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Abstract. We investigate the atomic density of a cloud confined in an isotropic harmonic trap at the vicinity
of Bose-Einstein transition temperature. We show that, for an ideal gas and near this temperature, the
ground-state density cannot be neglected, even at the thermodynamic limit. In particular, at the transition
temperature, the value of ρ(0)λ3 with ρ(0) the total peak density and λ the thermal de Broglie wavelength,
is more than two times the famous ζ(3/2) ≈ 2.612. We compare the exact calculations, available in an
harmonic trap, to semi-classical approximations.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural properties
– 03.65.Sq Semiclassical theories and applications – 05.30.Jp Boson systems

The phenomenon of Bose-Einstein condensation (BEC)
is a phase transition. Below the critical temperature Tc,
the ground-state population, which is the order param-
eter, becomes macroscopic. This phenomenon, that hap-
pens strictly speaking only at the thermodynamic limit, is
usually illustrated in textbooks with an homogenous gas.
Experimentally, the Bose-Einstein condensation of dilute
gases has been observed since 1995 with atoms confined
in an harmonic trap. These stimulating experimental data
quickly showed that two more effects were to be consid-
ered for complete interpretation: interatomic interactions
and the finite atom number, typically 106. This leads [1]
to a shift of the transition temperature, to Bogoliubov-like
excitation spectrum of the condensate, to Thomas-Fermi
profile for dense condensate... Several papers address more
specifically finite size effects on harmonically trapped ideal
gases. Two quantities have been investigated in detail: the
atom number [2,3,5,6,7,8] and the specific heat [4,6,8]. It is
shown that the transition temperature associated to the
atom number is shifted compared to Tc, but by a small
amount, typically of few percent for atom numbers in the
range 106. The transition temperature for the specific heat
is different but is also very close to Tc [4,8].

Surprisingly fewer attention was payed on the atomic
density of an ideal gas. In an homogenous gas it is obvi-
ously equivalent to the atom number but this is no more
the case in a spatially varying potential. It becomes the
good parameter of the theory, in particular to perform
local density approximations. One can wonder if the den-
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sity will behave similarly as the atom number around the
transition temperature. We will see that the answer is gen-
erally no. This point will be illustrated for an isotropic
harmonic trapping and for a finite atom number. Further-
more, it implies that semi-classical approximations for the
atomic density have to be derived carefully. This should be
particularly true, for example, for the study of the shift of
the critical temperature by the interatomic interactions,
both within the mean-field approximation [5] and beyond
this approximation [9]. The effect of interactions will not
be addressed in this paper.

In an harmonic trap and at the transition tempera-
ture we will find that the ground-state peak density is
not negligible and has the same order of magnitude as
the excited states density. The Einstein criterion for BEC
ρ(0)λ3 = ζ(3/2) with ρ(0) the total peak density and λ
the thermal de Broglie wavelength has to be replaced by
ρ(0)λ3 = ζ(3/2) + 2

√

2ζ(2). This result, obtained at the
thermodynamic limit, is still valid for finite atom numbers.
We will compare the exact results with semi-classical ap-
proximations. The addition of the ground-state contribu-
tion on the latter improve their accuracy. We will finally
show that spatial integrations of the density, used usually
for imaging, decrease the effect.

We will use finite atom number for our calculations and
hence speak rather about transition temperature instead
of critical temperature. It will be denoted T ∗ in the fol-
lowing. As we will discuss several models for the atomic
density we will define different values of T ∗. The Bose-
Einstein distribution gives the population Ni of a given
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energy level ǫi: Ni = (eβ(ǫi−µ) − 1)−1 with
∞
∑

i=0

Ni = N .

Here β = 1/kBT with kB the Boltzmann’s constant, µ is
the chemical potential and N the total atom number. For
a fixed atom number the chemical potential increases as
the temperature decreases. As µ has to be smaller than
ǫ0, the ground-state energy, the excited state population
will saturate when µ approaches ǫ0 whereas N0 is still

increasing: N − N0 =
∞
∑

i=1

Ni(µ, T ) ≤
∞
∑

i=1

Ni(µ = ǫ0, T ).

The transition temperature T ∗ is defined [1,10] as the
temperature such that the saturated excited states popu-
lation is equal to the total atom number :

∞
∑

i=1

Ni(ǫ0, T
∗) = N (1)

It is important to note that at the transition tempera-
ture, the chemical potential is not equal to the ground-
state energy. The preceding equation gives the value of
the transition temperature and, adding the ground state

contribution,
∞
∑

i=0

Ni(µ
∗, T ∗) = N gives then the value of

the chemical potential at T = T ∗.

We will first examine the thermodynamic limit case.
There, things seem simple. For an isotropic harmonic trap
of oscillation frequency ω, this limit means N → ∞ with
Nω3 kept constant. Then τ = h̄ω/(kBT ) ≪ 1 and semi-
classical approximations should work. Replacing the dis-
crete energy spectrum by a continuous one and neglecting
the ground-state energy ǫ0, leads to the density ρ(r) =
1
λ3 g 3

2
[z exp(− τ

2 (r/σ)2] with z = eβµ the fugacity, σ =
√

h̄
mω the size of the ground-state and g 3

2
() a Bose func-

tion [11]. With the above notation, the thermal de Broglie

wavelength is λ = σ
√

2πτ . Similarly, the atom number
would be N = g3(z)/τ3. Obviously these expressions ne-
glect the population of the ground-state. As τ ≪ 1, eq.1
leads then to zc = 1 and N = ζ(3)/τ3

c , with Tc the criti-
cal temperature. The critical peak density would then be
given by ρc(0)λ3

c = g 3
2
(zc) = ζ(3/2) ≈ 2.612.

These statements are wrong, however. The thermo-
dynamic limit has to be taken at the end of the calcu-
lation, meaning that we are not allowed to neglect the
ground-state population from the beginning. The above
expression for the density and atom number are in fact
approximations for the excited states. Adding the ground-

state contribution leads to ρ(r) = 1
λ3 g 3

2
[ze−

τ
2 (r/σ)2 ]+ρ0(r)

and N = 1
τ3 g3(z) + N0 with ρ0(r) = N0

(
√

πσ)3
e−(r/σ)2 and

N0 = z
1−z . The value of the critical temperature is un-

changed as it is defined by the excited states saturation,
but the critical fugacity zc is now different from 1. Using
g3(zc) ≈ ζ(3)−ζ(2)xc with zc = e−xc (x = β(ǫ0−µ) > 0),

leads to xc ≈ τ
3/2
c /

√

ζ(2) [8]. The ground-state popula-
tion is ∼ 1/xc and, as expected, vanishingly small as τc →
0 compared to the excited-state population ζ(3)/τ3

c . The
ground-state peak density is ∼ 1

(
√

πσ)3xc
whereas the ex-

cited state peak density is ζ(3/2)/λ3
c . As λc = σ

√
2πτc, the

two quantities have the same order of magnitude ! The de-
generacy parameter is then ρc(0)λ3

c = ζ(3/2)+2
√

2ζ(2) ≈
6.24. This means that the ground-state population is ex-
tremely small but the size of its wavefunction is also ex-
tremely small compared to the atomic cloud size. For an
harmonic trap both depends on the same small parameter
at also the same power. So, even at the thermodynamic
limit, the traditional criterion for BEC is modified.

We will now address the case of finite atom numbers
and the comparison between semi-classical approximations
and exalt results. It is well known that the transition tem-
perature will be shifted compared to Tc for finite atom
numbers [2,3,6]. The above semi-classical approximation
is then inaccurate. A better approximation, which takes
into account the ground-state energy to first order, is:

ρ(r) = 1
λ3 {g 3

2
[z̃(r)]+ 3τ

2 g 1
2
[z̃(r)]} where z̃(r) = ze−

τ
2 (r/σ)2 .

Then N = 1
τ3 [g3(z) + 3τ

2 g2(z)]. This is the usual semi-
classical approximation found in the literature. Note that
g 1

2
(z) diverges at z = 1. This means that this approxima-

tion is intrinsically bad near the center of the trap for the
transition temperature. This divergence is however weak,
and any spatial integration will give finite result.

We can cure this defect by adding, as before, the ground-
state contribution. We obtain then











ρsc(r) = 1
λ3 {g 3

2
[z̃(r)] + 3τ

2 g 1
2
[z̃(r)]} + z

1−z
e−( r

σ
)2

(
√

πσ)3

N = 1
τ3 [g3(z) + 3

2τg2(z)] + z
1−z

T ∗
sc such that N = 1

τ∗3
sc

[ζ(3) + 3
2ζ(2)τ∗

sc]

(2)

We will use this semi-classical approximation in the
following. The harmonic trap is specific because one knows
exactly the eigen-energies and eigen-functions of the Hamil-
tonian. Semi-classical approximations can then be tested
accurately. The expressions of the atomic density and atom
number [12] are :



























ρex(r) = 1
(
√

πσ)3

∞
∑

l=1

zl

(1−e−2τl)3/2 e− tanh( τl
2 )( r

σ )2

N =
∞
∑

l=1

zl

(1−e−τl)3

T ∗
ex such that N =

∞
∑

l=1

( 1

(1−e−τ∗

exl)3
− 1)

where, here z = eβ(µ−ǫ0). The semi-classical models corre-
spond to a Taylor expansion in τ of these last expressions.

The semi-classical model sc is a very good approxima-
tion of the exact solution [13]. They only differ slightly
near the transition temperature. Figure 1 shows the rela-
tive deviations of Tc and T ∗

sc from T ∗
ex in function of the

atom number. As expected the different values are very
similar. The value T ∗

sc deviates less than 1% for N > 400
and the relative shift is ∼ 10−4 for typical experimental
atom numbers. This is well below actual experimental un-
certainties. The thermodynamic value Tc is significantly
higher than T ∗

ex, typically 1 % [2,3,6,8]. This discrepancy
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Fig. 1. Relative shift of the semi-classical transition temper-
atures Tc (dashed line) and T ∗

sc (dotted line) to T ∗

ex (see text)
in function of the atom number. Both temperatures converge
for high atom numbers. The critical temperature at thermody-
namic limit, Tc, deviates by less than 1% for N > 5 105. The
semi-classical transition temperature defined for a finite atom
number, T ∗

sc, is much more accurate and deviates by less than
1% for N > 400.
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Fig. 2. The parameter ρ(0)λ3 for the semi-classical model sc
(dotted line) and for the exact calculation (solid line) is plot-
ted in function of the atom number N for clouds at the tran-
sition temperature T = T ∗

sc and T = T ∗

ex respectively. Even if
the degeneracy parameters are somewhat different, they both
differ significantly to the usual value of 2.612 (dashed horizon-
tal line). This deviation is due to an under-estimation of the
ground-state density.

will be even more pronounced for anisotropic trap (see
below).

Figure 2 shows the degeneracy parameter ρ(0)λ3 in
function of the atom number for clouds at T = T ∗. We plot
this number for the semi-classical approximation sc and
for model ex. The two curves are higher than 2.612 and
confirm the thermodynamic calculation presented above.
The degeneracy parameter is astonishingly constant till
103 atoms and does not differ much even for smaller atom
numbers. They both tend to the same asymptotic value
but differ significantly for experimentally accessible atom
numbers. This is because the term in 3

2τ in model sc is not

negligible. One finds x∗
sc ≈ (τ∗

sc)
3
2√

ζ(2)
(1 + 9

8ζ(2)τ
∗
sc ln τ∗

sc)[11].

Figure 3 shows the evolution of the condensate fraction
N0/N and condensate peak density fraction in function of
T for N = 106 atoms. What prevails in this figure is the
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Fig. 3. Condensate atom number fraction N0/N (dot-dash
line) and peak density fraction ρ0(0)/ρ(0) (solid line) in func-
tion of the temperature in harmonic oscillator unit h̄ω/kB.
The cloud contains 106 atoms. The transition temperature is
T ∗

ex = 93.37h̄ω/kB and the asymptotic thermodynamic tem-
perature is Tc = 94.05h̄ω/kB. The ground-state peak density
increases much more sharply than the ground-state population
around the transition temperature. The former has also a sig-
nificant value above T ∗

ex. The model sc is indistinguishable for
N0/N , but is slightly different for ρ0(0)/ρ(0) (dotted line).

sharp increase of the condensate peak density compared
to the condensate population. In this respect, the peak
density is a much better marker of the Bose-Einstein con-
densation than the atom number. This feature is in fact
used experimentally: the appearance of a small peak over
a broad distribution is the usual criterion to distinguish
clouds above or below the transition temperature. The in-
crease of the density at threshold is very sharp and so the
actual value of the density is very sensitive to the value
of the temperature. This explains also the high sensitivity
on the results shown in Fig.2. For this large atom number
the temperature Tc and T ∗

ex are already very close but can
be distinguished in the small window around transition
shown in the graph. One also notices that the ground-
state peak density, even above transition, is significant.
This will be even much more pronounced for smaller atom
numbers.

Figure 4 shows the density profile of clouds at the same
temperature for atom numbers around N∗

ex, the number
of atoms for which T = T ∗

ex (N = N∗
ex corresponds to

the dotted line). Only the central part is sensitive to the
atom number indicating that the excited states are already
saturated. Moreover, by looking at the graph, one would
rather think that the Bose-Einstein transition occurs for
a smaller atom number. This points out that the defini-
tion on the transition temperature on an atom number
criterion does not fully correspond to a criterion based on
the atomic density which would be more connected to ex-
periments. The inset shows the excited states and ground
state density profile at threshold. The excited states den-
sity exhibits a dip in the center of the cloud, obviously not
present in semi-classical models (monotonic functions).
We check that the height of the dip is proportional to
1/τ for various atom number and can almost be totally
attributed to the first excited state occupation.
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Fig. 4. Atomic density in function of r/σ where σ is the size
of the harmonic oscillator ground-state. The temperature is
T = 93.37h̄ω/kB and the atom number N spans from 0.990 106

to 1.004 106 by step of 2000 atoms. The curve at threshold is
in dotted line. The inset shows the excited states and ground
state density profile at threshold. The dip around r = 0 is
mainly due to the first excited state population.
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Fig. 5. Contribution of the ground-state on the peak density
for, from bottom to top, 1D, 2D and 3D images in function
of the number of trapped atoms. The clouds are at the tran-
sition temperature T ∗

ex. A 3D image would give the density in
all three dimensions of space [16] whereas 2D (resp. 1D) im-
age corresponds to the density integrated over one (resp. 2)
dimension. For N = 104 atoms the ground-state contributes to
∼ 26% in 2D images and ∼ 6% in 1D images. In contrast to
3D image, the ground-state contribution is very small for large
atom number; it is not for typical atom numbers accessible in
experiments.

We have shown results on the atomic density at the
vicinity of the transition temperature. Detection techniques
use rather 1D-integrated density (absorption images) or
2D-integrated density (see [15] for instance). One can show
that, at threshold, the 1D and 2D-integrated peak density
of the ground-state is vanishingly small at the thermo-
dynamic limit. The peak 1D-integrated density fraction
behaves at threshold as

√
τ and the 2D-integrated peak

density as τ . For typical atom number this is nevertheless
not negligible, as can be seen in Fig.5. We have also added,
for comparison, the result for the full 3D density. At the
transition temperature T ∗

ex, the ground-state contributes
to more than 10% for N < 2500 atoms in 1D images and
for N < 8 106 atoms for 2D images.

In conclusion, we have shown that the peak density of
an ideal atomic gas is higher than expected near the tran-
sition temperature. Apart from the atomic density, two-
and three-body inelastic loss rates will also be affected
and could be 20 to 30% higher than expected around the
transition temperature for typical atom numbers.

For anisotropic traps the term 3
2τ in eq 2 becomes 3

2τ ω̃
ω̄ ,

with ω̄ = (
∏

i ωi)
1/3 the geometric mean and ω̃ = 1

3

∑

i ωi

the arithmetic mean [2]. Thus the effect will be even more
pronounced for anisotropic traps because ω̃ ≫ ω̄. Besides,
the interatomic interactions have been neglected in our
analysis and will modify our conclusions. Previous calcula-
tions treated separately finite size and interactions effects,
both corrections being finally added. The main result pre-
sented here, the ground-state contribution on the density,
tends to prove that both effects have to be investigated
together. A full three-dimensional density measurement
would be valuable to this respect; this type of measure-
ment is at the edge to be available in our experiment on
metastable helium in Orsay [16].

We thank S. Giorgini for stimulating discussions.
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