3, ε) ≡
1

2
ε

∫

Rd

[

〈a(ε−1x),∇2
x,xη(x)〉

× u(ε−1x; ε)p(ε−1x)p−1(ε−1y)q̄(t, x, y; ε)
]

dx.

(First Step: T (t, y; 1, ε).)

T (t, y; 1, ε)

=

∫

Rd

[

〈a(ε−1x)∇xu(ε
−1x; ε),∇xη(x)〉p(ε

−1x)

×
(

p−1(ε−1y)q̄(t, x, y; ε) − Γ(t, x, y)
)]

dx

+

∫

Rd
〈a(ε−1x)∇xu(ε

−1x; ε),∇xη(x)〉p(ε
−1x)Γ(t, x, y)dx

≡ T (t, y; 1, 1, ε) + T (t, y; 1, 2, ε).

(6.24)

Deal first with the second term in (6.24). Due to the Gaussian decay of
Γ, we claim (with R ≡ supy∈K |y|):

|T (t, y; 1, 2, ε)|

≤ Ct−d/2

×
∫

Rd
|∇xu(ε

−1x; ε)||∇xη(x)|p(ε
−1x) exp(−C−1t−1|x− y|2

)

dx

≤ Ct−d/2 exp(Ct−1R2)

×
∫

Rd
|∇xu(ε

−1x; ε)||∇xη(x)|p(ε
−1x) exp

(

−C−1t−1|x|2
)

dx.

(6.25)

Take the supremum over K in the l.h.s. in (6.25) and then integrate with
respect to ξ ∈ Ξ:

E
[

sup
y∈K

|T (t, y; 1, 2, ε)|
]

≤ C exp(Ct−1R2)E
[

|Du(·; ε)|p
]

×
∫

|x|>r
t−d/2 exp(−C−1t−1|x|2)dx.
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Apply now the Bernstein inequality to estimate the Gaussian kernel:

E
[

sup
y∈K

|T (t, y; 1, 2, ε)|
]

≤ C exp(Ct−1R2)E
[

|Du(·; ε)|p
]

exp(−C−1t−1r2)

= C exp
(

t−1(CR2 − C−1r2)
)

E
[

|Du(·; ε)|p
]

.

(6.26)

Deduce from (6.26) that:

E

[

sup
y∈K

∣

∣

∣

∣

∫ +∞

α
exp(−t)T (t, y; 1, 2, ε)dt

∣

∣

∣

∣

]

≤ CE
[

|Du(·; ε)|p
]

∫ +∞

0
exp

(

−t+ t−1(CR2 − C−1r2)
)

dt.

(6.27)

Due to (6.4), the last term in (6.27) vanishes as r → +∞, uniformly in ε,
so that the term

∫ +∞
α exp(−t)T (t, y; 1, 2, ε)dt satisfies b) in the statement of

Lemma 6.10.

Focus then on T (t, y; 1, 1, ε) in (6.24). Thanks to the Cauchy-Schwarz
inequality:

sup
y∈K

[
∫ +∞

α
exp(−t)|T (t, y; 1, 1, ε)|dt

]

≤ C

[
∫

Rd
|∇xu(ε

−1x; ε)|2|∇xη(x)|
2p(ε−1x)dx

]1/2

× sup
y∈K

[
∫ +∞

α

∫

Rd
exp(−t)

[

p−1(ε−1y)q̄(t, x, y; ε)

− Γ(t, x, y)
]2
p(ε−1x)dx dt

]1/2

.

Apply now Proposition 5.4. Thanks to (6.4), deduce that:

(6.28) sup
y∈K

∫ +∞

α
exp(−t)|T (t, y; 1, 1, ε)|dt

µ−probability
−→ 0.

Deduce that
∫ +∞
α exp(−t)T (t, y; 1, 1, ε)dt satisfies a) in the statement of

Lemma 6.10.

(Second Step: T (t, y; 2, ε).)

Deduce with an integration by parts that (refer to (6.13) for the definition
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of B):

T (t, y; 2, ε)

= −ε
d

∑

i,j=1

∫

Rd
(ai,jp)(ε

−1x)
∂2η

∂xi∂xj
(x)u(ε−1x; ε)p−1(ε−1y)q̄(t, x, y; ε)dx

−
d

∑

i,j=1

∫

Rd
(ai,jp)(ε

−1x)
∂η

∂xi
(x)

∂u

∂xj
(ε−1x; ε)p−1(ε−1y)q̄(t, x, y; ε)dx

− ε
d

∑

i,j=1

∫

Rd
(ai,jp)(ε

−1x)
∂η

∂xi
(x)u(ε−1x; ε)p−1(ε−1y)

∂q̄

∂xj
(t, x, y; ε)dx

≡ T (t, y; 2, 1, ε) + T (t, y; 2, 2, ε) + T (t, y; 2, 3, ε).

Up to a multiplicative constant, T (t, y; 2, 1, ε) matches T (t, y; 3, ε). It is
thus treated in the sequel. In the same way, T (t, y; 2, 2, ε) is equal, up to
a suitable factor, to T (t, y; 1, ε). It thus remains to deal with T (t, y; 2, 3, ε).
Write:

− T (t, y; 2, 3, ε)

= ε
d

∑

i,j=1

∫

Rd

[

(pai,j)(ε
−1x)

∂η

∂xi
(x)u(ε−1x; ε)

×
[

p−1(ε−1y)
∂q̄

∂xj
(t, x, y; ε) −

∂Γ

∂xj
(t, x, y)

]

]

dx

+ ε
d

∑

i,j=1

∫

Rd
(pai,j)(ε

−1x)
∂η

∂xi
(x)u(ε−1x; ε)

∂Γ

∂xj
(t, x, y)dx

≡ T (t, y; 2, 3, 1, ε) + T (t, y; 2, 3, 2, ε).

(6.29)

Deal first with T (t, y; 2, 3, 2, ε). Follow (6.25):

sup
y∈K

|T (t, y; 2, 3, 2, ε)|

≤ Cε

∫

Rd

[

p(ε−1x)|∇xη(x)||u(ε
−1x; ε)||x− y|t−d/2−1

× exp(−C−1t−1|x− y|2)
]

dx

≤ Cε exp(Ct−1R2)t−d/2−1
∫

Rd

[

p(ε−1x)|∇xη(x)||u(ε
−1x; ε)|(|x| +R)

× exp(−C−1t−1|x|2)
]

dx

≤ Cε exp(Ct−1R2)(r +R+ 1)t−d/2−1
∫

Rd

[

p(ε−1x)|∇xη(x)||u(ε
−1x; ε)|

× exp(−C−1t−1|x|2)
]

dx.
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Following (6.26),

E
[

sup
y∈K

|T (t, y; 2, 3, 2, ε)|

≤ CεE
(

p|u|(·; ε)
)

exp(Ct−1R2)(r +R+ 1)t−d/2−1

×
∫

|x|>r
exp(−C−1t−1|x|2)dx

≤ CεE
(

p|u|(·; ε)
)

(r +R+ 1)t−1 exp(t−1(CR2 − C−1r2)).

Deduce finally:

E

[

sup
y∈K

∫ +∞

α
exp(−t)|T (t, y; 2, 3, 2, ε)|dt

]

≤ CεE
(

p|u|(·; ε)
)

(r +R+ 1)

×
∫ +∞

0
exp(−t)t−1 exp(t−1(CR2 − C−1r2))dt.

(6.30)

Thanks to (6.4), the r.h.s. in (6.30) vanishes as r → +∞: the term
∫ +∞
α exp(−t)T (t, y; 2, 3, 2, ε)dt satisfies b) in the statement of Lemma 6.10.

Turn now to T (t, y; 2, 3, 1, ε) in (6.29). Follow the strategy to handle
T (t, y; 1, 1, ε) in (6.24) (see (6.28)) and deduce that

∫ +∞
α exp(−t)T (t, y; 2, 3,

1, ε)dt satisfies a) in Lemma 6.10.

(Third Step: T (t, y; 3).)

Note that the final term T (t, y; 3, ε) is treated as T (t, y; 1, ε) with the
following difference: εu(·; ε) plays the role of Du(·; ε) (and ∇2

x,xη the role of
∇xη). This completes the proof of Lemma 6.10

(Conclusion.)

Complete now the proof of Proposition 6.8. Fix δ > 0 and deduce from
Lemma 6.9 that, for all α > 0 and r > 0, P (1) ≡ µ{supy∈K |S(y; ε, ξ)| > δ}
vanishes as ε tends to zero. Choose now r ≥ r(δ2/2) in Lemma 6.10. We
claim from the Markov inequality:

P (2) ≡ µ
{

sup
y∈K

|T (y; ε, ξ)| > δ}

≤ µ
{

sup
y∈K

|T (y; 1, ε, ξ)| > δ/4
}

+ µ
{

sup
y∈K

|T (y; 2, ε, ξ)| > 3δ/4
}

≤ µ
{

sup
y∈K

|T (y; 1, ε, ξ)| > δ/4
}

+ (2/3)δ.

(6.31)

Deduce, that for every α > 0, P (2) vanishes as ε tends to zero.
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6.6. Proof of Theorem 6.4. The following notation is frequently used in
this subsection: every term labelled with the symbol (♠) denotes a sequence
that tends to zero in µ or p.µ probability (recall that both are equivalent)
and that is uniformly integrable in L1(Ξ, µ). In particular, every term la-
belled with the symbol (♠) vanishes in L1(Ξ, µ).

(First Step.)

The proof of Theorem 6.4 relies on the following lemma:

Lemma 6.11. Let θ be a convex even function from R into [0,+∞[ such
that θ(0) = 0, θ′(0) = 0, θ′′(z) = 1 for |z| ≤ 1, 0 ≤ θ′′(z) ≤ 1 for 1 ≤ |z| ≤ 2
and θ′′(z) = 0 for |z| ≥ 2 (of course such a function does exist: integrate
twice θ′′) and let η be the smooth function from R

d into [0, 1] given by η(x) =
exp(−1/(1 − |x|2)), |x| < 1 and η(x) = 0 for |x| ≥ 1. Then, as ε→ 0,

∫

Rd
〈a(ε−1x, ξ)∇xu(ε

−1x; ε, ξ),∇xu(ε
−1x; ε, ξ)〉

× η2(x)θ′′(εu(ε−1x; ε, ξ)η(x))p(ε−1x, ξ)dx

+ 2

∫

Rd
(pg)(ε−1x, ξ)

∂u

∂x`
(ε−1x; ε, ξ)η2(x)dx

L1(Ξ,µ)
−→ 0.

(6.32)

Assume for the moment that Lemma 6.11 holds. According to (6.3):

lim inf
ε→0

E(p〈aDu(·; ε), Du(·; ε)〉)

≤ lim sup
ε→0

E(p〈aDu(·; ε), Du(·; ε)〉)

≤ lim sup
ε→0

[

E(p〈aDu(·; ε), Du(·; ε)〉) + 2ε2E(pu2(·; ε))
]

= −2 lim inf
ε→0

E(pgD`u(·; ε)),

(6.33)

where the last equality follows from (6.1).

Since the family Du(·; ε) is bounded in L2(Ξ,p.µ; Rd), there exists (Ψ1,
. . . ,Ψd) ∈ L2(Ξ,p.µ; Rd) and (εn)≥0 ∈]0, 1]N, εn → 0, such that Du(·; εn) ⇀
Ψ in the weak sense as n → +∞. In this frame, (6.33) still holds true with
respect to (εn)n≥0 and the last lim inf in (6.33) reduces to E(pgΨ`).

Take now the expectation E in (6.32). Since θ′′ is bounded by 1, it comes:

lim inf
n→+∞

[

E(p〈aDu(·; εn), Du(·; εn)〉)
∫

Rd
η2(x)dx

]

≥ −2E(pgΨ`)

∫

Rd
η2(x)dx.

(6.34)
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Plug (6.34) into (6.33) and derive that (ε2nE(pu2(·; εn)))n≥0 vanishes. This
completes the proof of Theorem 6.4.

(Second Step.)

It now remains to establish Lemma 6.11. Recall from (6.13) that, for all
ε > 0 and ξ ∈ Ξ, u(ε−1x; ε, ξ)η(x) satisfies in ∩q≥1W

2,q(Rd) a truncated
version of the resolvent equation. Removing the index ξ, it comes:

p−1(ε−1x)(Lε)∗
(

p(ε−1x)θ(εu(ε−1x; ε)η(x))
)

= εθ′(εu(ε−1x; ε)η(x))p−1(ε−1x)(Lε)∗
(

p(ε−1x)u(ε−1x; ε)η(x)
)

+
ε2

2
θ′′(εu(ε−1x; ε)η(x))

× 〈a(ε−1x)∇x(u(ε−1x; ε)η(x)),∇x(u(ε−1x; ε)η(x))〉.

Apply (6.15) to develop the first term in the r.h.s.:

p−1(ε−1x)(Lε)∗
(

p(ε−1x)θ(εu(ε−1x; ε)η(x))
)

= ε−1θ′(εu(ε−1x; ε)η(x))
(

−f(ε−1x)η(x) −m(ε−1x; ε) + ε2u(ε−1x; ε)η(x)
)

+
1

2
θ′′(εu(ε−1x; ε)η(x))〈a(ε−1x)∇xu(ε

−1x; ε),∇xu(ε
−1x; ε)〉η2(x)

+
ε2

2
θ′′(εu(ε−1x; ε)η(x))u2(ε−1x; ε)〈a(ε−1x)∇xη(x),∇xη(x)〉

+ εθ′′(εu(ε−1x; ε)η(x))u(ε−1x; ε)η(x)〈a(ε−1x)∇xu(ε
−1x; ε),∇xη(x)〉.

Integrate both sides with respect to p(ε−1x). Since the l.h.s. reduces to
zero, it comes:

∫

Rd

[

θ′′(εu(ε−1x; ε)η(x))

× 〈a(ε−1x)∇xu(ε
−1x; ε),∇xu(ε

−1x; ε)〉η2(x)p(ε−1x)
]

dx

+ ε2
∫

Rd

[

θ′′(εu(ε−1x; ε)η(x))u2(ε−1x; ε)

× 〈a(ε−1x)∇xη(x),∇xη(x)〉p(ε
−1x)

]

dx (♠)

+ 2ε

∫

Rd

[

θ′′(εu(ε−1x; ε)η(x))u(ε−1x; ε)η(x)

× 〈a(ε−1x)∇xu(ε
−1x; ε),∇xη(x)〉p(ε

−1x)
]

dx (♠)

+ 2ε

∫

Rd
θ′(εu(ε−1x; ε)η(x))u(ε−1x; ε)η(x)p(ε−1x)dx (♠)

= 2ε−1
∫

Rd
θ′(εu(ε−1x; ε)η(x))f(ε−1x)η(x)p(ε−1x)dx (T (1, ε))

+ 2ε−1
∫

Rd
θ′(εu(ε−1x; ε)η(x))m(ε−1x; ε)p(ε−1x)dx (T (2, ε)).

(6.35)
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All the terms in (6.35) labelled with the symbol (♠) tend to 0 in proba-
bility as ε vanishes: recall that θ′ and θ′′ are bounded and apply Theorem
6.3 and (6.4). From (RM1) (see e.g. (6.5)) and again from (6.4), the la-
belled term containing θ′ is clearly U.I. in L1(Ξ, µ). To establish that the
remaining terms (i.e those containing θ ′′) are also U.I., note that, in each
of these integrals, θ′′ vanishes for ε|u|(ε−1x; ε)η(x) ≥ 2. Hence, ε|u|(ε−1x; ε)
can be bounded by (2ε)1/2|u|1/2(ε−1x; ε)η−1/2(x). It is then well seen that
the product ∇xη(x)η

−1/2(x) is a bounded function with compact support.
Again, (RM1) and (6.4) permit to derive the required U.I. property.

Focus now on the term T (2, ·) in (6.35). Recall from (6.13):

− T (2, ε)

= 2

∫

Rd
θ′(εu(ε−1x; ε)η(x))〈(pa)(ε−1x)∇xu(ε

−1x; ε),∇xη(x)〉dx (♠)

+ ε

∫

Rd
θ′(εu(ε−1x; ε)η(x))u(ε−1x; ε)〈(pa)(ε−1x),∇2

x,xη(x)〉dx (♠)

+ 2

∫

Rd

[

θ′(εu(ε−1x; ε)η(x))u(ε−1x; ε)

× 〈B(ε−1x),∇xη(x)〉p(ε
−1x)

]

dx (T (3, ε)).

(6.36)

Recall that |θ′|(z) ≤ min(2, |z|) for z ∈ R and apply again Theorem
6.3 and (6.4) to derive that the labelled terms tend to 0 in probability as ε
vanishes. Follow the previous argument to handle (6.35) to establish the U.I.
property. Focus then on the last term in (6.36) and refer again to (6.13):

(1/2)T (3, ε)

=
d

∑

i,j=1

∫

Rd
θ′(εu(ε−1x; ε)η(x))u(ε−1x; ε)

∂(pai,j)

∂xi
(ε−1x)

∂η

∂xj
(x)dx

= −
∫

Rd
θ′(εu(ε−1x; ε)η(x))〈(pa)(ε−1x)∇xu(ε

−1x; ε),∇xη(x)〉dx

− ε

∫

Rd

[

u(ε−1x; ε)η(x)θ′′(εu(ε−1x; ε)η(x))

× 〈(pa)(ε−1x)∇xu(ε
−1x; ε),∇xη(x)〉

]

dx

− ε2
∫

Rd

[

u2(ε−1x; ε)θ′′(εu(ε−1x; ε)η(x))

× 〈(pa)(ε−1x)∇xη(x),∇xη(x)〉
]

dx

− ε

∫

Rd
u(ε−1x; ε)θ′(εu(ε−1x; ε)η(x))〈(pa)(ε−1x),∇2

x,xη(x)〉dx

= (♠).

(6.37)
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Again, all the labelled terms in (6.37) vanish in probability as ε tends to 0:
apply Theorem 6.3 and (6.4). Follow the previous argument to handle (6.35)
to establish the U.I. property. From (6.35), (6.36) and (6.37), we derive the
following:

∫

Rd

[

θ′′(εu(ε−1x; ε)η(x))〈a(ε−1x)∇xu(ε
−1x; ε),∇xu(ε

−1x; ε)〉

× η2(x)p(ε−1x)
]

dx− T (1, ε)
L1(Ξ,µ)
−→ 0.

(6.38)

(Fourth Step.)

We thus investigate T (1, ε) in (6.35). Due to the choice of f in Theorem
3.2:

− (1/2)T (1, ε)

= −ε−1
∫

Rd

∂(pg)

∂x`
(ε−1x)η(x)θ′(εu(ε−1x; ε)η(x))dx

=

∫

Rd
(pg)(ε−1x)

∂η

∂x`
(x)θ′(εu(ε−1x; ε)η(x))dx (♠)

+ ε

∫

Rd
(pg)(ε−1x)η(x)u(ε−1x; ε)

∂η

∂x`
(x)θ′′(εu(ε−1x; ε)η(x)

)

dx (♠)

+

∫

Rd
(pg)(ε−1x)η2(x)

∂u

∂x`
(ε−1x; ε)θ′′(εu(ε−1x; ε)η(x))dx (T (4, ε)).

(6.39)

Again, the labelled terms in (6.39) vanish in probability as ε tends to zero:
apply again Theorem 6.3 and (6.4) and use the bounds |θ′(z)| ≤ |z|, |θ′′| ≤ 1.
Recall also that g is bounded and derive the U.I. property. Moreover,

T (4, ε)

=

∫

Rd
(pg)(ε−1x)η2(x)

∂u

∂x`
(ε−1x; ε)(θ′′ − 1)(εu(ε−1x; ε)η(x))dx (♠)

+

∫

Rd
(pg)(ε−1x)η2(x)

∂u

∂x`
(ε−1x; ε)dx (T (5, ε)).

(6.40)

To prove the above convergence in probability, note that |θ ′′ − 1|(z) ≤
1|z|≥1 ≤ |z|. Apply then Theorem 6.3 and (6.4). The U.I. follows from the
boundedness of g and (6.4).

Plug finally (6.39) and (6.40) into (6.38) and complete the proof of (6.32).
�
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7. Strong Convergence of the Gradient Fields. We now establish:

Theorem 7.1. The family (Du(·; ε))ε>0 converges in L2(Ξ,p.µ; Rd) as
ε tends towards 0. The limit field is denoted by (Ψ1, . . . ,Ψd).

The proof holds in two parts. We first assume that Ψ denotes a weak limit
of the family (Du(·; ε))ε>0 (recall that it is bounded in L2(Ξ,p.µ; Rd)) and
prove that the convergence holds in the strong sense. We finally prove that
the limit is unique.

7.1. Proof of the Strong Convergence. The following lemma will be very
useful. It derives from the maximum principle and from (A1):

Lemma 7.2. There exists a constant C7.2 such that for all ξ ∈ Ξ, R > 0

and (x, z) ∈ (Rd)2:

∫

B(z,R)
γ(x, y;R, z, ξ)dy ≤ C7.2R

2.

The Green function γ̄(x, y;R, z, ε, ξ) of the rescaled operator L̄ε,ξ (given
by γ̄(x, y;R, z, ε, ξ) ≡ ε2−dγ(ε−1x, ε−1y; ε−1R, ε−1z, ξ)) satisfies the same
bound.

From (6.4), we can extract a subsequence, still denoted by (Du(·; ε))ε>0

that weakly converges in L2(Ξ,p.µ; Rd). The weak limit is denoted by Ψ.
Note that Ψ satisfies several crucial properties. Recall indeed that for a
smooth function η : R

d → R, null outside a compact set, for a bounded
stationary field ϕ ∈ L∞(Ξ, µ), and for ε > 0 and (i, j) ∈ {1, . . . , d}2:

(7.1) E

[

pϕ

∫

Rd

∂u

∂xi
(x; ε, ξ)

∂η

∂xj
(x)dx

]

= E

[

pϕ

∫

Rd

∂u

∂xj
(x; ε, ξ)

∂η

∂xi
(x)dx

]

.

Letting ε tend to zero, the same holds for ψ(x, ξ) = Ψ(Txξ):

E

[

pϕ

∫

Rd
ψi(x, ξ)

∂η

∂xj
(x)dx

]

= E

[

pϕ

∫

Rd
ψj(x, ξ)

∂η

∂xi
(x)dx

]

,

so that, µ-a.s., for every smooth function η with compact support:

(7.2)

∫

Rd
ψi(x, ξ)

∂η

∂xj
(x)dx =

∫

Rd
ψj(x, ξ)

∂η

∂xi
(x)dx.

Equality (7.2) permits to define, for almost every ξ ∈ Ξ, a primitive
functional to ψ (see e.g. Kozlov [16] for the original argument). Choose for
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example the primitive functional vanishing at zero:

z(x; ξ) ≡
d

∑

j=1

∫ 1

0
xjψj(tx, ξ)dt.

Due to Lemma 7.1 in Zhikov et al. [36], Ψ = Ψ̃ a.s. implies µ{ξ, {z(x; ξ) =
z̃(x; ξ) a.e.}} = 1, with z̃ given by the above formula with ψ replaced by ψ̃.
For a.e. ξ ∈ Ξ, the function ψ(x, ξ) is then the L2

loc(R
d) Sobolev derivative

(in x) of z(x; ξ). Thanks to (RM3), z(x; ξ) is jointly measurable in (x, ξ).
Contrary to Kozlov [16], the classical relationship, E(Ψi) = 0, i ∈ {1, . . .

, d}, fails in our specific framework, since Ψ does not belong to L2(µ; Rd) but
to L2(p.µ; Rd). A possible strategy would consist in imbedding L2(p.µ; Rd)
into L1(µ; Rd) to define the expectation under µ of a given square integrable
field under p.µ: this leads to assume that p−1 belongs to L1(µ; Rd). Except
trivial cases, there is no way, to the best of our knowledge, to obtain such a
bound.

In the sequel of the paper, we aim to apply the strategy developed by
Kozlov [16] for the divergence case to prove that εz(ε−1x, ξ) tends to 0 (in
a suitable sense), but we really miss the natural condition E(Ψi) = 0, i ∈
{1, . . . , d}. This is the reason why the specific centering condition E(pg) = 0
appears in the statement of Theorem 3.2.

(First Step.)

Anyway, the starting point of our strategy remains the same as in the di-
vergence case: we focus on the equation satisfied by the weak limit Ψ. From
an integration by parts (see (6.1)), we derive from Theorem 6.2 and Propo-
sition 6.5 that, for all fields h,Φ ∈ S∞ and all ε > 0, E(p〈aDv(·; ε), DΦ〉) −
∑d

i,j=1 E(Dj(pai,j)Div(·; ε)Φ) + 2ε2E(pv(·; ε)Φ) = 2E(phΦ), with v(·; ε) ≡
(ε2I − p−1L∗(p·))−1h ∈ W 2,∞(Ξ, µ). From a density argument, the same
holds for h = f and v(·; ε) = u(·; ε) (see Subsection 6.2, Paragraph “End of
the Proof of Theorem 6.2”) . Letting ε tend to zero, it comes from (6.1):

(7.3) E

[ d
∑

i,j=1

(

pai,j
)

ΨiDjΦ

]

− E

[ d
∑

i,j=1

Dj
(

pai,j
)

ΨiΦ

]

= −2E
[

pgD`Φ
]

.

Choosing Φ = k ? η, with k ∈ L∞(Ξ, µ), we claim that for a.e. ξ ∈ Ξ and
for every smooth function η with compact support:

∫

Rd
〈(paψ)(x, ξ),∇xη(x)〉dx −

d
∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(x, ξ)ψi(x, ξ)η(x)dx

= −2

∫

Rd
(pg)(x, ξ)

∂η

∂x`
(x)dx.

(7.4)
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We deduce that there exists an event A ∈ G, with full measure, such that
for every ξ ∈ A, z(x; ξ) satisfies the following PDE in H 1

loc(R
d):

−
d

∑

i,j=1

∂

∂xi

(

(pai,j)(x, ξ)
∂

∂xj
(z(x; ξ))

)

−
d

∑

i,j=1

∂(pai,j)

∂xj
(x, ξ)

∂

∂xi
(z(x; ξ)) = 2

∂

∂x`
(pg)(x, ξ).

(7.5)

Due to Assumption (A), to the boundedness of Dg, to the positivity of
p and to Proposition 4.11, z(x; ξ) satisfies, for every ξ ∈ A, the De Giorgi
and Nash estimates and thus admits a continuous version (see Theorem
8.22 in Gilbarg and Trudinger [13]). This continuous version is given by
the pointwise limit of V −1

d δ−d
∫

B(0,δ) z(x + y; ξ)dy as δ → 0. For the sake
of simplicity, we then assume z(x; ξ) to match this continuous version for
ξ ∈ A and to vanish for ξ ∈ Ac. The resulting mapping z(x; ξ) is still
jointly measurable with respect to (x, ξ) and satisfies (7.5) for ξ ∈ A. Due to
Theorem 9.11 and to Corollary 9.18 in Gilbarg and Trudinger [13] (Calderòn
and Zygmund inequalities for PDEs of non-divergence type), z(x; ξ) belongs,
for every ξ ∈ A, to the space ∩q≥1W

2,q
loc (Rd).

Set now, for every ε > 0, z(x; ε, ξ) ≡ εz(ε−1x; ε, ξ) and derive from (7.5)
that, for all ξ ∈ A and ε > 0, z(x; ε, ξ) satisfies the following equation in
∩q≥1W

2,q
loc (Rd):

− p−1(ε−1x, ξ)
d

∑

i,j=1

∂2

∂xi∂xj

(

(pai,j)(ε
−1x, ξ)z(x; ε, ξ)

)

= 2p−1(ε−1x, ξ)
∂

∂x`

(

(pg)(ε−1x, ξ)
)

.

(7.6)

Here is the equivalent of Lemma 2 in Kozlov [16]:

Proposition 7.3. For almost every ξ ∈ Ξ, for all ε > 0, the function
z(·; ε, ξ) writes z(·; ε, ξ) = z1(·; ε, ξ)+z2(·; ε, ξ)+εu(ε

−1x; ε, ξ)+Γ(ε, ξ) with:

a) lim
ε→0

E

[
∫

B(0,2)
p(ε−1x, ξ)|z1(x; ε, ξ)|

2dx

]

= 0,

b) E

[(
∫

B(0,2)
p(ε−1x, ξ)dx

)(

sup
x∈B(0,1)

|z2(x; ε, ξ)|
2

+ sup
(x,y)∈B̄(0,1/4),x6=y

[

|x− y|
−α7.3 |z2(x; ε, ξ) − z2(y; ε, ξ)|

2]

)]

≤ C7.3,

for two constants α7.3 > 0 and C7.3. Moreover, Γ(ε, ξ) is independent of x.
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Proof. Consider z̄(x; ε, ξ) ≡ z(x; ε, ξ) − εu(ε−1x; ε, ξ). For ξ ∈ A (see
(7.4) and (7.5) for the definition of A), z̄(x; ε, ξ) satisfies the PDE (remove
the index ξ for notational convenience):

(7.7) − p−1(ε−1x)
d

∑

i,j=1

∂2

∂xi∂xj

(

(pai,j)(ε
−1x)z̄(x; ε)

)

= 2εu(ε−1x; ε).

Denote by z1(x; ε) the solution to the PDE (see Theorem 9.15 in Gilbarg
and Trudinger [13] since the operator writes in a non-divergence form):

− p−1(ε−1x)
d

∑

i,j=1

∂2

∂xi∂xj

(

(pai,j)(ε
−1x)z1(x; ε)

)

= 2εu(ε−1x; ε), |x| < 2, z1(x; ε) = 0 for |x| = 2.

(7.8)

The solution z1(x; ε) is continuous and belongs to ∩q≥1(W
1,q
0 (B(0, 2)) ∩

W 2,q(B(0, 2))). We can multiply both sides in (7.8) by p(ε−1x)z1(x; ε) and
integrate over R

d. An integration by parts yields:

∫

B(0,2)
p(ε−1x)|∇xz1(x; ε)|

2dx

≤ C

[

ε2
∫

B(0,2)
p(ε−1x)u2(ε−1x; ε)dx

]1/2

×

[
∫

B(0,2)
p(ε−1x)|z1(x; ε)|

2dx

]1/2

.

(7.9)

Write z1 with respect to the Green function of p−1(ε−1·)(Lε)∗(p(ε−1·)):

(7.10) z1(x; ε) = 2ε

∫

B(0,2)
u(ε−1y; ε)p−1(ε−1x)p(ε−1y)γ̄(y, x; 2, 0, ε)dy.

Deduce from Young’s inequality that for every δ > 0:

|z1(x; ε)|
2 ≤ δ−2ε2

∫

B(0,2)
u2(ε−1y; ε)p−1(ε−1x)p(ε−1y)γ̄(y, x; 2, 0, ε)dy

+ δ2
∫

B(0,2)
p−1(ε−1x)p(ε−1y)γ̄(y, x; 2, 0, ε)dy.

Precise now the index ξ and apply (2.5): γ̄(y, x; 2, 0, ε, ξ) = ε2−dγ(ε−1y,
ε−1x; 2ε−1, 0, ξ) = ε2−d γ(0, ε−1(x − y); 2ε−1,−ε−1y,Tε−1yξ) = γ̄(0, x −
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y; 2,−y, ε,Tε−1yξ). Thus,

p(ε−1x, ξ)|z1(x; ε, ξ)|
2

≤ δ−2ε2
∫

B(0,2)
u2(ε−1y; ε, ξ)p(ε−1y, ξ)γ̄(0, x − y; 2,−y, ε,Tε−1yξ)dy

+ δ2
∫

B(0,2)
p(ε−1y, ξ)γ̄(0, x− y; 2,−y, ε,Tε−1yξ)dy.

Integrate now with respect to x ∈ B(0, 2) and then with respect to µ
(thanks to (7.10), z1(x; ε, ξ) is jointly measurable in (x, ξ)):

E

[
∫

B(0,2)
p(ε−1x, ξ)|z1(x; ε, ξ)|

2dx

]

≤ δ−2ε2
∫

B(0,2)

∫

Ξ
u2(ξ; ε)p(ξ)

[
∫

B(0,2)
γ̄(0, x − y; 2,−y, ε, ξ)dx

]

dµ(ξ) dy

+ δ2
∫

B(0,2)

∫

Ξ
p(ξ)

[
∫

B(0,2)
γ̄(0, x− y; 2,−y, ε, ξ)dx

]

dy dµ(ξ).

Recall from Lemma 7.2 that the integral of the Green function is bounded
by C. Hence:

E

[
∫

B(0,2)
p(ε−1x, ξ)|z1(x; ε, ξ)|

2dx

]

≤ Cδ−2ε2E(u2(·; ε)p) + Cδ2.

Thanks to Theorem 6.4, this proves that:

E

[
∫

B(0,2)
p(ε−1x, ξ)|z1(x; ε, ξ)|

2dx

]

→ 0 as ε→ 0.

Hence, thanks to (7.9) and again to Theorem 6.4:

(7.11) E

[
∫

B(0,2)
p(ε−1x, ξ)|∇xz1(x; ε, ξ)|

2dx

]

→ 0 as ε→ 0.

This gives a) in the statement of Proposition 7.3.

Set now z2(x; ε, ξ) ≡ z(x; ε, ξ) − z1(x; ε, ξ), x ∈ B(0, 2). For ξ ∈ A,
deduce from (7.7) and (7.8) that z2(x; ε, ξ) satisfies the following PDE in
∩q≥1W

2,q(B(0, 2)):

(7.12) p−1(ε−1x, ξ)
d

∑

i,j=1

∂2

∂xi∂xj

(

(pai,j)(ε
−1x, ξ)z2(x; ε, ξ)

)

= 0.
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Note that ∇xz2(x; ε, ξ) = ∇xz(x; ε, ξ) − ∇xz1(x; ε, ξ) = ψ(ε−1x, ξ) −
∇xu(ε

−1x; ε, ξ) −∇xz1(x; ε, ξ). Derive from (6.4) and (7.11) that:

(7.13) E

[
∫

B(0,2)
p(ε−1x, ξ)|∇xz2(x; ε, ξ)|

2dx

]

≤ C.

We now aim to apply the Poincaré inequality for normalized solutions
established in Escauriaza and Kenig [8], Lemma 10. The proof given in the
previous reference applies to a slightly different normalization procedure:
a solution v(x) to the adjoint equation (L̄ε,ξ)∗(v) = 0 is not divided by
p(ε−1x, ξ), but by γ̄(x0, x; 20, 0, ε, ξ) with |x0| = 9 (see page 277 in [8]).
According to Theorems 2.3, 2.4, 2.5 and 2.7 in Escauriaza [7] and to Lemma
2.0 in Fabes and Stroock [10], the reader can verify that the following still
holds in our frame:

sup
x∈B(0,1)

|z2(x; ε, ξ) − z2(0; ε, ξ)|
2

≤ C

[
∫

B(0,2)
p(ε−1x, ξ)dx

]−1 ∫

B(0,2)
p(ε−1x, ξ)|∇xz2(x; ε, ξ)|

2dx.

(7.14)

Thanks to the Harnack inequality for normalized adjoint solutions (see
Theorem 2.5 in [7]), there exists a real α > 0 such that (7.14) holds with
supx,y∈B̄(0,1/4),x6=y [|x−y|−α|z2(x; ε, ξ)−z2(y; ε, ξ)|

2] in addition to the l.h.s..

Plug finally (7.13) into (7.14) and complete the proof by setting Γ(ε, ξ) =
z2(0; ε, ξ) and by substracting z2(0; ε, ξ) to z2(·; ε, ξ).

(Second Step.)

Considering z(·; ε, ξ) − Γ(ε, ξ) instead of z(·; ε, ξ) itself, we can assume
without loss of generality that Γ(ε, ξ) vanishes (of course z(0; ε, ξ) may then
differ from zero). Note in particular that z(·; ε, ξ) still satisfies (7.6) for ξ ∈ A.
Of course, the gradient of z(x; ξ) is still given by ψ(x, ξ).

Consider now a smooth function ϕ with compact support. Removing the
index ξ, derive from (7.6) (see also (7.5) for the divergence form):

∫

Rd
〈(pa)(ε−1x)ψ(ε−1x),∇xϕ(x)〉dx

− ε−1
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)ψi(ε

−1x)ϕ(x)dx

= −2

∫

Rd
(pg)(ε−1x)

∂ϕ

∂x`
(x)dx.

(7.15)
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Choose now ϕ(x) = εu(ε−1x; ε)η(x) in (7.15), where η denotes a smooth
function with compact support included in B(0, 1/4). We claim:

∫

Rd
〈(pa)(ε−1x)ψ(ε−1x),∇xu(ε

−1x; ε)〉η(x)dx

+ ε

∫

Rd
〈(pa)(ε−1x)ψ(ε−1x),∇xη(x)〉u(ε

−1x; ε)dx

−
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)ψi(ε

−1x)u(ε−1x; ε)η(x)dx

= −2

∫

Rd
(pg)(ε−1x)

∂u

∂x`
(ε−1x; ε)η(x)dx

− 2ε

∫

Rd
(pg)(ε−1x)u(ε−1x; ε)

∂η

∂x`
(x)dx.

(7.16)

We now exchange the role between z(x; ε) and εu(ε−1x; ε). Recall to this
end that εu(ε−1x; ε) satisfies (7.6), but with −2εu(ε−1x; ε) in addition to
the second member. Following (7.15) (up to an integration by parts for the
second term in (7.15)), write for a smooth function ϕ with compact support:

∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε),∇xϕ(x)〉dx

+
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)u(ε−1x; ε)

∂ϕ

∂xi
(x)dx

= −2ε

∫

Rd
p(ε−1x)u(ε−1x; ε)ϕ(x)dx − 2

∫

Rd
(pg)(ε−1x)

∂ϕ

∂x`
(x)dx.

Choose now ϕ = z(x; ε)η(x) with the same η as in (7.16):
∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε), ψ(ε−1x)〉η(x)dx

+

∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε),∇xη(x)〉z(x; ε)dx (♣)

+
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)u(ε−1x; ε)ψi(ε

−1x)η(x)dx

+
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)u(ε−1x; ε)

∂η

∂xi
(x)z(x; ε)dx (♦)

= −2ε

∫

Rd
p(ε−1x)u(ε−1x; ε)z(x; ε)η(x)dx

− 2

∫

Rd
(pg)(ε−1x)ψ`(ε

−1x)η(x)dx − 2

∫

Rd
(pg)(ε−1x)z(x; ε)

∂η

∂x`
(x)dx.
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Apply an integration by parts to the term (♦) to get rid of the term (♣):

∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε), ψ(ε−1x)〉η(x)dx

+
d

∑

i,j=1

∫

Rd

∂(pai,j)

∂xj
(ε−1x)u(ε−1x; ε)ψi(ε

−1x)η(x)dx

− ε

∫

Rd
〈(pa)(ε−1x)ψ(ε−1x),∇xη(x)〉u(ε

−1x; ε)dx

− ε
d

∑

i,j=1

∫

Rd
(pai,j)(ε

−1x)u(ε−1x; ε)z(x; ε)
∂2η

∂xi∂xj
(x)dx

= −2ε

∫

Rd
p(ε−1x)u(ε−1x; ε)z(x; ε)η(x)dx

− 2

∫

Rd
(pg)(ε−1x)ψ`(ε

−1x)η(x)dx

− 2

∫

Rd
(pg)(ε−1x)z(x; ε)

∂η

∂x`
(x)dx.

(7.17)

Add together equalities (7.16) and (7.17):

∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε), ψ(ε−1x)〉η(x)dx

−
1

2
ε

d
∑

i,j=1

∫

Rd
(pai,j)(ε

−1x)u(ε−1x; ε)z(x; ε)
∂2η

∂xi∂xj
(x)dx (T (1; ε))

= −ε
∫

Rd
p(ε−1x)u(ε−1x; ε)z(x; ε)η(x)dx (T (2; ε))

− ε

∫

Rd
(pg)(ε−1x)u(ε−1x; ε)

∂η

∂x`
(x)dx (T (3; ε))

−
∫

Rd
(pg)(ε−1x)

∂u

∂x`
(ε−1x; ε)η(x)dx

−
∫

Rd
(pg)(ε−1x)ψ`(ε

−1x)η(x)dx

−
∫

Rd
(pg)(ε−1x)z(x; ε)

∂η

∂x`
(x)dx (T (4; ε)).

(7.18)

(Third Step.)

From Theorem 6.3, T (3; ε) in (7.18) tends to 0 in probability. Focus on
T (1; ε) and T (2; ε). From the Young inequality and the boundedness of the
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support of η, there exists a constant C such that for all δ > 0:

T (1; ε) + T (2; ε)

≤ Cδ−1ε2
∫

B(0,1/4)
p(ε−1x)u2(ε−1x; ε)dx

+ Cδ

∫

B(0,1/4)
p(ε−1x)z2(x; ε)dx

≡ T (5; ε) + T (6; ε).

(7.19)

Note from Theorem 6.4 that T (5; ε) converges towards zero in L1(Ξ, µ).
Focus then on T (6; ε). Referring to Proposition 7.3,

T (6; ε) ≤ 3Cδ

[
∫

B(0,1/4)
p(ε−1x)|z1|

2(x; ε)dx

+ sup
x∈B(0,1/4)

[

|z2|
2(x; ε)

]

∫

B(0,1/4)
p(ε−1x)dx

+ ε2
∫

B(0,1/4)
p(ε−1x)u2(ε−1x; ε)dx

]

.

≡ T (7; ε) + T (8; ε) + T (9; ε).

(7.20)

Again from Proposition 7.3, T (7; ε) tends to zero in L1(Ξ, µ). From Theo-
rem 6.4, the same holds for T (9; ε). Finally, again from Proposition 7.3, the
quantity µ{ξ, T (8; ε) ≥ δ1/2} is bounded (up to a multiplicative constant)
by δ1/2. Hence, from (7.19) and (7.20), we deduce that T (1, ε) and T (2, ε)
in (7.18) tend to 0 in probability.

Focus now on T (4; ε). Refer again to Proposition 7.3 and note that:

|T (4; ε)| ≤
∫

B(0,1/4)
|pg|(ε−1x)

[

|z1|(x; ε) + ε|u|(ε−1x; ε)
]

dx

+

∣

∣

∣

∣

∫

Rd
(pg)(ε−1x)z2(x; ε)

∂η

∂x`
(x)dx

∣

∣

∣

∣

≡ T (10; ε) + T (11; ε).

(7.21)

As done for T (1; ε), T (2; ε) and T (3; ε), the term T (10; ε) tends to zero in
probability. It thus remains to deal with T (11; ε).

Note from Proposition 7.3 and from the ergodic theorem that the family
of measures on the space of continuous real-valued functions on B̄(0, 1/4)
induced by the family of processes (z2(·; ε, ·))0<ε≤1 is tight: for every δ > 0,
there exists a compact subset K ⊂ C(B̄(0, 1/4),R) such that, for all ε ∈]0, 1],
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µ{ξ ∈ Ξ, z2(·; ε, ξ) 6∈ K} ≤ δ. Since the set K is compact, there exists a
family (`i)i∈{1,...,N}, N ≥ 1, of continuous functions on B̄(0, 1/4) such that:

(7.22) K =
N
⋃

i=1

{

` ∈ K, sup
x∈B̄(0,1/4)

|`(x) − `i(x)| ≤ δ
}

≡
N
⋃

i=1

Ai,

with Ai ≡
{

` ∈ K, supx∈B̄(0,1/4) |`(x) − `i(x)| ≤ δ
}

\
(

A0 ∪ · · · ∪ Ai−1
)

, for
i ∈ {1, . . . , N} and A0 = ∅.

Focus then on T (11; ε) for z2(·; ε, ξ) ∈ K. Thanks to (7.22) (remove again
the index ξ):

∫

Rd
(pg)(ε−1x)z2(x; ε)

∂η

∂x`
(x)dx

=
N

∑

i=1

1Ai(z2(·; ε))
∫

Rd
(pg)(ε−1x)

(

z2(x; ε) − `i(x)
) ∂η

∂x`
(x)dx

+
N

∑

i=1

1Ai(z2(·; ε))
∫

Rd
(pg)(ε−1x)`i(x)

∂η

∂x`
(x)dx.

Hence,

∣

∣

∣

∣

∫

Rd
(pg)(ε−1x)z2(x; ε)

∂η

∂x`
(x)dx

∣

∣

∣

∣

≤ Cδ

∫

Rd
p(ε−1x)|∇xη|(x)dx +

N
∑

i=1

∣

∣

∣

∣

∫

Rd
(pg)(ε−1x)`i(x)

∂η

∂x`
(x)dx

∣

∣

∣

∣

.

(7.23)

Since E(pg) = 0, derive now from the ergodic theorem (applied to a
sequence of simple functions approximating the compact support function
`i∂η/∂x`) that for every i ∈ {1, . . . , N}:

(7.24)

∫

Rd
(pg)(ε−1x)`i(x)

∂η

∂x`
(x)dx→ 0 in L1(Ξ, µ).

From (7.23) and (7.24), deduce that T (11; ε) tends to zero in probability.
Return back to (7.18): the terms T (1; ε), T (2; ε), T (3; ε) and T (4; ε) tend

to zero in probability as ε vanishes. Deduce in the end that:
∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε), ψ(ε−1x)〉η(x)dx

+

∫

Rd
(pg)(ε−1x)

∂u

∂x`
(ε−1x; ε)η(x)dx

+

∫

Rd
(pg)(ε−1x)ψ`(ε

−1x)η(x)dx,

(7.25)
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tends to zero in probability.

(Fourth Step.)

We now aim to prove that the term in (7.25) also tends to zero in L1(Ξ, µ).
To this end, we need to establish the uniform integrability of (7.25) with
respect to the parameter ε ∈]0, 1]. The U.I. of the last term in (7.25) follows
from (RM1) (see (6.5)).

Turn now to the first term. Due to (6.4), we claim for A ∈ G:

E

[

1A

∣

∣

∣

∣

∫

Rd
〈(pa)(ε−1x)∇xu(ε

−1x; ε), ψ(ε−1x)〉η(x)dx

∣

∣

∣

∣

]

≤ C

[
∫

B(0,1/4)
E

(

1A(ξ)(p|Ψ|2)(Tε−1xξ)
)

dx

]1/2

.

Again from (RM1), the first term in (7.25) is also U.I.. The second term
in (7.25) is treated in a similar way.

Hence, the quantity in (7.25) tends to zero in L1(Ξ, µ). In particular, the
expectation of (7.25) vanishes as ε tends to zero. Due to the weak conver-
gence (up to a subsequence) of the gradient, this proves that E [p〈aΨ,Ψ〉] =
−2E [pgΨ`].

Since lim supε→0 E [p〈aDu(·; ε), Du(·; ε)〉] ≤ −2E [pgΨ`] (see (6.33)), this
completes the proof of the strong convergence.

7.2. Uniqueness of the Limit. We finally prove the uniqueness of the
limit Ψ. Assume to this end that Ψ̃ ∈ L2(Ξ,p.µ; Rd) denotes another weak
limit (and thus strong limit from Subsection 7.1) of the family (Du(·; ε))ε>0.
Noting that the L1(Ξ, µ) convergence in (7.25) holds for ε→ 0 and not just
for a subsequence tending to 0, and making the difference between both
(7.25) associated to Ψ and Ψ̃, derive that ∆Ψ ≡ Ψ − Ψ̃ satisfies:

lim
ε→0

E

[
∫

Rd
〈(pa)(ε−1x, ξ)∇xu(ε

−1x; ε, ξ),∆Ψ(Tε−1xξ)〉η(x)dx

+

∫

Rd
(pg)(ε−1x, ξ)∆Ψ`(Tε−1xξ)η(x)dx

]

= 0.

(7.26)

Hence, for any weak limit Ψ̄ of the sequence (Du(·; ε))0<ε≤1,

(7.27) E
[

〈(pa)Ψ̄,∆Ψ〉
]

= −E
[

pg(∆Ψ)`

]

.

Both Ψ and Ψ̃ satisfy (7.27). In particular, the difference ∆Ψ satisfies
E [〈(pa)∆Ψ,∆Ψ〉] = 0. This completes the proof of uniqueness.



60 F. DELARUE

8. Conclusion.

8.1. Proof of Theorem 3.2. We now complete the proof of Theorem 3.2.
Under (p.µ) ⊗ P, for every r > 0, the process (ηr2−t)0≤t≤r2 is a Markov
process with p−1L∗(p·) as generator (see e.g. Nagasawa [22]). Hence, from
Proposition 1.7, Chapter IV, in Ethier and Kurtz [9], for every r > 0, (p.µ)⊗
P a.s.:

u(η0; r
−1) = u(ηr2 ; r−1)

+ r−2
∫ r2

0
u(ηr2−s; r

−1)ds−
∫ r2

0
f(ηr2−s)ds+M

(r)
r2 ,

where (M
(r)
t )0≤t≤r2 is a continuous square integrable martingale with respect

to the filtration (σ{ηr2−s, 0 ≤ s ≤ t})0≤t≤r2 . From Lemma VIII.3.68 in Ja-

cod and Shiryaev [14], the quadratic variation writes (
∫ t
0 〈Du(·; r−1),aDu(·;

r−1)〉(ηr2−s)ds)0≤t≤r2 (following the regularization argument in Subsection
6.2, Paragraph “End of the Proof of Theorem 6.2”, we can prove that
u2(·; r−1) ∈ Dp(p−1L∗(p·)) and that p−1L∗(pu2(·; r−1)) = 2u(·; r−1)(p−1

L∗(pu(·; r−1))) + 〈aDu(·; r−1), Du(·; r−1)〉 ∈ L2(Ξ,p.µ)).
Thanks to Theorem 6.4, deduce that:

lim
r→+∞

E ⊗ E

[

p

∣

∣

∣

∣

r−1
∫ r2

0
f(ηr2−s)ds− r−1M

(r)
r2

∣

∣

∣

∣

]

= 0.

Note to conclude that r−1(M
(r)
r2t)0≤t≤1 is a martingale (with respect to a

rescaled filtration) whose quadratic variation writes (r−2
∫ r2t
0 〈Du(·; r−1),a

Du(·; r−1)〉(ηr2−s)ds)0≤t≤1. Apply Theorem 3.1 (ergodic theorem), Theo-
rem 7.1 and Theorem VIII.3.11 in Jacod and Shiryaev [14] and deduce that

r−1(M
(r)
r2t)0≤t≤1 converges in law towards a non-standard real valued Brow-

nian motion with σ2
f = E(p〈Ψ,aΨ〉) as variance.

8.2. Further Extensions and Investigations. Note first that Theorem 3.2
still holds true if f writes as the linear combination of terms of the form
(p−1D`i

(pgi))1≤i≤N , with N ≥ 1, (`1, . . . , `N ) ∈ {1, . . . , d}N and g1, . . . ,gd

as in the statement of Theorem 3.2. The arguments to establish such an
extension are just the same as those used to prove Theorem 3.2.

A natural question then consists in investigating Theorem 3.2 when g
(or more generally g1, . . . ,gd as above) belongs to H(Ξ,p.µ) and satisfies
E(pg) = 0. In this case, the field g can be approximated in L2(Ξ,p.µ) by
a sequence of the form (gn ? kn)n≥0, for a sequence (gn)n≥0 ∈ (L∞(Ξ, µ))N

converging towards g in L2(Ξ,p.µ) and a sequence (kn)n≥0 of mollifiers on
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R
d. Choose for example gn = ϕn(g), with ϕn(t) = t for |t| ≤ rn, ϕn(t) =

rnsign(t) for |t| > rn, rn → +∞, and kn(x) = ndk(nx) for a smooth non-
negative function k with compact support. Considering gn?kn−E [p(gn?kn)]
instead of gn?kn, we then recover the centering condition for the regularizing
sequence. Thanks to Proposition 4.10, we then prove that, for every n ≥
0, gn ? kn belongs to H(Ξ,p.µ) and that D(gn ? kn) = −gn ? ∇xkn ∈
L∞(Ξ, µ; Rd), so that the regularizing sequence fulfills the assumption in
Theorem 3.2. For a suitable sequence (rn)n≥0, we can prove that D(gn ?
kn) converges in L2(Ξ,p.µ; Rd) towards Dg. In the end, p−1D[p(gn ? kn −
E [p(gn ? kn)])] converges in L2(Ξ,p.µ; Rd) towards p−1D(pg). The central
limit theorem for the field p−1D`(pg), 1 ≤ ` ≤ d, then follows from Theorem
3.2 applied to the regularizing sequence and from the crucial Proposition 2.2,
Chapter I, in Olla [24] which provides an estimate for the L2(Ξ,p.µ) norm
of the additive functional driven by p−1D`(pg) in terms of the L2(Ξ,p.µ)
norm of g.

More generally, the same proposition permits to extend the result to
L2(Ξ,p.µ) converging infinite combinations of the form

∑

n≥0 p−1D`n(pgn),
(`n)n≥0 ∈ {1, . . . , d}N, (gn)n≥0 ∈ (H(Ξ,p.µ))N, ∀n ≥ 0, E(pgn) = 0, such
that:

(8.1) Σ ≡
∑

n≥0

E(pg2
n)1/2 < +∞.

Indeed, due to (8.1), for every smooth function h ∈ S∞,

E

(

ph
∑

n≥0

p−1D`n(pgn)

)

=
∑

n≥0

E(hD`n(pgn))

= −
∑

n≥0

E(pgnD`nh)

≤ ΣE(p|Dh|2)1/2,

so that Proposition 2.2, Chapter I, in Olla [24] applies.
A more challenging problem would consist in dicussing the centering con-

dition E(pg) = 0, from which we derived the strong convergence of the
gradient fields of the resolvent. This condition appears as a trick to over-
come the lack of centering properties for the gradient fields in L2(Ξ,p.µ),
since this latter space is not imbedded into L1(Ξ, µ). At this stage of our
research, we have no clues for such a possible extension.

Another interesting open question concerns the choice of the initial con-
dition. Due to the specific time reversal procedure for the process (ηt)t≥0,
our central limit theorem just holds under the invariant measure, and we are
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not able to follow the discussion of Kipnis and Varadhan [15] about initial
distributions of Dirac type. Again, right now, we have no ideas to improve
our result in this direction.
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