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0. Statement of the problem

The greatly increasing number of industrial technical devices involving the pres-

ence of lubricated contacts motivates interest in studying more suitable models for

the practical situations. Considering an elastic rolling ball or cylinder and a rigid

plane leads to an elastohydrodynamic lubrication problem, taking into account the

possibility of the ball/cylinder deformation. From a practical point of view, the in-

troduction of surface periodic roughness during manufacturing processes cannot be

avoided. In this rough elastohydrodynamic contact setting, it is important to state

adequate mathematical models in order to perform the numerical simulation of the
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devices. For this, one possible tool is provided by the homogenization technique

analyzed in the present paper.

The mathematical model, to be further detailed later, is governed by the follow-

ing set of highly coupled and nonlinear equations:

∇ ·
(
h[p]3 e−αp ∇p

)
=

∂

∂x1
(θh[p])

p ≥ 0, 0 ≤ θ ≤ 1, p(1 − θ) = 0,

where h[p], which is the effective gap between two close surfaces, contains a given

rigid contribution hr and an elastic one, which strongly depends on the main un-

known p (lubricant pressure) in the following nonlocal form:

h[p] = hr +

∫

Ω

k(·, z)p(z) dz,

the kernel k depending on the kind of contact. Moreover, the fluid saturation, θ, is

related to the pressure by means of the Heaviside multivalued operator H and the

exponential term takes into account piezoviscous effects.

Basic aspects of the early developped elastohydrodynamic theory have been

stated by Dowson and Higginson [12], where the three main common features of

this kind of problems are already quoted: the fluid hydrodynamic displacement,

the solid elastic deformation and the air bubble generation. Thus, the Reynolds

equation, linear Hertz contact theory and different cavitation models try to mathe-

matically analyse these three phenomena. Moreover, the modification of the initial

fluid viscosity due to the presence of sufficiently high values of lubricant pressure

might have to be taken into account, so that the complete modelling is extended

to piezoviscous fluids. Thus the complete model takes into account the following

aspects:

� The Reynolds equation has been used for a long time to describe the be-

haviour of a viscous flow between two close surfaces in relative motion [24].

It can be written as:

∇ ·
(h3

r

6µ
∇p

)
= v0

∂

∂x1

(
hr

)

where p is the pressure distribution, hr the gap between the two surfaces,

µ the lubricant viscosity and v0 the speed of the lower surface (the upper

surface is assumed to be fixed). The transition of the Stokes equation to

the Reynolds equation has been proved by Bayada and Chambat in [4].

� However, the earlier equation does not take into account cavitation phe-

nomena: cavitation is defined as the rupture of the continuous film due to

the formation of air bubbles and makes the Reynolds equation no longer

valid in the cavitation area. In order to make it possible, various models

have been used, the most popular perhaps being variational inequalities

which have a strong mathematical basis but lack physical evidence. Thus,

we use the Elrod-Adams model, which introduces the hypothesis that the
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cavitation region is a fluid-air mixture and an additional unknown θ (the

saturation of fluid in the mixture) (see [16, 3]).

� Actually, elastohydrodynamic lubrication (EHL) occurs between point or

line contact, so all the loading is concentrated over a small contact area.

Typical applications are rolling element bearings, most gears, and cams and

tappets [12]. The concentrated contact results in high peak pressures of 1-2

GPa between the surfaces. This is too high to be supported by a normal hy-

drodynamic film, and application of simple hydrodynamic theory predicts

negligible oil film thickness. In practice films are formed and have thickness

comparable to the surface roughness of normal gear and bearing materials.

This is because the high pressure has two beneficial effects unaccounted

for in hydrodynamics. Firstly, elastic flattening of the contacting surfaces

occurs. Secondly, the high pressure greatly increases the viscosity of the

lubricant in the contact. Elastohydrodynamic lubrication is consequently

analysed using a combination of Reynold’s equation, elasticity theory (the

Hertz equation) and a lubricant viscosity-pressure equation. Thus, intro-

ducing the elastic deformation of the surfaces due to the fluid pressure and

assuming the Hertzian contact theory for a parameter regime that corre-

sponds to low speeds, low viscosity at ambient pressure or small elastic

modulus, the effective gap is, in fact, linked to the pressure. Let us men-

tion that piezoviscous properties of the fluid have to be taken into account

in realistic applications. Thus, the viscosity is no longer constant and also

depends on the pressure [2].

The mathematical analysis of different elastohydrodynamic problems taking into

account the previous quoted features has been treated in the literature for the

variational inequality cavitation model [17, 19, 23, 25] and for the Elrod-Adams

model [7, 13].

The effect of surfaces periodic roughness on the behaviour of hydrodynamic

and elastohydrodynamic magnitudes has been treated in numerous works. Some of

the theoretical studies also include numerical examples which show how significant

pressure and deformation perturbations appear due to the presence of surface asper-

ities, either in the hydrodynamic regime [8, 9, 20] or in the elastohydrodynamic one

[6]. For the particular point and linear elastohydrodynamic contacts here treated,

although some numerical methods have been proposed in the literature [18], the

rigorous mathematical analysis to justify the homogenized models has not been

performed yet. Furthermore, in this paper, the more realistic Elrod-Adams model

is considered instead of the variational inequality one [6]. Notice that for the numeri-

cal simulation of micro-elastohydrodynamic contacts, the statement of well justified

homogenized problems prevents from using extremely high numbers of mesh points

to accurately compute the involved physical magnitudes (when directly solving the

small parameter dependent problems).

Now, we present the full lubrication model, including cavitation phenomena and
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piezoviscous elastohydrodynamic aspects.

1. Mathematical formulation of the EHL problem

We consider a rectangular domain Ω =]−l1, l1[×]−l2, l2[; Γ⋆ denotes the left vertical

boundary and Γ = ∂Ω \ Γ⋆ (see for instance Fig.1).

Ω

x1

x2

Γ⋆

2 l1

2 l2

Fig. 1. Domain

We suppose that the following assumptions are satisfied.

Assumption 1.1 (Rigid contribution to the gap). The classical approxima-

tion of the rigid gap (see [12]) is given by the expression

hr(x) =





h0 +
x2

1 + x2
2

2R
, for ball bearings

h0 +
x2

1

R
, for linear bearings

(1.1)

that represents a parabolic approximation for a given sphere-plane (point contact)

or cylinder-plane (line contact) gap, R being the sphere or cylinder section radius.

Remark 1.1. The positive constant h0 corresponds to the gap at the point nearest

to contact. Clearly, the condition

0 < h0 ≤ hr(x) ≤ h1, with h0, h1 two constants (1.2)

is satisfied in the bounded domain Ω.

As previously mentioned, in the Hertz theory, the effective gap is linked to the

pressure through the following relationship

Assumption 1.2 (Deformable contribution to the gap). The effective gap

between the surfaces is given by

h[p](x) = hr(x) +

∫

Ω

k(x, z)p(z) dz, ∀ x ∈ Ω (1.3)



Homogenization of a nonlocal EHL Problem 5

where hr satisfies Assumption 1.1, and k(x, z) is

k(x, z) =





c0 log
∣∣∣ c1 − z1
x1 − z1

∣∣∣, for line contacts

c0√
(x1 − z1)2 + (x2 − z2)2

, for point contacts,
(1.4)

where c0 > 0 and c1 ≥ max{
∣∣∣x1

∣∣∣, x ∈ Ω}.

Remark 1.2. Clearly k is a positive function and there exists K̃ > 0 such that
∥∥∥k(x, .)

∥∥∥
L1(Ω)

≤ K̃ (1.5)

uniformly with respect to x. Let us notice that the expression of h contains a rigid

term, hr, and an additional term due to the surface deformation.

Finally let us take into account the piezoviscous properties of the lubricant, i.e.

the viscosity is no longer constant.

Assumption 1.3 (Piezoviscosity law). The viscosity obeys the Barus law [2]:

µ = µ0 e
αp, (1.6)

where α ≥ 0 and µ0 > 0 denote the piezoviscosity constant and the zero pressure

viscosity repectively.

The strong formulation of the problem is:

x ∈ Ω+ :





∇ ·

(
h3[p](x)

6µ0
e−αp(x) ∇p(x)

)
= v0

∂

∂x1

(
θ(x) h[p](x)

)

p(x) > 0 and θ(x) = 1

x ∈ Ω0 :




v0

∂

∂x1

(
θ(x) h[p](x)

)
= 0

p(x) = 0 and 0 ≤ θ(x) ≤ 1

x ∈ Σ :





h3[p](x)

6µ0
e−αp(x) ∂p(x)

∂n
= v0 (1 − θ(x))h[p](x) cos(~n,~i)

p(x) = 0
with the boundary conditions

v0 θh[p] −
h3[p]

6µ0
e−αp ∂p

∂n
= v0 θ⋆h[p] on Γ⋆

p = 0 on Γ

where v0 denotes the velocity of the lower surface in the x1 direction, θ⋆ is a supply

parameter belonging to [0, 1], ~n represents the unit normal vector to Σ pointing to

Ω0, ~i is the unit vector in the x1 direction; and the sets appearing earlier are given
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by

Ω+ = {x ∈ Ω, p(x) > 0} (lubricated region),

Ω0 = {x ∈ Ω, p(x) = 0} (cavitated region),

Σ = ∂Ω+ ∪ Ω (free boundary).

Thus, working in dimensionless data (6µ0v0 = 1 for instance), the piezoviscous

elastohydrodynamic problem can be written as

(Pθ)





Find (p, θ) ∈ V × L∞(Ω) such that:∫

Ω

h3[p] e−αp ∇p ∇φ =

∫

Ω

θ h[p]
∂φ

∂x1
+

∫

Γ⋆

θ⋆ h[p] φ, ∀ φ ∈ V

p ≥ 0, p (1 − θ) = 0, 0 ≤ θ ≤ 1, a.e.,

where the functional space V is defined as V =
{
v ∈ H1(Ω), v|Γ = 0

}
.

The boundary data, θ⋆, satisfies:

Assumption 1.4 (Saturation on the boundary).

(i) θ⋆ ∈ L∞(Γ⋆),

(ii) 0 ≤ θ⋆(z) ≤ 1, for a.e. z ∈ Γ⋆.

Finally, let us consider the following technical assumption.

Assumption 1.5 (Technical hypothesis on the data). The Sobolev exponent

r⋆ > 2, the Sobolev constant C(Ω) (the norm of the trace mapping from H1(Ω) to

L2(Γ⋆)) and the problem parameters satisfy the condition

α e C(Ω)

h2
0

∣∣∣Ω
∣∣∣
(1/2)−(1/r⋆)

2r⋆/(r⋆−2) ≤ 1, (1.7)

We have the following existence theorem:

Theorem 1.1 (Durany, Garćıa, Vázquez [13]). Under Assumptions 1.1–1.5,

problem (Pθ) admits at least a solution (p, θ) satisfying the following estimates:
∥∥∥p

∥∥∥
H1(Ω)

≤ C1 and
∥∥∥p

∥∥∥
L∞(Ω)

≤ C2,

where C1 and C2 depend on α, h0, h1, K̃, θ⋆, Ω, Γ⋆, r
⋆.

Remark 1.3. The complete proof is given by Durany, Garćıa and Vázquez [13]. It is

based on the introduction of a penalized problem and Schauder fixed-point theorem.

We point out the fact that the earlier estimates are not a priori estimates. Thus, we

cannot guarantee that each solution of the problem satisfies the earlier estimates.

Assumption 1.5 guarantees an existence result if α is small enough: it holds if the

physical configuration is not too far from the isoviscous case.

Remark 1.4. Other boundary conditions might be taken into account: a similar re-

sult has been proved with Dirichlet conditions on the pressure by Bayada, El Alaoui
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and Vázquez [7]. The homogenization study that follows can be easily adapted to

this specific type of boundary conditions.

The next sections deal with homogenization of the lubrication problem, using the

periodic unfolding method which has been introduced Cioranescu, Damlamian and

Griso [11]. This method has strong links with the two-scale convergence technique

which was introduced by Nguetseng [22], and further developped by Allaire [1],

Lukkassen, Nguetseng and Wall [21].

2. Homogenization of the EHL problem

In this section, we state some preliminary results before the homogenization process

of the lubrication problem. Let us introduce the microscale domain Y =]0, 1[×]0, 1[.

The nominal gap, i.e. without elastic deformation, is now described by the nominal

regular thickness hr to which one must add the roughness defaults around the

average gap. Thus, we consider that the nominal gap is described by:

hε
r(x) = hr(x) + λ

(x
ε

)
,

where hr has been defined in Assumption 1.1 and λ satisfies:

Assumption 2.1 (Roughness pattern).

(i) λ ∈ C♯(Y ) =
{
v ∈ C0(Y ), v is Y periodic

}
,

(ii) ∃ λmax > 0,
∥∥∥λ

∥∥∥
L∞(Y )

≤ λmax < h0.

Remark 2.1. Assumptions 1.1 and 2.1 guarantee the uniform coerciveness (with

respect to the parameter ε) of the bilinear form; in fact, we have

∀x ∈ Ω, 0 < h0 −
∥∥∥λ

∥∥∥
L∞(Y )

≤ hε
r(x) ≤ h1 +

∥∥∥λ
∥∥∥

L∞(Y )
. (2.1)

Let us remark that it leads us to consider the roughness of the upper surface,

assumed to be fixed, so that the x variable becomes highly oscillating. Thus it

means that only the rigid contribution to the gap is rough.

Now let us define the effective gaps:

Definition 2.1. For any q ∈ L∞(Ω), let h[q] and hε[q] be the functions defined by:

h[q] : Ω × Y −→ R

(x, y) −→ h[q](x, y) = hr(x) + λ(y) +

∫

Ω

k(x, z)q(z) dz,

hε[q] : Ω −→ R

x −→ hε[q](x) = h[q]
(
x,
x

ε

)
.
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Thus, we introduce the rough problem:

(Pε
θ )





Find (pε, θε) ∈ V × L∞(Ω) such that:∫

Ω

h3
ε[pε] e

−αpε ∇pε ∇φ =

∫

Ω

θε hε[pε]
∂φ

∂x1
+

∫

Γ⋆

θ⋆ hε[pε] φ, ∀ φ ∈ V

pε ≥ 0, pε (1 − θε) = 0, 0 ≤ θε ≤ 1, a.e.

In order to get an existence theorem, we adapt the assumptions to the rough

problem. Therefore, Assumption 1.5 is replaced by:

Assumption 2.2. The Sobolev exponent r⋆ > 2, the Sobolev constant C(Ω) (the

norm of the trace mapping from H1(Ω) to L2(Γ⋆)) and the problem parameters

satisfy the condition

α e C(Ω)
(
h0 −

∥∥∥λ
∥∥∥

L∞(Ω)

)2

∣∣∣Ω
∣∣∣
(1/2)−(1/r⋆)

2r⋆/(r⋆−2) ≤ 1. (2.2)

Thus we get:

Theorem 2.1. Under Assumptions 1.1–1.4, 2.1 and 2.2, for any ε > 0, problem

(Pε
θ ) admits at least a solution (pε, θε) satisfying the following estimates:

∥∥∥∇pε

∥∥∥
L2(Ω)

≤ C3,
∥∥∥pε

∥∥∥
L∞(Ω)

≤ C4,
∥∥∥θε

∥∥∥
L∞(Ω)

≤ 1, (2.3)

where C3 and C4 only depend on α, h0 − ‖λ‖L∞(Ω), h1, K̃, θ⋆, Ω, Γ⋆, r
⋆.

Remark 2.2. In mechanical applications (ball or linear bearings), typical rough-

ness is assumed to be either transverse or longitudinal. However, such an assumption

on the roughness form is not necessary and more general shapes may be introduced.

Our purpose is to discuss the behaviour of problem (Pε
θ ) when ε goes to 0, using

periodi unfolding methods. From now on, we suppose that Assumptions 1.1–1.4, 2.1

and 2.2 are satisfied, in particular in Subsections 2.2–2.5.

2.1. Preliminaries to the periodic unfolding method

First we recall some useful definitions and results for the periodic unfolding

method [11].

Lemma 2.1. The separable Banach space L2(Ω;C♯(Y )) is dense in L2(Ω × Y ).

Moreover, if f ∈ L2(Ω;C♯(Y )), then x 7→ σε(f)(x) = f(x, x/ε) is a measurable

function such that
∥∥∥σε(f)

∥∥∥
L2(Ω)

≤
∥∥∥f

∥∥∥
L2(Ω;C♯(Y ))

.

Let us now briefly introduce periodic unfolding methods [11]:
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Definition 2.2 (Unfolding operator). For any x ∈ R2, let be [x]Y the unique

integer combination in Z2 such that x− [x]Y belongs to Y . We also define {x}Y =

x− [x]Y ∈ Y , so that, for each x ∈ R2, one has

x = ε
([x
ε

]
Y

+
{x
ε

}
Y

)
.

Then the unfolding operator Tε : L2(Ω) → L2(Ω × Y ) is defined as follows: for

w ∈ L2(Ω), extended by zero outside Ω,

Tε(w)(x, y) = w
(
ε
[x
ε

]
Y

+ ε y
)
, for x ∈ Ω and y ∈ Y .

Let us now recall Propositions 1 and 2 of Cioranescu, Damlamian and Griso [11]:

Proposition 2.1. One has the following integration formula
∫

Ω

w =

∫

Ω×Y

Tε(w), ∀ w ∈ L1(Ω).

Proposition 2.2. Let {uε} be a bounded sequence in L2(Ω). Then the following

propositions are equivalent:

(i) Tε(uε) weakly converges to u0 in L2(Ω × Y ).

(ii) uε two-scale converges to u0.

Similarly to the two-scale convergence technique, the following properties hold:

Lemma 2.2.

(i) Let uε be a bounded sequence in L2(Ω). Then there exists u0 ∈ L2(Ω× Y ) such

that, up to a subsequence, Tε(uε) weakly converges to u0 in L2(Ω × Y ).

(ii) Let uε be a bounded sequence in H1(Ω), which weakly converges to a limit

u0 ∈ H1(Ω). Then Tε(uε) weakly converges to u0 in L2(Ω×Y ) and there exists

a function u1 ∈ L2(Ω;H1
♯ (Y )/R) such that, up to a subsequence, Tε(∇uε) weakly

converges to ∇u0 + ∇yu1 in L2(Ω × Y ).

To conclude this brief introduction, we have the following (straightforward)

property:

Proposition 2.3. Let u ∈ L2(Ω). If a sequence uε ∈ L2(Ω) strongly converges to

u in L2(Ω), then Tε(uε) strongly converges to u in L2(Ω × Y ).

2.2. Convergence results for problem (Pε

θ
)

Lemma 2.3. There exists p0 ∈ V such that, up to a subsequence:

pε ⇀ p0 in H1(Ω) and pε → p0 in L2(Ω).

We have also the following convergences:
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(i) Tε(pε) strongly converges to p0 in L2(Ω×Y ). Moreover, there exists a function

p1 ∈ L2(Ω;H1
♯ (Y )/R) and a subsequence ε′, still denoted ε, such that Tε(∇pε)

weakly converges to ∇p0 + ∇yp1 in L2(Ω × Y ).

(ii) There exists θ0 ∈ L2(Ω × Y ) and a subsequence ε”, still denoted ε, such that

Tε(θε) weakly converges to θ0 in L2(Ω × Y ).

Moreover, p0 ≥ 0 a.e.

Proof. The convergence results are the consequence of Estimates 2.3 (see Theorem

2.1), which do not depend on ε, and Lemma 2.2.

Remark 2.3. The following proposition has been stated in the hydrodynamic case

(see [9]). The same proof can be used, but we propose an alternate proof, based on

periodic unfolding methods. However, the idea remains the same.

Proposition 2.4. 0 ≤ θ0 ≤ 1 and p0 (1 − θ0) = 0 a.e.

Proof.

� 1st step - As 0 ≤ θε a.e. and using the definition of the unfolding operator, one

has that 0 ≤ Tε(θε) a.e. By Proposition 2.2, one knows that Tε(θε) weakly converges

to θ0 in L2(Ω × Y ). Thus one has
∫

Ω×Y

Tε(θε) φ −→

∫

Ω×Y

θ0 φ, ∀φ ∈ L2(Ω × Y ). (2.4)

We rewrite θ0 as θ0 = θ+0 − θ−0 (with w+ = max(w, 0) and w− = −min(w, 0), for

any w ∈ L2(Ω × Y )). Then using θ−0 as a test function in Equation (2.4):

Aε =

∫

Ω×Y

Tε(θε) θ
−
0 −→ −

∫

Ω×Y

(θ−0 )2 = A ≤ 0.

Since T (θε) ≥ 0 a.e., Aε is a sequence of positive numbers converging to a non

positive number. Then A = 0 and θ−0 = 0 a.e. The same method is used to prove

0 ≤ 1 − θ0 a.e.

� 2nd step - The result is also easily obtained using periodic unfolding methods.

Indeed by Lemma 2.3 and Proposition 2.2,

Tε(pε) → p0, in L2(Ω × Y ),

Tε(θε) ⇀ θ0, in L2(Ω × Y ).

Thus one gets:
∫

Ω×Y

Tε (pε (1 − θε)) =

∫

Ω×Y

Tε(pε) Tε(1 − θε) −→

∫

Ω×Y

p0 (1 − θ0).

Since pε(1 − θε) = 0, passing to the limit gives
∫

Ω×Y

p0 (1 − θ0) = 0.
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Moreover since p0 ≥ 0 a.e. and 1− θ0 ≥ 0 a.e. (see Lemma 2.3 and the first part of

Proposition 2.4), the proof is concluded.

Lemma 2.4. For 1 ≤ p ≤ +∞,

(i)

∫

Ω

k(·, z) pε(z) dz strongly converges to

∫

Ω

k(·, z) p0(z) dz in Lp(Ω),

(ii)

∫

Ω

k(·, z) pε(z) dz strongly converges to

∫

Ω

k(·, z) p0(z) dz in Lp(Γ⋆).

Proof.

� Proof of (i) - Since k satisfies Equation (1.4), one gets by Lemma 1 of Oden

and Wu [23]:

max
x∈Ω

∣∣∣
∫

Ω

k(x, z)(pε(z) − p0(z)) dz
∣∣∣ ≤ C5(k)

∥∥∥pε − p0

∥∥∥
Lq(Ω)

, (2.5)

for any q which can be written as q = (2 − s)/(1 − s) > 2 with 0 < s < 1.

Moreover by Theorem IX.16 (Rellich-Kondrachov) in [10], one hasH1(Ω) →֒ Lr(Ω),

∀ r ∈ [1,+∞[. Since pε ⇀ p0 in H1(Ω) (see Lemma 2.3), then pε → p0 in Lq(Ω)

and
∥∥∥

∫

Ω

k(·, z)(pε(z) − p0(z)) dz
∥∥∥

L∞(Ω)
−→ 0.

At last, we gain (for 1 ≤ p < +∞)
∥∥∥

∫

Ω

k(·, z)(pε(z) − p0(z)) dz
∥∥∥

Lp(Ω)
≤

∣∣∣Ω
∣∣∣
1/p∥∥∥

∫

Ω

k(·, z)(pε(z) − p0(z)) dz
∥∥∥

L∞(Ω)
,

the result is proved.

� Proof of (ii) - For p = +∞, the result is immediatly obtained from Inequality

(2.5).

For 1 ≤ p < +∞, let us compute uε =
∥∥∥

∫

Ω

k
(
·, z

) (
pε(z) − p0(z)

)
dz

∥∥∥
Lp(Γ⋆)

.

uε =
(∫

Γ⋆

[ ∫

Ω

k (s, z)
(
pε(z) − p0(z)

)
dz

]p

ds
)1/p

≤
∣∣∣Γ⋆

∣∣∣
1/p

max
x∈Ω

∣∣∣
∫

Ω

k
(
·, z

) (
pε(z) − p0(z)

)
dz

∣∣∣,

and using Inequality (2.5) gives

uε ≤
∣∣∣Γ⋆

∣∣∣
1/p

C5(k)
∥∥∥pε − p0

∥∥∥
Lq(Ω)

,

so that uε exists and tends to 0.
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Now we analyse the convergence of each term of problem (Pε
θ ):

Lemma 2.5. One has the following strong convergences in L2(Ω × Y ):

(i) Tε (hε[pε]) −→ h[p0],

(ii) Tε

(
h3

ε[pε]
)
−→ h3[p0],

(iii) Tε (e−αpε) −→ e−αp0 .

Moreover, as a direct consequence of (ii) and (iii), one has:

(iv) Tε

(
h3

ε[pε] e
−αpε

)
−→ h3[p0] e

−αp0 .

Proof.

� Proof of (i) - Tε

(
h3

ε[pε]
)

strongly converges to h3[p0] in L2(Ω × Y ). Indeed,

using the definition and linearity of the unfolding operator, we have:

Tε (hε[pε]) (x, y) = hr(x, y) + Tε

(∫

Ω

k(x, z) pε(z) dz

)
.

Using the property of the Hertz kernel (especially Lemma 2.4 and Proposition

2.3), we easily state that

Tε

(∫

Ω

k(x, z) pε(z) dz

)
−→

∫

Ω

k(x, z) p0(z) dz, in L2(Ω × Y ).

� Proof of (ii) - Obviously, Tε (hε[pε]) and h[p0] have the following L∞ bound:

C6 = 3
(
h1 + ‖λ‖L∞(Ω) + K̃C4

)2
,

which does not depend on ε. Now, using the definition of the unfolding operator,

we have:∫

Ω×Y

(
Tε

(
h3

ε[pε]
)
− h3[p0]

)2
≤ 9C4

6

∫

Ω×Y

(Tε (hε[pε]) − h[p0])
2

which tends to 0, by the result stated at (i).

� Proof of (iii) - By Proposition 2.3, it is sufficient to prove that e−αpε strongly

converges to e−αp0 in L2(Ω). For this, let us point out the fact that z 7→ e−αz

is a Lipschitz continuous function on R+, α being a Lipschitz constant. Thus,

we have ∫

Ω

(e−αpε − e−αp0)2 ≤ α2

∫

Ω

(pε − p0)
2

which tends to 0 and concludes this proof.

� Proof of (iv) - By using the two previous results, the convergence result is stated

due to the fact that each term is bounded in L∞(Ω).
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Now, we are interested in the convergence of the boundary term:

Lemma 2.6. Let γ denote the trace operator and let us define

ĥ[p0] = γ

(
hr(·) +

∫ 1

0

λ((0, y2)) dy2 +

∫

Ω

k(·, z) p0(z) dz

)
.

Then, one has:

γ (hε[pε]) ⇀ ĥ[p0] in L2(Γ⋆).

Proof. In the boundary integral of problem (Pε
θ ), hε[pε] has to be taken in the

sense of traces. Thus, since we have

hε[pε](x) = hr(x) + λ
(x
ε

)
+

∫

Ω

k(x, z) pε(z) dz,

it can be written as the sum of a function which belongs to L∞(Γ⋆), namely

γ

(
hr(·) +

∫

Ω

k(·, z) pε(z) dz

)
,

and the trace of the oscillating function x 7→ σε(λ)(x) = λ(x/ε) (according to the

definition of the operator σε given in Lemma 2.1), i.e.

γ(σε(λ)(·)).

Thus, let us study the convergence of each term with respect to ε:

• First, the following convergence holds:

γ

(
hr(·) +

∫

Ω

k(·, z) pε(z) dz

)
−→ γ

(
hr(·) +

∫

Ω

k(·, z) p0(z) dz

)
, in L2(Γ⋆).

Indeed, by linearity, the difference of these two terms is equal to the trace of
∫

Ω

k(·, z) (pε(z) − p0(z)) dz

which strongly converges to 0 in L2(Γ⋆) by Lemma 2.4.

• Next, using the assumptions on the roughness regularity, γ(σε(λ)) can be iden-

tified to the function x2 7→ λ((0, x2/ε)), which weakly converges in L2(]0, 1[) to

its average with respect to y2, namely the constant
∫ 1

0

λ((0, y2)) dy2.

Thus the proof is achieved.
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2.3. Homogenization of the EHL problem (general case)

Once we have obtained the limits of the different terms which appear in problem

(Pε
θ ), we state, as usual with the two-scale convergence technique, the macroscopic

and microscopic equations for the homogenized problem.

Proposition 2.5. The limit functions p0, p1 and θ0 satisfy the following equations:

� Macroscopic equation - For every φ in V ,
∫

Ω

( ∫

Y

h3[p0] e
−αp0

[
∇p0+∇yp1

])
∇φ =

∫

Ω

( ∫

Y

θ0 h[p0]
) ∂φ

∂x1
+

∫

Γ⋆

θ⋆ ĥ[p0] φ.

� Microscopic equation - For a.e. x ∈ Ω, for every ψ ∈ H1
♯ (Y ),

∫

Y

h3[p0](x, ·) e
−αp0(x)

[
∇p0(x)+∇yp1(x, ·)

]
∇yψ =

∫

Y

θ0(x, ·) h[p0](x, ·)
∂ψ

∂y1
.

Proof. Considering problem (Pε
θ ), we have, using Proposition 2.1:

∫

Ω×Y

Tε

(
h3

ε[pε] e
−αpε

)
Tε (∇pε) Tε (∇ϕε)

=

∫

Ω×Y

Tε(θε) Tε(hε[pε]) Tε

(
∂ϕε

∂x1

)
+

∫

Γ⋆

θ⋆(r) hε[pε](r) ϕε(r) dr.

for all ϕε ∈ V . Taking a test function x 7→ φ(x), with φ ∈ V and using the con-

vergence results stated in Lemmas 2.3, 2.5 and 2.6 gives the macroscopic equa-

tion by passing to the limit with respect to ε. Now taking the test function

x 7→ ε φ(x) ψ(x/ε), with φ ∈ D(Ω) and ψ ∈ H1
♯ (Y ), gives the microscopic one.

Definition 2.3. For a given p0 ∈ L∞(Ω), let us define the following functions:

a[p0](x, y) = h3[p0](x, y), (x, y) ∈ Ω × Y,

b[p0](x, y) = h[p0](x, y), (x, y) ∈ Ω × Y.

Let us define the local problems, respectively denoted (M⋆
i ), (N ⋆

i ) and (N 0
i ):

Find W ⋆
i , χ⋆

i , χ
0
i (i = 1, 2) in L2(Ω;H1

♯ (Y )/R), such that, for a.e. x ∈ Ω:
∫

Y

a[p0](x, ·) ∇yW
⋆
i (x, ·) ∇yψ =

∫

Y

a[p0](x, ·)
∂ψ

∂yi
, (2.6)

∫

Y

a[p0](x, ·) ∇yχ
⋆
i (x, ·) ∇yψ =

∫

Y

b[p0](x, ·)
∂ψ

∂yi
, (2.7)

∫

Y

a[p0](x, ·) ∇yχ
0
i (x, ·) ∇yψ =

∫

Y

θ0(x, ·) b[p0](x, ·)
∂ψ

∂yi
, (2.8)

for all ψ ∈ H1
♯ (Y ). We immediatly have the following proposition:

Proposition 2.6. The local problem (M⋆
i ) (resp. (N ⋆

i ),(N 0
i )) admits a unique so-

lution W ⋆
i (resp. χ⋆

i , χ
0
i ) in L2(Ω;H1

♯ (Y )/R).
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Theorem 2.2. The homogenized problem can be written as:

(P⋆
θ )





Find (p0,Θ1,Θ2) ∈ V × L∞(Ω) × L∞(Ω) such that:∫

Ω

e−αp0 A[p0] · ∇p0 ∇φ =

∫

Ω

b0[p0] ∇φ+

∫

Γ⋆

θ⋆ ĥ[p0] φ, ∀ φ ∈ V

p0 ≥ 0, p0 (1 − Θi) = 0, (i = 1, 2) a.e.,

with f̃(x) =

∫

Y

f(x, y) dy, and

A[p0] =



ã[p0] −

˜[
a[p0]

∂W ⋆
1

∂y1

]
−

˜[
a[p0]

∂W ⋆
2

∂y1

]

−
˜[

a[p0]
∂W ⋆

1

∂y2

]
ã[p0] −

˜[
a[p0]

∂W ⋆
2

∂y2

]


 ,

b0[p0] =

(
Θ1[p0] b

⋆
1[p0]

Θ2[p0] b
⋆
2[p0]

)
,

with the notations (i = 1, 2):

b⋆i [p0] = b̃[p0] −
˜[

a[p0]
∂χ⋆

i

∂yi

]
, b0i [p0] =

˜[
θ0b[p0]

]
−

˜[
a[p0]

∂χ0
i

∂yi

]
,

and defining the following ratios (i = 1, 2):

Θi[p0] =
b0i [p0]

b⋆i [p0]
.

Proof. From the local problems, we easily obtain in L2(Ω;H1
♯ (Y )/R):

p1(x, y) = −

(
W ⋆

1 (x, y)

W ⋆
2 (x, y)

)
· ∇p0(x) + eαp0(x) χ0

1(x, y).

The homogenized problem follows by replacing the previous expression of p1 in the

macroscopic equation.

Remark 2.4. The homogenized lubrication problem can be considered as a gener-

alized elastohydrodynamic Reynolds-type problem with two cavitation parameters

Θi (i = 1, 2). Let us notice the fact that we do not have the property 0 ≤ Θi ≤ 1,

i.e. we cannot guarantee that homogenized cavitation parameters are smaller than

1 in cavitation areas ! Thus, at that point, the homogenized problem does not have

a structure similar to the initial one. But, in the next subsections, we prove the

following additional results:

� in Subsection 2.4, we state that, among the solutions of the homogenized

problem, there exists a class of solutions with isotropic saturation, that is,

the homogenized problem (P⋆
θ ) admits a solution (p0,Θ,Θ) with p0 ≥ 0 and

p0 (1 − Θ) = 0 and also the additive property (which lacks in the formulation

of the homogenized problem (P⋆
θ ) in the general case): 0 ≤ Θ ≤ 1 a.e.
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� in Subsection 2.5, we state that, under additional assumptions on the roughness

pattern, only one single saturation function Θ appears in the homogenized

problem. Moreover, it satisfies 0 ≤ Θ ≤ 1 a.e in Ω.

2.4. Existence of solutions with isotropic saturation

This subsection is devoted to the proof of the following theorem:

Theorem 2.3. The homogenized problem (P⋆
θ ) admits a solution (p0,Θ,Θ) with

the property 0 ≤ Θ ≤ 1 (and also p0 ≥ 0, p0 (1 − Θ) = 0) a.e.

Theorem 2.3 guarantees the existence of solutions with isotropic saturation Θ.

Moreover, the saturation satisfies the property 0 ≤ Θ ≤ 1, which lacks in the general

formulation of the homogenized problem. The result is obtained in the following

three steps which are based on the existence result and the corresponding method

used in Durany, Garćıa, Vázquez [13]:

� 1st step: Introduction of a penalized problem,

� 2nd step: Homogenization of the penalized problem,

� 3rd step: Convergence with respect to the penalized parameter.

Remark 2.5. Interestingly, in the earlier scheme, forgetting the 2nd step (i.e. omit-

ting the homogenization step) would lead us to the existence result for problem (Pε
θ ),

namely Theorem 2.1. Thus, the reader should not be surprised to see that constants

which have been already used or defined in Theorem 2.1 appear in the details of

the forthcoming proof.

For convenience, these three steps are given in details and the idea of the proof

is sketched at the end of this subsection. It can be noticed that the general frame

is quite similar than in the hydrodynamic case developped in [9]. Nevertheless, it

is much more difficult from a technical point of view, as it will be pointed out. In

particular, the 3rd step needs further analysis due to the nonlocal term and the

piezoviscous one.

� 1st step: Introduction of a penalized problem

As in the smooth case studied by Durany, Garćıa, Vázquez [13], we introduce

the following ε dependent penalized problem:

(Pε
η)





Find pη
ε ∈ V such that:∫

Ω

h3
ε[p

η
ε ] e−αpη

ε ∇pη
ε ∇φ =

∫

Ω

Hη(pη
ε) hε[p

η
ε ]

∂φ

∂x1
+

∫

Γ⋆

θ⋆ hε[p
η
ε ] φ, ∀ φ ∈ V

pη
ε ≥ 0, a.e.,

where the function Hη is the usual approximation of the Heaviside graph (see [9]).

The application of Theorem 3.2. of Durany, Garćıa, Vázquez [13], which is based

on a fixed point technique leads to the following results:
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Theorem 2.4. For every η > 0, problem (Pε
η) admits a positive solution. Moreover,

we can obtain the following (ε, η) independent estimates:
∥∥∥pη

ε

∥∥∥
H1(Ω)

≤ C3,
∥∥∥pη

ε

∥∥∥
L∞(Ω)

≤ C4. (2.9)

Remark 2.6. We point out the fact that Theorem 2.4 holds under Assumptions

1.1–1.4, 2.1 and 2.2 which are implicitely imposed as in previous subsections. In

particular, Assumption 2.2 is necessary to allow the use of a fixed point technique

and obtain Theorem 2.4. In particular, the L∞ estimates play an important role in

the proof of existence of isotropic solutions.

� 2nd step: Homogenization of the penalized problem

We proceed to the homogenization of problem (Pε
η) with respect to ε: from Esti-

mates (2.9) and using the periodic unfolding method (as in the previous subsection),

we immediatly get the following convergence results and macro/microscopic decom-

position (for convenience, proofs are omitted when they are close to the ones stated

in previous subsections):

Proposition 2.7. There exists pη
0 ∈ V (pη

0 ≥ 0 a.e.), p1 ∈ L2(Ω;H♯(Y )/R) such

that, up to a subsequence,

(i) pη
ε weakly converges to pη

0 in H1(Ω),

(ii) Tε(∇pη
ε) weakly converges to ∇pη

0 + ∇yp
η
1 in L2(Ω × Y ).

Moreover, we have:

• Macroscopic equation - For every φ in V ,
∫

Ω

( ∫

Y

h3[pη
0 ] e−αpη

0

[
∇pη

0+∇yp
η
1

])
∇φ =

∫

Ω

(∫

Y

Hη(pη
0) h[pη

0 ]
) ∂φ

∂x1
+

∫

Γ⋆

θ⋆ĥ[p
η
0 ] φ.

• Microscopic equation - For a.e. x ∈ Ω, for every ψ ∈ H1
♯ (Y ),

∫

Y

h3[pη
0 ](x, ·) e−αpη

0
(x)

[
∇pη

0(x)+∇yp
η
1(x, ·)

]
∇yψ =

∫

Y

Hη(pη
0(x)) h[p

η
0 ](x, ·)

∂ψ

∂y1
.

Then, recalling the definition of a[·] and b[·] (see Definition 2.3), and introducing

the local problems, respectively denoted (Mη
i ), (N η

i ):

Find W η
i , χη

i in L2(Ω;H1
♯ (Y )/R), such that, for a.e. x ∈ Ω:

∫

Y

a[pη
0 ](x, ·) ∇yW

η
i (x, ·) ∇yψ =

∫

Y

a[pη
0 ](x, ·)

∂ψ

∂yi
, (2.10)

∫

Y

a[pη
0 ](x, ·) ∇yχ

η
i (x, ·) ∇yψ =

∫

Y

b[pη
0 ](x, ·)

∂ψ

∂yi
, (2.11)

for all ψ ∈ H1
♯ (Y ). We can state:
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Lemma 2.7. The homogenized penalized problem is

(P⋆
η )





Find pη
0 ∈ V such that:∫

Ω

e−αpη
0 Aη[pη

0 ] · ∇pη
0 ∇φ =

∫

Ω

Hη(pη
0) b

η[pη
0 ] ∇φ+

∫

Γ⋆

θ⋆ ĥ[p
η
0 ] φ, ∀ φ ∈ V

pη
0 ≥ 0, a.e.,

with Aη[pη
0 ] = ã[pη

0 ] I −
˜a[pη
0 ]∇W η and bη[pη

0 ] =



b̃[pη

0 ] −
˜(

a[pη
0 ]
∂χη

1

∂y1

)

−
˜(

a[pη
0 ]
∂χη

1

∂y2

)




Proof. The following equality in L2(Ω;H1
♯ (Y )/R) is classically obtained using the

local problems:

pη
1(x, y) = −W η(x, y) · ∇pη

0(x) + eαpη
0
(x) Hη(pη

0(x)) χ
η
1(x, y). (2.12)

Using Equation (2.12) in the macroscopic equation gives us:
∫

Ω

e−αpη
0

[
ã[pη

0 ] I − ˜a[pη
0 ]∇W

η
]
· ∇pη

0 ∇φ

=

∫

Ω

Hη(pη
0)

[
b̃[pη

0 ] −
˜(

a[pη
0 ]
∂χη

1

∂y1

)] ∂φ

∂x1
+

∫

Ω

Hη(pη
0)

[
−

˜(
a[pη

0 ]
∂χη

1

∂y2

)] ∂φ

∂x2

+

∫

Γ⋆

θ⋆ ĥ[p
η
0 ] φ,

for every φ ∈ V . Then, the proof is concluded.

� 3rd step: Behaviour of the homogenized penalized problem with respect to η

Now we study the behaviour of the homogenized penalized problem when η

tends to 0.

Proposition 2.8. There exists p0 ∈ V and Θ ∈ L∞(Ω) such that

pη
0 ⇀ p0 in H1(Ω), Hη(pη

0) ⇀ Θ in L∞(Ω) weak-⋆.

Moreover, p0 ≥ 0 , 0 ≤ Θ ≤ 1 and p0 (1 − Θ) = 0 a.e.

Proof. The convergences only come from estimates satisfied by pη
0 (see Estimates

(2.9)):
∥∥∥pη

0

∥∥∥
H1(Ω)

≤ C3,
∥∥∥pη

0

∥∥∥
L∞(Ω)

≤ C4.

The properties and relationships between p0 and Θ are classically obtained as in

the smooth problem.

Now we state:

Proposition 2.9. e−αpη
0Aη[pη

0 ] strongly converges to e−αp0A[p0] in L2(Ω).



Homogenization of a nonlocal EHL Problem 19

Proof. We prove the result in three steps:

(a) ‖Aη[pη
0 ]‖L∞(Ω) ≤ C̃, ‖A[p0]‖L∞(Ω) ≤ C̃, where the constant C̃ does not depend

on η,

(b) Aη[pη
0 ] −→ A[p0], a.e.,

(c) e−αpη
0Aη[pη

0 ] strongly converges to e−αp0A[p0] in L2(Ω).

◮ Proof of (a):

Let us recall that Aη[pη
0 ] = ã[pη

0 ]I −
˜a[pη
0 ]∇yW η. Obviously, we have ã[pη

0 ] ≤ C7

with

C7 =
(
h1 + ‖λ‖L∞(Ω) + K̃C4

)3

.

Thus, we just have to state the estimates for terms of the form

˜
a[pη

0 ]
∂W η

i

∂yk
, (i, k = 1, 2).

Using W η
i as a test function in the variational formulation of problem (Mη

i )

(see Equation (2.10)) gives for a.e. x ∈ Ω
∫

Y

a[pη
0 ](x, ·)

∣∣∣∇yW
η
i (x, ·)

∣∣∣
2

=

∫

Y

a[pη
0 ](x, ·)

∂W η
i

∂yi
(x, ·). (2.13)

Then, in the left-hand side, we write a[pη
0 ] as a2[pη

0 ]/a[pη
0] and use a lower bound

of 1/a[pη
0], that is

1

C7

∫

Y

∣∣∣a[pη
0 ](x, ·) ∇yW

η
i (x, ·)

∣∣∣
2

≤

∫

Y

a[pη
0 ](x, ·)

∣∣∣∇yW
η
i (x, ·)

∣∣∣
2

and this, together with Inequality (2.13), gives
∫

Y

∣∣∣a[pη
0 ](x, ·) ∇yW

η
i (x, ·)

∣∣∣
2

≤ |Y | C2
7 ,

which means
∥∥∥a[pη

0 ](x, ·)
∂W η

i

∂yk
(x, ·)

∥∥∥
2

L2(Y )
≤ |Y | C2

7 , (i, k = 1, 2).

Then, using the Cauchy-Schwarz inequality,

∣∣∣
∫

Y

a[pη
0 ](x, ·)

∂W η
i

∂yk
(x, ·)

∣∣∣ ≤ |Y |1/2
∥∥∥a[pη

0 ](x, ·)
∂W η

i

∂yk
(x, ·)

∥∥∥
L2(Y )

that is,

∣∣∣
˜

a[pη
0 ]
∂W η

i

∂yk
(x)

∣∣∣ ≤ |Y | C7, (i, k = 1, 2). (2.14)
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Let us remark that Inequality (2.14) holds for a.e. x ∈ Ω so that the matrix

˜a[pη
0 ]∇yW η

is bounded in L∞(Ω) by a constant which does not depend on η. Thus

Aη[pη
0 ] = ã[pη

0 ]I −
˜a[pη
0 ]∇yW η

is bounded by a constant C̃ which does not depend on η. With the same method,

as p0 satisfies ‖p0‖H1(Ω) ≤ C3, ‖p0‖L∞(Ω) ≤ C4, one proves that

A[p0] = ã[p0]I − ˜a[p0]∇yW ⋆

is also bounded by C̃.

◮ Proof of (b):

Let us recall that, with the same arguments that have been used in the proof

of Lemma 2.4 (see Inequality (2.5)), one has:
∫

Ω

k(·, z) pη
0(z) dz −→

∫

Ω

k(·, z) p0(z) dz in L∞(Ω).

In particular, the convergence holds almost everywhere. Let be x0 such that:
∫

Ω

k(x0, z) p
η
0(z) dz −→

∫

Ω

k(x0, z) p0(z) dz.

Recalling local problem (Mη
i ), one has,

∫

Y

a[pη
0 ](x0, ·) ∇yW

η
i (x0, ·) ∇yψ =

∫

Y

a[pη
0 ](x0, ·)

∂ψ

∂yi
, ∀ψ ∈ H1

♯ (Y ).

Using W η
i (x0, ·) as a test function and using upper and lower bounds of a[pη

0 ]

gives:
∥∥∥∇W η

i (x0, ·)
∥∥∥

L2(Y )
≤ C7/C8

with C8 =
(
h0 − ‖λ‖L∞(Ω)

)3
. Thus, W η

i (x0, ·) is bounded in H1
♯ (Y )/R by a

constant which does not depend on η. Then, there exists Fi(x0, ·) ∈ H1
♯ (Y )/R

such that ∇yW
η
i (x0, ·) weakly converges to ∇yFi(x0, ·) in L2(Y ). Moreover,

since a[pη
0 ](x0, ·) strongly converges to a[p0](x0, ·) in L2(Y ), one has for every

ψ ∈ H1
♯ (Y ):

∫

Y

a[pη
0 ](x0, ·) ∇yW

η
i (x0, ·) ∇yψ −→

∫

Y

a[p0](x0, ·) ∇yFi(x0, ·) ∇yψ,
∫

Y

a[pη
0 ](x0, ·)

∂ψ

∂yi
−→

∫

Y

a[p0](x0, ·)
∂ψ

∂yi
.

Thus, we get for every ψ ∈ H1
♯ (Y ):

∫

Y

a[p0](x0, ·) ∇yFi(x0, ·) ∇yψ =

∫

Y

a[p0](x0, ·)
∂ψ

∂yi
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and, by uniqueness of the solution to the local problem,

W ⋆
i (x0, ·) = Fi(x0, ·), in H1

♯ (Y )/R,

∇yW
⋆
i (x0, ·) = ∇yFi(x0, ·), in L2(Y ).

Now, since we have:

a[pη
0 ](x0, ·) → a[p0](x0, ·), in L2(Y ),

∇yW
η
i (x0, ·) ⇀ ∇yW

⋆
i (x0, ·), in L2(Y ),

we easily deduce that:
∫

Y

a[pη
0 ](x0, y) ∇yW

η
i (x0, y) dy −→

∫

Y

a[p0](x0, y) ∇yW
⋆
i (x0, y) dy,

that is,

˜[
a[pη

0 ]∇yW
η
i

]
(x0) −→

˜[
a[p0]∇yW ⋆

i

]
(x0).

Since it is clear that ã[pη
0 ](x0) converges to ã[p0](x0), one has:

ã[pη
0 ](x0) −

˜[
a[pη

0 ]∇yW
η
i

]
(x0) −→ ã[p0](x0) −

˜[
a[p0]∇yW ⋆

i

]
(x0),

which states the result (b).

◮ Proof of (c):

Let us denote fη = Aη[pη
0 ], f = A[p0] and gη = (fη − f)2. It is clear that:

◦ ‖gη‖L∞(Ω) ≤ 4C̃2 (see property (a)),

◦ gη −→ 0 a.e. (see property (b)).

Thus, by the Lebesgue theorem, Aη[pη
0 ] strongly converges to A[p0] in L2(Ω).

Now let us denote

rη =

∫

Ω

(
e−αpη

0Aη[pη
0 ] − e−αp0A[p0]

)2

.

Then, we have:

rη =

∫

Ω

((
e−αpη

0 − e−αp0

)
Aη[pη

0 ] + e−αp0 (Aη[pη
0 ] −A[p0])

)2

≤ 2

∫

Ω

(
e−αpη

0 − e−αp0

)2

(Aη[pη
0 ])

2
+ 2

∫

Ω

(
e−αp0

)2
(Aη[pη

0 ] −A[p0])
2
.

Since ‖Aη[pη
0 ]‖L∞(Ω) ≤ C̃ (see property (a)) and ‖e−αp0‖L∞(Ω) ≤ 1, one has:

rη ≤ 2 C̃2

∫

Ω

(
e−αpη

0 − e−αp0

)2

+ 2

∫

Ω

(Aη[pη
0 ] −A[p0])

2
.

Since x 7→ e−αx is α-Lipschitz continuous on R+, one has

rη ≤ 2 C̃2 α2

∫

Ω

(pη
0 − p0)

2
+ 2

∫

Ω

(Aη[pη
0 ] −A[p0])

2
.
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Then, as pη
0 (resp. Aη[pη

0 ]) strongly converges to p0 (resp. A[p0]) in L2(Ω), rη
tends to 0, which concludes the proof.

Proposition 2.10. bη[pη
0 ] strongly converges to b⋆[p0] in L2(Ω).

Proof. The proof is similar to the one of Proposition 2.9. More precisely, we state

(a) ‖bη[pη
0 ]‖L∞(Ω) ≤ D̃, ‖b⋆[p0]‖L∞(Ω) ≤ D̃, where D̃ does not depend on η,

(b) bη[pη
0 ] −→ b⋆[p0] a.e.,

and the proof is concluded with the Lebesgue theorem.

Proposition 2.11. ĥ[pη
0 ] strongly converges to ĥ[p0] in L2(Γ⋆).

Proof. The proof is straightforward from the properties of the Hertz kernel (see,

in particular, Lemma 2.4).

Now we conclude this subsection by the proof of Theorem 2.3:

Proof of Theorem 2.3. By Lemma 2.7, there exists pη
0 ∈ V such that

∫

Ω

e−αpη
0 Aη[pη

0 ] · ∇p
η
0 ∇φ =

∫

Ω

Hη(pη
0) b

η[pη
0 ] ∇φ+

∫

Γ⋆

θ⋆ ĥ[p
η
0 ] φ, ∀ φ ∈ V.

Next, from Propositions 2.8 and 2.9, we have:

∇pη
0 ⇀ ∇p0, in L2(Ω),

e−αpη
0Aη[pη

0 ] → e−αp0A[p0], in L
2(Ω),

so that ∫

Ω

e−αpη
0 Aη[pη

0 ] · ∇p
η
0 ∇φ −→

∫

Ω

e−αp0 A[p0] · ∇p0 ∇φ, ∀ φ ∈ V.

Moreover, from Propositions 2.8 and 2.10, we have:

Hη(pη
0) ⇀ Θ, in L∞(Ω) weak-⋆,

bη[pη
0 ] → b⋆[p0], in L2(Ω),

so that ∫

Ω

Hη(pη
0) bη[pη

0 ] ∇φ −→

∫

Ω

Θ b⋆[p0] ∇φ, ∀ φ ∈ V.

Next, by Proposition 2.11, we obtain:
∫

Γ⋆

θ⋆ ĥ[p
η
0 ] φ −→

∫

Γ⋆

θ⋆ ĥ[p0] φ, ∀ φ ∈ V.

Thus, passing to the limit in the homogenized penalized problem, we get
∫

Ω

e−αp0 A[p0] · ∇p0 ∇φ =

∫

Ω

Θ b⋆[p0] ∇φ+

∫

Γ⋆

θ⋆ ĥ[p0] φ, ∀ φ ∈ V,
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with p0 ≥ 0 , p0(1−Θ) = 0 and 0 ≤ Θ ≤ 1 a.e. (by Proposition 2.8), and the proof

is concluded. �

Remark 2.7. An interesting point is to consider that, in the homogenized problem,

we are not able to identify an “equivalent gap” since anisotropic effects classically

appear in the coefficients. Nevertheless, Theorem 2.3 allows us to define not only

one single saturation function Θ but also one single deformation
∫

Ω

k(x, z) p0(z) dz,

which is an important point in terms of mechanical applications.

2.5. Particular cases

In this subsection, due to particular choices of the roughness pattern, local prob-

lems have obvious analytical solutions (see [9]) so that it is possible to obtain self

contained Reynolds equations for p0 and one single saturation function Θ.

Theorem 2.5 (Transverse roughness). If λ does not depend on y2, the homog-

enized problem (P⋆
θ ) is





Find (p0, Θ) ∈ V × L∞(Ω) such that:∫

Ω

e−αp0 A[p0] · ∇p0 ∇φ =

∫

Ω

Θ b⋆[p0]
∂φ

∂x1
+

∫

Γ⋆

θ⋆ ĥ[p0] φ, ∀ φ ∈ V

p0 ≥ 0, p0 (1 − Θ) = 0, 0 ≤ Θ ≤ 1, a.e.,

with the following homogenized coefficients:

A[p0](x) =




1

h̃−3[p0](x)
0

0 h̃3[p0](x)


 , b⋆[p0](x) =

h̃−2[p0](x)

h̃−3[p0](x)
.

Moreover (P⋆
θ ) admits at least (p0,Θ) as a solution where (p0, θ0) is the two-scale

limit of (pε, θε) (solution of problem (Pε
θ )), and the link between the microscopic /

macroscopic saturation function is given by:

Θ(x) =
[ 1

h̃−2[p0]

˜( θ0
h2[p0]

)]
(x).

Theorem 2.6 (Longitudinal roughness). If λ does not depend on y1, the ho-

mogenized problem (P⋆
θ ) is





Find (p0, Θ) ∈ V × L∞(Ω) such that:∫

Ω

e−αp0 A[p0] · ∇p0 ∇φ =

∫

Ω

Θ b⋆[p0]
∂φ

∂x1
+

∫

Γ⋆

θ⋆ ĥ[p0] φ, ∀ φ ∈ V

p0 ≥ 0, p0 (1 − Θ) = 0, 0 ≤ Θ ≤ 1, a.e.,
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with the following homogenized coefficients:

A[p0](x) =



h̃3[p0](x) 0

0
1

h̃−3[p0](x)


 , b⋆[p0](x) = h̃[p0](x).

Moreover (P⋆
θ ) admits at least (p0,Θ) as a solution where (p0, θ0) is the two-scale

limit of (pε, θε) (solution of problem (Pε
θ )), and the link between the microscopic /

macroscopic saturation function is given by:

Θ(x) =
˜(θ0 h[p0])

h̃[p0]
(x).

In the next section, we focus on numerical tests which illustrate the theoretical

results which have been established in this section. In particular, we are interested

in longitudinal and transverse roughness cases which have a great interest in terms

of mechanical applications.

3. Numerical examples

In this section, the numerical simulation of micro-elastohydrodynamic contacts is

performed to illustrate the theoretical results of convergence stated in the previous

sections. For the numerical solution of the ε dependent problems and their corre-

sponding homogenized one, we propose an algorithm based on a fixed-point iteration

between the hydrodynamic (Elrod-Adams) problem and the elastic (Hertz) one [14].

Furthermore, the hydrodynamic problem is solved using the characteristics method

to deal with the convection term combined with a finite element spatial discretiza-

tion and a duality method for the maximal monotone nonlinearity associated to

the Elrod-Adams model. The elastic problem is approximated by using appropriate

quadrature formulas in Equation (1.3). More precisely, the triangle edges midpoints

are chosen as integration nodes. The combination of these numerical techniques has

been already successfully used in previous papers dealing with the elastohydrody-

namic related smooth problems [14, 15].

We adress the numerical simulation of dimensionless ball bearing contacts so

that, for a domain Ω =] − 2l1, l1[×] − l2, l2[, we pose the problem





Find (pε, θε) ∈ V × L∞(Ω) such that:∫

Ω

h3
ε[pε] e

−αpε ∇pε ∇φ =

∫

Ω

θε hε[pε]
∂φ

∂x1
+

∫

Γ⋆

θ⋆ hε[pε] φ, ∀ φ ∈ V

pε ≥ 0, pε (1 − θε) = 0, 0 ≤ θε ≤ 1, a.e.,

where the effective gap can be written as hε[pε](x) = hε
r(x) + hd[pε](x), the rigid
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and elastic contributions being given by

hε
r(x) = h0 +

x2
1 + x2

2

2
+ α1 sin

(
6l1π(x1 + 2l1)

ε

)
+ α2 sin

(
4l2π(x2 + l2)

ε

)
,

hd[pε](x) =
2

π2

∫
pε(z)√

(x1 − z1)2 + (x2 − z2)2
dz

and the following set of parameters:

• transverse case: l1 = 2, l2 = 5, h0 = 0.5, (α1, α2) = (0.5h0, 0),

• longitudinal case: l1 = 2, l2 = 2, h0 = 0.6, (α1, α2) = (0, 0.85h0).

Other parameters involved in the equation are taken to α = 1 (piezoviscosity

parameter) and θ⋆ = 0.3 (boundary data). The previous data have been taken from

dimensionless equations associated to a small load imposed problem [15].

The homogenized problem, in the transverse or longitudinal case, can be writ-

ten as




Find (p0, Θ) ∈ V × L∞(Ω) such that:∫

Ω

e−αp0

(
a1[p0] 0

0 a2[p0]

)
· ∇p0 ∇φ =

∫

Ω

Θ b[p0]
∂φ

∂x1
+

∫

Γ⋆

θ⋆c[p0] φ, ∀ φ ∈ V

p0 ≥ 0, p0

(
1 − Θ

)
= 0, 0 ≤ Θ ≤ 1, a.e.

In Table 1, we present the functional coefficients a1, a2, b and c that appear in the

homogenized problem for purely transverse and purely longitudinal roughness cases

which have been partially computed with MATHEMATICA Software Package.

Transverse roughness Longitudinal roughness

h[p](x, y) hr(x) + hd[p](x) + α1 sin
(
2πy1

)
hr(x) + hd[p](x) + α2 sin

(
2πy2

)

a1[p0] 2

(
(hr + hd[p])

2 − α2
1

)5/2

2(hr + hd[p])2 + h2
r

(hr + hd[p])
3 +

3

2
(hr + hd[p]) α

2
2

a2[p0] (hr + hd[p])
3 +

3

2
(hr + hd[p]) α

2
1 2

(
(hr + hd[p])

2 − α2
2

)5/2

2(hr + hd[p])2 + α2
2

b[p0] 2(hr + hd[p])
(hr + hd[p])

2 − α2
1

2(hr + hd[p])2 + α2
1

hr + hd[p]

c[p0] hr + hd[p] hr + hd[p]

Table 1. Elastohydrodynamic homogenized coefficients

Let us remark that the smooth rigid gap is given by

hr(x) = h0 +
x2

1 + x2
2

2
.
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3.1. Case 1: transverse roughness tests

Although numerical tests have been performed for different spatial meshes in order

to validate the convergence of the methods, we just present the results corresponding

to ∆x1 = 0.02 and ∆x2 = 0.133 so that we have 44400 triangles and 22575 vertices.

Furthermore, the artificial time step in the characteristics method [5, 14], ∆t = ∆x1;

the Bermudez-Moreno parameters are ω = 1 and λ = 1/(2ω) ; the stopping test

in all algorithms is equal to δ = 10−5 (corresponding to the relative error in the

discrete L2 norm between two iterations).

The computer results illustrate the convergences stated in previous sections.

First in Fig.2, we show the strong convergence of the pressure to the homogenized

one, when ε tends to 0, by plotting the cuts at x0
2 = 0, for different values of ε and the

homogenized solution. In Fig.3, the homogenized pressure over the whole domain

is presented. In Fig.4 and 5, analogous plots for the deformation are displayed to

illustrate the convergence and the homogenized distribution. Finally, in Fig.6 and

7, the results for the saturation are shown. To be noticed is the weak convergence of

the saturation, linked to the existence of oscillations which are not damped, unlike

the pressure and deformation. We can also notice that the deformation oscillations

are damped very easily (when compared to the pressure oscillations). This is due to

the regularizing effects of the Hertz kernel (which is a convolution-like operator).

3.2. Case 2: longitudinal roughness tests

In this case, we present the results corresponding to ∆x1 = 0.06 and ∆x2 = 0.02

so that we have 40000 triangles and 20301 vertices.

The computer results illustrate the convergences stated in previous sections.

First in Fig.8, we show the strong convergence of the pressure to the homogenized

one, when ε tends to 0, by plotting the cuts at x0
1 = −2.5 (corresponding to the

maximum homogenized pressure), for different values of ε and the homogenized

solution. In Fig.9, the homogenized pressure over the whole domain is presented.

In Fig.10 and 11, the homogenized deformation and saturation over the whole

domain are presented. Notice that at x0
1 = −2.5, all saturations are identically 1.

3.3. Influence of the elastic contribution over the roughness effects

We compare the results, in a transverse roughness case, between hydrodynamic and

elastohydrodynamic configurations.

In Fig.12 and 13, we present the pressure and saturation profiles in the following

cases: l1 = 2, l2 = 2, h0 = 0.6 and

• hydrodynamic smooth solution : α1 = 0, α2 = 0, k ≡ 0,

• hydrodynamic homogenized solution : α1 = 0.85 h0, α2 = 0, k ≡ 0,

• elastohydrodynamic smooth solution : α1 = 0, α2 = 0, k 6= 0,

• elastohydrodynamic homogenized solution : α1 = 0.85 h0, α2 = 0, k 6= 0.
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The figures correspond to a fixed x0
2 = 0. It allows us to see the influence of the

roughness over the pressure distribution in each case (hydrodynamic or elastohy-

drodynamic), but also the importance of the roughness over the maximum pressure.

The roughness effects are clearly more important in the hydrodynamic regime than

in the elastohydrodynamic one.
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