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HOMOGENIZATION OF A NONLOCALELASTOHYDRODYNAMIC LUBRICATION PROBLEM:A NEW FREE BOUNDARY MODEL�G. BayadaMAPLY CNRS UMR-5585 / LAMCOS CNRS UMR-5514, bat L. de Vini, INSA de Lyon69621 Villeurbanne Cedex, Franeguy.bayada�insa-lyon.frS. MartinMAPLY CNRS UMR-5585, bat L. de Vini, INSA de Lyon69621 Villeurbanne Cedex, Franesebastien.martin�insa-lyon.frC. V�azquezDepartamento de Matem�atias, Faultad de Inform�atia,Universidade da Coru~na, Campus Elvi~na, 15071-A Coru~na, Espa~naarlosv�ud.esThe present paper deals with the homogenization of a lubriation problem, using two-sale onvergene tehniques and periodi unfolding methods. We study in partiularthe Reynolds-Hertz model, whih takes into aount elastohydrodynami deformationsof the upper surfae, when highly osillating roughness e�ets our. The diÆulty ariseswhen onsidering avitation free boundary phenomena, leading to highly nonlinear andnonloal problems.Keywords: Elastohydrodynami lubriation; piezovisous uid; Elrod-Adams model; ho-mogenization; two-sale onvergene; numerial simulation.AMS Subjet Classi�ation: 76D08, 35B40, 35J85, 76M50, 76M100. Statement of the problemThe greatly inreasing number of industrial tehnial devies involving the pres-ene of lubriated ontats motivates interest in studying more suitable models forthe pratial situations. Considering an elasti rolling ball or ylinder and a rigidplane leads to an elastohydrodynami lubriation problem, taking into aount thepossibility of the ball/ylinder deformation. From the pratial point of view, theintrodution of surfae periodi roughness during manufaturing proesses resultsto be suitable. In this rough elastohydrodynami ontat setting, it is important to�June 2004 1



2 G. Bayada, S. Martin and C. V�azquezstate adequate mathematial models in order to perform the numerial simulationof the devies. For this, one possible tool is provided by the homogenization teh-nique analyzed in the present paper.The mathematial model, to be further detailed later, is governed by the follow-ing set of highly oupled and nonlinear equations:r � �h[p℄3 e��p rp� = ��x1 (�h[p℄)p � 0; 0 � � � 1; p(1� �) = 0;where h[p℄, whih is the e�etive gap between two lose surfaes, ontains a givenrigid ontribution hr and an elasti one, whih strongly depends on the main un-known p (lubriant pressure) in the following nonloal form:h[p℄ = hr + Z
 k(�; z)p(z) dz;the kernel k depending on the kind of ontat. Moreover, the uid saturation, �, isrelated to the pressure by means of the Heaviside multivalued operator H and theexponential term takes into aount piezovisous e�ets.Basi aspets of the early developped elastohydrodynami theory have beenstated by Dowson and Higginson11, where the three main ommon features of thiskind of problems are already quoted: the uid hydrodynami displaement, the solidelasti deformation and the air bubble generation. Thus, the Reynolds equation,linear Hertz ontat theory and di�erent avitation models try to mathematiallyanalyse these three phenomena. Moreover, the modi�ation of the initial uid vis-osity due to the presene of suÆiently high values of lubriant pressure might haveto be taken into aount, so that the omplete modelling is extended to piezovisousuids. Thus the omplete model takes into aount the following aspets:� The Reynolds equation has been used for a long time to desribe the be-haviour of a visous ow between two lose surfaes in relative motion23.It an be written as: r � �h3r6�rp� = v0 ��x1�hr�where p is the pressure distribution, hr the gap between the two surfaes,� the lubriant visosity and v0 the speed of the lower surfae (the uppersurfae is assumed to be �xed). The transition of the Stokes equation tothe Reynolds equation has been proved by Bayada and Chambat4.� However, the earlier equation does not take into aount avitation phe-nomena: avitation is de�ned as the rupture of the ontinuous �lm due tothe formation of air bubbles and makes the Reynolds equation no longervalid in the avitation area. In order to make it possible, various modelshave been used, the most popular perhaps being variational inequalitieswhih have a strong mathematial basis but lak physial evidene. Thus,we use the Elrod-Adams model, whih introdues the hypothesis that the



Homogenization of a nonloal EHL Problem 3avitation region is a uid-air mixture and an additional unknown � (thesaturation of uid in the mixture) (see referenes15;3).� Atually, elastohydrodynami lubriation (EHL) ours between point orline ontat, so all the loading is onentrated over a small ontat area.Typial appliations are rolling element bearings, most gears, and ams andtappets11. The onentrated ontat results in high peak pressures of 1-2GPa between the surfaes. This is too high to be supported by a normal hy-drodynami �lm, and appliation of simple hydrodynami theory preditsnegligible oil �lm thikness. In pratie �lms are formed and have thiknessomparable to the surfae roughness of normal gear and bearing materials.This is beause the high pressure has two bene�ial e�ets unaountedfor in hydrodynamis. Firstly, elasti attening of the ontating surfaesours. Seondly, the high pressure greatly inreases the visosity of thelubriant in the ontat. Elastohydrodynami lubriation is onsequentlyanalysed using a ombination of Reynold's equation, elastiity theory (theHertz equation) and a lubriant visosity-pressure equation. Thus, intro-duing now the elasti deformation of the surfaes due to the uid pressureand assuming the Hertzian ontat theory for a parameter regime that or-responds to low speeds, small visosity at ambient pressure or small elastimodulus, the e�etive gap is, in fat, linked to the pressure. Let us men-tion that piezovisous properties of the uid have to be taken into aountin realisti appliations. Thus, the visosity is no longer onstant and alsodepends on the pressure2.The mathematial analysis of di�erent elastohydrodynami problems taking intoaount the previous quoted features has been treated in the literature for thevariational inequality avitation model16;18;22;24 and for the Elrod-Adams model7;12.The e�et of surfaes periodi roughness on the behaviour of hydrodynamiand elastohydrodynami magnitudes has been treated in numerous works. Some ofthe theoretial studies also inlude numerial examples whih show how signi�antpressure and deformation perturbations appear due to the presene of surfae as-perities, either in the hydrodynami regime8;9;19 or in the elastohydrodynami one6.For the partiular point and linear elastohydrodynami ontats here treated, al-though some numerial methods have been proposed in the literature17, the rigorousmathematial analysis to justify the homogenized models has not been performedyet. Furthermore, in this paper, the more realisti Elrod-Adams model is onsideredinstead of the variational inequality one6. Notie that for the numerial simulationof miro-elastohydrodynami ontats, the statement of well justi�ed homogenizedproblems prevents from using extremely high numbers of mesh points to auratelyompute the involved physial magnitudes (when diretly solving the small param-eter dependent problems).Now, we present the full lubriation model, inluding avitation phenomena andpiezovisous elastohydrodynami aspets.



4 G. Bayada, S. Martin and C. V�azquez1. Mathematial formulation of the EHL problemWe onsider a retangular domain 
 =℄� 2l; l[�℄� l; l[; �? denotes the left vertialboundary and � = �
 n�? (see for instane Fig. 1). We suppose that the followingassumptions are satis�ed.
x1

x2
�?

3l
2l

Fig. 1. EHL domainAssumption 1.1 (Rigid ontribution to the gap). The lassial approxima-tion of the rigid gap11 is given by the expressionhr(x) =8><>:h0 + x21 + x222R ; for ball bearingsh0 + x21R ; for linear bearings (1.1)that represents a paraboli approximation for a given sphere-plane (point ontat)or ylinder-plane (line ontat) gap, R being the sphere or ylinder setion radius.Remark 1.1. The positive onstant h0 orresponds to the gap at the point nearestto ontat. Clearly, the ondition0 < h0 � hr(x) � h1; with h0, h1 two onstants (1.2)is satis�ed in the bounded domain 
.As previously mentioned, in the Hertz theory, the e�etive gap is linked to thepressure through the following relationshipAssumption 1.2 (Deformable ontribution to the gap). The e�etive gapbetween the surfaes is given byh[p℄(x) = hr(x) + Z
 k(x; z)p(z) dz; 8 x 2 
 (1.3)



Homogenization of a nonloal EHL Problem 5where hr satis�es Assumption 1.1, and k(x; z) isk(x; z) =8><>: 0 log ��� 1 � z1x1 � z1 ���; for line ontats0p(x1 � z1)2 + (x2 � z2)2 ; for point ontats, (1.4)where 0 > 0 and 1 � maxf���x1���; x 2 �
g.Remark 1.2. Clearly k is a positive funtion and there exists ~K > 0 suh thatk(x; :)L1(
) � ~K (1.5)uniformly with respet to x. Let us notie that the expression of h ontains a rigidterm, hr, and an additional term due to the surfae deformation.Finally let us take into aount the piezovisous properties of the lubriant, i.e.the visosity is no longer onstant.Assumption 1.3 (Piezovisosity law). The visosity obeys the Barus law2:� = �0 e�p; (1.6)where � � 0 and �0 > 0 denote the piezovisosity onstant and the zero pressurevisosity repetively.The strong formulation of the problem is:x 2 
+ : 8<:r ��h3[p℄(x)6�0 e��p(x) rp(x)� = v0 ��x1��(x) h[p℄(x)�p(x) > 0 and �(x) = 1x 2 
0 : 8<: v0 ��x1��(x) h[p℄(x)� = 0p(x) = 0 and 0 � �(x) � 1x 2 � : 8<: h3[p℄(x)6�0 e��p(x) �p(x)�n = v0 (1� �(x))h[p℄(x) os(~n;~i)p(x) = 0with the boundary onditionsv0 �h[p℄� h3[p℄6�0 e��p �p�n = v0 �?h[p℄ on �?p = 0 on �where v0 denotes the veloity of the lower surfae in the x1 diretion, �? is a supplyparameter belonging to [0; 1℄, ~n represents the unit normal vetor to � pointing to
0, ~i is the unit vetor in the x1 diretion; and the sets appearing earlier are given



6 G. Bayada, S. Martin and C. V�azquezby 
+ = fx 2 
; p(x) > 0g (lubriated region);
0 = fx 2 
; p(x) = 0g (avitated region);� = �
+ [ 
 (free boundary)Thus, working in dimensionless data (6�0v0 = 1 for instane), the piezovisouselastohydrodynami problem an be written as(P�)8>><>>:Find (p; �) 2 V � L1(
) suh that:Z
 h3[p℄ e��p rpr� = Z
 � h[p℄ ���x1 + Z�? �?h[p℄ �; 8 v 2 Vp � 0; p (1� �) = 0; 0 � � � 1; a.e. in 
,where the funtional spae V is de�ned as V = �v 2 H1(
); vj� = 0	.The boundary data, �?, satis�es:Assumption 1.4 (Saturation on the boundary).(i) �? 2 L1(�?),(ii) 0 � �?(z) � 1, for a.e. z 2 �?.Finally, let us onsider the following tehnial assumption.Assumption 1.5 (Tehnial hypothesis on the data). The Sobolev exponentr? > 2, the Sobolev onstant C(
) (the norm of the trae mapping from H1(
) toL2(�?)) and the problem parameters satisfy the ondition� e C(
)h20 ���
���(1=2)�(1=r?) 2r?=(r?�2) � 1; (1.7)We have the following existene theorem:Theorem 1.1 (Durany, Gar��a, V�azquez12). Under Assumptions 1.1{1.5,problem (P�) admits at least a solution (p; �) satisfying the following estimates:pH1(
) � C1 and pL1(
) � C2;where C1 and C2 depend on �, h0, h1, eK, �?, 
, �?, r?.Remark 1.3. The omplete proof is given by Durany, Gar��a and V�azquez12. It isbased on the introdution of a penalized problem and Shauder �xed-point theorem.We point out the fat that the earlier estimates are not a priori estimates. Thus, weannot guarantee that eah solution of the problem satis�es the earlier estimates.Assumption 1.5 guarantees an existene result if � is small enough: it holds if thephysial on�guration is not too far from the isovisous ase.Remark 1.4. Other boundary onditions might be taken into aount: a similarresult has been proved with Dirihlet onditions on the pressure by Bayada, El



Homogenization of a nonloal EHL Problem 7Alaoui and V�azquez7. The homogenization study that follows an be easily adaptedto this spei� type of boundary onditions.The next setions deal with homogenization of the lubriation problem, us-ing two-sale onvergene tehniques whih have been introdued by Nguetseng21,and further developped by Allaire1, Cioranesu, Damlamian and Griso10, andLukkassen, Nguetseng and Wall20.2. Homogenization of the EHL problemIn this setion, we state some preliminary results before the homogenization proessof the lubriation problem. Let us introdue the mirosale domain Y =℄0; 1[�℄0; 1[.The nominal gap, i.e. without elasti deformation, is now desribed by the nominalregular thikness hr to whih one must add the roughness defaults around theaverage gap. Thus, we onsider that the nominal gap is desribed by:h"r(x) = hr(x) + ��x" � ;where hr has been de�ned in Assumption 1.1 and � satis�es:Assumption 2.1 (Roughness pattern).(i) � 2 C℄(Y ) = �v 2 C0(Y ); v is Y periodi	,(ii) 9 �max > 0; �L1(Y ) � �max < h0.Remark 2.1. Assumptions 1.1 and 2.1 guarantee the uniform oeriveness (w.r.t.the parameter ") of the bilinear form; in fat, we have8x 2 
; 0 < h0 � �L1(Y ) � h"r(x) � h1 + �L1(Y ): (2.1)Let us remark that it leads us to onsider the roughness of the upper surfae,assumed to be �xed, so that the x variable beomes highly osillating. Thus itmeans that only the rigid ontribution to the gap is rough.Now let us de�ne the e�etive gaps:De�nition 2.1. For any q 2 L1(
), let h[q℄ and h"[q℄ be the funtions de�ned by:h[q℄ : 
� Y �! R(x; y) �! h[q℄(x; y) = hr(x) + �(y) + Z
 k(x; z)q(z) dz;h"[q℄ : 
 �! Rx �! h"[q℄(x) = h[q℄�x; x"� :Thus, we introdue the rough problem:(P"� )8>><>>:Find (p"; �") 2 V � L1(
) suh that:Z
 h3"[p"℄e��p"rp"r� = Z
 �"h"[p"℄ ���x1 + Z�? �?h"[p"℄ �; 8 � 2 Vp" � 0; p" (1� �") = 0; 0 � �" � 1; a.e. in 
.



8 G. Bayada, S. Martin and C. V�azquezIn order to get an existene theorem, we adapt the assumptions to the roughproblem. Therefore, Assumption 1.5 is replaed by:Assumption 2.2. The Sobolev exponent r? > 2, the Sobolev onstant C(
) (thenorm of the trae mapping from H1(
) to L2(�?)) and the problem parameterssatisfy the ondition� e C(
)�h0 � �L1(
)�2 ���
���(1=2)�(1=r?) 2r?=(r?�2) � 1: (2.2)Thus we get:Theorem 2.1. Under Assumptions 1.1{1.4, 2.1 and 2.2, for any " > 0, problem(P"� ) admits at least a solution (p"; �") satisfying the following estimates:rp"L2(
) � C3; p"L1(
) � C4; �"L1(
) � 1; (2.3)where C3 and C4 only depend on �, h0 � k�kL1(
), h1, eK, �?, 
, �?, r?.Remark 2.2. In mehanial appliations (ball or linear bearings), typial rough-ness is assumed to be either transverse or longitudinal. However, suh an assumptionon the roughness form is not neessary and more general shapes may be introdued.Our purpose is to disuss the behaviour of problem (P"� ) when " goes to 0, usingtwo-sale onvergene tehniques. From now on, we suppose that Assumptions 1.1{1.4, 2.1 and 2.2 are satis�ed, in partiular in Subsetions 2.2{2.5.2.1. Preliminaries to the two-sale onvergene tehniqueFirst we reall some useful de�nitions and results for the two-saleonvergene1;10;20.Lemma 2.1. The separable Banah spae L2(
;C℄(Y )) is dense in L2(
 � Y ).Moreover, if f 2 L2(
;C℄(Y )), then x 7! �"(f)(x) = f(x; x=") is a measurablefuntion suh that �"(f)L2(
) � fL2(
;C℄(Y )):De�nition 2.2. The sequene u" 2 L2(
) is said two-sale onverging to a limitu0 2 L2(
� Y ) if for any  2 L2(
;C℄(Y )) one haslim"!0 Z
 u"(x) �x; x" � dx = Z
 ZY u0(x; y) (x; y) dy dx:Lemma 2.2. Let u" be a bounded sequene in L2(
). Then there exists u0 2 L2(
�Y ) suh that, up to a subsequene, u" two-sale onverges to u0.Lemma 2.3. Let u" be a bounded sequene in H1(
), whih weakly onverges toa limit u0 2 H1(
). Then u" two-sale onverges to u0 and there exists a funtion



Homogenization of a nonloal EHL Problem 9u1 2 L2(
;H1(Y )=R) suh that, up to a subsequene, ru" two-sale onverges toru0 +ryu1.Let us now briey introdue periodi unfolding methods10:De�nition 2.3. For any x 2 R2 , let be [x℄Y the unique integer ombinationPnj=1 kjbj of the periods suh that x � [x℄Y belongs to Y . We also de�ne fxgY =x� [x℄Y 2 Y , so that, for eah x 2 R2 , one hasx = " �hx" iY + nx"oY �:Then the unfolding operator T" : L2(
) ! L2(
 � Y ) is de�ned as follows: forw 2 L2(
), extended by zero outside 
,T"(w)(x; y) = w �" hx" iY + " y� ; for x 2 
 and y 2 Y .Let us now reall Proposition 2 of Cioranesu, Damlamian and Griso10:Proposition 2.1. Let fw"g be a bounded sequene in L2(
). Then the followingpropositions are equivalent:(i) T"(w") weakly onverges to w0 in L2(
� Y ).(ii) w" two-sale onverges to w0.2.2. Two-sale onvergene results for problem (P"�)Lemma 2.4. There exists p0 2 V suh that, up to a subsequene:p" * p0 in H1(
) and p" ! p0 in L2(
):We have also the following two-sale onvergenes:(i) p" two-sale onverges to p0. Moreover, there exists p1 2 L2(
;H1℄ (Y )=R) and asubsequene "0, still denoted ", suh that rp" two-sale onverges to rp0+ryp1.(ii) There exists �0 2 L2(
�Y ) and a subsequene "", still denoted ", suh that �"two-sale onverges to �0.Moreover, p0 � 0 a.e. in 
.Proof. The onvergene results are the onsequene of Estimates 2.3 (see Theorem2.1), whih do not depend on ", and Lemmas 2.2 and 2.3.Proposition 2.2. 0 � �0 � 1 and p0 (1� �0) = 0 a.e. in 
� Y .Proof.� 1st step - As 0 � �" a.e. in 
 and using the de�nition of the unfolding operator,



10 G. Bayada, S. Martin and C. V�azquezone has that 0 � T (�") a.e. in 
 � Y . By Proposition 2.1, one knows that T"(�")weakly onverges to �0 in L2(
� Y ). Thus one hasZ
�Y T (�")� �! Z
�Y �0�; 8� 2 L2(
� Y ): (2.4)We rewrite �0 as �0 = �+0 � ��0 (with w+ = max(w; 0) and w� = �min(w; 0), forany w 2 L2(
� Y )). Then using ��0 as a test-funtion in Equation (2.4):A" = Z
�Y T (�")��0 �! � Z
�Y (��0 )2 = A � 0:Sine T (�") � 0 a.e. in 
� Y , A" is a sequene of positive numbers onverging toa non positive number. Then A = 0 and ��0 = 0 a.e. in 
� Y . The same method isused to prove 0 � 1� �0 a.e. in 
� Y .� 2nd step - The result is also easily obtained using periodi unfolding methods.Indeed by Lemma 2.4 and Proposition 2.1,T"(p") ! p0; in L2(
� Y ),T"(�") * �0; in L2(
� Y ).Thus one gets:Z
�Y T" (p" (1� �")) = Z
�Y T"(p") T"(1� �") �! Z
�Y p0 (1� �0):Sine p"(1� �") = 0, passing to the limit givesZ
�Y p0 (1� �0) = 0:Moreover sine p0 � 0 a.e. in 
 and 1� �0 � 0 a.e. in 
 � Y (see Lemma 2.4 andthe �rst part of Proposition 2.2), the proof is onluded.Lemma 2.5. For 1 � p � +1,(i) Z
 k(�; z) p"(z) dz strongly onverges to Z
 k(�; z) p0(z) dz in Lp(
),(ii) Z
 k(�; z) p"(z) dz strongly onverges to Z
 k(�; z) p0(z) dz in Lp(�?).Proof.� Proof of (i)Sine k satis�es Equation (1.4), one gets by Lemma 1 of Oden and Wu22:maxx2�
 ��� Z
 k(x; z)(p"(z)� p0(z)) dz��� � C5(k) p" � p0Lq(
); (2.5)for any q whih an be written as q = (2� s)=(1� s) > 2 with 0 < s < 1. Moreoverby Rellih-Kondrahov theorem, one has H1(
) ,! Lr(
); 8 r 2 [1;+1[. Sine



Homogenization of a nonloal EHL Problem 11p" * p0 in H1(
) (see Lemma 2.4), then p" ! p0 in Lq(
) and Z
 k(�; z)(p"(z)� p0(z)) dzL1(
) �! 0:At last, we gain (for 1 � p < +1) Z
 k(�; z)(p"(z)� p0(z)) dzLp(
) � ���
���1=p Z
 k(�; z)(p"(z)� p0(z)) dzL1(
);the result is proved.� Proof of (ii)For p = +1, the result is immediatly obtained from Inequality (2.5).For 1 � p < +1, let us ompute u" =  Z
 k��; z� �p"(z)� p0(z)� dzLp(�?).u" = �Z�? h Z
 k (s; z) �p"(z)� p0(z)� dzip ds�1=p� ����?���1=p maxx2�
 ��� Z
 k��; z� �p"(z)� p0(z)� dz���;and using Inequality (2.5) givesu" � ����?���1=p C5(k) p" � p0Lq(
);so that u" exists and tends to 0.Now we analyse the onvergene of eah term of the variational formulation ofproblem (P"� ):Lemma 2.6. One has the following two-sale onvergenes:(i) h3"[p"℄ e��p"rp" two-sale onverges, up to a subsequene, toh3[p0℄e��p0 (rp0 +ryp1).(ii) �"h"[p"℄ two-sale onverges, up to a subsequene, to �0h[p0℄.Proof. Part (i) is proved in three steps:� 1st step - Let us prove that, up to a subsequene, e��p"rp" two-sale on-verges to e��p0 (rp0 +ryp1):Sine e��p"rp" is obviously bounded in L2(
) (see Estimates (2.3)), it is suÆientto prove (by Proposition 1 in Lukkassen, Nguetseng and Wall20) that for every� 2 �D(
;C1℄ (Y ))�2:Z
 e��p"(x) rp"(x) ��x; x" � dx �! Z
�Y e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx



12 G. Bayada, S. Martin and C. V�azquezDe�ning v" as the di�erene between the two integrals, our purpose is to prove thatv" goes to 0. Thus, de�ning the following termsv1" = Z
 �e��p"(x) � e��p0(x)� rp"(x) ��x; x"� dx;v2" = Z
 e��p0(x) rp"(x) ��x; x" � dx;v3" = Z
�Y e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx;we have: v" = v1" + v2" � v3" . Then, sine x 7! e��x is �-Lipshitz ontinuous on R+and using the Cauhy-Shwartz inequality, we have���v1" ��� � Z
 � ���p"(x)� p0(x)��� ���rp"(x) � ��x; x"� ��� dx� � �L1(
�Y ) rp"L2(
) p" � p0L2(
):Then v1" goes to 0 by Estimates (2.3) and Lemma 2.4. Moreover, as the funtion(x; y) 7! e��p0(x)�(x; y) is obviously an admissible test-funtion for the two-saleonvergene, then v2" � v3" also goes to 0 (by Lemma 2.4-(i)).� 2nd step - The sequene h3"[p0℄ e��p"rp" two-sale onverges, up to a subse-quene, to h3[p0℄ e��p0 (rp0 +ryp1). Indeed the sequene being obviously boundedin L2(
) and using the result established in the 1st step, it is suÆient to provethat, for any � 2 �D(
;C1℄ (Y ))�2, the funtion(x; y) 7! h3[p0℄(x; y) �(x; y)is an admissible test funtion for the two-sale onvergene. The result is easilyobtained using the properties of h.� 3rd step - h3" [p"℄e��p"rp" two-sale onverges, up to a subsequene, to thefuntion h3[p0℄e��p0 (rp0 +ryp1). Indeed, the sequene being bounded in L2(
),it is suÆient to prove that, for any � 2 D(
;C1℄ (Y )),Z
 h3"[p"℄(x) e��p"(x) rp"(x) ��x; x" � dx�! Z
�Y h3[p0℄(x; y) e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx:De�ning w" as the di�erene between the two integrals, our purpose is to prove that



Homogenization of a nonloal EHL Problem 13w" goes to 0. Thus,w" = Z
 �h3"[p"℄(x)� h3"[p0℄(x)� e��p"(x) rp"(x) ��x; x"� dx| {z }w1"+ Z
 h3"[p0℄(x) e��p"(x) rp"(x) ��x; x" � dx| {z }w2"� Z
�Y h3[p0℄(x; y) e��p0(x) (rp0(x) +ryp1(x; y)) �(x; y) dy dx:| {z }w3"Then, denoting C6 = 3�h1+ k�kL1(
)+ eKC4�2 (see Inequalities 1.5 and 2.3), sinez 7! �hr(x) + �(y) + z�3 is Lipshitz ontinuous, we have���w1" ��� � Z
 ���h3"[p"℄(x)� h3" [p0℄(x)��� ���rp"(x) ���x; x"� ��� dx� C6 Z
 ��� Z
 k(x; z) (p"(z)� p0(z)) dz��� ���rp"(x) � ��x; x"� ��� dx:Using the Cauhy-Shwartz inequality, Lemma 2.1 and Estimates (2.3), one has���w1" ��� � C3 C6 �L2(
;C℄(Y ))  Z
 k(�; z) (p"(z)� p0(z)) dz L1(
):Then w1" tends to 0 by Lemma 2.5-(i). Moreover w2" �w3" goes to 0 using the resultestablished at the 2nd step. Thus we have proved part (i) of the lemma.Part (ii) is proved using the same sheme:� 1st step - The sequene �" h"[p0℄ two-sale onverges, up to a subsequene,to �0 h[p0℄. Indeed, sine the sequene is bounded in L2(
) and �" two-sale on-verges to �0, it is suÆient to prove that, for any � 2 �D(
;C1℄ (Y ))�, the funtion(x; y) 7! h[p0℄(x; y) �(x; y) is an admissible test funtion for the two-sale onver-gene. The result is easily obtained using the properties of h.� 2nd step - The sequene �" h"[p"℄ two-sale onverges, up to a subsequene, tothe funtion �0 h[p0℄. Indeed, the sequene being bounded in L2(
), it is suÆientto prove that, for any � 2 D(
;C1℄ (Y )),Z
 �" h"[p"℄(x) ��x; x"� dx �! Z
�Y �0(x; y) h[p0℄(x; y) �(x; y) dy dx:De�ning t" as the di�erene between the two integrals, our purpose is to prove that



14 G. Bayada, S. Martin and C. V�azquezt" goes to 0. Rewriting t" ast" = Z
 ��"(x) h3"[p"℄(x)� �"(x) h3"[p0℄(x)� ��x; x" � dx| {z }t1"+ Z
 �"(x) h"[p0℄(x) ��x; x"� dx� Z
�Y �0(x; y) h[p0℄(x; y) �(x; y) dy dx;| {z }t2"using the inequality k�"kL1(
) � 1, the Cauhy-Shwartz inequality and Lemma2.1, we have���t1"��� � Z
 ���h"[p"℄(x)� h"[p0℄(x)��� � ����(x; x" )��� dx� Z
 ��� Z
 k(x; z) p"(z) dz � Z
 k(x; z) p0(z) dz��� ����(x; x" )��� dx� �"(�)L2(
) Z
 k(�; z) p"(z) dz � Z
 k(�; z) p0(z) dz L2(
)� �L2(
;C℄(Y )) Z
 k(�; z) p"(z) dz � Z
 k(�; z) p0(z) dz L2(
)so that t1" goes to 0 by Lemma 2.5-(i). Moreover t2" goes to 0 using the resultestablished at the 1st step. Thus we have proved part (ii) of the lemma.Now, we are interested in the onvergene of the boundary term:Lemma 2.7. Let  denote the trae operator and let us de�ne[h[p0℄ =  �hr(�) + Z 10 �((0; y2)) dy2 + Z
 k(�; z) p0(z) dz� :Then, one has:  (h"[p"℄)*[h[p0℄ in L2(�?).Proof. In the boundary integral of problem (P"� ), h"[p"℄ has to be taken in thesense of traes. Thus, sine we haveh"[p"℄(x) = hr(x) + ��x"�+ Z
 k(x; z) p"(z) dz;it an be written as the sum of a funtion whih belongs to L1(�?), namely�hr(�) + Z
 k(�; z) p"(z) dz� ;and the trae of the osillating funtion x 7! �"(�)(x) = �(x=") (aording to thede�nition of the operator �" given in Lemma 2.1), i.e.(�"(�)(�)):Thus, let us study the onvergene of eah term w.r.t. ":



Homogenization of a nonloal EHL Problem 15� First, the following onvergene holds:�hr(�) + Z
 k(�; z) p"(z) dz� �!  �hr(�) + Z
 k(�; z) p0(z) dz� ; in L2(�?).Indeed, by linearity, the di�erene of these two terms is equal to the trae ofZ
 k(�; z) (p"(z)� p0(z)) dzwhih strongly onverges to 0 in L2(�?) by Lemma 2.5.� Next, using the assumptions on the roughness regularity, (�"(�)) an be iden-ti�ed to the funtion x2 7! �((0; x2=")). Sine x2 7! �((0; x2=")) obviouslytwo-sale onverges to (x2; y2) 7! �((0; y2)), it weakly onverges in L2(℄0; 1[) toits average w.r.t. y2, namely the onstantZ 10 �((0; y2)) dy2:Thus the proof is ahieved.2.3. Homogenization of the EHL problem (general ase)One we have obtained the limits of the di�erent terms whih appear in problem(P"� ), we state, as usual with the two-sale onvergene tehnique, the marosopiand mirosopi equations for the homogenized problem.Proposition 2.3. The limit funtions p0, p1 and �0 satisfy the following equations:� Marosopi equation:Z
 �ZY h3[p0℄ e��p0hrp0 +ryp1i dy �r�= Z
 �ZY �0h[p0℄ dy� ���x1 + Z�? �?[h[p0℄ �; (2.6)for every � in V .� Mirosopi equation:For a.e. x 2 
,ZY h3[p0℄(x; y) e��p0hrp0(x) +ryp1(x; y)i � ry (y) dy= ZY �0(x; y) h[p0℄(x; y) � �y1 (y) dy; (2.7)for every  2 H1℄ (Y ).



16 G. Bayada, S. Martin and C. V�azquezProof. Using the funtion x 7! �0(x)+" �1(x)  (x="), with �0 2 V and �1 2 D(
)and  2 C1℄ (Y )℄, as a test funtion in the variational formulation of problem (P"),one has:Z
 h3"[p"℄(x) e��p"rp"(x) � hr�0(x) + �1(x) ry �x"�+ "  �x"� rx�1(x)i dx= Z
 �"(x) h"[p"℄(x) h��0�x1 (x) + "  �x"� ��1�x1 (x) + �1(x) � �y1 �x"�i dx+ Z�? �?h"[p"℄ �0:Passing to the limit ("! 0) and using Lemmas 2.6 and 2.7 gives us the marosopiequation (with �1 � 0) and the mirosopi equation (with �0 � 0).De�nition 2.4. For a given p0 2 L1(
), let us de�ne the following funtions:a[p0℄(x; y) = h3[p0℄(x; y); (x; y) 2 
� Y;b[p0℄(x; y) = h[p0℄(x; y); (x; y) 2 
� Y:Let us de�ne the loal problems, respetively denoted (M?i ), (N ?i ) and (N 0i ):Find W ?i , �?i , �0i (i = 1; 2) in L2(
;H1℄ (Y )=R), suh that, for almost every x 2 
:ZY a[p0℄ ryW ?i ry = ZY a[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.8)ZY a[p0℄ ry�?i ry = ZY b[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.9)ZY a[p0℄ ry�0i ry = ZY �0b[p0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.10)We immediatly haveProposition 2.4. The loal problem (M?i ) (resp. (N ?i ),(N 0i )) admits a unique so-lution W ?i (resp. �?i , �0i ) in L2(
;H1℄ (Y )=R).Theorem 2.2. The homogenized problem an be written as:(P?� )8>><>>:Find (p0;�1;�2) 2 V � L1(
)� L1(
) suh that:Z
 e��p0 A[p0℄ � rp0 r� = Z
 b0[p0℄r�+ Z�? �?[h[p0℄ �; 8 � 2 Vp0 � 0; p0 (1� �i) = 0; (i = 1; 2) a.e. in 
,



Homogenization of a nonloal EHL Problem 17with ef(x) = ZY f(x; y) dy, andA[p0℄ = 0BBB� ga[p0℄� ^ha[p0℄�W ?1�y1 i � ^ha[p0℄�W ?2�y1 i� ^ha[p0℄�W ?1�y2 i ga[p0℄� ^ha[p0℄�W ?2�y2 i1CCCA ;b0[p0℄ = ��1[p0℄ b?1[p0℄�2[p0℄ b?2[p0℄� ;with the notations (i = 1; 2):b?i [p0℄ = gb[p0℄� ^ha[p0℄��?i�yi i; b0i [p0℄ = ^h�0b[p0℄i� ^ha[p0℄��0i�yi i;and de�ning the following ratios (i = 1; 2):�i[p0℄ = b0i [p0℄b?i [p0℄ :Proof. From the loal problems, we easily obtain in L2(
;H1℄ (Y )=R):p1(x; y) = �e��p0(x)�W ?1 (x; y)W ?2 (x; y)� � rp0(x) + �01(x; y):The homogenized problem follows by replaing the previous expression of p1 in themarosopi equation.Remark 2.3. The homogenized lubriation problem an be onsidered as a gener-alized elastohydrodynami Reynolds-type problem with two avitation parameters�i (i = 1; 2). Let us notie the fat that we do not have the property 0 � �i � 1,i.e. we annot guarantee that homogenized avitation parameters are smaller than1 in avitation areas ! Thus, at that point, the homogenized problem does not havea struture similar to the initial one. But, in the next subsetions, we prove thefollowing additional results:� in Subsetion 2.4, we state that, among the solutions of the homogenizedproblem, there exists a lass of solutions with isotropi saturation, that is,the homogenized problem (P?� ) admits a solution (p0;�;�) with p0 � 0 andp0 (1� �) = 0 and also the additive property (whih laks in the formulationof the homogenized problem (P?� ) in the general ase): 0 � � � 1 a.e. in 
.� in Subsetion 2.5, we state that, under additional assumptions on the rough-ness pattern, only one single saturation funtion � appears in the homogenizedproblem. Moreover, it satis�es 0 � � � 1 a.e in 
.



18 G. Bayada, S. Martin and C. V�azquez2.4. Existene of solutions with isotropi saturationThis subsetion is devoted to the proof of the following theorem:Theorem 2.3. The homogenized problem (P?� ) admits a solution (p0;�;�) with0 � � � 1 (and p0 � 0, p0 (1� �) = 0) a.e. in 
.Theorem 2.3 guarantees the existene of solutions with isotropi saturation �.Moreover, the saturation satis�es the property 0 � � � 1, whih laks in the generalformulation of the homogenized problem. The result is obtained in the followingthree steps whih are based on the existene result and the orresponding methodused in Durany, Gar��a, V�azquez12:� 1st step: Introdution of a penalized problem,� 2nd step: Homogenization of the penalized problem,� 3rd step: Convergene w.r.t. the penalized parameter.Remark 2.4. Interestingly, in the earlier sheme, forgetting the 2nd step (i.e. omit-ting the homogenization step) would lead us to the existene result for problem (P"� ),namely Theorem 2.1. Thus, the reader should not be surprised to see that onstantswhih have been already used or de�ned in Theorem 2.1 appear in the details ofthe forthoming proof.For onveniene, these three steps are given in details and the idea of the proofis skethed at the end of this subsetion.� 1st step: Introdution of a penalized problemAs in the roughless ase studied by Durany, Gar��a, V�azquez12, we introduethe following " dependent penalized problem:(P"�)8>><>>:Find p�" 2 V suh that:Z
 h3"[p�" ℄e��p�"rp�"r� = Z
H�(p�")h"[p�" ℄ ���x1 + Z�? �?h"[p�" ℄ �; 8 � 2 Vp�" � 0; a.e. in 
,where the funtion H� is the usual approximation of the Heaviside graph. Theappliation of Theorem 3.2. of Durany, Gar��a, V�azquez12, whih is based on a�xed point tehnique leads to the following results:Theorem 2.4. For every � > 0, problem (P"�) admits a positive solution. Moreover,we an obtain the following ("; �) independent estimates:p�"H1(
) � C3; (2.11)p�"L1(
) � C4: (2.12)Remark 2.5. We point out the fat that Theorem 2.4 holds under Assumptions1.1{1.4, 2.1 and 2.2 whih are impliitely imposed as in previous subsetions. In



Homogenization of a nonloal EHL Problem 19partiular, Assumption 2.2 is neessary to allow the use of a �xed point tehniqueand obtain Theorem 2.4.� 2nd step: Homogenization of the penalized problemWe proeed to the homogenization of problem (P"�) w.r.t. ": from Estimates(2.11) and using the two-sale homogenization tehnique (as in the previous subse-tion), we immediatly get the following onvergene results and maro/mirosopideomposition:Proposition 2.5. There exists p�0 2 V (p�0 � 0 a.e. in 
), p1 2 L2(
;H℄(Y )=R)suh that, up to a subsequene,(i) p�" weakly onverges to p�0 in H1(
) (and p�" two-sale onverges to p�0),(ii) rp�" two-sale onverges to rp�0 +ryp�1.Moreover, we have:� Marosopi equation:Z
 �ZY h3[p�0 ℄ e��p�0 hrp�0 +ryp�1i dy �r�= Z
 �ZY H�(p�0)h[p�0 ℄ dy� ���x1 + Z�? �?[h[p�0 ℄ �; (2.13)for every � in V .� Mirosopi equation:For a.e. x 2 
,ZY h3[p�0 ℄e��p�0 hrp�0 +ryp�1i � ry dy = ZY H�(p�0)h[p�0 ℄ � �x1 dy; (2.14)for every  2 H1℄ (Y ).Then, realling the de�nition of a[�℄ and b[�℄ (see De�nition 2.4), and introduingthe loal problems, respetively denoted (M�i ), (N �i )Find W �i , ��i in L2(
;H1℄ (Y )=R), suh that, for almost every x 2 
:ZY a[p�0 ℄ ryW �i ry = ZY a[p�0 ℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.15)ZY a[p�0 ℄ ry��i ry = ZY b[p�0℄ � �yi ; 8 2 H1℄ (Y ) (i = 1; 2); (2.16)we an state:Lemma 2.8. The homogenized penalized problem is(P?� )8>><>>:Find p�0 2 V suh that:Z
 e��p�0 A�[p�0 ℄ � rp�0 r� = Z
H�(p�0) b� [p�0 ℄r�+ Z�? �? [h[p�0 ℄ �; 8 � 2 Vp�0 � 0; a.e. in 
,



20 G. Bayada, S. Martin and C. V�azquezwith A� [p�0 ℄ =℄a[p�0 ℄ I � ^a[p�0 ℄rW � and b�[p�0 ℄ = 0BBB� gb[p�0 ℄� ^�a[p�0 ℄���1�y1 �� ^�a[p�0 ℄���1�y2 �1CCCAProof. The following equality in L2(
;H1℄ (Y )=R) is lassially obtained using theloal problems:p�1(x; y) = �W �(x; y) � rp�0(x) +H�(p�0(x)) ��1(x; y): (2.17)Using Equation (2.17) in the marosopi equation gives us:Z
 e��p�0 h℄a[p�0 ℄ I � ^a[p�0 ℄rW �i � rp�0 r�= Z
H�(p�0)hgb[p�0 ℄� ^�a[p�0 ℄���1�y1 �i ���x1 + Z
H�(p�0)h� ^�a[p�0 ℄���1�y2 �i ���x2+ Z�? �?[h[p�0 ℄�;for every � 2 V . Then, the proof is onluded.� 3rd step: Behaviour of the homogenized penalized problem w.r.t. �Now we study the behaviour of the homogenized penalized problem when �tends to 0.Proposition 2.6. There exists p0 2 V and � 2 L1(
) suh thatp�0 * p0; in H1(
),H�(p�0) * �; in L1(
) weak-?.Moreover, p0 � 0 , 0 � � � 1 and p0 (1� �) = 0 a.e. in 
 .Proof. The onvergenes only ome from estimates satis�ed by p�0 (see Estimates(2.11) and (2.12)): p�0H1(
) � C3; p�0L1(
) � C4:The properties and relationships between p0 and � are lassially obtained as inthe initial problem.Now we state:Proposition 2.7. e��p�0A�[p�0 ℄ strongly onverges to e��p0A[p0℄ in L2(
).Proof. We prove the result in three steps:(a) kA� [p�0 ℄kL1(
) � eC, kA[p0℄kL1(
) � eC, where the onstant eC does not dependon �,



Homogenization of a nonloal EHL Problem 21(b) A�[p�0 ℄ �! A[p0℄, a.e. in 
,() e��p�0A� [p�0 ℄ strongly onverges to e��p0A[p0℄ in L2(
).I Proof of (a):Let us reall that A� [p�0 ℄ =℄a[p�0 ℄I � ^a[p�0 ℄ryW �. Obviously, we have℄a[p�0 ℄ � C7with C7 = �h1 + k�kL1(
) + eKC4�3 :Thus, we just have to state the estimates for terms of the form^a[p�0 ℄�W �i�yk ; (i; k = 1; 2):Using W �i as a test funtion in the variational formulation of problem (M�i )(see Equation (2.15)) gives for almost every x 2 
ZY a[p�0 ℄���ryW �i ���2 = ZY a[p�0 ℄ �W �i�yi :Then, in the left-hand side, we write a[p�0 ℄ as a2[p�0 ℄=a[p�0℄ and use a lower boundof 1=a[p�0℄, that is1C7 ZY ���a[p�0 ℄ryW �i ���2 � ZY a[p�0 ℄���ryW �i ���2 � ZY ���a[p�0 ℄ �W �i�yi ���and ZY ���a[p�0 ℄ryW �i ���2 � jY j C27 ;whih means a[p�0 ℄�W �i�yk 2L2(Y ) � jY j C27 ; (i; k = 1; 2):Then, using the Cauhy-Shwarz inequality,��� ZY a[p�0 ℄�W �i�yk ��� � ZY ���a[p�0 ℄�W �i�yk ��� � jY j1=2a[p�0 ℄�W �i�yk L2(Y )that is, ��� ^a[p�0 ℄�W �i�yk ��� � jY jC7; (i; k = 1; 2): (2.18)Let us remark that Inequality (2.18) holds for almost every x 2 
 so that thematrix ^a[p�0 ℄ryW �



22 G. Bayada, S. Martin and C. V�azquezis bounded in L1(
) by a onstant whih does not depend on �. ThusA� [p�0 ℄ =℄a[p�0 ℄I � ^a[p�0 ℄ryW �is bounded by a onstant eC whih does not depend on �. With the same method,as p0 satis�es kp0kH1(
) � C3, kp0kL1(
) � C4, one proves thatA[p0℄ =℄a[p0℄I � ^a[p0℄ryW ?is also bounded by eC.I Proof of (b):Let us reall that, with the same arguments that have been used in the proofof Lemma 2.5 (see Inequality (2.5)), one has:Z
 k(�; z)p�0(z) dz �! Z
 k(�; z)p0(z) dz in L1(
).In partiular, the onvergene holds almost everywhere. Let be x0 suh that:Z
 k(x0; z)p�0(z) dz �! Z
 k(x0; z)p0(z) dz:Realling loal problem (M�i ), one has,ZY a[p�0 ℄(x0; �) ryW �i (x0; �) ry = ZY a[p�0 ℄(x0; �) � �yi ; 8 2 H1℄ (Y ):Using W �i (x0; �) as a test funtion and using upper and lower bounds of a[p�0 ℄gives: rW �i (x0; �)L2(Y ) � C7=C8with C8 = �h0 � k�kL1(
)�3. Thus, W �i (x0; �) is bounded in H1℄ (Y )=R by aonstant whih does not depend on �. Then, there exists Fi(x0; �) 2 H1℄ (Y )=Rsuh that ryW �i (x0; �) weakly onverges to ryFi(x0; �) in L2(Y ). Moreover,sine a[p�0 ℄(x0; �) strongly onverges to a[p0℄(x0; �) in L2(Y ), one has for every 2 H1℄ (Y ):ZY a[p�0 ℄(x0; �)ryW �i (x0; �)ry �! ZY a[p0℄(x0; �)ryFi(x0; �)ry ;ZY a[p�0 ℄(x0; �) � �yi �! ZY a[p0℄(x0; �) � �yi :Thus, we get for every  2 H1℄ (Y ):ZY a[p0℄(x0; �)ryFi(x0; �)ry = ZY a[p0℄(x0; �) � �yiand, by uniqueness of the solution to the loal problem,W ?i (x0; �) = Fi(x0; �); in H1℄ (Y )=R,ryW ?i (x0; �) = ryFi(x0; �); in L2(Y ).



Homogenization of a nonloal EHL Problem 23Now, sine we have: a[p�0 ℄(x0; �) ! a[p0℄(x0; �); in L2(Y ),ryW �i (x0; �) * ryW ?i (x0; �); in L2(Y ),we easily dedue that:ZY a[p�0 ℄(x0; y)ryW �i (x0; y) dy �! ZY a[p0℄(x0; y)ryW ?i (x0; y) dy;that is, ^ha[p�0 ℄ryW �i i(x0) �! ^ha[p0℄ryW ?i i(x0):Sine it is lear that℄a[p�0 ℄(x0) onverges to℄a[p0℄(x0), one has:℄a[p�0 ℄(x0)� ^ha[p�0 ℄ryW �i i(x0) �!℄a[p0℄(x0)� ^ha[p0℄ryW ?i i(x0);whih states the result (b).I Proof of ():Let us denote f� = A� [p�0 ℄, f = A[p0℄ and g� = (f� � f)2. It is lear that:Æ kg�kL1(
) � 4 eC2 (see property (a)),Æ g� �! 0 a.e. (see property (b)).Thus, by the Lebesgue theorem, A�[p�0 ℄ strongly onverges to A[p0℄ in L2(
).Now let us denote r� = Z
 �e��p�0A� [p�0 ℄� e��p0A[p0℄�2 :Then, we have:r� = Z
 ��e��p�0 � e��p0�A�[p�0 ℄ + e��p0 (A�[p�0 ℄�A[p0℄)�2� 2 Z
 �e��p�0 � e��p0�2 (A� [p�0 ℄)2 + 2 Z
 �e��p0�2 (A�[p�0 ℄�A[p0℄)2 :Sine kA� [p�0 ℄kL1(
) � eC (see property (a)) and ke��p0kL1(
) � 1, one has:r� � 2 eC2 Z
 �e��p�0 � e��p0�2 + 2 Z
 (A� [p�0 ℄�A[p0℄)2Sine x 7! e��x is �-Lipshitz ontinuous on R+ , one hasr� � 2 eC2 �2 Z
 (p�0 � p0)2 + 2 Z
 (A�[p�0 ℄�A[p0℄)2 :Then, as p�0 (resp. A� [p�0 ℄) strongly onverges to p0 (resp. A[p0℄) in L2(
), r�tends to 0, whih onludes the proof.



24 G. Bayada, S. Martin and C. V�azquezProposition 2.8. b�[p�0 ℄ strongly onverges to b?[p0℄ in L2(
).Proof. The proof is similar to the one of Proposition 2.7. More preisely, we state(a) kb�[p�0 ℄kL1(
) � eD, kb?[p0℄kL1(
) � eD, where eD does not depend on �,(b) b� [p�0 ℄ �! b?[p0℄ a.e. in 
,and the proof is onluded with the Lebesgue theorem.Proposition 2.9. [h[p�0 ℄ strongly onverges to[h[p0℄ in L2(�?).Proof. The proof is straightforward from the properties of the Hertz kernel (seeLemma 2.5).Now we onlude this subsetion by the proof of Theorem 2.3:Proof of Theorem 2.3. By Lemma 2.8, there exists p�0 2 V suh thatZ
 e��p�0A�[p�0 ℄ � rp�0r� = Z
H�(p�0)b�[p�0 ℄r�+ Z�? �?[h[p�0 ℄�; 8 � 2 V:Next, from Propositions 2.6 and 2.7, we have:rp�0 * rp0; in L2(
),e��p�0A�[p�0 ℄ ! e��p0A[p0℄; in L2(
),so that Z
 e��p�0A� [p�0 ℄ � rp�0r� �! Z
 e��p0A[p0℄ � rp0r�; 8 � 2 V:Moreover, from Propositions 2.6 and 2.8, we have:H�(p�0) * �; in L1(
) weak-?,b�[p�0 ℄ ! b?[p0℄; in L2(
),so that Z
H�(p�0) b� [p�0 ℄r� �! Z
 � b?[p0℄r�; 8 � 2 V:Next, by Proposition 2.9, we obtain:Z�? �?[h[p�0 ℄� �! Z�? �?[h[p0℄�; 8 � 2 V:Thus, passing to the limit in the homogenized penalized problem, we getZ
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄r�+ Z�? �?[h[p0℄�; 8 � 2 V;with p0 � 0 , p0 (1� �) = 0 and 0 � � � 1 a.e. in 
 (by Proposition 2.6), and theproof is onluded. �



Homogenization of a nonloal EHL Problem 25Remark 2.6. An interesting point is to onsider that, in the homogenized problem,we are not able to identify an \equivalent gap" sine anisotropi e�ets lassiallyappear in the oeÆients. Nevertheless, Theorem 2.3 allows us to de�ne not onlyone single saturation funtion � but also one single deformationZ
 k(x; z) p0(z) dz;whih is an important point in terms of mehanial appliations.2.5. Partiular asesIn this subsetion, due to partiular hoies of the roughness pattern, loal problemshave obvious analytial solutions9 so that it is possible to obtain self ontainedReynolds equations for p0 and one single saturation funtion �.Theorem 2.5 (Transverse roughness). If � does not depend on y2, the homog-enized problem (P?� ) is8>><>>:Find (p0; �) 2 V � L1(
) suh that:Z
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄ ���x1 + Z�? �?[h[p0℄�; 8 � 2 Vp0 � 0; p0 (1� �) = 0; 0 � � � 1; a.e. in 
,with the following homogenized oeÆients:A[p0℄(x) = 0B� 1̂h�3[p0℄(x) 00 ĥ3[p0℄(x)1CA ; b?[p0℄(x) = ĥ�2[p0℄(x)ĥ�3[p0℄(x) :Moreover (P?� ) admits at least (p0;�) as a solution where (p0; �0) is the two-salelimit of (p"; �") (solution of problem (P"� )), and the link between the mirosopi /marosopi saturation funtion is given by:�(x) = h 1̂h�2[p0℄ ^� �0h2[p0℄�i(x):Theorem 2.6 (Longitudinal roughness). If � does not depend on y1, the ho-mogenized problem (P?� ) is8>><>>:Find (p0; �) 2 V � L1(
) suh that:Z
 e��p0A[p0℄ � rp0r� = Z
 � b?[p0℄ ���x1 + Z�? �?[h[p0℄�; 8 � 2 Vp0 � 0; p0 (1� �) = 0; 0 � � � 1; a.e. in 
,with the following homogenized oeÆients:A[p0℄(x) = 0B� ĥ3[p0℄(x) 00 1̂h�3[p0℄(x) 1CA ; b?[p0℄(x) =℄h[p0℄(x):



26 G. Bayada, S. Martin and C. V�azquezMoreover (P?� ) admits at least (p0;�) as a solution where (p0; �0) is the two-salelimit of (p"; �") (solution of problem (P"� )), and the link between the mirosopi /marosopi saturation funtion is given by:�(x) = ^(�0 h[p0℄)℄h[p0℄ (x):3. Numerial examplesIn this setion, the numerial simulation of miro-elastohydrodynami ontats isperformed to illustrate the theoretial results of onvergene stated in the previoussetions. For the numerial solution of the " dependent problems and their orre-sponding homogenized one, we propose an algorithm based on a �xed-point iterationbetween the hydrodynami (Elrod-Adams) problem and the elasti (Hertz) one13.Furthermore, the hydrodynami problem is solved using the harateristis methodto deal with the onvetion term ombined with a �nite element spatial disretiza-tion and a duality method for the maximal monotone nonlinearity assoiated tothe Elrod-Adams model. The elasti problem is approximated by using appropriatequadrature formulas in Equation (1.3). More preisely, the triangle edges midpointsare hosen as integration nodes. The ombination of these numerial tehniqueshas been already suessfully used in previous papers dealing with the elastohydro-dynami related roughless problems13;14. We adress the numerial simulation of adimensionless ball bearing ontat, so that for a domain 
 =℄ � 4; 2[�℄� 2; 2[, wepose the problem8>><>>:Find (p"; �") 2 V � L1(
) suh that:Z
 h3"[p"℄ e��p" rp"r� = ��Z
 �" h"[p"℄ ���x1 + Z�? �?h"[p"℄��; 8 � 2 Vp" � 0; p" (1� �") = 0; 0 � �" � 1; a.e. in 
,where the e�etive gap an be written as h"[p"℄(x) = h"r(x) + hd[p"℄(x), the rigidand elasti ontributions being given byh"r(x) = h0 + x21 + x222 + �1 sin�12�(x1 + 4)" �+ �2 sin�8�(x2 + 2)" � ;hd[p"℄(x) = 2�2 Z p"(z)p(x1 � z1)2 + (x2 � z2)2 dzwith parameters h0 = 0:6, (�1; �2) = (0:85h0; 0) for transverse roughness and(�1; �2) = (0; 0:85h0) for longitudinal roughness. Other parameters involved inthe equation are taken to � = 0:42, � = 2:062 and �? = 0:3. The previous datahave been taken from dimensionless equations assoiated to a small load imposedproblem14. The saling is made from realisti real data with respet to a given load.The homogenized problem, in the transverse or longitudinal ase, an be written



Homogenization of a nonloal EHL Problem 27under the form8>><>>:Find (p0; �) 2 V � L1(
) suh that:Z
 e��p0 �a1[p0℄ 00 a2[p0℄� � rp0r� = ��Z
 �b[p0℄ ���x1 + Z�? �?[p0℄��; 8 � 2 Vp0 � 0; p0 �1� �� = 0; 0 � � � 1; a.e. in 
In Table 1, we present the funtional oeÆients a1, a2, b and  that appear in thehomogenized problem for purely transverse and purely longitudinal roughness aseswhih have been partially omputed with MATHEMATICA Software Pakage.Transverse roughness Longitudinal roughnessh[p℄(x; y) hr(x) + hd[p℄(x) + �1 sin �2�y1� hr(x) + hd[p℄(x) + �2 sin �2�y2�a1[p0℄ 2�(hr + hd[p℄)2 � �21�5=22(hr + hd[p℄)2 + h2r (hr + hd[p℄)3 + 32 (hr + hd[p℄) �22a2[p0℄ (hr + hd[p℄)3 + 32 (hr + hd[p℄) �21 2 �(hr + hd[p℄)2 � �22�5=22(hr + hd[p℄)2 + �22b[p0℄ 2(hr + hd[p℄) (hr + hd[p℄)2 � �212(hr + hd[p℄)2 + �21 hr + hd[p℄[p0℄ hr + hd[p℄ hr + hd[p℄Table 1. Elastohydrodynami homogenized oeÆients3.1. Case 1: transverse roughness testsAlthough numerial tests have been performed for di�erent spatial meshes in orderto validate the onvergene of the methods, we just present the results orrespondingto �x1 = 0:025 and �x2 = 0:05 so that we have 38400 triangles and 19521 verties.Furthermore, the arti�ial time step in the harateristis method5;13, �t = �x1;the Bermudez-Moreno parameters are ! = 1 and � = 1=(2!) ; the stopping testin all algorithms is equal to Æ = 10�5 (orresponding to the relative error in thedisrete L2 norm between two iterations).The omputer results illustrate the onvergenes stated in previous setions.First in Fig.2, we show the strong onvergene of the pressure to the homogenizedone, when " tends to 0, by plotting the uts at x2 = 0, for di�erent values of " and thehomogenized solution. In Fig.3, the homogenized pressure over the whole domainis presented. In Fig.4 and 5, analogous plots for the deformation are displayed toillustrate the onvergene and the homogenized distribution. Finally, in Fig.6 and7, the results for the saturation are shown. To be notied is the weak onvergene ofthe saturation, linked to the existene of osillations whih are not damped, unlikethe pressure and deformation. We an also notie that the deformation osillationsare damped very easily (when ompared to the pressure osillations). This is due tothe regularizing e�ets of the Hertz kernel (whih is a onvolution-like operator).
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Fig. 2. Elastohydrodynami pressure at x2 = 0 (transverse roughness)
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Fig. 3. Elastohydrodynami homogenized pressure (transverse roughness)
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Fig. 4. Elastohydrodynami deformation at x2 = 0 (transverse roughness)
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Fig. 5. Elastohydrodynami homogenized pressure (transverse roughness)
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Fig. 6. Elastohydrodynami saturation at x2 = 0 (transverse roughness)
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Fig. 7. Elastohydrodynami homogenized saturation (transverse roughness)



Homogenization of a nonloal EHL Problem 313.2. Case 2: longitudinal roughness testsIn this ase, we present the results orresponding to �x1 = 0:06 and �x2 = 0:02so that we have 40000 triangles and 20301 verties.The omputer results illustrate the onvergenes stated in previous setions.First in Fig.8, we show the strong onvergene of the pressure to the homogenizedone, when " tends to 0, by plotting the uts at x1 = �2:5 (orresponding to themaximum homogenized pressure), for di�erent values of " and the homogenizedsolution. In Fig.9, the homogenized pressure over the whole domain is presented.In Fig.10 and 11, the homogenized deformation and saturation over the wholedomain are presented. Notie that at x1 = �2:5, all saturations are identially 1.3.3. Inuene of the elasti ontribution over the roughness e�etsWe ompare the results, obtained in the transverse roughness ase (Case 1), be-tween the hydrodynami and elastohydrodynami on�gurations.In Fig.12 and 13, we present the pressure and saturation in the following ases:� hydrodynami roughless solution (�1 = �2 = k = 0)� hydrodynami homogenized solution (�1 6= 0, �2 = k = 0)� elastohydrodynami roughless solution (�1 = �2 = 0, k 6= 0)� elastohydrodynami homogenized solution (�1 6= 0, �2 = 0, k 6= 0)It allows us to see the inuene of the roughness over the pressure distributionin eah ase (hydrodynami or elastohydrodynami), but also the importane ofthe roughness over the maximum pressure. The roughness e�ets are learly moreimportant in the hydrodynami regime than in the elastohydrodynami one.AknowledgmentsThis work has been partially supported by the Eurodo program (Rhone-Alpesregion) and the MCYT Researh Projet MTM 2004-05796-C02-01.



32 G. Bayada, S. Martin and C. V�azquez

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

0.25

y

P
re

ss
ur

e

ε=1/5 
ε=1/10
Homogenized  

Fig. 8. Elastohydrodynami pressure at x1 = �2:5 (longitudinal roughness)
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Fig. 9. Elastohydrodynami homogenized pressure (longitudinal roughness)
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Fig. 10. Elastohydrodynami homogenized deformation (longitudinal roughness)
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Fig. 11. Elastohydrodynami homogenized saturation (longitudinal roughness)
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Fig. 12. Roughness e�ets over EHL and hydrodynami pressures
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Fig. 13. Roughness e�ets over EHL and hydrodynami saturations
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