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Abstract

The aim of this paper is to give an explicit formula for the calculation of the
Gutzwiller–Maslov index of a Hamiltonian periodic orbit. We identify the
index appearing in Gutzwiller’s trace formula with a non-trivial extension
of the Conley–Zehnder index. This index can be related to the usual Maslov
index using the theory of the metaplectic group and the formalism of the
Arnol’d–Leray–Maslov index developed in previous work, and is extended
to symplectic paths with arbitrary endpoint.



Keywords: Gutzwiller trace formula, Conley–Zehnder index, Maslov in-
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1 Introduction

Let us briefly recall the origin of the problem; our argument will be rather
heuristic. While the distribution of the spectrum of a quantum Hamiltonian
Ĥ is well-understood when H is integrable, the situation is far from being
fully understood in the general case. Assume that the spectrum of Ĥ is
discrete and consists of numbers E1, E2, .... One wants to find an asymptotic
expression, for ~ → 0, of the “level density”

d(E) =

∞∑

k=1

δ(E − Ej) = −
1

π
lim

ε→0+
Tr G(x, x′, E + iε)

(G the Green function for Ĥ). One of the most popular methods for calculat-
ing approximations to d(E) is Gutzwiller’s trace formula [11]. Let us recall
this formula; “derivations” of which abound in the literature [1, 19] to cite
a few. One can write d(E) = d̄(E)+ d̃(E) where d̄(E) is the Thomas–Fermi
or smoothed density of states, and d̃(E) the “oscillating term”. Gutzwiller’s
achievement was to propose the following approximation, for small ~, of
d̃(E): d̃(E) = d̃Gutz(E) + O(~) where

d̃Gutz(E) =
1

π~
Re

∑

γ

Tγiµγ

√
|det(Sγ − I)|

eiAγ/~. (1)

The sum in the right-hand side of the formula above is taken over all periodic
orbits γ with period Tγ of H (including their repetitions); the exponent µγ

is an integer, Aγ =
∮
γ pdx the action of the orbit, and Sγ the stability

matrix of γ. Gutzwiller’s formula (1) is plagued, outside a few (interesting!)
cases by difficulties due to possible divergences of the series, insufficient
error estimates, etc. We will not discuss these delicate problems here; it
is well-known that there are formidable roadblocks on the way to a full
understanding or justification of Gutzwiller’s formula. What we will do
is instead to focus on the integers µγ , to which much literature has been
devoted (see for instance [1, 4, 19] and the references therein). As is well-
known, µγ is not the usual Maslov index familiar from EBK quantization
of Lagrangian manifolds, but rather (up to the sign) the Conley–Zehnder
index [3, 12] used in the study of periodic Hamiltonian orbits. This has been
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established in the deep paper by Muratore-Ginnaneschi in [17], and by one of
the authors of the present paper in [10] using previous constructions in [5, 6];
our argument was based on an ingenious derivation of Gutzwiller’s formula
by Mehlig and Wilkinson [15] using the Weyl representation of metaplectic
operators.

It turns out that the Conley–Zehnder index is not very easy to calculate
in practice, and one does not immediately see how it is related to the usual
Maslov index. In addition one lacks a general rigorous formula allowing to
calculate the index of repeated orbits. (The formulae proposed in [21] are
based on a clever but mathematically illegitimate derivation of Gutzwiller’s
formula).

In this paper we will:

1. Redefine the Conley–Zehnder index in terms of globally defined indices
(the Wall–Kashiwara index and the Arnol’d–Leray–Maslov index); we
will thus obtain a non-trivial extension which is explicitly computable
for all paths, even in the case det(S−I) = 0; this is useful in problems
where degeneracies arise (for instance the isotropic harmonic oscillator,
see [18]);

2. We will prove a formula for the Conley–Zehnder index of the product
of two symplectic paths. We will see that in particular the index of an
orbit which is repeated r times is

νγr = rνγ + 1
2(r − 1) sign MS

where MS is the symplectic Cayley transform of the monodromy ma-
trix S;

3. We will finally prove that the Conley–Zehnder index νγ of a non-
degenerate periodic orbit γ is related to its Maslov index mγ by the
simple formula

νγ = mγ − InertWγ

where InertWγ is Morse’s “index of concavity” [16, 17].

We close the article by performing explicit calculations in the case of the
two-dimensional anisotropic harmonic oscillator; this allows us to recover a
formula obtained by non-rigorous methods in the literature.
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Notations

We will denote by σ the standard symplectic form on R
2n = R

n
x × R

n
p :

σ(z, z′) =
〈
p, x′

〉
−

〈
p′, x

〉
if z = (x, p), z′ = (x′p′)

that is, in matrix form

σ(z, z′) =
〈
Jz, z′

〉
, J =

[
0 I
−I 0

]
.

The real symplectic group Sp(n) consists of all linear automorphisms S of
R

2n such that σ(Sz, Sz′) = σ(z, z′) for all z, z′. Equivalently:

S ∈ Sp(n) ⇐⇒ ST JS = SJST = J .

Sp(n) is a connected Lie group and π1[Sp(n)] ≃ (Z,+). We denote by
Lag(n) the Lagrangian Grassmannian of (R2n, σ), that is: ℓ ∈ Lag(n) if and
only ℓ is a n-plane in R

2n on which σ vanishes identically. We will write
ℓX = R

n
x×0 and ℓP = 0×R

n
p (the “horizontal” and “vertical” polarizations).

2 Prerequisites

In this section we review previous results [7, 8, 9] on Lagrangian and sym-
plectic Maslov indices generalizing those of Leray [13]. An excellent com-
parative study of the indices used here with other indices appearing in the
literature can be found in Cappell et al. [2].

In what follows (E,ω) is a finite-dimensional symplectic space, dim E =
2n, and Sp(E,ω), Lag(E,ω) the associated symplectic group and Lagrangian
Grassmannian.

2.1 The Wall–Kashiwara index

Let (ℓ, ℓ′, ℓ′′) be a triple of elements of Lag(E,ω); by definition [2, 14, 22]
the Wall–Kashiwara index (or: signature) τ(ℓ, ℓ′, ℓ′′) is the the signature of
the quadratic form

Q(z, z′, z′′) = σ(z, z′) + σ(z′, z′′) + σ(z′′, z′)

on ℓ ⊕ ℓ′ ⊕ ℓ′′. The index τ is antisymmetric:

τ(ℓ, ℓ′, ℓ′′) = −τ(ℓ′, ℓ, ℓ′′) = −τ(ℓ, ℓ′′, ℓ′) = −τ(ℓ′′, ℓ′, ℓ);
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it is a symplectic invariant:

τ(Sℓ, Sℓ′, Sℓ′′) = τ(ℓ, ℓ′, ℓ′′) for S ∈ Sp(n)

and it has the following essential cocycle property:

τ(ℓ, ℓ′, ℓ′′) − τ(ℓ′, ℓ′′, ℓ′′′) + τ(ℓ′, ℓ′′, ℓ′′′) − τ(ℓ′, ℓ′′, ℓ′′′) = 0. (2)

Moreover its values modulo 2 are given by the formula:

τ(ℓ, ℓ′, ℓ′′) ≡ n + dim ℓ ∩ ℓ′ + dim ℓ′ ∩ ℓ′′ + dim ℓ′′ ∩ ℓ mod 2. (3)

Let (E,ω) = (E′ ⊕ E′′, ω′ ⊕ ω′′); identifying Lag(E′, ω′) ⊕ Lag(E′′, ω′′) with
a subset of Lag(E,ω) we have the following additivity formula:

τ(ℓ1 ⊕ ℓ2, ℓ
′
1 ⊕ ℓ′2, ℓ

′′
1 ⊕ ℓ′′2) = τ1(ℓ1, ℓ

′
1, ℓ

′′
1) + τ2(ℓ2, ℓ

′
2, ℓ

′′
2)

where τ1 and τ2 are the signatures on Lag(E′, ω′) and Lag(E′′, ω′′).
The following Lemma will be helpful in our study of the Conley–Zehnder

index:

Lemma 1 (i) If ℓ ∩ ℓ′′ = 0 then τ(ℓ, ℓ′, ℓ′′) is the signature of the quadratic
form

Q′(z′) = ω(Pℓℓ′′z
′, z′) = ω(z′, Pℓ′′ℓz

′)

on ℓ′, where Pℓℓ′′ is the projection onto ℓ along ℓ′′ and Pℓ′′ℓ = I −Pℓℓ′′ is the
projection on ℓ′′ along ℓ. (ii) Let (ℓ, ℓ′, ℓ′′) be a triple of Lagrangian planes
such that an ℓ = ℓ ∩ ℓ′ + ℓ ∩ ℓ′′. Then τ(ℓ, ℓ′, ℓ′′) = 0.

(See e.g. [14] for a proof).
The index of inertia of the triple (ℓ, ℓ′, ℓ′′) is defined by

Inert(ℓ, ℓ′, ℓ′′) =
1

2
(τ(ℓ, ℓ′, ℓ′′)+n+dim ℓ∩ ℓ′−dim ℓ′∩ ℓ′′ +dim ℓ′′∩ ℓ); (4)

in view of (3) it is an integer. When the Lagrangian planes ℓ, ℓ′, ℓ′′ are pair-
wise transverse it follows from the first part of Lemma 1 that Inert(ℓ, ℓ′, ℓ′′)
coincides with the index of inertia defined by Leray [13]: see [7, 8].

4



2.2 The ALM index

Recall [7, 8] (also [9] for a review) that the ALM (=Arnol’d–Leray–Maslov)
index on the universal covering Lag∞(E,ω) of Lag(E,ω) is the unique map-
ping

µ : (Lag∞(E,ω))2 −→ Z

having the two following properties:

• µ is locally constant on each set {(ℓ∞, ℓ′∞) : dim ℓ∩ℓ′ = k} (0 ≤ k ≤ n);

• For all ℓ∞, ℓ′∞, ℓ′′∞ in Lag∞(E,ω) with projections ℓ, ℓ′, ℓ′′ we have

µ(ℓ∞, ℓ′∞) − µ(ℓ∞, ℓ′′∞) + µ(ℓ′∞, ℓ′′∞) = τ(ℓ, ℓ′, ℓ′′) (5)

where τ is the Wall–Kashiwara index on Lag(E,ω).

The ALM index has in addition the following properties:

µ(ℓ∞, ℓ′∞) ≡ n + dim ℓ ∩ ℓ′ mod2 (6)

(n = 1
2 dimE) and

µ(βrℓ∞, βr′ℓ′∞) = µ(ℓ∞, ℓ′∞) + 2(r − r′) (7)

for all integers r and r′; here β denotes the generator of π1[Lag(E,ω)] ≡
(Z,+) whose image in Z is +1. From the dimensional additivity property of
the signature τ immediately follows that if ℓ1,∞ ⊕ ℓ2,∞ and ℓ′1,∞ ⊕ ℓ′2,∞ are
in

Lag∞(E′, ω′) ⊕ Lag∞(E′′, ω′′) ⊂ Lag∞(E,ω)

then

µ(ℓ1,∞ ⊕ ℓ2,∞, ℓ′1,∞ ⊕ ℓ′2,∞) = µ′(ℓ1,∞, ℓ′1,∞) + µ′′(ℓ2,∞, ℓ′2,∞) (8)

where µ′ and µ′′ are the ALM indices on Lag∞(E′, ω′) and Lag∞(E′′, ω′′),
respectively.

When (E,ω) is the standard symplectic space (R2n, σ) the “Souriau map-
ping” [20] identifies Lag(E,ω) = Lag(n) with the set

W(n, C) = {w ∈ U(n, C) : w = wT }

of symmetric unitary matrices. This is done by associating to to ℓ = uℓP

(u ∈ U(n, C)) the matrix w = uuT ; the Maslov bundle Lag∞(n) is then
identified with

W∞(n, C) = {(w, θ) : w ∈ W(n, C), det w = eiθ};
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the projection πLag : ℓ∞ 7−→ ℓ becoming (w, θ) 7−→ w. The ALM index is
then calculated as follows:

• If ℓ ∩ ℓ′ = 0 then

µ(ℓ∞, ℓ′∞) =
1

π

[
θ − θ′ + iTr Log(−w(w′)−1

]
(9)

(the transversality condition ℓ ∩ ℓ′ is equivalent to −w(w′)−1 having
no negative eigenvalue);

• If ℓ ∩ ℓ′ 6= 0 one chooses any ℓ′′ such that ℓ ∩ ℓ′′ = ℓ′ ∩ ℓ′′ = 0 and
one then calculates µ(ℓ∞, ℓ′∞) using the formula (5), the values of
µ(ℓ∞, ℓ′′∞) and µ(ℓ′∞, ℓ′′∞) being given by (9). (The cocycle property
(2) of τ guarantees that the result does not depend on the choice of
ℓ′′, see [7, 8]).

2.3 The relative Maslov indices on Sp(E, ω)

We begin by recalling the definition of the Maslov index for loops in Sp(n).
Let γ be a continuous mapping [0, 1] −→ Sp(n) such that γ(0) = γ(1), and
set γ(t) = St. Then Ut = (StSt)

−1/2St is the orthogonal part in the polar
decomposition of St:

Ut ∈ Sp(n) ∩ O(2n, R).

Let us denote by ut the image ι(Ut) of Ut in U(n, C):

ι(Ut) = A + iB if U =

[
A −B
B A

]

and define ρ(St) = detut. The Maslov index of γ is by definition the degree
of the loop t 7−→ ρ(St) in S1:

m(γ) = deg[t 7−→ det(ι(Ut))] , 0 ≤ t ≤ 1].

Let α be the generator of π1[Sp(E,ω)] ≡ (Z,+) whose image in Z is +1; if
γ is homotopic to αr then

m(γ) = m(αr) = 2r. (10)

The definition of the Maslov index can be extended to arbitrary paths in
Sp(E,ω) using the properties of the ALM index. This is done as follows: let
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ℓ = πLag(ℓ∞) ∈ Lag(E,ω); we define the Maslov index of S∞ ∈ Sp∞(E,ω)
relative to ℓ by

µℓ(S∞) = µ(S∞ℓ∞, ℓ∞); (11)

one shows (see [7, 8]) that the right-hand side only depends on the projection
ℓ of ℓ∞, justifying the notation.

Here are three fundamental properties of the relative Maslov index:

• The product formula:

µℓ(S∞S′
∞) = µℓ(S∞) + µℓ(S

′
∞) + τ(ℓ, Sℓ, SS′ℓ) (12)

valid for all S∞, S′
∞ in Sp∞(E,ω);

• The behavior of µℓ under the action of the fundamental group:

µℓ(α
rS∞) = µℓ(S∞) + 4r (13)

for all r ∈ Z (α the generator of π1[Sp(E,ω)] with index 1).

• µℓ is locally constant on the sets {S∞ : dim Sℓ∩ ℓ = k} for 0 ≤ k ≤ n.

The two first properties readily follow from, respectively, (5) and (7).
The third follows from the fact that the ALM index is locally constant on
the sets {(ℓ∞, ℓ′∞) : dim ℓ ∩ ℓ′ = k}. Note that (13) implies that

µℓ(α
r) = 4r

hence the restriction of any of the µℓ to loops γ in Sp(E,ω) is twice the
Maslov index m(γ) defined above; it is therefore sometimes advantageous to
use the variant of µℓ defined by

mℓ(S∞) =
1

2
(µℓ(S∞) + n + dim(Sℓ ∩ ℓ))

where n = 1
2 dim E. We will call mℓ(S∞) the reduced (relative) Maslov

index. In view of property (6) it is an integer; the properties of mℓ are
obtained, mutatis mutandis, from those of µℓ; for instance property (12)
becomes

mℓ(S∞S′
∞) = mℓ(S∞) + mℓ(S

′
∞) + Inert(ℓ, Sℓ, SS′ℓ)

where Inert is the index of inertia defined by (4).
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It follows from the cocycle property of the signature τ that the Maslov
indices corresponding to two choices ℓ and ℓ′ are related by the formula

µℓ(S∞) − µℓ′(S∞) = τ(Sℓ, ℓ, ℓ′) − τ(Sℓ, Sℓ′, ℓ′); (14)

similarly

mℓ(S∞) − mµℓ′(S∞) = Inert(Sℓ, ℓ, ℓ′) − Inert(Sℓ, Sℓ′, ℓ′).

Assume that (E,ω) = (E′ ⊕ E′′, ω′ ⊕ ω′′) and ℓ′ ∈ Lag(E′, ω′), ℓ′′ ∈
Lag(E′′, ω′′); the additivity property (8) of the ALM index implies that if
S′
∞ ∈ Sp∞(E′, ω′), S′′

∞ ∈ Sp∞(E′′, ω′′) then

µℓ′⊕ℓ′′(S
′
∞ ⊕ S′′

∞) = µℓ′(S
′
∞) + µℓ2(S

′′
∞) (15)

where Sp∞(E′, ω′) ⊕ Sp∞(E′′, ω′′) is identified in the obvious way with a
subgroup of Sp∞(E,ω); a similar property holds for the reduced index mℓ.

3 The index ν on Sp∞(n)

In this section we define and study a function ν : Sp∞(n) −→ Z generalizing
the Conley–Zehnder index [3]. We begin by recalling the definition and main
properties of the latter.

3.1 Review of the Conley–Zehnder index

Let Σ be a continuous path [0, 1] −→ Sp(n) such that Σ(0) = I and
det(Σ(1) − I) 6= 0. Loosely speaking, the Conley–Zehnder index [3] counts
algebraically the number of points in the open interval ]0, 1[ for which Σ(t)
has 1 as an eigenvalue. To give a more precise definition we need some
notations. Let us define three subsets of Sp(n) by

Sp0(n) = {S : det(S − I) = 0}

Sp+(n) = {S : det(S − I) > 0}

Sp−(n) = {S : det(S − I) < 0}.

These sets partition Sp(n), and Sp+(n) and Sp−(n) are moreover arcwise
connected; the symplectic matrices S+ = −I and

S− =

[
L 0
0 L−1

]
, L = diag[2,−1, ...,−1]
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belong to Sp+(n) and Sp−(n), respectively.
Let us now denote by C±(2n, R) the space of all paths Σ : [0, 1] −→ Sp(n)

with Σ(0) = I and Σ(1) ∈ Sp±(n). Any such path can be extended into
a path Σ̃ : [0, 2] −→ Sp(n) such that Σ̃(t) ∈ Sp±(n) for 1 ≤ t ≤ 2 and
Σ̃(2) = S+ or Σ̃(2) = S−. Let ρ be the mapping Sp(n) −→ S1, ρ(St) =
det ut, used in the definition of the Maslov index for symplectic loops. The
Conley–Zehnder index of Σ is, by definition, the winding number of the loop
(ρ ◦ Σ̃)2 in S1:

iCZ(Σ) = deg[t 7−→ (ρ(Σ̃(t)))2, 0 ≤ t ≤ 2].

It turns out that iCZ(Σ) is invariant under homotopy as long as the end-
point S = Σ(1) remains in Sp±(n); in particular it does not change under
homotopies with fixed endpoints so we may view iCZ as defined on the subset

Sp∗
∞(n) = {S∞ : det(S − I) 6= 0}

of the universal covering group Sp∞(n). With this convention one proves [12]
that the Conley-Zehnder index is the unique mapping iCZ : Sp∗

∞(n) −→ Z

having the following properties:

(CZ1) Antisymmetry : For every S∞ we have

iCZ(S−1
∞ ) = −iCZ(S∞)

where S−1
∞ is the homotopy class of the path t 7−→ S−1

t ;

(CZ2) Continuity : Let Σ be a symplectic path representing S∞ and Σ′ a
path joining S to an element S′ belonging to the same component
Sp±(n) as S. Let S′

∞ be the homotopy class of Σ ∗ Σ′. We have

iCZ(S∞) = iCZ(S′
∞);

(CZ3) Action of π1[Sp(n)]:

iCZ(αrS∞) = iCZ(S∞) + 2r

for every r ∈ Z.

We observe that these three properties are characteristic of the Conley–
Zehnder index in the sense that any other function i′CZ : Sp∗

∞(n) −→ Z

satisfying then must be identical to iCZ. Set in fact δ = iCZ − i′CZ. In
view of (CZ3) we have δ(αrS∞) = δ(S∞) for all r ∈ Z hence δ is defined
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on Sp∗(n) = Sp+(n) ∪ Sp−(n) so that δ(S∞) = δ(S) where S = S1, the
endpoint of the path t 7−→ St. Property (CZ2) implies that this function
Sp∗(n) −→ Z is constant on both Sp+(n) and Sp−(n). We next observe that
since detS = 1 we have det(S−1− I) = det(S− I) so that S and S−1 always
belong to the same set Sp+(n) or Sp−(n) if det(S − I) 6= 0. Property (CZ1)
then implies that δ must be zero on both Sp+(n) or Sp−(n).

Two other noteworthy properties of the Conley–Zehnder are:

(CZ4) Normalization: Let J1 be the standard symplectic matrix in Sp(1).
If S1 is the path t −→ eπtJ1 (0 ≤ t ≤ 1) joining I to −I in Sp(1) then
iCZ,1(S1,∞) = 1 (iCZ,1 the Conley–Zehnder index on Sp(1));

(CZ5) Dimensional additivity : if S1,∞ ∈ Sp∗
∞(n1), S2,∞ ∈ Sp∗

∞(n2), n1 +
n2 = n, then

iCZ(S1,∞ ⊕ S2,∞) = iCZ,1(S1,∞) + iCZ,2(S2,∞)

where iCZ,j is the Conley–Zehnder index on Sp(nj), j = 1, 2.

3.2 Symplectic Cayley transform

Our extension of the index iCZ requires a notion of Cayley transform for
symplectic matrices. If S ∈ Sp(n), det(S − I) 6= 0, we call the matrix

MS =
1

2
J(S + I)(S − I)−1 (16)

the “symplectic Cayley transform of S”. Equivalently:

MS =
1

2
J + J(S − I)−1. (17)

It is straightforward to check that MS always is a symmetric matrix: MS =
MT

S (it suffices for this to use the fact that ST JS = SJST = J).
The symplectic Cayley transform has in addition the following proper-

ties:

Lemma 2 (i) The symplectic Cayley transform of the product SS′ is (when
defined) given by the formula

MSS′ = MS + (ST − I)−1J(MS + MS′)−1J(S − I)−1. (18)

(ii) The symplectic Cayley transform of S and S−1 are related by

MS−1 = −MS. (19)
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Proof. (i) We begin by noting that (17) implies that

MS + MS′ = J(I + (S − I)−1 + (S′ − I)−1) (20)

hence the identity

(MS + MS′)−1 = −(S′ − I)(SS′ − I)−1(S − I)J . (21)

In fact, writing SS′ − I = S(S′ − I) + S − I, we have

(S′ − I)(SS′ − I)−1(S − I) = (S′ − I)(S(S′ − I) + S − I)−1(S − I)

= ((S − I)−1S(S′ − I)(S′ − I)−1 + (S′ − I)−1)−1

= ((S − I)−1S + (S′ − I)−1)

= I + (S − I)−1 + (S′ − I)−1;

the equality (21) follows in view of (20). We have to prove that

MS + M = MSS′ (22)

where M is the matrix defined by

M = (ST − I)−1J(MS + MS′)−1J(S − I)−1

that is, in view of (21),

M = (ST − I)−1J(S′ − I)(SS′ − I)−1.

Using the obvious relations ST = −JS−1J and (−S−1 + I)−1 = S(S − I)−1

we have

M = (ST − I)−1J(S′ − I)(SS′ − I)−1

= −J(−S−1 + I)−1(S′ − I)(SS′ − I)−1

= −JS(S − I)−1(S′ − I)(SS′ − I)−1

that is, writing S = S − I + I,

M = −J(S′ − I)(SS′ − I)−1 − J(S − I)−1(S′ − I)(SS′ − I)−1.

Replacing MS by its value (17) we have

MS+M = J(
1

2
I+(S−I)−1−(S′−I)(SS′−I)−1−(S−I)−1(S′−I)(SS′−I)−1);

11



noting that

(S−I)−1−(S−I)−1(S′−I)(SS′−I)−1 = (S−I)−1(SS′−I−S′+I)(SS′−I)−1)

that is

(S − I)−1 − (S − I)−1(S′ − I)(SS′ − I)−1 = (S − I)−1(SS′ − S′)(SS′ − I)−1)

= S′(SS′ − I)−1)

we get

MS + M = J(1
2I − (S′ − I)(SS′ − I)−1 + S′(SS′ − I)−1)

= J(1
2I + (SS′ − I)−1)

= MSS′

which we set out to prove. (ii). Formula (19) follows from the sequence of
trivial equalities

MS−1 = 1
2J + J(S−1 − I)−1

= 1
2J − JS(S − I)−1

= 1
2J − J(S − I + I)(S − I)−1

= −1
2J − J(S − I)−1

= −MS.

3.3 Definition of ν(S∞) and first properties

We define on R
2n ⊕ R

2n a symplectic form σ⊖ by

σ⊖(z1, z2; z
′
1, z

′
2) = σ(z1, z

′
1) − σ(z2, z

′
2)

and denote by Sp⊖(2n) and Lag⊖(2n) the corresponding symplectic group
and Lagrangian Grassmannian. Let µ⊖ be the ALM index on Lag⊖∞(2n)
and µ⊖

L the Maslov index on Sp⊖
∞(2n) relative to L ∈ Lag⊖(2n).

For S∞ ∈ Sp∞(n) we define

ν(S∞) =
1

2
µ⊖((I ⊕ S)∞∆∞,∆∞) (23)

where (I ⊕ S)∞ is the homotopy class in Sp⊖(2n) of the path

t 7−→ {(z, Stz) : z ∈ R
2n} , 0 ≤ t ≤ 1

12



and ∆ = {(z, z) : z ∈ R
2n} the diagonal of R

2n ⊕ R
2n. Setting S⊖

t = I ⊕ St

we have S⊖
t ∈ Sp⊖(2n) hence formulae (23) is equivalent to

ν(S∞) =
1

2
µ⊖

∆(S⊖
∞) (24)

where µ⊖
∆ is the relative Maslov index on Sp⊖

∞(2n) corresponding to the
choice ∆ ∈ Lag⊖(2n).

Note that replacing n by 2n in the congruence (6) we have

µ⊖((I ⊕ S)∞∆∞,∆∞) ≡ dim((I ⊕ S)∆ ∩ ∆) mod 2

≡ dim Ker(S − I) mod 2

and hence

ν(S∞) ≡
1

2
dimKer(S − I) mod 1

so that ν(S∞) is always an integer (the eigenvalue 1 of S has even multi-
plicity).

The index ν has the following three important properties; the third is
essential for the calculation of the index of repeated periodic orbits (it clearly
shows that this index is not in general additive):

Proposition 3 (i) For all S∞ ∈ Sp∞(n) we have

ν(S−1
∞ ) = −ν(S∞) , ν(I∞) = 0 (25)

(I∞ the identity of Sp∞(n)). (ii) For all r ∈ Z we have

ν(αrS∞) = ν(S∞) + 2r , ν(αr) = 2r (26)

(iii) Let S∞ be the homotopy class of a path Σ in Sp(n) joining the identity
to S ∈ Sp0(n), and let S′ ∈ Sp(n) be in the same connected component
Sp±(n) as S. Then ν(S′

∞) = ν(S∞) where S′
∞ is the homotopy class in

Sp(n) of the concatenation of Σ and a path joining S to S′ in Sp0(n).

Proof. (i) Formulae (25) immediately follows from the equality (S⊖
∞)−1 =

(I⊕S−1)∞ and the antisymmetry of µ⊖
∆. (ii) The second formula (26) follows

from the first using (25). To prove the first formula (26) it suffices to observe
that to the generator α of π1[Sp(n)] corresponds the generator I∞ ⊕ α of
π1[Sp⊖(2n)]; in view of property (13) of the Maslov index it follows that

ν(αrS∞) =
1

2
µ⊖

∆((I∞ ⊕ α)rS⊖
∞)

=
1

2
(µ⊖

∆(S⊖
∞) + 4r)

= ν(S∞) + 2r.
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(iii) Assume in fact that S and S′ belong to, say, Sp+(n)and let Σ be a
symplectic path representing S∞ and t 7−→ Σ′(t) 0 ≤ t ≤ 1, a path joining S
to S′. Let S∞(t) be the homotopy class of Σ∗Σ′(t). We have det(S(t)−I) > 0
for all t ∈ [0, 1] hence S⊖

∞(t)∆ ∩ ∆ 6= 0 as t varies from 0 to 1. It follows
from the fact that the µ⊖

∆ is locally constant on {S⊖
∞ : S⊖

∞∆ ∩ ∆ = 0} (see
§2.3) that the function t 7−→ µ⊖

∆(S⊖
∞(t)) is constant,and hence

µ⊖
∆(S⊖

∞) = µ⊖
∆(S⊖

∞(0)) = µ⊖
∆(S⊖

∞(1)) = µ⊖
∆(S′⊖

∞ )

which was to be proven.
The following consequence of this result shows that the indices ν and

iCZ coincide on their common domain of definition:

Corollary 4 The restriction of the index ν to Sp∗(n) is the Conley–Zehnder
index:

ν(S∞) = iCZ(S∞) if det(S − I) 6= 0.

Proof. The restriction of ν to Sp∗(n) satisfies the properties (CZ1), (CZ2),
and (CZ3) of the Conley–Zehnder index listed in §3.1; we showed that these
properties uniquely characterize iCZ.

Using the properties of the ALM index we can prove a formula for the
product of

Proposition 5 If S∞, S′
∞, and S∞S′

∞ are such that det(S − I) 6= 0,
det(S′ − I) 6= 0, and det(SS′ − I) 6= 0 then

ν(S∞S′
∞) = ν(S∞) + ν(S′

∞) + 1
2 sign MS (27)

where MS is the symplectic Cayley transform of S; in particular

ν(Sr
∞) = rν(S∞) + 1

2 (r − 1) sign MS (28)

for every integer r.

Proof. In view of (17) we have

〈MSz, z〉 = σ((S − I)−1z, z);

since the quadratic forms z 7−→ σ((S − I)−1z, z) and z 7−→ σ(z, (S − I)z) =
σ(z, Sz) are equivalent they have same signature, and formula (27) is there-
fore equivalent to

ν(S∞S′
∞) = ν(S∞) + ν(S′

∞) + 1
2 sign σ(Sz, z) (29)
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where sign σ(Sz, z) is the signature of the quadratic form z 7−→ σ(Sz, z).
Let us prove (29). In view of (24) and the product property (12) of the
Maslov index we have

ν(S∞S′
∞) = ν(S∞) + ν(S′

∞) + 1
2τ⊖(∆, S⊖∆, S⊖S′⊖∆)

= ν(S∞) + ν(S′
∞) − 1

2τ⊖(S⊖S′⊖∆, S⊖∆,∆)

where S⊖ = I ⊕ S, S′⊖ = I ⊕ S′ and τ⊖ is the Kashiwara signature on
the symplectic space (R2n ⊕ R

2n, σ⊖). The condition det(SS′ − I) 6= 0 is
equivalent to S⊖S′⊖∆∩∆ = 0 hence we can apply property (i) in Lemma 1
with ℓ = S⊖S′⊖∆ and ℓ′′ = ∆. The projection operator onto S⊖S′⊖∆ along
∆ is

Pr(S⊖S′⊖∆,∆) =

[
(I − SS′)−1 −(I − SS′)−1

SS′(I − SS′)−1 −SS′(I − SS′)−1

]

hence τ⊖(S⊖S′⊖∆, S⊖∆,∆) is the signature of the quadratic form

Q(z) = σ⊖(Pr(S⊖S′⊖∆,∆)(z, Sz); (z, Sz))

that is, since σ⊖ = σ ⊖ σ:

Q(z) = σ((I − SS′)−1(I − S)z, Sz)) − σ(SS′(I − SS′)−1(I − S)z, Sz))

= σ((SS′ − I)(I − SS′)−1(I − S)z, Sz))

= σ(Sz, z).

Formula (28) follows from (27) by induction on r.

3.4 Relation between ν and µℓP

The index ν can be expressed in simple – and useful – way in terms of the
Maslov index µℓP

on Sp∞(n). The following technical result will be helpful
in establishing this relation. Recall that S ∈ Sp(n) is said to be “free” if
we have SℓP ∩ ℓP = 0; this condition is equivalent to det B 6= 0 when S is
identified with the matrix

S =

[
A B
C D

]
(30)

in the canonical basis. The set of all free symplectic matrices is dense in
Sp(n). The quadratic form W on R

n
x × R

n
x defined by

W (x, x′) =
1

2
〈Px, x〉 −

〈
Lx, x′

〉
+

1

2

〈
Qx′, x′

〉

15



where P = DB−1, L = B−1, Q = B−1A then generates S in the sense that

(x, p) = S(x′, p′) ⇐⇒ p = ∂xW (x, x′) , p′ = −∂x′W (x, x′).

We have:

Lemma 6 Let S = SW ∈ Sp(n) be given by (30).We have

det(SW − I) = (−1)n detB det(B−1A + DB−1 − B−1 − (BT )−1) (31)

that is:

det(SW − I) = (−1)n det(L−1) det(P + Q − L − LT ).

In particular the symmetric matrix

P + Q − L − LT = DB−1 + B−1A − B−1 − (BT )−1

is invertible.

Proof. Since B is invertible we can factorize S − I as

[
A − I B

C D − I

]
=

[
0 B
I D − I

] [
C − (D − I)B−1(A − I) 0

B−1(A − I) I

]

and hence

det(SW − I) = det(−B) det(C − (D − I)B−1(A − I))

= (−1)n det B det(C − (D − I)B−1(A − I)).

Since S is symplectic we have C − DB−1A = −(BT )−1 and hence

C − (D − I)B−1(A − I)) = B−1A + DB−1 − B−1 − (BT )−1;

the Lemma follows.
Let us now introduce the notion of index of concavity of a Hamiltonian

periodic orbit γ, defined for 0 ≤ t ≤ T , with γ(0) = γ(T ) = z0. As t goes
from 0 to T the linearized part Dγ(t) = St(z0) goes from the identity to
ST (z0) (the monodromy matrix) in Sp(n). We assume that ST (z0) is free
and that det(ST (z0) − I) 6= 0. Writing

St(z0) =

[
A(t) B(t)
C(t) D(t)

]

16



we thus have det B(t) 6= 0 in a neighborhood [T − ε, T + ε] of the time T .
The generating function

W (x, x′, t) =
1

2
〈P (t)x, x〉 −

〈
L(t)x, x′

〉
+

1

2

〈
Q(t)x′, x′

〉

(with P (t), Q(t), L = L(t) defined as above) thus exists for T−ε ≤ t ≤ T +ε.
By definition the index of concavity of the periodic orbit γ is the index of
inertia of matrix of second derivatives of the function W (x, x;T ), that is

W ′′ = P + Q − L − LT

where we have set P = P (T ), Q = Q(T ), L = L(T ).
Let us now prove the following essential result:

Proposition 7 Let t 7−→ St be a symplectic path, 0 ≤ t ≤ 1. Let S∞ ∈
Sp∞(n) be the homotopy class of that path and set S = S1. If det(S−I) 6= 0
and SℓP ∩ ℓP = 0 then

ν(S∞) =
1

2
(µℓP

(S∞) + sign WS) = mℓP
(S∞) − InertW ′′ (32)

where InertW ′′ is the index of concavity corresponding to the endpoint S of
the path t 7−→ St.

Proof. We will divide the proof in three steps. Step 1. Let L ∈ Lag⊖(4n).
Using successively formulae (24) and (14) we have

ν(S∞) =
1

2
(µ⊖

L (S⊖
∞) + τ⊖(S⊖∆,∆, L) − τ⊖(S⊖∆, S⊖L,L)). (33)

Choosing in particular L = L0 = ℓP ⊕ ℓP we get

µ⊖
L0

(S⊖
∞) = µ⊖((I ⊕ S)∞(ℓP ⊕ ℓP ), (ℓP ⊕ ℓP ))

= µ(ℓP,∞, ℓP,∞) − µ(ℓP,∞, S∞ℓP,∞)

= −µ(ℓP,∞, S∞ℓP,∞)

= µℓP
(S∞)

so that there remains to prove that

τ⊖(S⊖∆,∆, L0) − τ⊖(S⊖∆, S⊖L0, L0) = − sign WS .

Step 2. We are going to show that

τ⊖(S⊖∆, S⊖L0, L0) = 0;
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in view of the symplectic invariance and the antisymmetry of τ⊖ this is
equivalent to

τ⊖(L0,∆, L0, (S
⊖)−1L0) = 0. (34)

We have
∆ ∩ L0 = {(0, p; 0, p) : p ∈ R

n}

and (S⊖)−1L0∩L0 consists of all (0, p′, S−1(0, p′′)) with S−1(0, p′′) = (0, p′);
since S (and hence S−1) is free we must have p′ = p′′ = 0 so that

(S⊖)−1L0 ∩ L0 = {(0, p; 0, 0) : p ∈ R
n}.

It follows that we have

L0 = ∆ ∩ L0 + (S⊖)−1L0 ∩ L0

hence (34) in view of property (ii) in Lemma 1. Step 3. Let us finally prove
that.

τ⊖(S⊖∆,∆, L0) = − sign WS ;

this will complete the proof of the proposition. The condition det(S−I) 6= 0
is equivalent to S⊖∆ ∩ ∆ = 0 hence, using property (i) in Lemma 1:

τ⊖(S⊖∆,∆, L0) = −τ⊖(S⊖∆, L0,∆)

is the signature of the quadratic form Q on L0 defined by

Q(0, p, 0, p′) = −σ⊖(P∆(0, p, 0, p′); 0, p, 0, p′)

where

P∆ =

[
(S − I)−1 −(S − I)−1

S(S − I)−1 −S(S − I)−1

]

is the projection on S⊖∆ along ∆ in R
2n⊕R

2n. It follows that the quadratic
form Q is given by

Q(0, p, 0, p′) = −σ⊖((I − S)−1(0, p′′), S(I − S)−1(0, p′′); 0, p, 0, p′)

where we have set p′′ = p − p′; by definition of σ⊖ this is

Q(0, p, 0, p′) = −σ((I − S)−1(0, p′′), (0, p)) + σ(S(I − S)−1(0, p′′), (0, p′)).

Let now MS be the symplectic Cayley transform (16) of S; we have

(I − S)−1 = JMS + 1
2I , S(I − S)−1 = JMS − 1

2I
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and hence

Q(0, p, 0, p′) = −σ((JMS + 1
2I)(0, p′′), (0, p)) + σ((JMS − 1

2I)(0, p′′), (0, p′))

= −σ(JMS(0, p′′), (0, p)) + σ(JMS(0, p′′), (0, p′))

= σ(JMS(0, p′′), (0, p′′))

= −
〈
MS(0, p′′), (0, p′′)

〉
.

Let us calculate explicitly MS . Writing S in usual block-form we have

S − I =

[
0 B

I D − I

][
C − (D − I)B−1(A − I) 0

B−1(A − I) I

]

that is

S − I =

[
0 B
I D − I

] [
WS 0

B−1(A − I) I

]

where we have used the identity

C − (D − I)B−1(A − I)) = B−1A + DB−1 − B−1 − (BT )−1

which follows from the relation C − DB−1A = −(BT )−1 (the latter is a
rephrasing of the equalities DTA − BT C = I and DT B = BT D, which
follow from the fact that ST JS = ST JS since S ∈ Sp(n)). It follows that

(S − I)−1 =

[
W−1

S 0

B−1(I − A)W−1
S I

][
(I − D)B−1 I

B−1 0

]

=

[
W−1

S (I − D)B−1 W−1
S

B−1(I − A)W−1
S (I − D)B−1 + B−1 B−1(I − A)W−1

S

]

and hence

MS =

[
B−1(I − A)W−1

S (I − D)B−1 + B−1 1
2I + B−1(I − A)W−1

S

−1
2I − W−1

S (I − D)B−1 −W−1
S

]

from which follows that

Q(0, p, 0, p′) =
〈
W−1

S p′′, p′′
〉

=
〈
W−1

S (p − p′), (p − p′)
〉
.

The matrix of the quadratic form Q is thus

2

[
W−1

S −W−1
S

−W−1
S W−1

S

]

and this matrix has signature sign(W−1
S ) = sign WS , concluding the proof.
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Remark 8 Lemma 6 above shows that if S is free then we have

1

π
arg det(S − I) ≡ n + arg detB + arg detW ′′ mod2

≡ n − arg detB + arg detW ′′ mod2

In [5, 6] we have shown that the reduced Maslov index mℓP
(S∞) corresponds

to a choice of arg detB modulo 4; Proposition 7 thus justifies the following
definition of the argument of det(S − I):

1

π
arg det(S − I) ≡ n − ν(S∞) mod 4.

That this is indeed the correct choice modulo 4 has been proven by other
means (the theory of the metaplectic group) by one of us in a recent publi-
cation [10].

4 An Example

Consider a two-dimensional harmonic oscillator with Hamiltonian function

H =
ωx

2
(p2

x + x2) +
ωy

2
(p2

y + y2);

we assume that the frequencies ωy, ωx are incommensurate, so that the only
periodic orbits are librations along the x and y axes. Let us focus on the orbit
γx along the x axis; its prime period is T = 2π/ωx and the corresponding
monodromy matrix is

S1 =




1 0 0 0
0 cos χ 0 sin χ
0 0 1 0
0 − sinχ 0 cos χ


 , χ = 2π

ωy

ωx
;

it is the endpoint of the symplectic path t 7−→ St, 0 ≤ t ≤ 1, consisting of
the matrices

St =




cos 2πt 0 sin 2πt 0
0 cos χt 0 sin χt

− sin 2πt 0 cos 2πt 0
0 − sinχt 0 cos χt


 .

In Gutzwiller’s formula (1) the sum is taken over periodic orbits, including
their repetitions; we are thus led to calculate the Conley–Zehnder index of
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the path t 7−→ St with 0 ≤ t ≤ r where the integer r indicates the number of
repetitions of the orbit. Let us calculate the Conley–Zehnder index ν(S̃r,∞)
of this path. We have St = Σt ⊕ S̃t where

Σt =

[
cos 2πt sin 2πt
− sin 2πt cos 2πt

]
, S̃t =

[
cos χt sin χt
− sinχt cos χt

]
;

in view of the additivity property of the relative Maslov index we thus have

ν(Sr,∞) = ν(Σr,∞) + ν(S̃r,∞).

The homotopy class Σr,∞ of the path t 7−→ Σt, 0 ≤ t ≤ r is just α−r, α the
generator of π1[Sp(1)], hence

ν(ΣT,∞) = −2r

in view of formula (26). Let us next calculate ν(S̃r,∞). We will use formula
(32) so we begin by calculating the relative Maslov index

mℓP
(S̃r,∞) = m(S̃r,∞ℓP,∞, ℓP,∞).

When t goes from 0 to r the line S̃tℓP describes a loop in Lag(1) going from
ℓP to S̃rℓP . We have S̃t ∈ U(1); its image in U(1, C) is e−iχt hence the
Souriau mapping identifies S̃tℓP with e−2iχt. It follows, using formula (9),
that

mℓP
(S̃r,∞) =

1

2π

(
−2rχ + iLog(−e−2irχ)

)
+

1

2

=
1

2π

(
−2rχ + iLog(ei(−2rχ+π))

)
+

1

2

The logarithm is calculated as follows: for θ 6= (2k + 1)π (k ∈ Z)

Log eiθ = iθ − 2πi

[
θ + π

2π

]

and hence
Log(ei(−2rχ+π)) = −i(2rχ + π + 2π

[rχ

π

]
);

it follows that the Maslov index is

mℓP
(S̃r,∞) = −

[rχ

π

]
. (35)

To obtain ν(S̃r,∞) we note that by (32)

ν(S̃r,∞) = mℓP
(S̃1,∞) − InertWS
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where InertW ′′ is the concavity index corresponding to the generating func-
tion of S̃t; the latter is

W (x, x′, t) =
1

2 sin χt
((x2 + x′2) cos χt − 2xx′)

hence W ′′ = − tan(χt/2). We thus have, taking (35) into account,

ν(S̃r,∞) = −
[rχ

π

]
− Inert

(
− tan

rχ

2

)
;

a straightforward induction on r shows that this can be rewritten more
conveniently as

ν(S̃r,∞) = −1 − 2
[rχ

2π

]
.

Summarizing, we have

ν(Sr,∞) = ν(Σr,∞) + ν(S̃r,∞)

= −2r − 1 − 2
[rχ

2π

]
)

hence the index in Gutzwiller’s formula corresponding to the r-th repetition
is

µx,r = −ν(Sr,∞) = 1 + 2r + 2
[rχ

2π

]

that is, by definition of χ,

µx,r = 1 + 2r + 2

[
r
ωy

ωx

]

confirming the calculations in [1, 4, 18, 21].
These calculations are valid when the frequencies are incommensurate.

If, say, ωx = ωy, the calculations are much simpler: in this case the homotopy
class of the loop t 7−→ St, 0 ≤ t ≤ 1, is α−1⊕α−1 and by the second formula
(26),

µx,r = −ν(Sr,∞) = 4r

which is zero modulo 4 (cf. [18]).
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