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CNRS, UMR 7599

Université Paris 7
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Abstract

This paper considers the problem of determining the optimal sequence of stopping

times for a diffusion process subject to regime switching decisions. This is motivated

in the economics literature, by the investment problem under uncertainty for a multi-

activity firm involving opening and closing decisions. We use a viscosity solutions

approach, and explicitly solve the problem in the two regimes case when the state

process is of geometric Brownian nature.
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1 Introduction

The theory of optimal stopping and its generalization, thoroughly studied in the seventies,

has received a renewed interest with a variety of applications in economics and finance.

These applications range from asset pricing (American options, swing options) to firm

investment and real options. We refer to [4] for a classical and well documented reference

on the subject.

In this paper, we consider the optimal switching problem for an one dimensional stochas-

tic process X. The diffusion process X may take a finite number of regimes that are switched

at stopping time decisions. For example in the firm’s investment problem under uncertainty,

a company (oil tanker, electricity station ....) manages several production activities oper-

ating in different modes or regimes representing a number of different economic outlooks

(e.g. state of economic growth, open or closed production activity, ...). The process X is

the price of input or output goods of the firm and its dynamics may differ according to

the regimes. The firm’s project yields a running payoff that depends on the commodity

price X and of the regime choice. The transition from one regime to another one is realized

sequentially at time decisions and incurs certain fixed costs. The problem is to find the

switching strategy that maximizes the expected value of profits resulting from the project.

Optimal switching problems were studied by several authors, see [1] or [10]. These

control problems lead via the dynamic programming principle to a system of variational

inequalities. Applications to option pricing, real options and investment under uncertainty

were considered by [2], [5] and [7]. In this last paper, the drift and volatility of the state

process depend on an uncontrolled finite-state Markov chain, and the author provides an

explicit solution to the optimal stopping problem with applications to Russian options. In

[2], an explicit solution is found for a resource extraction problem with two regimes (open

or closed field), a linear profit function and a price process following a geometric Brownian

motion. In [5], a similar model is solved with a general profit function in one regime and

equal to zero in the other regime. In both models [2], [5], there is no switching in the

diffusion process : changes of regimes only affect the payoff functions. Their method of

resolution is to construct a solution to the dynamic programming system by guessing a priori

the form of the strategy, and then validate a posteriori the optimality of their candidate

by a verification argument. Our model combines regime switchings both on the diffusion

process and on the general profit functions. We use a viscosity solutions approach for

determining the solution to the system of variational inequalities. In particular, we derive

directly the smooth-fit property of the value functions and the structure of the switching

regions. Explicit solutions are provided in the following cases : ⋆ the drift and volatility

terms of the diffusion take two different regime values, and the profit functions are identical

of power type, ⋆ there is no switching on the diffusion process, and the two different profit

functions satisfy a general condition, including typically power functions. The results of

our analysis take qualitatively different forms, depending on model parameters values.

The paper is organized as follows. We formulate in Section 2 the optimal switching

problem. In Section 3, we state the system of variational inequalities satisfied by the value

functions in the viscosity sense. The smooth-fit property for this problem, proved in [9],
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plays a important role in our subsequent analysis. We also state some useful properties on

the switching regions. In Section 4, we explicitly solve the problem in the two-regimes case

when the state process is of geometric Brownian nature.

2 Formulation of the optimal switching problem

We consider a stochastic system that can operate in d modes or regimes. The regimes can

be switched at a sequence of stopping times decided by the operator (individual, firm, ...).

The indicator of the regimes is modeled by a cadlag process It valued in Id = {1, . . . , d}. The

stochastic system X (price commodity, salary, ...) is valued in R
∗
+ = (0,∞) and satisfies

the s.d.e.

dXt = b
It

Xtdt + σ
It

XtdWt, (2.1)

where W is a standard Brownian motion on a filtered probability space (Ω,F , F = (Ft)t≥0, P )

satisfying the usual conditions. bi ∈ R, and σi > 0 are the drift and volatility of the system

X once in regime It = i at time t.

A strategy decision for the operator is an impulse control α consisting of a double

sequence τ1, . . . , τn, . . . , κ1, . . . , κn, . . ., n ∈ N
∗ = N \ {0}, where τn are stopping times, τn

< τn+1 and τn → ∞ a.s., representing the switching regimes time decisions, and κn are

Fτn -measurable valued in Id, and representing the new value of the regime at time t = τn.

We denote by A the set of all such impulse controls. Now, for any initial condition (x, i)

∈ (0,∞) × Id, and any control α = (τn, κn)n≥1 ∈ A, there exists a unique strong solution

valued in (0,∞) × Id to the controlled stochastic system :

X0 = x, I0− = i, (2.2)

dXt = bκn
Xtdt + σκn

XtdWt, It = κn, τn ≤ t < τn+1, n ≥ 0. (2.3)

Here, we set τ0 = 0 and κ0 = i. We denote by (Xx,i, Ii) this solution (as usual, we omit

the dependance in α for notational simplicity). We notice that Xx,i is a continuous process

and Ii is a cadlag process, possibly with a jump at time 0 if τ1 = 0 and so I0 = κ1.

We are given a running profit function f : (0,∞)× Id → R and we set fi(.) = f(., i) for

i ∈ Id. We assume that for each i ∈ Id, the function fi is concave, continuous on R+, with

fi(0) = 0, and the Fenchel-Legendre transform of fi is finite on (0,∞) :

f̃i(y) := sup
x>0

[fi(x) − xy] < ∞, ∀y > 0. (2.4)

We also assume Hölder continuity of fi : there exists γi ∈ (0, 1] s.t.

|fi(x) − fi(x̂)| ≤ C|x − x̂|γi , ∀x, x̂ ∈ (0,∞), (2.5)

for some positive constant C. A typical example satisfying the above two conditions is

given by the power utility functions:

fi(x) = xγi , 0 < γi < 1.

3



The cost for switching from regime i to j 6= i is a constant equal to gij > 0, and we assume

that

gik ≤ gij + gjk, i 6= j 6= k 6= i ∈ Id. (2.6)

This last condition means that it is no more expensive to switch directly in one step from

regime i to k than in two steps via an intermediate regime j.

The expected total profit of running the system when initial state is (x, i) and using the

impulse control α = (τn, κn)n≥1 ∈ A is

Ji(x, α) = E

[

∫ ∞

0
e−rtf(Xx,i

t , Ii
t)dt −

∞
∑

n=1

e−rτngκn−1,κn

]

.

Here r > 0 is a positive discount factor, and we use the convention that e−rτn(ω) = 0 when

τn(ω) = ∞. We also make the standing assumption :

r > b := max
i∈Id

bi. (2.7)

The objective is to maximize this expected total profit over all strategies α. Accordingly,

we define the value functions

vi(x) = sup
α∈A

Ji(x, α), x ∈ R
∗
+, i ∈ Id. (2.8)

We shall see in the next section that under (2.4) and (2.7), the expectation defining Ji(x)

is well-defined and the value function vi is finite.

3 System of variational inequalities, switching regions and

viscosity solutions

We first state the growth property on the value functions.

Lemma 3.1 We have for all i ∈ Id :

0 ≤ vi(x) ≤
xy

r − b
+ max

i∈Id

f̃i(y)

r
, ∀x > 0, y > 0. (3.1)

In particular, vi(0
+) = 0.

Proof. By considering the particular strategy of no switching from the initial state (x, i),

i.e. α = (τn, κn) with τn = ∞, κn = i for all n, and by noting that the concave, nondecreasing

function fi satisfying fi(0) = 0 is nonnegative, we immediately get the lower bound in

assertion (i).

Given an initial state (X0, I0−) = (x, i) and an arbitrary impulse control α = (τn, κn),

we get from the dynamics (2.2)-(2.3), the following explicit expression of Xx,i :

X
x,i
t = xYt(i)

:= x

(

n−1
∏

l=0

ebκl
(τl+1−τl)Zκl

τl,τl+1

)

ebκn (t−τn)Zκn

τn,t, τn ≤ t < τn+1, n ∈ N, (3.2)
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where

Z
j
s,t = exp

(

σj(Wt − Ws) −
σ2

j

2
(t − s)

)

, 0 ≤ s ≤ t, j ∈ Id. (3.3)

Here, we used the convention that τ0 = 0, κ0 = i, and the product term from l to n − 1

in (3.2) is equal to 1 when n = 1. We then deduce the inequality X
x,i
t ≤ xebtMt, for all t,

where

Mt =

(

n−1
∏

l=0

Zκl
τl,τl+1

)

Zκn

τn,t, τn ≤ t < τn+1, n ∈ N. (3.4)

Now, we notice that (Mt) is a martingale obtained by continuously patching the martingales

(Z
κn−1

τn−1,t) and (Zκn
τn,t) at the stopping times τn, n ≥ 1. In particular, we have E[Mt] = M0

= 1 for all t.

We set f̃(y) = maxi∈Id
f̃i(y), y > 0, and we notice by definition of f̃i in (2.4) that

f(Xx,i
t , Ii

t) ≤ yX
x,i
t + f̃(y) for all t, y. Since the costs gij are nonnegative, it follows that :

Ji(x, α) ≤ E

[
∫ ∞

0
e−rt

(

yxebtMt + f̃(y)
)

dt

]

=

∫ ∞

0
e−(r−b)tyxE[Mt]dt +

∫ ∞

0
e−rtf̃(y)dt =

xy

r − b
+

f̃(y)

r
.

From the arbitrariness of α, this shows the upper bound for vi.

By sending x to zero and then y to infinity into the r.h.s. of (3.1), and recalling that

f̃i(∞) = fi(0) = 0 for all i ∈ Id, we conclude that vi goes to zero when x tends to zero. 2

We next show the Hölder continuity of the value functions.

Lemma 3.2 For all i ∈ Id, vi is Hölder continuous on (0,∞) :

|vi(x) − vi(x̂)| ≤ C|x − x̂|γ , ∀x, x̂ ∈ (0,∞), with |x − x̂| ≤ 1,

for some positive constant C, and where γ = mini∈Id
γi of condition (2.5).

Proof. By definition (2.8) of vi and under condition (2.5), we have for all x, x̂ ∈ (0,∞),

with |x − x̂| ≤ 1 :

|vi(x) − vi(x̂)| ≤ sup
α∈A

|Ji(x, α) − Ji(x̂, α)|

≤ sup
α∈A

E

[
∫ ∞

0
e−rt

∣

∣

∣
f(Xx,i

t , Ii
t) − f(X x̂,i

t , Ii
t)
∣

∣

∣
dt

]

≤ C sup
α∈A

E

[
∫ ∞

0
e−rt

∣

∣

∣
X

x,i
t − X

x̂,i
t

∣

∣

∣

γ
Ii
t dt

]

= C sup
α∈A

∫ ∞

0
E
[

e−rt|x − x̂|
γ

Ii
t |Yt(i)|

γ
Ii
t dt
]

≤ C|x − x̂|γ sup
α∈A

∫ ∞

0
e−(r−b)tE|Mt|

γ
Ii
t dt (3.5)
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by (3.2) and (3.4). For any α = (τn, κn)n ∈ A, by the independence of (Zκn
τn,τn+1

)n in (3.3),

and since

E
∣

∣

∣
Zκn

τn,τn+1

∣

∣

∣

γκn

= exp

(

γκn(γκn − 1)
σ2

κn

2
(τn+1 − τn)

)

≤ 1,

we clearly see that E|Mt|
γ

Ii
t ≤ 1 for all t ≥ 0. We thus conclude with (3.5). 2

The dynamic programming principle combined with the notion of viscosity solutions

are known to be a general and powerful tool for characterizing the value function of a

stochastic control problem via a PDE representation, see [6]. We recall the definition of

viscosity solutions for a P.D.E in the form

H(x, v,Dxv,D2
xxv) = 0, x ∈ O, (3.6)

where O is an open subset in R
n and H is a continuous function and noninceasing in its

last argument (with respect to the order of symmetric matrices).

Definition 3.1 Let v be a continuous function on O. We say that v is a viscosity solution

to (3.6) on O if it is

(i) a viscosity supersolution to (3.6) on O : for any x̄ ∈ O and any C2 function ϕ in a

neighborhood of x̄ s.t. x̄ is a local minimum of v − ϕ, we have :

H(x̄, v(x̄),Dxϕ(x̄),D2
xxϕ(x̄)) ≥ 0.

and

(ii) a viscosity subsolution to (3.6) on O : for any x̄ ∈ O and any C2 function ϕ in a

neighborhood of x̄ s.t. x̄ is a local maximum of v − ϕ, we have :

H(x̄, v(x̄),Dxϕ(x̄),D2
xxϕ(x̄)) ≤ 0.

Remark 3.1 1. By misuse of notation, we shall say that v is viscosity supersolutin (resp.

subsolution) to (3.6) by writing :

H(x, v,Dxv,D2
xxv) ≥ (resp. ≤) 0, x ∈ O, (3.7)

2. We recall that if v is a smooth C2 function on O, supersolution (resp. subsolution) in

the classical sense to (3.7), then v is a viscosity supersolution (resp. subsolution) to (3.7).

3. There is an equivalent formulation of viscosity solutions, which is useful for proving

uniqueness results, see [3] :

(i) A continuous function v on O is a viscosity supersolution to (3.6) if

H(x, v(x), p,M) ≥ 0, ∀x ∈ O, ∀(p,M) ∈ J2,−v(x).

(ii) A continuous function v on O is a viscosity subsolution to (3.6) if

H(x, v(x), p,M) ≤ 0, ∀x ∈ O, ∀(p,M) ∈ J2,+v(x).
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Here J2,+v(x) is the second order superjet defined by :

J2,+v(x) = {(p,M) ∈ R
n × Sn :

lim sup
x′

→ x

x ∈ O

v(x′) − v(x) − p.(x′ − x) − 1
2(x′ − x).M(x′ − x)

|x′ − x|2
≤ 0











,

Sn is the set of symmetric n × n matrices, and J2,−v(x) = −J2,+(−v)(x).

In the sequel, we shall denote by Li the second order operator associated to the diffusion

X when we are in regime i : for any C2 function ϕ on (0,∞),

Liϕ =
1

2
σ2

i x
2ϕ” + bixϕ′.

We then have the following PDE characterization of the value functions vi.

Theorem 3.1 The value functions vi, i ∈ Id, are the unique viscosity solutions with linear

growth condition on (0,∞) and boundary condition vi(0
+) = 0, to the system of variational

inequalities :

min

{

rvi − Livi − fi , vi − max
j 6=i

(vj − gij)

}

= 0, x ∈ (0,∞), i ∈ Id. (3.8)

This means

(1) for each i ∈ Id, vi is a viscosity solution to

min

{

rvi − Livi − fi , vi − max
j 6=i

(vj − gij)

}

= 0, x ∈ (0,∞). (3.9)

(2) if wi, i ∈ Id, are viscosity solutions with linear growth condition on (0,∞) and boundary

condition wi(0
+) = 0, to the system of variational inequalities (3.8), then vi = wi on (0,∞),

for all i ∈ Id.

Proof. The viscosity property follows from the dynamic programming principle and is

proved in [9]. Uniqueness results for switching problems has been proved in [10] in the

finite horizon case under different conditions. For sake of completeness, we provide in

Appendix a proof of comparison principle in our infinite horizon context, which implies the

uniqueness result. 2

Remark 3.2 For fixed i ∈ Id, we also have uniqueness of viscosity solution to equation

(3.9) in the class of continuous functions with linear growth condition on (0,∞) and given

boundary condition on 0. In the next section, we shall use either uniqueness of viscosity

solutions to the system (3.8) or for fixed i to equation (3.9), for the identification of an

explicit solution in the two-regimes case d = 2.
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For any regime i ∈ Id, we introduce the switching region :

Si =

{

x ∈ (0,∞) : vi(x) = max
j 6=i

(vj − gij)(x)

}

.

Si is a closed subset of (0,∞) and corresponds to the region where it is optimal for the

operator to change of regime. The complement set Ci of Si in (0,∞) is the so-called

continuation region :

Ci =

{

x ∈ (0,∞) : vi(x) > max
j 6=i

(vj − gij)(x)

}

,

where the operator remains in regime i. In this open domain, the value function vi is

smooth C2 on Ci and satisfies in a classical sense :

rvi(x) − Livi(x) − fi(x) = 0, x ∈ Ci.

As a consequence of the condition (2.6), we have the following elementary partition property

of the switching regions, see [9] :

Si = ∪j 6=iSij , i ∈ Id,

where

Sij = {x ∈ Cj : vi(x) = (vj − gij)(x)} .

Sij represents the region where it is optimal to switch from regime i to regime j and stay

here for a moment, i.e. without changing instantaneously from regime j to another regime.

The following Lemma gives some partial information about the structure of the switching

regions.

Lemma 3.3 For all i 6= j in Id, we have

Sij ⊂ Qij := {x ∈ Cj : (Lj − Li)vj(x) + (fj − fi)(x) − rgij ≥ 0} .

Proof. Let x ∈ Sij . By setting ϕj = vj − gij , this means that x is a minimum of vi − ϕj

with vi(x) = ϕj(x). Moreover, since x lies in the open set Cj where vj is smooth, we have

that ϕj is C2 in a neighborhood of x. By the supersolution viscosity property of vi to the

PDE (3.8), this yields :

rϕj(x) − Liϕj(x) − fi(x) ≥ 0. (3.10)

Now recall that for x ∈ Cj , we have

rvj(x) − Ljvj(x) − fj(x) = 0,

so that by substituting into (3.10), we obtain :

(Lj − Li)vj(x) + (fj − fi)(x) − rgij ≥ 0,

which is the required result. 2

We quote the smooth fit property on the value functions, proved in [9].

8



Theorem 3.2 For all i ∈ Id, the value function vi is continuously differentiable on (0,∞),

and at x ∈ Sij, we have v′i(x) = v′j(x).

The next result provides suitable conditions for determining a viscosity solution to the

variational inequality type arising in our switching problem.

Lemma 3.4 Fix i ∈ Id. Let C be an open set in (0,∞), and w, h two continuous functions

on (0,∞), with w = h on S = (0,∞) \ C, such that

w is C1 on ∂S (3.11)

w ≥ h on C, (3.12)

w is C2 on C, solution to

rw − Liw − fi = 0 on C, (3.13)

and w is a viscosity supersolution to

rw − Liw − fi ≥ 0 on int(S). (3.14)

Here int(S) is the interior of S and ∂S = S \ int(S) its boundary. Then, w is a viscosity

solution to

min {rw − Liw − fi, w − h} = 0 on (0,∞). (3.15)

Proof. Take some x̄ ∈ (0,∞) and distinguish the following cases :

⋆ x̄ ∈ C. Since w = v is C2 on C and satisfies rw(x̄)−Liw(x̄)−fi(x̄) = 0 by (3.13), and

recalling w(x̄) ≥ h(x̄) by (3.12), we obtain the classical solution property, and so a fortiori

the viscosity solution property (3.15) of w at x̄.

⋆ x̄ ∈ S. Then w(x̄) = h(x̄) and the viscosity subsolution property is trivial at x̄. It

remains to show the viscosity supersolution property at x̄. If x̄ ∈ int(S), this follows directly

from (3.14). Suppose now x̄ ∈ ∂S, and w.l.o.g. x̄ is on the left-boundary of S so that there

exists ε > 0 s.t. (x̄− ε, x̄) ⊂ C on which w is smooth C2. Take some smooth C2 function ϕ

s.t. x̄ is a local minimum of w−ϕ. Since w is C1 on x̄ by (3.11), we have ϕ′(x̄) = w′(x̄) and

ϕ”(x̄) ≤ w”(x̄−) (:= lim infxրx̄ w”(x)). Now, from (3.13), we have rw(x)−Liw(x)− fi(x)

= 0 for x ∈ (x̄ − ε, x̄). By sending x to x̄, we then obtain :

rw(x̄) − Liϕ(x̄) − fi(x̄) ≥ 0,

which is the required supersolution inequality, and ends the proof. 2

Remark 3.3 Since w = h on S, relation (3.14) means equivalently that h is a viscosity

supersolution to

rh − Lih − fi ≥ 0 on int(S). (3.16)
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Practically, Lemma 3.4 shall be used as follows in the next section : we consider two C1

functions v and h on (0,∞) s.t.

v(x) = h(x), v′(x) = h′(x), x ∈ ∂S

v ≥ h on C,

v is C2 on C, solution to

rv − Liv − fi = 0 on C,

and h is a viscosity supersolution to (3.16). Then, the function w defined on (0,∞) by :

w(x) =

{

v(x), x ∈ C

h(x), x ∈ S

satisfies the conditions of Lemma 3.4 and is so a viscosity solution to (3.15). This Lemma

combined with uniqueness viscosity solution result may be viewed as an alternative to the

classical verification approach in the identification of the value function. Moreover, with our

viscosity solutions approach, we shall see in paragraph 4.2 that Lemma 3.3 and smooth-fit

property of the value functions in Theorem 3.2 provide a direct derivation for the structure

of the switching regions and then of the solution to our problem.

4 Explicit solution in the two regimes case

In this paragraph, we consider the case where d = 2. In this two-regimes case, the value

functions v
1

and v
2

are the unique continuous viscosity solutions with linear growth, and

v
1
(0+) = v

2
(0+) = 0, to the system :

min {rv
1
− L1v1

− f1, v1
− (v

2
− g

12
)} = 0 (4.17)

min {rv
2
− L2v2

− f2, v2
− (v

1
− g

21
)} = 0. (4.18)

Moreover, the switching regions are :

Si = Sij = {x > 0 : vi(x) = vj(x) − gij} , i, j = 1, 2, i 6= j.

We set

x∗
i = inf Si x̄∗

i = supSi,

with the usual convention that inf ∅ = ∞. By continuity of the value functions on (0,∞)

and since vi(0
+) = 0 > −gij = vj(0

+) − gij , it is clear that

x∗
i > 0, i = 1, 2.

Let us also introduce some other notations. We consider the second order o.d.e for i =

1, 2 :

rv − Liv − fi = 0, (4.19)
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whose general solution (without second member fi) is given by :

v(x) = Axm+

i + Bxm−

i ,

for some constants A, B, and where

m−
i = −

bi

σ2
i

+
1

2
−

√

(

−
bi

σ2
i

+
1

2

)2

+
2r

σ2
i

< 0

m+
i = −

bi

σ2
i

+
1

2
+

√

(

−
bi

σ2
i

+
1

2

)2

+
2r

σ2
i

> 1.

We also denote

V̂i(x) = E

[
∫ ∞

0
e−rtfi(X̂

x,i
t )dt

]

,

with X̂x,i the solution to the s.d.e. dX̂t = biX̂tdt + σiX̂tdWt, X̂0 = x. Actually, V̂i is a

particular solution to ode (4.19). It corresponds to the reward function associated to the

no switching strategy from initial state (x, i), and so V̂i ≤ vi.

We now explicit the solution to our problem in the following two situations :

⋆ the diffusion operators are different and the running profit functions are identical.

⋆ the diffusion operators are identical and the running profit functions are different

4.1 Identical profit functions with different diffusion operators

In this paragraph, we suppose that the running functions are identical in the form :

f1(x) = f2(x) = xγ , 0 < γ < 1, (4.20)

and the diffusion operators are different. A straightforward calculation shows that under

(4.20), we have

V̂i(x) = Kix
γ , with Ki =

1

r − biγ + 1
2σ2

i γ(1 − γ)
> 0, i = 1, 2.

We show that the structure of the switching regions depends actually only on the sign

of K2 − K1. More precisely, we have the following explicit result.

Theorem 4.3 Let i, j = 1, 2, i 6= j.

1) If Ki = Kj , then Si = Sj = ∅. We have

vi(x) = V̂i(x) = vj(x) = V̂j(x), x ∈ (0,∞),

and in both regimes, it is optimal never to switch.

2) If Kj > Ki, then Si = [x∗
i ,∞) with x∗

i ∈ (0,∞), and Sj = ∅. We have

vi(x) =

{

Axm+

i + V̂i(x), x < x∗
i

vj(x) − gij, x ≥ x∗
i

(4.21)

vj(x) = V̂j(x), x ∈ (0,∞) (4.22)

11



where the constants A and x∗
i are determined by the continuity and smooth-fit conditions

of vi at x∗
i , and explicitly given by :

x
γ
i =

m+
i

m+
i − γ

gij

Kj − Ki

(4.23)

A = (Kj − Ki)
γ

m+
i

x
γ−m+

i

i . (4.24)

Furthermore, when we are in regime i,it is optimal to switch to regime j whenever the state

process X exceeds the threshold x∗
i , while when we are in regime j, it is optimal never to

switch.

Remark 4.4 In the particular case where σ1 = σ2, then K2 − K1 > 0 means that regime

2 provides a higher expected return b2 than the one b1 of regime 1 for the same volatility

coefficient σi. Hence, it is intuitively clear that regime 2 is better than regime 1, which is

formalized by the property that S
2

= ∅. Similarly, when b1 = b2, then K2 −K1 > 0 means

that σ2 < σ1, i.e. regime 2 is less risky than regime 1 for the same return bi and so is

better. Theorem 4.3 extends these results for general coefficients bi and σi, and show that

the critical parameter value determining the form of the optimal strategy is given by the

sign of K2 − K1. The optimal strategy structure is depicted in Figure 1.

Proof of Theorem 4.3.

1) If K1 = K2, then V̂1 = V̂2. By the definition of V̂i, and since switching costs are

nonnegative, we thus get immediately that V̂i, i = 1, 2, are smooth solutions to the system :

min
{

rV̂1 − L1V̂1 − f1, V̂1 − (V̂2 − g
12

)
}

= 0

min
{

rV̂2 − L2V̂2 − f2, V̂2 − (V̂1 − g
21

)
}

= 0.

Recalling that V̂i(0
+) = 0 and V̂i satisfy a linear growth condition, and from uniqueness of

solution to the PDE system (4.17)-(4.18), we deduce that vi = V̂i, i.e. Si = ∅, i = 1, 2.

2) We now suppose w.l.o.g. that K2 > K1. We already know that x∗
1

> 0 and we claim

that x∗
1

< ∞. Otherwise, v
1

should be equal to V̂
1
. Since v

1
≥ v

2
− g

12
≥ V̂

2
− g

12
, this

would imply (V̂
2
− V̂

1
)(x) = (K2 − K1)x

γ ≤ g
12

for all x > 0, an obvious contradiction.

⋆ By definition of x∗
1
, we have (0, x∗

1) ⊂ C1. We prove actually the equality : (0, x∗
1
) =

C1, i.e. S1 = [x∗
1
,∞), and also that C2 = (0,∞), i.e. S2 = ∅. To this end, let us consider

the function

w
1
(x) =

{

Axm+

1 + V̂
1
(x), 0 < x < x

1

V̂
2
(x) − g

12
, x ≥ x

1
,

where the positive constants A and x
1

satisfy

Axm+

1
1

+ V̂
1
(x

1
) = V̂

2
(x

1
) − g

12
(4.25)

Am+
1 xm+

1
−1

1
+ V̂ ′

1
(x

1
) = V̂ ′

2
(x

1
), (4.26)

12



and are explicitly given by :

(K2 − K1)x
γ
1

=
m+

1

m+
1 − γ

g
12

(4.27)

A = (K2 − K1)
γ

m+
1

xγ−m+

1
1

. (4.28)

Notice that by construction, w
1

is C2 on (0, x
1
)∪ (x

1
,∞), and C1 on x

1
. By using Lemma

3.4, we now show that w
1

is a viscosity solution to

min
{

rw
1
− L1w1

− f1, w1
− (V̂

2
− g

12
)
}

= 0, on (0,∞). (4.29)

We first check that

w
1
(x) ≥ V̂

2
(x) − g

12
, ∀ 0 < x < x

1
, (4.30)

i.e.

G(x) := Axm+

1 + V̂
1
(x) − V̂

2
(x) + g

12
≥ 0, ∀ 0 < x < x

1
.

Since A > 0, 0 < γ < 1 < m+
1 , K2 − K1 > 0, a direct derivation shows that the second

derivative of G is positive, i.e. G is strictly convex. By (4.26), we have G′(x
1
) = 0 and so

G′ is negative, i.e. G is strictly decreasing on (0, x
1
). Now, by (4.25), we have G(x

1
) = 0

and thus G is positive on (0, x
1
), which proves (4.30).

By definition of w
1

on (0, x
1
), we have in the classical sense

rw
1
− L1w1

− f1 = 0, on (0, x
1
). (4.31)

We now check that

rw
1
− L1w1

− f1 ≥ 0, on (x
1
,∞), (4.32)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of w
1

on (x
1
,∞), and K1, we have for all x > x

1
,

rw
1
(x) − L1w1

(x) − f1(x) =
K2 − K1

K1
xγ − rg

12
, ∀x > x

1
,

so that (4.32) is satisfied iff K2−K1

K1
xγ

1
− rg

12
≥ 0 or equivalently by (4.27) :

m+
1

m+
1 − γ

≥ rK1 =
r

r − b1γ + 1
2σ2

1γ(1 − γ)
(4.33)

Now, since γ < 1 < m+
1 , and by definition of m+

1 , we have

1

2
σ2

1m
+
1 (γ − 1) <

1

2
σ2

1m
+
1 (m+

1 − 1) = r − b1m
+
1 ,

which proves (4.33) and thus (4.32).

Relations (4.25)-(4.26), (4.30)-(4.31)-(4.32) mean that conditions of Lemma 3.4 are

satisfied with C = (0, x
1
), h = V̂

2
− g

12
, and we thus get the required assertion (4.29).
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⋆ On the other hand, we check that

V̂
2
(x) ≥ w

1
(x) − g

21
, ∀x > 0, (4.34)

which amounts to show

H(x) := Axm+

1 + V̂
1
(x) − V̂

2
(x) − g

21
≤ 0, ∀ 0 < x < x

1
.

Since A > 0, 0 < γ < 1 < m+
1 , K2 − K1 > 0, a direct derivation shows that the second

derivative of H is positive, i.e. H is strictly convex. By (4.26), we have H ′(x
1
) = 0 and

so H ′ is negative, i.e. H is strictly decreasing on (0, x
1
). Now, we have H(0) = −g

21
<

0 and thus H is negative on [0, x
1
), which proves (4.34). Recalling that V̂

2
is solution to

rV̂
2
−L2V̂2

−f2 = 0 on (0,∞), we deduce obviously from (4.34) that V̂
2

is a classical, hence

a viscosity solution to :

min
{

rV̂
2
− L2V̂2

− f2, V̂2
− (w

1
− g

21
)
}

= 0, on (0,∞). (4.35)

⋆ Since w
1
(0+) = V̂

2
(0+) = 0, w

1
, V̂

2
satisfy a linear growth condition, we deduce from

(4.29), (4.35), and uniqueness to the PDE system (4.17)-(4.18), that

v
1

= w
1
, v

2
= V̂

2
, on (0,∞).

This proves x∗
1

= x
1
, S

1
= [x

1
,∞) and S

2
= ∅, and ends the proof.

4.2 Identical diffusion operators with different profit functions

In this paragraph, we suppose that L1 = L2 = L, i.e. b1 = b2 = b, σ1 = σ2 = σ > 0. We

then set m+ = m+
1 = m+

2 , m− = m−
1 = m−

2 , and X̂x = X̂x,1 = X̂x,2. Notice that in this

case, the set Qij, i, j = 1, 2, i 6= j, introduced in Lemma 3.3, satisfies :

Qij = {x ∈ Cj : (fj − fi)(x) − rgij ≥ 0}

⊂ Q̂ij := {x > 0 : (fj − fi)(x) − rgij ≥ 0} . (4.36)

Once we are given the profit functions fi, fj, the set Q̂ij can be explicitly computed.

Moreover, we prove in the next Lemma that the structure of Q̂ij determines the same

structure for the switching region Si.

Lemma 4.5 Let i, j = 1, 2, i 6= j.

1) Assume that

sup
x>0

(V̂j − V̂i)(x) > gij, (4.37)

and there exists 0 < xij < ∞ such that

Q̂ij = [xij,∞). (4.38)

Then 0 < x∗
i < ∞ and

Si = [x∗
i ,∞).

14



2) Assume that there exist 0 < xij < x̄ij < ∞ such that

Q̂ij = [xij, x̄ij ]. (4.39)

Then 0 < x∗
i < x̄∗

i < x∗
j ∧∞ and

Si = [x∗
i , x̄

∗
i ].

Proof. 1) Since Si ⊂ Q̂ij by Lemma 3.3 and (4.36), the condition (4.38) implies x∗
i ≥ xij

> 0. We now claim that x∗
i < ∞. On the contrary, the switching region Si would be empty,

and so vi would satisfy on (0,∞) :

rvi − Lvi − fi = 0, on (0,∞).

Then, vi would be on the form :

vi(x) = Axm+

+ Bxm−

+ V̂i(x), x > 0.

Recalling from Lemma 3.1 that vi(0
+) = 0 and vi is a nonnegative function satisfying a

linear growth condition, and using the fact that m− < 0 and m+ > 1, we deduce that vi

should be equal to V̂i. Now, since we have vi ≥ vj − gij ≥ V̂j − gij , this would imply :

V̂j(x) − V̂i(x) ≤ gij , ∀x > 0.

This contradicts condition (4.37) and so 0 < x∗
i < ∞.

By definition of x∗
i , we already know that (0, x∗

i ) ⊂ Ci. We prove actually the equality,

i.e. Si = [x∗
i ,∞) or vi(x) = vj(x) − gij for all x ≥ x∗

i . Consider the function

wi(x) =

{

vi(x), 0 < x < x∗
i

vj(x) − gij , x ≥ x∗
i

We now check that wi is a viscosity solution of

min {rwi − Lwi − fi , wi − (vj − gij)} = 0 on (0,∞). (4.40)

From Theorem 3.2, the function wi is C1 on (0,∞) and in particular at x∗
i where w′

i(x
∗
i ) =

v′i(x
∗
i ) = v′j(x

∗
i ). We also know that wi = vi is C2 on (0, x∗

i ) ⊂ Ci, and satisfies rwi−Lwi−fi

= 0, wi ≥ (vj −gij) on (0, x∗
i ). Hence, from Lemma 3.4, we only need to check the viscosity

supersolution property of wi to :

rwi − Lwi − fi ≥ 0, on (x∗
i ,∞). (4.41)

For this, take some point x̄ > x∗
i and some smooth test function ϕ s.t. x̄ is a local minimum

of wi−ϕ. Then, x̄ is a local minimum of vj−(ϕ+gij), and by the viscosity solution property

of vj to its Bellman PDE, we have

rvj(x̄) − Lϕ(x0) − fj(x̄) ≥ 0.
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Now, since x∗
i ≥ xij , we have x̄ > xij and so by (4.38), x̄ ∈ Q̂ij . Hence,

(fj − fi)(x̄) − rgij ≥ 0.

By adding the two previous inequalities, we also obtain the required supersolution inequal-

ity :

rwi(x̄) − Lϕ(x̄) − fi(x̄) ≥ 0,

and so (4.40) is proved.

Since wi(0
+) = vi(0

+) (= 0) and wi satisfies a linear growth condition, and from unique-

ness of viscosity solution to PDE (4.40), we deduce that wi is equal to vi. In particular, we

have vi(x) = vj(x) − gij for x ≥ x∗
i , which shows that Si = [x∗

i ,∞).

2) By Lemma 3.3 and (4.36), the condition (4.39) implies 0 < xij ≤ x∗
i ≤ x̄∗

i ≤ x̄ij < ∞.

We claim that x∗
i < x̄∗

i . Otherwise, S
2

= {x̄∗
i } and vi would satisfy rvi − Lvi − fi = 0 on

(0, x̄∗
i ) ∪ (x̄∗

i ,∞). By continuity and smooth-fit condition of vi at x̂, this implies that vi

satisfies actually

rvi − Lvi − fi = 0, x ∈ (0,∞),

and so is in the form :

vi(x) = Axm+

+ Bxm−

+ V̂i(x), x ∈ (0,∞)

Recalling from Lemma 3.1 that vi(0
+) = 0 and vi satisfy a linear growth condition, this

implies A = B = 0. Therefore, vi is equal to V̂i, which also means that Si = ∅, a contra-

diction.

We now prove that Si = [x∗
i , x̄

∗
i ]. Let us consider the function

wi(x) =

{

vi(x), x ∈ (0, x∗
i ) ∪ (x̄∗

i ,∞)

vj(x) − gij , x ∈ [x∗
i , x̄

∗
i ],

which is C1 on (0,∞) and in particular on x∗
i and x̄∗

i from Theorem 3.2. Hence, by similar

arguments as in case 1), using Lemma 3.4, we then show that wi is a viscosity solution of

min {rwi − Lwi − fi , wi − (vj − gij)} = 0. (4.42)

Since wi(0
+) = vi(0

+) (= 0) and wi satisfies a linear growth condition, and from uniqueness

of viscosity solution to PDE (4.42), we deduce that wi is equal to vi. In particular, we have

vi(x) = vj(x) − gij for x ∈ [x∗
i , x̄

∗
i ], which shows that Si = [x∗

i , x̄
∗
i ]. Finally, since Si ⊂ Cj ,

this also shows that x̄∗
i < x∗

j . 2

A typical example of different running profit functions is given by

fi(x) = xγi , i = 1, 2, with 0 < γ1 < γ2 < 1. (4.43)
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Actually, we shall provide explicit solutions to the switching problem for more general

different profit functions fi including (4.43). We assume there exists x̂ ∈ (0,∞) s.t.

(HF) F := f
2
− f

1
is strictly decreasing on (0, x̂), strictly increasing on [x̂,∞)

and lim
x→∞

F (x) = ∞.

Since F (0) = 0, notice that F (x̂) < 0. Economically speaking, the last condition (HF)

means that regime 2 is “better” than regime 1 from a certain level x̂, and the improvement

becomes then better and better.

The next proposition states the form of the switching regions.

Proposition 4.1 Assume that (HF) holds.

1) We have x∗
1
∈ (0,∞) and S

1
= [x∗

1
,∞).

2) i) If rg
21

≥ −F (x̂), then S
2

= ∅.

ii) If rg
21

< −F (x̂), then 0 < x∗
2

< x̄∗
2

< x∗
1
, and S

2
= [x∗

2
, x̄∗

2
].

Proof. 1) From Lemma 3.3, we have

Q̂
12

= {x > 0 : F (x) − rg
12

≥ 0} . (4.44)

Under (HF) and since F (0) − rg
12

< 0, F (∞) − rg
12

> 0, there exists x̂
12

∈ (0,∞) such

that

Q̂
12

= [x
12

,∞). (4.45)

Moreover, since

(V̂2 − V̂1)(x) = E

[
∫ ∞

0
e−rtF (X̂x

t )dt

]

, ∀x > 0,

and F (∞) = ∞, it is not difficult to see that limx→∞(V̂2 − V̂1)(x) = ∞. Hence, conditions

(4.37)-(4.38) with i = 1, j = 2, are satisfied, and we obtain the first assertion by Lemma

4.5 1).

2) From Lemma 3.3, we have

Q̂
21

= {x > 0 : −F (x) − rg
21

≥ 0} . (4.46)

Under (HF), we distinguish the following cases :

(i1) If rg
21

> −F (x̂), then, Q̂
21

= ∅, and so S
2

= ∅.

(i2) If rg
21

= −F (x̂), then, Q̂
21

= {x̂} and so S
2
⊂ {x̂}. In this case, v

2
satisfies rv

2
−Lv

2
−f

2

= 0 on (0, x̂) ∪ (x̂,∞). By continuity and smooth-fit condition of v
2

at x̂, this implies that

v
2

satisfies actually

rv
2
− Lv

2
− f

2
= 0, x ∈ (0,∞),

and so is in the form :

v
2
(x) = Axm+

+ Bxm−

+ V̂
2
(x), x ∈ (0,∞)
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Recalling from Lemma 3.1 that v
2
(0+) = 0 and v

2
satisfy a linear growth condition, this

implies A = B = 0. Therefore, v
2

is equal to V̂
2
, which also means that S

2
= ∅.

(ii) If rg
21

< −F (x̂). Then there exist 0 < x
21

< x̂ < x̄
21

< ∞ such that

Q̂
21

= [x
21

, x̄
21

]. (4.47)

We then conclude with Lemma 4.5 2) for i = 2, j = 1. 2

Remark 4.5 In our viscosity solutions approach, the structure of the switching regions is

derived from the smooth fit property of the value functions, uniqueness result for viscosity

solutions and Lemma 3.3. This contrasts with the classical verification approach where

the structure of switching regions should be guessed ad-hoc and checked a posteriori by a

verification argument.

We thus finally explicit the value functions and the optimal sequential stopping times.

The structure of the optimal strategy is depicted in figure 2.

Theorem 4.4 Assume that (HF) holds.

i) If rg
21

≥ −F (x̂), then

v
1
(x) =

{

Axm+

+ V̂
1
(x), x < x∗

1

v
2
(x) − g

12
, x ≥ x∗

1

(4.48)

v
2
(x) = V̂

2
(x) (4.49)

where the constants A and x∗
1

are determined by the continuity and smooth-fit conditions

of v
1

at x∗
1

:

A(x∗
1
)m

+

+ V̂
1
(x∗

1
) = V̂

2
(x∗

1
) − g

12
(4.50)

Am+(x∗
1
)m

+−1 + V̂ ′
1
(x∗

1
) = V̂ ′

2
(x∗

1
). (4.51)

Furthermore, when we are in regime 1, it is optimal to switch to regime 2 whenever the

state process X exceeds the threshold x∗
1
, while when we are in regime 2, it is optimal never

to switch.

ii) If rg
21

< −F (x̂), then

v
1
(x) =

{

A1x
m+

+ V̂
1
(x), x < x∗

1

v
2
(x) − g

12
, x ≥ x∗

1

(4.52)

v
2
(x) =











A2x
m+

+ V̂
2
(x), x < x∗

2

v
1
(x) − g

21
, x∗

2
≤ x ≤ x̄∗

2

B2x
m−

+ V̂
2
(x), x > x̄∗

2

(4.53)

where the constants A1 and x∗
1

are determined by the continuity and smooth-fit conditions of

v
1

at x∗
1
, and the constants A2, B2, x∗

2
, x̄∗

2
are determined by the continuity and smooth-fit
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conditions of v
2

at x∗
2

and x̄∗
2

:

A1(x
∗
1
)m

+

+ V̂
1
(x∗

1
) = B2(x

∗
1
)m

−

+ V̂
2
(x∗

1
) − g

12
(4.54)

A1m
+(x∗

1
)m

+−1 + V̂ ′
1
(x∗

1
) = B2m

−(x∗
1
)m

−−1 + V̂ ′
2
(x∗

1
) (4.55)

A2(x
∗
2
)m

+

+ V̂
2
(x∗

2
) = A1(x

∗
2
)m

+

+ V̂
1
(x∗

2
) − g

21
(4.56)

A2m
+(x∗

2
)m

+−1 + V̂ ′
2
(x∗

2
) = A1m

+(x∗
2
)m

+−1 + V̂ ′
1
(x∗

2
) (4.57)

A1(x̄
∗
2
)m

+

+ V̂
1
(x̄∗

2
) − g

21
= B1(x̄

∗
2
)m

−

+ V̂
2
(x̄∗

2
) (4.58)

A1m
+(x̄∗

2
)m

+−1 + V̂ ′
1
(x̄∗

2
) = B1m

−(x̄∗
2
)m

−−1 + V̂ ′
2
(x̄∗

2
). (4.59)

Furtheremore, when we are in regime 1, it is optimal to switch to regime 2 whenever the

state process X exceeds the threshold x∗
1
, while when we are in regime 2, it is optimal to

switch to regime 1 whenever the state process lies between x∗
2

and x̄∗
2
.

Proof. 1. From Proposition 4.1, we have S
1

= [x∗
1
,∞), which means that when we are

in regime 1, it is optimal to switch to regime 2 whenever the state process exceeds x∗
1
.

Moreover, we have v
1

= v
2
− g

12
on [x∗

1
,∞) and v

1
is solution to rv

1
− Lv

1
− f

1
= 0 on

(0, x∗
1
). Since v

1
(0+) = 0, v

1
should have the form expressed in (4.48) or (4.52).

2. The form of v
2

and S
2

depends on the two following cases :

(i) If rg
21

≥ −F (x̂), then from Proposition 4.1, S
2

is empty, which means that when we

are in regime 1, it is never optimal to switch of regime. This also means that v
2

is equal to

V̂
2
, the unique solution with linear growth condition on (0,∞) to rv

2
−Lv

2
− f

2
= 0, with

v
2
(0+) = 0. The constants A and x∗

1
expliciting completely v

1
are then determined by the

two relations (4.50)-(4.51) resulting from the continuity and smooth-fit conditions of v
1

at

x∗
1
.

(ii) If rg
21

< −F (x̂), then from Proposition 4.1, S
2

= [x∗
2
, x̄∗

2
], which means that when we

are in regime 2, it is optimal to switch to regime 1 whenever the state process lies between

[x∗
2
, x̄∗

2
]. Moreover, v2 satisfies on C

2
= (0, x∗

2
) ∪ (x̄∗

2
,∞) : rv2 − Lv2 − f

2
= 0. Recalling

again that v
2
(0+) = 0 and v

2
satisfies a linear growth condition, we deduce that v

2
has the

form expressed in (4.53). Finally, the constants A1, x∗
1

expliciting completely v
1
, and the

constants A2, B2, x∗
2
, x̄∗

2
expliciting v

2
are determined by the six relations (4.54)-(4.55)-

(4.56)-(4.57)-(4.58)-(4.59) resulting from the continuity and smooth-fit conditions of v
1

at

x∗
1

and v
2

at x∗
2

and x̄∗
2
. 2

Remark 4.6 In the classical approach, for instance in the case ii) rg
21

≤ −F (x̂), we

construct a priori a candidate solution in the form (4.52)-(4.53), and we have to check the

existence of a sixtuple solution to (4.54)-(4.55)-(4.56)-(4.57)-(4.58)-(4.59), which may be

somewhat tedious! Here, our viscosity solutions approach, and since we already state the

smooth-fit C1 property of the value functions, we know a priori the existence of a sixtuple

solution to (4.54)-(4.55)-(4.56)-(4.57)-(4.58)-(4.59).

Appendix: proof of comparison principle

In this section, we prove a comparison principle for the system of variational inequalities

(3.8). The comparison result in [10] for switching problems in finite horizon does not apply
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in our context. Inspired by [8], we first produce some suitable perturbation of viscosity

supersolution to deal with the switching obstacle, and then follow the general viscosity

solution technique, see e.g. [3].

Theorem 4.5 Suppose ui, i ∈ Id, are continuous viscosity subsolutions to the system of

variational inequalities (3.8) on (0,∞), and wi, i ∈ Id, are continuous viscosity superso-

lutions to the system of variational inequalities (3.8) on (0,∞), satisfying the boundary

conditions ui(0
+) ≤ wi(0

+), i ∈ Id, and the linear growth condition :

|ui(x)| + |wi(x)| ≤ C1 + C2x, ∀x ∈ (0,∞), i ∈ Id, (A.1)

for some positive constants C1 and C2. Then,

ui ≤ wi, on (0,∞), ∀i ∈ Id.

Proof. Step 1. Let ui and wi, i ∈ Id, as in Theorem 4.5. We first construct strict superso-

lutions to the system (3.8) with suitable perturbations of wi, i ∈ Id. We set

h(x) = C ′
1 + C ′

2x
p, x > 0,

where C ′
1, C ′

2 > 0 and p > 1 are positive constants to be determined later. We then define

for all λ ∈ (0, 1), the continuous functions on (0,∞) by :

wλ
i = (1 − λ)wi + λh, i ∈ Id.

We then see that for all λ ∈ (0, 1), i ∈ Id :

wλ
i − max

j 6=i
(wλ

j − gij) = (1 − λ)wi − max
j 6=i

[(1 − λ)(wj − gij) − λgij ]

≥ (1 − λ)[wi − max
j 6=i

(wj − gij)] + λmin
j 6=i

gij

≥ λg, (A.2)

where g := mini∈Id
minj 6=i gij > 0 is a positive constant independent of i. By definition of

the Fenchel Legendre in (2.4), and by setting f̃(1) = maxi∈Id
f̃i(1), we have for all i ∈ Id,

fi(x) ≤ f̃(1) + x ≤ f̃(1) + 1 + xp, ∀x > 0.

Moreover, recalling that r > b := maxi bi, we can choose p > 1 s.t.

ρ := r − pb −
1

2
σ2p(p − 1) > 0,

where we set σ := maxi σi > 0. By choosing

C ′
1 ≥

2 + f̃(1)

r
, C ′

2 ≥
1

ρ
,

we then have for all i ∈ Id,

rh(x) − Lih(x) − fi(x) = rC ′
1 + C ′

2x
p[r − pbi −

1

2
σ2

i p(p − 1)] − fi(x)

≥ rC ′
1 + ρC ′

2x
p − fi(x)

≥ 1, ∀x > 0. (A.3)
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From (A.2) and (A.3), we then deduce that for all i ∈ Id, λ ∈ (0, 1), wλ
i is a supersolution

to

min

{

rwλ
i − Liw

λ
i − fi, w

λ
i − max

j 6=i
(wλ

j − gij)

}

≥ λδ, on (0,∞), (A.4)

where δ = g ∧ 1 > 0.

Step 2. In order to prove the comparison principle, it suffices to show that for all λ ∈ (0, 1) :

max
j∈Id

sup
(0,+∞)

(uj − wλ
j ) ≤ 0

since the required result is obtained by letting λ to 0. We argue by contradiction and

suppose that there exists some λ ∈ (0, 1) and i ∈ Id s.t.

θ := max
j∈Id

sup
(0,+∞)

(uj − wλ
j ) = sup

(0,+∞)
(ui − wλ

i ) > 0. (A.5)

From the linear growth condition (A.1), and since p > 1, we observe that ui(x) − wλ
i (x)

goes to −∞ when x goes to infinity. By choosing also C ′
1 ≥ maxi wi(0

+), we then have

ui(0
+) − wλ

i (0+) = ui(0
+) − wi(0

+) + λ(wi(0
+) − C ′

1) ≤ 0. Hence, by continuity of the

functions ui and wλ
i , there exists x0 ∈ (0,∞) s.t.

θ = ui(x0) − wλ
i (x0).

For any ε > 0, we consider the functions

Φε(x, y) = ui(x) − wλ
i (y) − φε(x, y),

φε(x, y) =
1

4
|x − x0|

4 +
1

2ε
|x − y|2,

for all x, y ∈ (0,∞). By standard arguments in comparison principle, the function Φε

attains a maximum in (xε, yε) ∈ (0,∞)2, which converges (up to a subsequence) to (x0, x0)

when ε goes to zero. Moreover,

lim
ε→0

|xε − yε|
2

ε
= 0. (A.6)

Applying Theorem 3.2 in [3], we get the existence of Mε, Nε ∈ R such that:

(pε,Mε) ∈ J2,+ui(xε),

(qε,Nε) ∈ J2,−wλ
i (yε)

where

pε = Dxφε(xε, yε) =
1

ε
(xε − yε) + (xε − x

0
)3

qε = −Dyφε(xε, yε) =
1

ε
(xε − yε)

and
(

Mε 0

0 −Nε

)

≤ D2φε(xε, yε) + ε
(

D2φε(xε, yε)
)2

(A.7)
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with

D2φε(xε, yε) =

(

3(xε − x
0
)2 + 1

ε
−1

ε

−1
ε

1
ε

)

,

By writing the viscosity subsolution property (3.9) of ui and the viscosity strict supersolu-

tion property (A.4) of wλ
i , we have the following inequalities:

min

{

rui(xε) −

(

1

ε
(xε − yε) + (xε − x

0
)3
)

bixε −
1

2
σ2

i x
2
εMε − fi(xε) ,

ui(xε) − max
j 6=i

(uj − gij)(xε)

}

≤ 0 (A.8)

min

{

rwλ
i (yε) −

1

ε
(xε − yε)biyε −

1

2
σ2

i y
2
εNε − fi(yε) ,

wλ
i (yε) − max

j 6=i
(wλ

j − gij)(yε)

}

≥ λδ (A.9)

We then distinguish the following two cases :

(1) ui(xε) − maxj 6=i(uj − gij)(xε) ≤ 0 in (A.8).

By sending ε → 0, this implies

ui(x0) − max
j 6=i

(uj − gij)(x0) ≤ 0. (A.10)

On the other hand, we have by (A.9) :

wλ
i (yε) − max

j 6=i
(wλ

j − gij)(yε) ≥ λδ,

so that by sending ε to zero :

wλ
i (x0) − max

j 6=i
(wλ

j − gij)(x0) ≥ λδ. (A.11)

Combining (A.10) and (A.11), we obtain :

θ = ui(x0) − wλ
i (x0) ≤ −λδ + max

j 6=i
(uj − gij)(x0) − max

j 6=i
(wλ

j − gij)(x0)

≤ −λδ + max
j 6=i

(uj − wλ
j )(x0)

≤ −λδ + θ,

which is a contradiction.

(2) rui(xε) −
(

1
ε
(xε − yε) + (xε − x

0
)3
)

bixε −
1
2σ2

i x
2
εMε − fi(xε) ≤ 0 in (A.8).

Since by (A.9), we also have :

rwλ
i (yε) −

1

ε
(xε − yε)biyε −

1

2
σ2

i y
2
εNε − fi(yε) ≥ λδ,

this yields by combining the above two inequalities :

rui(xε) − rwλ
i (yε) −

1

ε
bi(xε − yε)

2 − (xε − x0)
3bixε

+
1

2
σ2

i y
2
εNε −

1

2
σ2

i x
2
εMε + fi(yε) − fi(xε) ≤ −λδ. (A.12)
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Now, from (A.7), we have :

1

2
σ2

i x
2
εMε −

1

2
σ2

i y
2
εNε ≤

3

2ε
σ2

i (xε − yε)
2 +

3

2
σ2

i x
2
ε(xε − x0)

2
(

3ε(xε − x0)
2 + 2

)

,

so that by plugging into (A.12) :

r
(

ui(xε) − wλ
i (yε)

)

≤
1

ε
bi(xε − yε)

2 + (xε − x0)
3bixε +

3

2ε
σ2

i (xε − yε)
2

+
3

2
σ2

i x
2
ε(xε − x0)

2
(

3ε(xε − x0)
2 + 2

)

+ fi(yε) − fi(xε) − λδ

By sending ε to zero, and using (A.6), continuity of fi, we obtain the required contradiction:

rθ ≤ −λδ < 0. This ends the proof of Theorem 4.5. 2
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