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arlosv�ud
.esThe present paper deals with the homogenization of a lubri
ation problem, using two-s
ale 
onvergen
e te
hniques and periodi
 unfolding methods. We study in parti
ularthe Reynolds-Hertz model, whi
h takes into a

ount elastohydrodynami
 deformationsof the upper surfa
e, when highly os
illating roughness e�e
ts o

ur. The diÆ
ulty ariseswhen 
onsidering 
avitation free boundary phenomena, leading to highly nonlinear andnonlo
al problems.Keywords: Elastohydrodynami
 lubri
ation; piezovis
ous 
uid; Elrod-Adams model; ho-mogenization; two-s
ale 
onvergen
e; numeri
al simulation.AMS Subje
t Classi�
ation: 76D08, 35B40, 35J85, 76M50, 76M100. Statement of the problemThe greatly in
reasing number of industrial te
hni
al devi
es involving the pres-en
e of lubri
ated 
onta
ts motivates interest in studying more suitable models forthe pra
ti
al situations. Considering an elasti
 rolling ball or 
ylinder and a rigidplane leads to an elastohydrodynami
 lubri
ation problem, taking into a

ount thepossibility of the ball/
ylinder deformation. From the pra
ti
al point of view, theintrodu
tion of surfa
e periodi
 roughness during manufa
turing pro
esses resultsto be suitable. In this rough elastohydrodynami
 
onta
t setting, it is important to�June 2004 1



2 G. Bayada, S. Martin and C. V�azquezstate adequate mathemati
al models in order to perform the numeri
al simulationof the devi
es. For this, one possible tool is provided by the homogenization te
h-nique analyzed in the present paper.The mathemati
al model, to be further detailed later, is governed by the follow-ing set of highly 
oupled and nonlinear equations:r � �h[p℄3 e��p rp� = ��x1 (�h[p℄)p � 0; 0 � � � 1; p(1� �) = 0;where h[p℄, whi
h is the e�e
tive gap between two 
lose surfa
es, 
ontains a givenrigid 
ontribution hr and an elasti
 one, whi
h strongly depends on the main un-known p (lubri
ant pressure) in the following nonlo
al form:h[p℄ = hr + Z
 k(�; z)p(z) dz;the kernel k depending on the kind of 
onta
t. Moreover, the 
uid saturation, �, isrelated to the pressure by means of the Heaviside multivalued operator H and theexponential term takes into a

ount piezovis
ous e�e
ts.Basi
 aspe
ts of the early developped elastohydrodynami
 theory have beenstated by Dowson and Higginson11, where the three main 
ommon features of thiskind of problems are already quoted: the 
uid hydrodynami
 displa
ement, the solidelasti
 deformation and the air bubble generation. Thus, the Reynolds equation,linear Hertz 
onta
t theory and di�erent 
avitation models try to mathemati
allyanalyse these three phenomena. Moreover, the modi�
ation of the initial 
uid vis-
osity due to the presen
e of suÆ
iently high values of lubri
ant pressure might haveto be taken into a

ount, so that the 
omplete modelling is extended to piezovis
ous
uids. Thus the 
omplete model takes into a

ount the following aspe
ts:� The Reynolds equation has been used for a long time to des
ribe the be-haviour of a vis
ous 
ow between two 
lose surfa
es in relative motion23.It 
an be written as: r � �h3r6�rp� = v0 ��x1�hr�where p is the pressure distribution, hr the gap between the two surfa
es,� the lubri
ant vis
osity and v0 the speed of the lower surfa
e (the uppersurfa
e is assumed to be �xed). The transition of the Stokes equation tothe Reynolds equation has been proved by Bayada and Chambat4.� However, the earlier equation does not take into a

ount 
avitation phe-nomena: 
avitation is de�ned as the rupture of the 
ontinuous �lm due tothe formation of air bubbles and makes the Reynolds equation no longervalid in the 
avitation area. In order to make it possible, various modelshave been used, the most popular perhaps being variational inequalitieswhi
h have a strong mathemati
al basis but la
k physi
al eviden
e. Thus,we use the Elrod-Adams model, whi
h introdu
es the hypothesis that the
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al EHL Problem 3
avitation region is a 
uid-air mixture and an additional unknown � (thesaturation of 
uid in the mixture) (see referen
es15;3).� A
tually, elastohydrodynami
 lubri
ation (EHL) o

urs between point orline 
onta
t, so all the loading is 
on
entrated over a small 
onta
t area.Typi
al appli
ations are rolling element bearings, most gears, and 
ams andtappets11. The 
on
entrated 
onta
t results in high peak pressures of 1-2GPa between the surfa
es. This is too high to be supported by a normal hy-drodynami
 �lm, and appli
ation of simple hydrodynami
 theory predi
tsnegligible oil �lm thi
kness. In pra
ti
e �lms are formed and have thi
kness
omparable to the surfa
e roughness of normal gear and bearing materials.This is be
ause the high pressure has two bene�
ial e�e
ts una

ountedfor in hydrodynami
s. Firstly, elasti
 
attening of the 
onta
ting surfa
eso

urs. Se
ondly, the high pressure greatly in
reases the vis
osity of thelubri
ant in the 
onta
t. Elastohydrodynami
 lubri
ation is 
onsequentlyanalysed using a 
ombination of Reynold's equation, elasti
ity theory (theHertz equation) and a lubri
ant vis
osity-pressure equation. Thus, intro-du
ing now the elasti
 deformation of the surfa
es due to the 
uid pressureand assuming the Hertzian 
onta
t theory for a parameter regime that 
or-responds to low speeds, small vis
osity at ambient pressure or small elasti
modulus, the e�e
tive gap is, in fa
t, linked to the pressure. Let us men-tion that piezovis
ous properties of the 
uid have to be taken into a

ountin realisti
 appli
ations. Thus, the vis
osity is no longer 
onstant and alsodepends on the pressure2.The mathemati
al analysis of di�erent elastohydrodynami
 problems taking intoa

ount the previous quoted features has been treated in the literature for thevariational inequality 
avitation model16;18;22;24 and for the Elrod-Adams model7;12.The e�e
t of surfa
es periodi
 roughness on the behaviour of hydrodynami
and elastohydrodynami
 magnitudes has been treated in numerous works. Some ofthe theoreti
al studies also in
lude numeri
al examples whi
h show how signi�
antpressure and deformation perturbations appear due to the presen
e of surfa
e as-perities, either in the hydrodynami
 regime8;9;19 or in the elastohydrodynami
 one6.For the parti
ular point and linear elastohydrodynami
 
onta
ts here treated, al-though some numeri
al methods have been proposed in the literature17, the rigorousmathemati
al analysis to justify the homogenized models has not been performedyet. Furthermore, in this paper, the more realisti
 Elrod-Adams model is 
onsideredinstead of the variational inequality one6. Noti
e that for the numeri
al simulationof mi
ro-elastohydrodynami
 
onta
ts, the statement of well justi�ed homogenizedproblems prevents from using extremely high numbers of mesh points to a

urately
ompute the involved physi
al magnitudes (when dire
tly solving the small param-eter dependent problems).Now, we present the full lubri
ation model, in
luding 
avitation phenomena andpiezovis
ous elastohydrodynami
 aspe
ts.



4 G. Bayada, S. Martin and C. V�azquez1. Mathemati
al formulation of the EHL problemWe 
onsider a re
tangular domain 
 =℄� 2l; l[�℄� l; l[; �? denotes the left verti
alboundary and � = �
 n�? (see for instan
e Fig. 1). We suppose that the followingassumptions are satis�ed.
x1

x2
�?

3l
2l

Fig. 1. EHL domainAssumption 1.1 (Rigid 
ontribution to the gap). The 
lassi
al approxima-tion of the rigid gap11 is given by the expressionhr(x) =8><>:h0 + x21 + x222R ; for ball bearingsh0 + x21R ; for linear bearings (1.1)that represents a paraboli
 approximation for a given sphere-plane (point 
onta
t)or 
ylinder-plane (line 
onta
t) gap, R being the sphere or 
ylinder se
tion radius.Remark 1.1. The positive 
onstant h0 
orresponds to the gap at the point nearestto 
onta
t. Clearly, the 
ondition0 < h0 � hr(x) � h1; with h0, h1 two 
onstants (1.2)is satis�ed in the bounded domain 
.As previously mentioned, in the Hertz theory, the e�e
tive gap is linked to thepressure through the following relationshipAssumption 1.2 (Deformable 
ontribution to the gap). The e�e
tive gapbetween the surfa
es is given byh[p℄(x) = hr(x) + Z
 k(x; z)p(z) dz; 8 x 2 
 (1.3)



Homogenization of a nonlo
al EHL Problem 5where hr satis�es Assumption 1.1, and k(x; z) isk(x; z) =8><>: 
0 log ��� 
1 � z1x1 � z1 ���; for line 
onta
ts
0p(x1 � z1)2 + (x2 � z2)2 ; for point 
onta
ts, (1.4)where 
0 > 0 and 
1 � maxf���x1���; x 2 �
g.Remark 1.2. Clearly k is a positive fun
tion and there exists ~K > 0 su
h that


k(x; :)


L1(
) � ~K (1.5)uniformly with respe
t to x. Let us noti
e that the expression of h 
ontains a rigidterm, hr, and an additional term due to the surfa
e deformation.Finally let us take into a

ount the piezovis
ous properties of the lubri
ant, i.e.the vis
osity is no longer 
onstant.Assumption 1.3 (Piezovis
osity law). The vis
osity obeys the Barus law2:� = �0 e�p; (1.6)where � � 0 and �0 > 0 denote the piezovis
osity 
onstant and the zero pressurevis
osity repe
tively.The strong formulation of the problem is:x 2 
+ : 8<:r ��h3[p℄(x)6�0 e��p(x) rp(x)� = v0 ��x1��(x) h[p℄(x)�p(x) > 0 and �(x) = 1x 2 
0 : 8<: v0 ��x1��(x) h[p℄(x)� = 0p(x) = 0 and 0 � �(x) � 1x 2 � : 8<: h3[p℄(x)6�0 e��p(x) �p(x)�n = v0 (1� �(x))h[p℄(x) 
os(~n;~i)p(x) = 0with the boundary 
onditionsv0 �h[p℄� h3[p℄6�0 e��p �p�n = v0 �?h[p℄ on �?p = 0 on �where v0 denotes the velo
ity of the lower surfa
e in the x1 dire
tion, �? is a supplyparameter belonging to [0; 1℄, ~n represents the unit normal ve
tor to � pointing to
0, ~i is the unit ve
tor in the x1 dire
tion; and the sets appearing earlier are given
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+ = fx 2 
; p(x) > 0g (lubri
ated region);
0 = fx 2 
; p(x) = 0g (
avitated region);� = �
+ [ 
 (free boundary)Thus, working in dimensionless data (6�0v0 = 1 for instan
e), the piezovis
ouselastohydrodynami
 problem 
an be written as(P�)8>><>>:Find (p; �) 2 V � L1(
) su
h that:Z
 h3[p℄ e��p rpr� = Z
 � h[p℄ ���x1 + Z�? �?h[p℄ �; 8 v 2 Vp � 0; p (1� �) = 0; 0 � � � 1; a.e. in 
,where the fun
tional spa
e V is de�ned as V = �v 2 H1(
); vj� = 0	.The boundary data, �?, satis�es:Assumption 1.4 (Saturation on the boundary).(i) �? 2 L1(�?),(ii) 0 � �?(z) � 1, for a.e. z 2 �?.Finally, let us 
onsider the following te
hni
al assumption.Assumption 1.5 (Te
hni
al hypothesis on the data). The Sobolev exponentr? > 2, the Sobolev 
onstant C(
) (the norm of the tra
e mapping from H1(
) toL2(�?)) and the problem parameters satisfy the 
ondition� e C(
)h20 ���
���(1=2)�(1=r?) 2r?=(r?�2) � 1; (1.7)We have the following existen
e theorem:Theorem 1.1 (Durany, Gar
��a, V�azquez12). Under Assumptions 1.1{1.5,problem (P�) admits at least a solution (p; �) satisfying the following estimates:


p


H1(
) � C1 and 


p


L1(
) � C2;where C1 and C2 depend on �, h0, h1, eK, �?, 
, �?, r?.Remark 1.3. The 
omplete proof is given by Durany, Gar
��a and V�azquez12. It isbased on the introdu
tion of a penalized problem and S
hauder �xed-point theorem.We point out the fa
t that the earlier estimates are not a priori estimates. Thus, we
annot guarantee that ea
h solution of the problem satis�es the earlier estimates.Assumption 1.5 guarantees an existen
e result if � is small enough: it holds if thephysi
al 
on�guration is not too far from the isovis
ous 
ase.Remark 1.4. Other boundary 
onditions might be taken into a

ount: a similarresult has been proved with Diri
hlet 
onditions on the pressure by Bayada, El



Homogenization of a nonlo
al EHL Problem 7Alaoui and V�azquez7. The homogenization study that follows 
an be easily adaptedto this spe
i�
 type of boundary 
onditions.The next se
tions deal with homogenization of the lubri
ation problem, us-ing two-s
ale 
onvergen
e te
hniques whi
h have been introdu
ed by Nguetseng21,and further developped by Allaire1, Cioranes
u, Damlamian and Griso10, andLukkassen, Nguetseng and Wall20.2. Homogenization of the EHL problemIn this se
tion, we state some preliminary results before the homogenization pro
essof the lubri
ation problem. Let us introdu
e the mi
ros
ale domain Y =℄0; 1[�℄0; 1[.The nominal gap, i.e. without elasti
 deformation, is now des
ribed by the nominalregular thi
kness hr to whi
h one must add the roughness defaults around theaverage gap. Thus, we 
onsider that the nominal gap is des
ribed by:h"r(x) = hr(x) + ��x" � ;where hr has been de�ned in Assumption 1.1 and � satis�es:Assumption 2.1 (Roughness pattern).(i) � 2 C℄(Y ) = �v 2 C0(Y ); v is Y periodi
	,(ii) 9 �max > 0; 


�


L1(Y ) � �max < h0.Remark 2.1. Assumptions 1.1 and 2.1 guarantee the uniform 
oer
iveness (w.r.t.the parameter ") of the bilinear form; in fa
t, we have8x 2 
; 0 < h0 � 


�


L1(Y ) � h"r(x) � h1 + 


�


L1(Y ): (2.1)Let us remark that it leads us to 
onsider the roughness of the upper surfa
e,assumed to be �xed, so that the x variable be
omes highly os
illating. Thus itmeans that only the rigid 
ontribution to the gap is rough.Now let us de�ne the e�e
tive gaps:De�nition 2.1. For any q 2 L1(
), let h[q℄ and h"[q℄ be the fun
tions de�ned by:h[q℄ : 
� Y �! R(x; y) �! h[q℄(x; y) = hr(x) + �(y) + Z
 k(x; z)q(z) dz;h"[q℄ : 
 �! Rx �! h"[q℄(x) = h[q℄�x; x"� :Thus, we introdu
e the rough problem:(P"� )8>><>>:Find (p"; �") 2 V � L1(
) su
h that:Z
 h3"[p"℄e��p"rp"r� = Z
 �"h"[p"℄ ���x1 + Z�? �?h"[p"℄ �; 8 � 2 Vp" � 0; p" (1� �") = 0; 0 � �" � 1; a.e. in 
.



8 G. Bayada, S. Martin and C. V�azquezIn order to get an existen
e theorem, we adapt the assumptions to the roughproblem. Therefore, Assumption 1.5 is repla
ed by:Assumption 2.2. The Sobolev exponent r? > 2, the Sobolev 
onstant C(
) (thenorm of the tra
e mapping from H1(
) to L2(�?)) and the problem parameterssatisfy the 
ondition� e C(
)�h0 � 


�


L1(
)�2 ���
���(1=2)�(1=r?) 2r?=(r?�2) � 1: (2.2)Thus we get:Theorem 2.1. Under Assumptions 1.1{1.4, 2.1 and 2.2, for any " > 0, problem(P"� ) admits at least a solution (p"; �") satisfying the following estimates:


rp"


L2(
) � C3; 


p"


L1(
) � C4; 


�"


L1(
) � 1; (2.3)where C3 and C4 only depend on �, h0 � k�kL1(
), h1, eK, �?, 
, �?, r?.Remark 2.2. In me
hani
al appli
ations (ball or linear bearings), typi
al rough-ness is assumed to be either transverse or longitudinal. However, su
h an assumptionon the roughness form is not ne
essary and more general shapes may be introdu
ed.Our purpose is to dis
uss the behaviour of problem (P"� ) when " goes to 0, usingtwo-s
ale 
onvergen
e te
hniques. From now on, we suppose that Assumptions 1.1{1.4, 2.1 and 2.2 are satis�ed, in parti
ular in Subse
tions 2.2{2.5.2.1. Preliminaries to the two-s
ale 
onvergen
e te
hniqueFirst we re
all some useful de�nitions and results for the two-s
ale
onvergen
e1;10;20.Lemma 2.1. The separable Bana
h spa
e L2(
;C℄(Y )) is dense in L2(
 � Y ).Moreover, if f 2 L2(
;C℄(Y )), then x 7! �"(f)(x) = f(x; x=") is a measurablefun
tion su
h that 


�"(f)


L2(
) � 


f


L2(
;C℄(Y )):De�nition 2.2. The sequen
e u" 2 L2(
) is said two-s
ale 
onverging to a limitu0 2 L2(
� Y ) if for any  2 L2(
;C℄(Y )) one haslim"!0 Z
 u"(x) �x; x" � dx = Z
 ZY u0(x; y) (x; y) dy dx:Lemma 2.2. Let u" be a bounded sequen
e in L2(
). Then there exists u0 2 L2(
�Y ) su
h that, up to a subsequen
e, u" two-s
ale 
onverges to u0.Lemma 2.3. Let u" be a bounded sequen
e in H1(
), whi
h weakly 
onverges toa limit u0 2 H1(
). Then u" two-s
ale 
onverges to u0 and there exists a fun
tion



Homogenization of a nonlo
al EHL Problem 9u1 2 L2(
;H1(Y )=R) su
h that, up to a subsequen
e, ru" two-s
ale 
onverges toru0 +ryu1.Let us now brie
y introdu
e periodi
 unfolding methods10:De�nition 2.3. For any x 2 R2 , let be [x℄Y the unique integer 
ombinationPnj=1 kjbj of the periods su
h that x � [x℄Y belongs to Y . We also de�ne fxgY =x� [x℄Y 2 Y , so that, for ea
h x 2 R2 , one hasx = " �hx" iY + nx"oY �:Then the unfolding operator T" : L2(
) ! L2(
 � Y ) is de�ned as follows: forw 2 L2(
), extended by zero outside 
,T"(w)(x; y) = w �" hx" iY + " y� ; for x 2 
 and y 2 Y .Let us now re
all Proposition 2 of Cioranes
u, Damlamian and Griso10:Proposition 2.1. Let fw"g be a bounded sequen
e in L2(
). Then the followingpropositions are equivalent:(i) T"(w") weakly 
onverges to w0 in L2(
� Y ).(ii) w" two-s
ale 
onverges to w0.2.2. Two-s
ale 
onvergen
e results for problem (P"�)Lemma 2.4. There exists p0 2 V su
h that, up to a subsequen
e:p" * p0 in H1(
) and p" ! p0 in L2(
):We have also the following two-s
ale 
onvergen
es:(i) p" two-s
ale 
onverges to p0. Moreover, there exists p1 2 L2(
;H1℄ (Y )=R) and asubsequen
e "0, still denoted ", su
h that rp" two-s
ale 
onverges to rp0+ryp1.(ii) There exists �0 2 L2(
�Y ) and a subsequen
e "", still denoted ", su
h that �"two-s
ale 
onverges to �0.Moreover, p0 � 0 a.e. in 
.Proof. The 
onvergen
e results are the 
onsequen
e of Estimates 2.3 (see Theorem2.1), whi
h do not depend on ", and Lemmas 2.2 and 2.3.Proposition 2.2. 0 � �0 � 1 and p0 (1� �0) = 0 a.e. in 
� Y .Proof.� 1st step - As 0 � �" a.e. in 
 and using the de�nition of the unfolding operator,



10 G. Bayada, S. Martin and C. V�azquezone has that 0 � T (�") a.e. in 
 � Y . By Proposition 2.1, one knows that T"(�")weakly 
onverges to �0 in L2(
� Y ). Thus one hasZ
�Y T (�")� �! Z
�Y �0�; 8� 2 L2(
� Y ): (2.4)We rewrite �0 as �0 = �+0 � ��0 (with w+ = max(w; 0) and w� = �min(w; 0), forany w 2 L2(
� Y )). Then using ��0 as a test-fun
tion in Equation (2.4):A" = Z
�Y T (�")��0 �! � Z
�Y (��0 )2 = A � 0:Sin
e T (�") � 0 a.e. in 
� Y , A" is a sequen
e of positive numbers 
onverging toa non positive number. Then A = 0 and ��0 = 0 a.e. in 
� Y . The same method isused to prove 0 � 1� �0 a.e. in 
� Y .� 2nd step - The result is also easily obtained using periodi
 unfolding methods.Indeed by Lemma 2.4 and Proposition 2.1,T"(p") ! p0; in L2(
� Y ),T"(�") * �0; in L2(
� Y ).Thus one gets:Z
�Y T" (p" (1� �")) = Z
�Y T"(p") T"(1� �") �! Z
�Y p0 (1� �0):Sin
e p"(1� �") = 0, passing to the limit givesZ
�Y p0 (1� �0) = 0:Moreover sin
e p0 � 0 a.e. in 
 and 1� �0 � 0 a.e. in 
 � Y (see Lemma 2.4 andthe �rst part of Proposition 2.2), the proof is 
on
luded.Lemma 2.5. For 1 � p � +1,(i) Z
 k(�; z) p"(z) dz strongly 
onverges to Z
 k(�; z) p0(z) dz in Lp(
),(ii) Z
 k(�; z) p"(z) dz strongly 
onverges to Z
 k(�; z) p0(z) dz in Lp(�?).Proof.� Proof of (i)Sin
e k satis�es Equation (1.4), one gets by Lemma 1 of Oden and Wu22:maxx2�
 ��� Z
 k(x; z)(p"(z)� p0(z)) dz��� � C5(k) 


p" � p0


Lq(
); (2.5)for any q whi
h 
an be written as q = (2� s)=(1� s) > 2 with 0 < s < 1. Moreoverby Relli
h-Kondra
hov theorem, one has H1(
) ,! Lr(
); 8 r 2 [1;+1[. Sin
e
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al EHL Problem 11p" * p0 in H1(
) (see Lemma 2.4), then p" ! p0 in Lq(
) and


 Z
 k(�; z)(p"(z)� p0(z)) dz


L1(
) �! 0:At last, we gain (for 1 � p < +1)


 Z
 k(�; z)(p"(z)� p0(z)) dz


Lp(
) � ���
���1=p


 Z
 k(�; z)(p"(z)� p0(z)) dz


L1(
);the result is proved.� Proof of (ii)For p = +1, the result is immediatly obtained from Inequality (2.5).For 1 � p < +1, let us 
ompute u" = 


 Z
 k��; z� �p"(z)� p0(z)� dz


Lp(�?).u" = �Z�? h Z
 k (s; z) �p"(z)� p0(z)� dzip ds�1=p� ����?���1=p maxx2�
 ��� Z
 k��; z� �p"(z)� p0(z)� dz���;and using Inequality (2.5) givesu" � ����?���1=p C5(k) 


p" � p0


Lq(
);so that u" exists and tends to 0.Now we analyse the 
onvergen
e of ea
h term of the variational formulation ofproblem (P"� ):Lemma 2.6. One has the following two-s
ale 
onvergen
es:(i) h3"[p"℄ e��p"rp" two-s
ale 
onverges, up to a subsequen
e, toh3[p0℄e��p0 (rp0 +ryp1).(ii) �"h"[p"℄ two-s
ale 
onverges, up to a subsequen
e, to �0h[p0℄.Proof. Part (i) is proved in three steps:� 1st step - Let us prove that, up to a subsequen
e, e��p"rp" two-s
ale 
on-verges to e��p0 (rp0 +ryp1):Sin
e e��p"rp" is obviously bounded in L2(
) (see Estimates (2.3)), it is suÆ
ientto prove (by Proposition 1 in Lukkassen, Nguetseng and Wall20) that for every� 2 �D(
;C1℄ (Y ))�2:Z
 e��p"(x) rp"(x) ��x; x" � dx �! Z
�Y e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx



12 G. Bayada, S. Martin and C. V�azquezDe�ning v" as the di�eren
e between the two integrals, our purpose is to prove thatv" goes to 0. Thus, de�ning the following termsv1" = Z
 �e��p"(x) � e��p0(x)� rp"(x) ��x; x"� dx;v2" = Z
 e��p0(x) rp"(x) ��x; x" � dx;v3" = Z
�Y e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx;we have: v" = v1" + v2" � v3" . Then, sin
e x 7! e��x is �-Lips
hitz 
ontinuous on R+and using the Cau
hy-S
hwartz inequality, we have���v1" ��� � Z
 � ���p"(x)� p0(x)��� ���rp"(x) � ��x; x"� ��� dx� � 


�


L1(
�Y ) 


rp"


L2(
) 


p" � p0


L2(
):Then v1" goes to 0 by Estimates (2.3) and Lemma 2.4. Moreover, as the fun
tion(x; y) 7! e��p0(x)�(x; y) is obviously an admissible test-fun
tion for the two-s
ale
onvergen
e, then v2" � v3" also goes to 0 (by Lemma 2.4-(i)).� 2nd step - The sequen
e h3"[p0℄ e��p"rp" two-s
ale 
onverges, up to a subse-quen
e, to h3[p0℄ e��p0 (rp0 +ryp1). Indeed the sequen
e being obviously boundedin L2(
) and using the result established in the 1st step, it is suÆ
ient to provethat, for any � 2 �D(
;C1℄ (Y ))�2, the fun
tion(x; y) 7! h3[p0℄(x; y) �(x; y)is an admissible test fun
tion for the two-s
ale 
onvergen
e. The result is easilyobtained using the properties of h.� 3rd step - h3" [p"℄e��p"rp" two-s
ale 
onverges, up to a subsequen
e, to thefun
tion h3[p0℄e��p0 (rp0 +ryp1). Indeed, the sequen
e being bounded in L2(
),it is suÆ
ient to prove that, for any � 2 D(
;C1℄ (Y )),Z
 h3"[p"℄(x) e��p"(x) rp"(x) ��x; x" � dx�! Z
�Y h3[p0℄(x; y) e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx:De�ning w" as the di�eren
e between the two integrals, our purpose is to prove that
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al EHL Problem 13w" goes to 0. Thus,w" = Z
 �h3"[p"℄(x)� h3"[p0℄(x)� e��p"(x) rp"(x) ��x; x"� dx| {z }w1"+ Z
 h3"[p0℄(x) e��p"(x) rp"(x) ��x; x" � dx| {z }w2"� Z
�Y h3[p0℄(x; y) e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx:| {z }w3"Then, denoting C6 = 3�h1+ k�kL1(
)+ eKC4�2 (see Inequalities 1.5 and 2.3), sin
ez 7! �hr(x) + �(y) + z�3 is Lips
hitz 
ontinuous, we have���w1" ��� � Z
 ���h3"[p"℄(x)� h3" [p0℄(x)��� ���rp"(x) ���x; x"� ��� dx� C6 Z
 ��� Z
 k(x; z) (p"(z)� p0(z)) dz��� ���rp"(x) � ��x; x"� ��� dx:Using the Cau
hy-S
hwartz inequality, Lemma 2.1 and Estimates (2.3), one has���w1" ��� � C3 C6 


�


L2(
;C℄(Y )) 


 Z
 k(�; z) (p"(z)� p0(z)) dz 


L1(
):Then w1" tends to 0 by Lemma 2.5-(i). Moreover w2" �w3" goes to 0 using the resultestablished at the 2nd step. Thus we have proved part (i) of the lemma.Part (ii) is proved using the same s
heme:� 1st step - The sequen
e �" h"[p0℄ two-s
ale 
onverges, up to a subsequen
e,to �0 h[p0℄. Indeed, sin
e the sequen
e is bounded in L2(
) and �" two-s
ale 
on-verges to �0, it is suÆ
ient to prove that, for any � 2 �D(
;C1℄ (Y ))�, the fun
tion(x; y) 7! h[p0℄(x; y) �(x; y) is an admissible test fun
tion for the two-s
ale 
onver-gen
e. The result is easily obtained using the properties of h.� 2nd step - The sequen
e �" h"[p"℄ two-s
ale 
onverges, up to a subsequen
e, tothe fun
tion �0 h[p0℄. Indeed, the sequen
e being bounded in L2(
), it is suÆ
ientto prove that, for any � 2 D(
;C1℄ (Y )),Z
 �" h"[p"℄(x) ��x; x"� dx �! Z
�Y �0(x; y) h[p0℄(x; y) �(x; y) dy dx:De�ning t" as the di�eren
e between the two integrals, our purpose is to prove that



14 G. Bayada, S. Martin and C. V�azquezt" goes to 0. Rewriting t" ast" = Z
 ��"(x) h3"[p"℄(x)� �"(x) h3"[p0℄(x)� ��x; x" � dx| {z }t1"+ Z
 �"(x) h"[p0℄(x) ��x; x"� dx� Z
�Y �0(x; y) h[p0℄(x; y) �(x; y) dy dx;| {z }t2"using the inequality k�"kL1(
) � 1, the Cau
hy-S
hwartz inequality and Lemma2.1, we have���t1"��� � Z
 ���h"[p"℄(x)� h"[p0℄(x)��� � ����(x; x" )��� dx� Z
 ��� Z
 k(x; z) p"(z) dz � Z
 k(x; z) p0(z) dz��� ����(x; x" )��� dx� 


�"(�)


L2(
)


 Z
 k(�; z) p"(z) dz � Z
 k(�; z) p0(z) dz 


L2(
)� 


�


L2(
;C℄(Y ))


 Z
 k(�; z) p"(z) dz � Z
 k(�; z) p0(z) dz 


L2(
)so that t1" goes to 0 by Lemma 2.5-(i). Moreover t2" goes to 0 using the resultestablished at the 1st step. Thus we have proved part (ii) of the lemma.Now, we are interested in the 
onvergen
e of the boundary term:Lemma 2.7. Let 
 denote the tra
e operator and let us de�ne[h[p0℄ = 
 �hr(�) + Z 10 �((0; y2)) dy2 + Z
 k(�; z) p0(z) dz� :Then, one has: 
 (h"[p"℄)*[h[p0℄ in L2(�?).Proof. In the boundary integral of problem (P"� ), h"[p"℄ has to be taken in thesense of tra
es. Thus, sin
e we haveh"[p"℄(x) = hr(x) + ��x"�+ Z
 k(x; z) p"(z) dz;it 
an be written as the sum of a fun
tion whi
h belongs to L1(�?), namely
�hr(�) + Z
 k(�; z) p"(z) dz� ;and the tra
e of the os
illating fun
tion x 7! �"(�)(x) = �(x=") (a

ording to thede�nition of the operator �" given in Lemma 2.1), i.e.
(�"(�)(�)):Thus, let us study the 
onvergen
e of ea
h term w.r.t. ":
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al EHL Problem 15� First, the following 
onvergen
e holds:
�hr(�) + Z
 k(�; z) p"(z) dz� �! 
 �hr(�) + Z
 k(�; z) p0(z) dz� ; in L2(�?).Indeed, by linearity, the di�eren
e of these two terms is equal to the tra
e ofZ
 k(�; z) (p"(z)� p0(z)) dzwhi
h strongly 
onverges to 0 in L2(�?) by Lemma 2.5.� Next, using the assumptions on the roughness regularity, 
(�"(�)) 
an be iden-ti�ed to the fun
tion x2 7! �((0; x2=")). Sin
e x2 7! �((0; x2=")) obviouslytwo-s
ale 
onverges to (x2; y2) 7! �((0; y2)), it weakly 
onverges in L2(℄0; 1[) toits average w.r.t. y2, namely the 
onstantZ 10 �((0; y2)) dy2:Thus the proof is a
hieved.2.3. Homogenization of the EHL problem (general 
ase)On
e we have obtained the limits of the di�erent terms whi
h appear in problem(P"� ), we state, as usual with the two-s
ale 
onvergen
e te
hnique, the ma
ros
opi
and mi
ros
opi
 equations for the homogenized problem.Proposition 2.3. The limit fun
tions p0, p1 and �0 satisfy the following equations:� Ma
ros
opi
 equation:Z
 �ZY h3[p0℄ e��p0hrp0 +ryp1i dy �r�= Z
 �ZY �0h[p0℄ dy� ���x1 + Z�? �?[h[p0℄ �; (2.6)for every � in V .� Mi
ros
opi
 equation:For a.e. x 2 
,ZY h3[p0℄(x; y) e��p0hrp0(x) +ryp1(x; y)i � ry (y) dy= ZY �0(x; y) h[p0℄(x; y) � �y1 (y) dy; (2.7)for every  2 H1℄ (Y ).



16 G. Bayada, S. Martin and C. V�azquezProof. Using the fun
tion x 7! �0(x)+" �1(x)  (x="), with �0 2 V and �1 2 D(
)and  2 C1℄ (Y )℄, as a test fun
tion in the variational formulation of problem (P"),one has:Z
 h3"[p"℄(x) e��p"rp"(x) � hr�0(x) + �1(x) ry �x"�+ "  �x"� rx�1(x)i dx= Z
 �"(x) h"[p"℄(x) h��0�x1 (x) + "  �x"� ��1�x1 (x) + �1(x) � �y1 �x"�i dx+ Z�? �?h"[p"℄ �0:Passing to the limit ("! 0) and using Lemmas 2.6 and 2.7 gives us the ma
ros
opi
equation (with �1 � 0) and the mi
ros
opi
 equation (with �0 � 0).De�nition 2.4. For a given p0 2 L1(
), let us de�ne the following fun
tions:a[p0℄(x; y) = h3[p0℄(x; y); (x; y) 2 
� Y;b[p0℄(x; y) = h[p0℄(x; y); (x; y) 2 
� Y:Let us de�ne the lo
al problems, respe
tively denoted (M?i ), (N ?i ) and (N 0i ):Find W ?i , �?i , �0i (i = 1; 2) in L2(
;H1℄ (Y )=R), su
h that, for almost every x 2 
:ZY a[p0℄ ryW ?i ry = ZY a[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.8)ZY a[p0℄ ry�?i ry = ZY b[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.9)ZY a[p0℄ ry�0i ry = ZY �0b[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.10)We immediatly haveProposition 2.4. The lo
al problem (M?i ) (resp. (N ?i ),(N 0i )) admits a unique so-lution W ?i (resp. �?i , �0i ) in L2(
;H1℄ (Y )=R).Theorem 2.2. The homogenized problem 
an be written as:(P?� )8>><>>:Find (p0;�1;�2) 2 V � L1(
)� L1(
) su
h that:Z
 e��p0 A[p0℄ � rp0 r� = Z
 b0[p0℄r�+ Z�? �?[h[p0℄ �; 8 � 2 Vp0 � 0; p0 (1� �i) = 0; (i = 1; 2) a.e. in 
,



Homogenization of a nonlo
al EHL Problem 17with ef(x) = ZY f(x; y) dy, andA[p0℄ = 0BBB� ga[p0℄� ^ha[p0℄�W ?1�y1 i � ^ha[p0℄�W ?2�y1 i� ^ha[p0℄�W ?1�y2 i ga[p0℄� ^ha[p0℄�W ?2�y2 i1CCCA ;b0[p0℄ = ��1[p0℄ b?1[p0℄�2[p0℄ b?2[p0℄� ;with the notations (i = 1; 2):b?i [p0℄ = gb[p0℄� ^ha[p0℄��?i�yi i; b0i [p0℄ = ^h�0b[p0℄i� ^ha[p0℄��0i�yi i;and de�ning the following ratios (i = 1; 2):�i[p0℄ = b0i [p0℄b?i [p0℄ :Proof. From the lo
al problems, we easily obtain in L2(
;H1℄ (Y )=R):p1(x; y) = �e��p0(x)�W ?1 (x; y)W ?2 (x; y)� � rp0(x) + �01(x; y):The homogenized problem follows by repla
ing the previous expression of p1 in thema
ros
opi
 equation.Remark 2.3. The homogenized lubri
ation problem 
an be 
onsidered as a gener-alized elastohydrodynami
 Reynolds-type problem with two 
avitation parameters�i (i = 1; 2). Let us noti
e the fa
t that we do not have the property 0 � �i � 1,i.e. we 
annot guarantee that homogenized 
avitation parameters are smaller than1 in 
avitation areas ! Thus, at that point, the homogenized problem does not havea stru
ture similar to the initial one. But, in the next subse
tions, we prove thefollowing additional results:� in Subse
tion 2.4, we state that, among the solutions of the homogenizedproblem, there exists a 
lass of solutions with isotropi
 saturation, that is,the homogenized problem (P?� ) admits a solution (p0;�;�) with p0 � 0 andp0 (1� �) = 0 and also the additive property (whi
h la
ks in the formulationof the homogenized problem (P?� ) in the general 
ase): 0 � � � 1 a.e. in 
.� in Subse
tion 2.5, we state that, under additional assumptions on the rough-ness pattern, only one single saturation fun
tion � appears in the homogenizedproblem. Moreover, it satis�es 0 � � � 1 a.e in 
.



18 G. Bayada, S. Martin and C. V�azquez2.4. Existen
e of solutions with isotropi
 saturationThis subse
tion is devoted to the proof of the following theorem:Theorem 2.3. The homogenized problem (P?� ) admits a solution (p0;�;�) with0 � � � 1 (and p0 � 0, p0 (1� �) = 0) a.e. in 
.Theorem 2.3 guarantees the existen
e of solutions with isotropi
 saturation �.Moreover, the saturation satis�es the property 0 � � � 1, whi
h la
ks in the generalformulation of the homogenized problem. The result is obtained in the followingthree steps whi
h are based on the existen
e result and the 
orresponding methodused in Durany, Gar
��a, V�azquez12:� 1st step: Introdu
tion of a penalized problem,� 2nd step: Homogenization of the penalized problem,� 3rd step: Convergen
e w.r.t. the penalized parameter.Remark 2.4. Interestingly, in the earlier s
heme, forgetting the 2nd step (i.e. omit-ting the homogenization step) would lead us to the existen
e result for problem (P"� ),namely Theorem 2.1. Thus, the reader should not be surprised to see that 
onstantswhi
h have been already used or de�ned in Theorem 2.1 appear in the details ofthe forth
oming proof.For 
onvenien
e, these three steps are given in details and the idea of the proofis sket
hed at the end of this subse
tion.� 1st step: Introdu
tion of a penalized problemAs in the roughless 
ase studied by Durany, Gar
��a, V�azquez12, we introdu
ethe following " dependent penalized problem:(P"�)8>><>>:Find p�" 2 V su
h that:Z
 h3"[p�" ℄e��p�"rp�"r� = Z
H�(p�")h"[p�" ℄ ���x1 + Z�? �?h"[p�" ℄ �; 8 � 2 Vp�" � 0; a.e. in 
,where the fun
tion H� is the usual approximation of the Heaviside graph. Theappli
ation of Theorem 3.2. of Durany, Gar
��a, V�azquez12, whi
h is based on a�xed point te
hnique leads to the following results:Theorem 2.4. For every � > 0, problem (P"�) admits a positive solution. Moreover,we 
an obtain the following ("; �) independent estimates:


p�"


H1(
) � C3; (2.11)


p�"


L1(
) � C4: (2.12)Remark 2.5. We point out the fa
t that Theorem 2.4 holds under Assumptions1.1{1.4, 2.1 and 2.2 whi
h are impli
itely imposed as in previous subse
tions. In
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al EHL Problem 19parti
ular, Assumption 2.2 is ne
essary to allow the use of a �xed point te
hniqueand obtain Theorem 2.4.� 2nd step: Homogenization of the penalized problemWe pro
eed to the homogenization of problem (P"�) w.r.t. ": from Estimates(2.11) and using the two-s
ale homogenization te
hnique (as in the previous subse
-tion), we immediatly get the following 
onvergen
e results and ma
ro/mi
ros
opi
de
omposition:Proposition 2.5. There exists p�0 2 V (p�0 � 0 a.e. in 
), p1 2 L2(
;H℄(Y )=R)su
h that, up to a subsequen
e,(i) p�" weakly 
onverges to p�0 in H1(
) (and p�" two-s
ale 
onverges to p�0),(ii) rp�" two-s
ale 
onverges to rp�0 +ryp�1.Moreover, we have:� Ma
ros
opi
 equation:Z
 �ZY h3[p�0 ℄ e��p�0 hrp�0 +ryp�1i dy �r�= Z
 �ZY H�(p�0)h[p�0 ℄ dy� ���x1 + Z�? �?[h[p�0 ℄ �; (2.13)for every � in V .� Mi
ros
opi
 equation:For a.e. x 2 
,ZY h3[p�0 ℄e��p�0 hrp�0 +ryp�1i � ry dy = ZY H�(p�0)h[p�0 ℄ � �x1 dy; (2.14)for every  2 H1℄ (Y ).Then, re
alling the de�nition of a[�℄ and b[�℄ (see De�nition 2.4), and introdu
ingthe lo
al problems, respe
tively denoted (M�i ), (N �i )Find W �i , ��i in L2(
;H1℄ (Y )=R), su
h that, for almost every x 2 
:ZY a[p�0 ℄ ryW �i ry = ZY a[p�0 ℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.15)ZY a[p�0 ℄ ry��i ry = ZY b[p�0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.16)we 
an state:Lemma 2.8. The homogenized penalized problem is(P?� )8>><>>:Find p�0 2 V su
h that:Z
 e��p�0 A�[p�0 ℄ � rp�0 r� = Z
H�(p�0) b� [p�0 ℄r�+ Z�? �? [h[p�0 ℄ �; 8 � 2 Vp�0 � 0; a.e. in 
,



20 G. Bayada, S. Martin and C. V�azquezwith A� [p�0 ℄ =℄a[p�0 ℄ I � ^a[p�0 ℄rW � and b�[p�0 ℄ = 0BBB� gb[p�0 ℄� ^�a[p�0 ℄���1�y1 �� ^�a[p�0 ℄���1�y2 �1CCCAProof. The following equality in L2(
;H1℄ (Y )=R) is 
lassi
ally obtained using thelo
al problems:p�1(x; y) = �W �(x; y) � rp�0(x) +H�(p�0(x)) ��1(x; y): (2.17)Using Equation (2.17) in the ma
ros
opi
 equation gives us:Z
 e��p�0 h℄a[p�0 ℄ I � ^a[p�0 ℄rW �i � rp�0 r�= Z
H�(p�0)hgb[p�0 ℄� ^�a[p�0 ℄���1�y1 �i ���x1 + Z
H�(p�0)h� ^�a[p�0 ℄���1�y2 �i ���x2+ Z�? �?[h[p�0 ℄�;for every � 2 V . Then, the proof is 
on
luded.� 3rd step: Behaviour of the homogenized penalized problem w.r.t. �Now we study the behaviour of the homogenized penalized problem when �tends to 0.Proposition 2.6. There exists p0 2 V and � 2 L1(
) su
h thatp�0 * p0; in H1(
),H�(p�0) * �; in L1(
) weak-?.Moreover, p0 � 0 , 0 � � � 1 and p0 (1� �) = 0 a.e. in 
 .Proof. The 
onvergen
es only 
ome from estimates satis�ed by p�0 (see Estimates(2.11) and (2.12)): 


p�0


H1(
) � C3; 


p�0


L1(
) � C4:The properties and relationships between p0 and � are 
lassi
ally obtained as inthe initial problem.Now we state:Proposition 2.7. e��p�0A�[p�0 ℄ strongly 
onverges to e��p0A[p0℄ in L2(
).Proof. We prove the result in three steps:(a) kA� [p�0 ℄kL1(
) � eC, kA[p0℄kL1(
) � eC, where the 
onstant eC does not dependon �,
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al EHL Problem 21(b) A�[p�0 ℄ �! A[p0℄, a.e. in 
,(
) e��p�0A� [p�0 ℄ strongly 
onverges to e��p0A[p0℄ in L2(
).I Proof of (a):Let us re
all that A� [p�0 ℄ =℄a[p�0 ℄I � ^a[p�0 ℄ryW �. Obviously, we have℄a[p�0 ℄ � C7with C7 = �h1 + k�kL1(
) + eKC4�3 :Thus, we just have to state the estimates for terms of the form^a[p�0 ℄�W �i�yk ; (i; k = 1; 2):Using W �i as a test fun
tion in the variational formulation of problem (M�i )(see Equation (2.15)) gives for almost every x 2 
ZY a[p�0 ℄���ryW �i ���2 = ZY a[p�0 ℄ �W �i�yi :Then, in the left-hand side, we write a[p�0 ℄ as a2[p�0 ℄=a[p�0℄ and use a lower boundof 1=a[p�0℄, that is1C7 ZY ���a[p�0 ℄ryW �i ���2 � ZY a[p�0 ℄���ryW �i ���2 � ZY ���a[p�0 ℄ �W �i�yi ���and ZY ���a[p�0 ℄ryW �i ���2 � jY j C27 ;whi
h means 


a[p�0 ℄�W �i�yk 


2L2(Y ) � jY j C27 ; (i; k = 1; 2):Then, using the Cau
hy-S
hwarz inequality,��� ZY a[p�0 ℄�W �i�yk ��� � ZY ���a[p�0 ℄�W �i�yk ��� � jY j1=2


a[p�0 ℄�W �i�yk 


L2(Y )that is, ��� ^a[p�0 ℄�W �i�yk ��� � jY jC7; (i; k = 1; 2): (2.18)Let us remark that Inequality (2.18) holds for almost every x 2 
 so that thematrix ^a[p�0 ℄ryW �
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) by a 
onstant whi
h does not depend on �. ThusA� [p�0 ℄ =℄a[p�0 ℄I � ^a[p�0 ℄ryW �is bounded by a 
onstant eC whi
h does not depend on �. With the same method,as p0 satis�es kp0kH1(
) � C3, kp0kL1(
) � C4, one proves thatA[p0℄ =℄a[p0℄I � ^a[p0℄ryW ?is also bounded by eC.I Proof of (b):Let us re
all that, with the same arguments that have been used in the proofof Lemma 2.5 (see Inequality (2.5)), one has:Z
 k(�; z)p�0(z) dz �! Z
 k(�; z)p0(z) dz in L1(
).In parti
ular, the 
onvergen
e holds almost everywhere. Let be x0 su
h that:Z
 k(x0; z)p�0(z) dz �! Z
 k(x0; z)p0(z) dz:Re
alling lo
al problem (M�i ), one has,ZY a[p�0 ℄(x0; �) ryW �i (x0; �) ry = ZY a[p�0 ℄(x0; �) � �yi ; 8 2 H1℄ (Y ):Using W �i (x0; �) as a test fun
tion and using upper and lower bounds of a[p�0 ℄gives: 


rW �i (x0; �)


L2(Y ) � C7=C8with C8 = �h0 � k�kL1(
)�3. Thus, W �i (x0; �) is bounded in H1℄ (Y )=R by a
onstant whi
h does not depend on �. Then, there exists Fi(x0; �) 2 H1℄ (Y )=Rsu
h that ryW �i (x0; �) weakly 
onverges to ryFi(x0; �) in L2(Y ). Moreover,sin
e a[p�0 ℄(x0; �) strongly 
onverges to a[p0℄(x0; �) in L2(Y ), one has for every 2 H1℄ (Y ):ZY a[p�0 ℄(x0; �)ryW �i (x0; �)ry �! ZY a[p0℄(x0; �)ryFi(x0; �)ry ;ZY a[p�0 ℄(x0; �) � �yi �! ZY a[p0℄(x0; �) � �yi :Thus, we get for every  2 H1℄ (Y ):ZY a[p0℄(x0; �)ryFi(x0; �)ry = ZY a[p0℄(x0; �) � �yiand, by uniqueness of the solution to the lo
al problem,W ?i (x0; �) = Fi(x0; �); in H1℄ (Y )=R,ryW ?i (x0; �) = ryFi(x0; �); in L2(Y ).
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al EHL Problem 23Now, sin
e we have: a[p�0 ℄(x0; �) ! a[p0℄(x0; �); in L2(Y ),ryW �i (x0; �) * ryW ?i (x0; �); in L2(Y ),we easily dedu
e that:ZY a[p�0 ℄(x0; y)ryW �i (x0; y) dy �! ZY a[p0℄(x0; y)ryW ?i (x0; y) dy;that is, ^ha[p�0 ℄ryW �i i(x0) �! ^ha[p0℄ryW ?i i(x0):Sin
e it is 
lear that℄a[p�0 ℄(x0) 
onverges to℄a[p0℄(x0), one has:℄a[p�0 ℄(x0)� ^ha[p�0 ℄ryW �i i(x0) �!℄a[p0℄(x0)� ^ha[p0℄ryW ?i i(x0);whi
h states the result (b).I Proof of (
):Let us denote f� = A� [p�0 ℄, f = A[p0℄ and g� = (f� � f)2. It is 
lear that:Æ kg�kL1(
) � 4 eC2 (see property (a)),Æ g� �! 0 a.e. (see property (b)).Thus, by the Lebesgue theorem, A�[p�0 ℄ strongly 
onverges to A[p0℄ in L2(
).Now let us denote r� = Z
 �e��p�0A� [p�0 ℄� e��p0A[p0℄�2 :Then, we have:r� = Z
 ��e��p�0 � e��p0�A�[p�0 ℄ + e��p0 (A�[p�0 ℄�A[p0℄)�2� 2 Z
 �e��p�0 � e��p0�2 (A� [p�0 ℄)2 + 2 Z
 �e��p0�2 (A�[p�0 ℄�A[p0℄)2 :Sin
e kA� [p�0 ℄kL1(
) � eC (see property (a)) and ke��p0kL1(
) � 1, one has:r� � 2 eC2 Z
 �e��p�0 � e��p0�2 + 2 Z
 (A� [p�0 ℄�A[p0℄)2Sin
e x 7! e��x is �-Lips
hitz 
ontinuous on R+ , one hasr� � 2 eC2 �2 Z
 (p�0 � p0)2 + 2 Z
 (A�[p�0 ℄�A[p0℄)2 :Then, as p�0 (resp. A� [p�0 ℄) strongly 
onverges to p0 (resp. A[p0℄) in L2(
), r�tends to 0, whi
h 
on
ludes the proof.



24 G. Bayada, S. Martin and C. V�azquezProposition 2.8. b�[p�0 ℄ strongly 
onverges to b?[p0℄ in L2(
).Proof. The proof is similar to the one of Proposition 2.7. More pre
isely, we state(a) kb�[p�0 ℄kL1(
) � eD, kb?[p0℄kL1(
) � eD, where eD does not depend on �,(b) b� [p�0 ℄ �! b?[p0℄ a.e. in 
,and the proof is 
on
luded with the Lebesgue theorem.Proposition 2.9. [h[p�0 ℄ strongly 
onverges to[h[p0℄ in L2(�?).Proof. The proof is straightforward from the properties of the Hertz kernel (seeLemma 2.5).Now we 
on
lude this subse
tion by the proof of Theorem 2.3:Proof of Theorem 2.3. By Lemma 2.8, there exists p�0 2 V su
h thatZ
 e��p�0A�[p�0 ℄ � rp�0r� = Z
H�(p�0)b�[p�0 ℄r�+ Z�? �?[h[p�0 ℄�; 8 � 2 V:Next, from Propositions 2.6 and 2.7, we have:rp�0 * rp0; in L2(
),e��p�0A�[p�0 ℄ ! e��p0A[p0℄; in L2(
),so that Z
 e��p�0A� [p�0 ℄ � rp�0r� �! Z
 e��p0A[p0℄ � rp0r�; 8 � 2 V:Moreover, from Propositions 2.6 and 2.8, we have:H�(p�0) * �; in L1(
) weak-?,b�[p�0 ℄ ! b?[p0℄; in L2(
),so that Z
H�(p�0) b� [p�0 ℄r� �! Z
 � b?[p0℄r�; 8 � 2 V:Next, by Proposition 2.9, we obtain:Z�? �?[h[p�0 ℄� �! Z�? �?[h[p0℄�; 8 � 2 V:Thus, passing to the limit in the homogenized penalized problem, we getZ
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄r�+ Z�? �?[h[p0℄�; 8 � 2 V;with p0 � 0 , p0 (1� �) = 0 and 0 � � � 1 a.e. in 
 (by Proposition 2.6), and theproof is 
on
luded. �
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al EHL Problem 25Remark 2.6. An interesting point is to 
onsider that, in the homogenized problem,we are not able to identify an \equivalent gap" sin
e anisotropi
 e�e
ts 
lassi
allyappear in the 
oeÆ
ients. Nevertheless, Theorem 2.3 allows us to de�ne not onlyone single saturation fun
tion � but also one single deformationZ
 k(x; z) p0(z) dz;whi
h is an important point in terms of me
hani
al appli
ations.2.5. Parti
ular 
asesIn this subse
tion, due to parti
ular 
hoi
es of the roughness pattern, lo
al problemshave obvious analyti
al solutions9 so that it is possible to obtain self 
ontainedReynolds equations for p0 and one single saturation fun
tion �.Theorem 2.5 (Transverse roughness). If � does not depend on y2, the homog-enized problem (P?� ) is8>><>>:Find (p0; �) 2 V � L1(
) su
h that:Z
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄ ���x1 + Z�? �?[h[p0℄�; 8 � 2 Vp0 � 0; p0 (1� �) = 0; 0 � � � 1; a.e. in 
,with the following homogenized 
oeÆ
ients:A[p0℄(x) = 0B� 1̂h�3[p0℄(x) 00 ĥ3[p0℄(x)1CA ; b?[p0℄(x) = ĥ�2[p0℄(x)ĥ�3[p0℄(x) :Moreover (P?� ) admits at least (p0;�) as a solution where (p0; �0) is the two-s
alelimit of (p"; �") (solution of problem (P"� )), and the link between the mi
ros
opi
 /ma
ros
opi
 saturation fun
tion is given by:�(x) = h 1̂h�2[p0℄ ^� �0h2[p0℄�i(x):Theorem 2.6 (Longitudinal roughness). If � does not depend on y1, the ho-mogenized problem (P?� ) is8>><>>:Find (p0; �) 2 V � L1(
) su
h that:Z
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄ ���x1 + Z�? �?[h[p0℄�; 8 � 2 Vp0 � 0; p0 (1� �) = 0; 0 � � � 1; a.e. in 
,with the following homogenized 
oeÆ
ients:A[p0℄(x) = 0B� ĥ3[p0℄(x) 00 1̂h�3[p0℄(x) 1CA ; b?[p0℄(x) =℄h[p0℄(x):



26 G. Bayada, S. Martin and C. V�azquezMoreover (P?� ) admits at least (p0;�) as a solution where (p0; �0) is the two-s
alelimit of (p"; �") (solution of problem (P"� )), and the link between the mi
ros
opi
 /ma
ros
opi
 saturation fun
tion is given by:�(x) = ^(�0 h[p0℄)℄h[p0℄ (x):3. Numeri
al examplesIn this se
tion, the numeri
al simulation of mi
ro-elastohydrodynami
 
onta
ts isperformed to illustrate the theoreti
al results of 
onvergen
e stated in the previousse
tions. For the numeri
al solution of the " dependent problems and their 
orre-sponding homogenized one, we propose an algorithm based on a �xed-point iterationbetween the hydrodynami
 (Elrod-Adams) problem and the elasti
 (Hertz) one13.Furthermore, the hydrodynami
 problem is solved using the 
hara
teristi
s methodto deal with the 
onve
tion term 
ombined with a �nite element spatial dis
retiza-tion and a duality method for the maximal monotone nonlinearity asso
iated tothe Elrod-Adams model. The elasti
 problem is approximated by using appropriatequadrature formulas in Equation (1.3). More pre
isely, the triangle edges midpointsare 
hosen as integration nodes. The 
ombination of these numeri
al te
hniqueshas been already su

essfully used in previous papers dealing with the elastohydro-dynami
 related roughless problems13;14. We adress the numeri
al simulation of adimensionless ball bearing 
onta
t, so that for a domain 
 =℄ � 4; 2[�℄� 2; 2[, wepose the problem8>><>>:Find (p"; �") 2 V � L1(
) su
h that:Z
 h3"[p"℄ e��p" rp"r� = ��Z
 �" h"[p"℄ ���x1 + Z�? �?h"[p"℄��; 8 � 2 Vp" � 0; p" (1� �") = 0; 0 � �" � 1; a.e. in 
,where the e�e
tive gap 
an be written as h"[p"℄(x) = h"r(x) + hd[p"℄(x), the rigidand elasti
 
ontributions being given byh"r(x) = h0 + x21 + x222 + �1 sin�12�(x1 + 4)" �+ �2 sin�8�(x2 + 2)" � ;hd[p"℄(x) = 2�2 Z p"(z)p(x1 � z1)2 + (x2 � z2)2 dzwith parameters h0 = 0:6, (�1; �2) = (0:85h0; 0) for transverse roughness and(�1; �2) = (0; 0:85h0) for longitudinal roughness. Other parameters involved inthe equation are taken to � = 0:42, � = 2:062 and �? = 0:3. The previous datahave been taken from dimensionless equations asso
iated to a small load imposedproblem14. The s
aling is made from realisti
 real data with respe
t to a given load.The homogenized problem, in the transverse or longitudinal 
ase, 
an be written
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al EHL Problem 27under the form8>><>>:Find (p0; �) 2 V � L1(
) su
h that:Z
 e��p0 �a1[p0℄ 00 a2[p0℄� � rp0r� = ��Z
 �b[p0℄ ���x1 + Z�? �?
[p0℄��; 8 � 2 Vp0 � 0; p0 �1� �� = 0; 0 � � � 1; a.e. in 
In Table 1, we present the fun
tional 
oeÆ
ients a1, a2, b and 
 that appear in thehomogenized problem for purely transverse and purely longitudinal roughness 
aseswhi
h have been partially 
omputed with MATHEMATICA Software Pa
kage.Transverse roughness Longitudinal roughnessh[p℄(x; y) hr(x) + hd[p℄(x) + �1 sin �2�y1� hr(x) + hd[p℄(x) + �2 sin �2�y2�a1[p0℄ 2�(hr + hd[p℄)2 � �21�5=22(hr + hd[p℄)2 + h2r (hr + hd[p℄)3 + 32 (hr + hd[p℄) �22a2[p0℄ (hr + hd[p℄)3 + 32 (hr + hd[p℄) �21 2 �(hr + hd[p℄)2 � �22�5=22(hr + hd[p℄)2 + �22b[p0℄ 2(hr + hd[p℄) (hr + hd[p℄)2 � �212(hr + hd[p℄)2 + �21 hr + hd[p℄
[p0℄ hr + hd[p℄ hr + hd[p℄Table 1. Elastohydrodynami
 homogenized 
oeÆ
ients3.1. Case 1: transverse roughness testsAlthough numeri
al tests have been performed for di�erent spatial meshes in orderto validate the 
onvergen
e of the methods, we just present the results 
orrespondingto �x1 = 0:025 and �x2 = 0:05 so that we have 38400 triangles and 19521 verti
es.Furthermore, the arti�
ial time step in the 
hara
teristi
s method5;13, �t = �x1;the Bermudez-Moreno parameters are ! = 1 and � = 1=(2!) ; the stopping testin all algorithms is equal to Æ = 10�5 (
orresponding to the relative error in thedis
rete L2 norm between two iterations).The 
omputer results illustrate the 
onvergen
es stated in previous se
tions.First in Fig.2, we show the strong 
onvergen
e of the pressure to the homogenizedone, when " tends to 0, by plotting the 
uts at x2 = 0, for di�erent values of " and thehomogenized solution. In Fig.3, the homogenized pressure over the whole domainis presented. In Fig.4 and 5, analogous plots for the deformation are displayed toillustrate the 
onvergen
e and the homogenized distribution. Finally, in Fig.6 and7, the results for the saturation are shown. To be noti
ed is the weak 
onvergen
e ofthe saturation, linked to the existen
e of os
illations whi
h are not damped, unlikethe pressure and deformation. We 
an also noti
e that the deformation os
illationsare damped very easily (when 
ompared to the pressure os
illations). This is due tothe regularizing e�e
ts of the Hertz kernel (whi
h is a 
onvolution-like operator).
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Fig. 2. Elastohydrodynami
 pressure at x2 = 0 (transverse roughness)
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Fig. 3. Elastohydrodynami
 homogenized pressure (transverse roughness)
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Fig. 4. Elastohydrodynami
 deformation at x2 = 0 (transverse roughness)
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Fig. 5. Elastohydrodynami
 homogenized pressure (transverse roughness)
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Fig. 6. Elastohydrodynami
 saturation at x2 = 0 (transverse roughness)
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Fig. 7. Elastohydrodynami
 homogenized saturation (transverse roughness)
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al EHL Problem 313.2. Case 2: longitudinal roughness testsIn this 
ase, we present the results 
orresponding to �x1 = 0:06 and �x2 = 0:02so that we have 40000 triangles and 20301 verti
es.The 
omputer results illustrate the 
onvergen
es stated in previous se
tions.First in Fig.8, we show the strong 
onvergen
e of the pressure to the homogenizedone, when " tends to 0, by plotting the 
uts at x1 = �2:5 (
orresponding to themaximum homogenized pressure), for di�erent values of " and the homogenizedsolution. In Fig.9, the homogenized pressure over the whole domain is presented.In Fig.10 and 11, the homogenized deformation and saturation over the wholedomain are presented. Noti
e that at x1 = �2:5, all saturations are identi
ally 1.3.3. In
uen
e of the elasti
 
ontribution over the roughness e�e
tsWe 
ompare the results, obtained in the transverse roughness 
ase (Case 1), be-tween the hydrodynami
 and elastohydrodynami
 
on�gurations.In Fig.12 and 13, we present the pressure and saturation in the following 
ases:� hydrodynami
 roughless solution (�1 = �2 = k = 0)� hydrodynami
 homogenized solution (�1 6= 0, �2 = k = 0)� elastohydrodynami
 roughless solution (�1 = �2 = 0, k 6= 0)� elastohydrodynami
 homogenized solution (�1 6= 0, �2 = 0, k 6= 0)It allows us to see the in
uen
e of the roughness over the pressure distributionin ea
h 
ase (hydrodynami
 or elastohydrodynami
), but also the importan
e ofthe roughness over the maximum pressure. The roughness e�e
ts are 
learly moreimportant in the hydrodynami
 regime than in the elastohydrodynami
 one.A
knowledgmentsThis work has been partially supported by the Eurodo
 program (Rhone-Alpesregion) and the MCYT Resear
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Fig. 8. Elastohydrodynami
 pressure at x1 = �2:5 (longitudinal roughness)
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 homogenized pressure (longitudinal roughness)
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Fig. 10. Elastohydrodynami
 homogenized deformation (longitudinal roughness)
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 homogenized saturation (longitudinal roughness)
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