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ABSTRACT The present paper deals with the analysis and homogenization of a lubrica-
tion problem, via two-scale convergence. We study in particular the Elrod-Adams problem
with highly oscillating roughness effects.

0 Statement of the problem

Cylindrical thin film bearings are commonly used for load support of rotating machinery.
Fluid film bearings also introduce viscous damping that aidsin reducing the amplitude of
vibrations in operating machinery. A plain cylindrical journal bearing is made of an inner
rotating cylinder and an outer cylinder. The two cylinders are closely spaced and the annular
gap between the two cylinders is filled with some lubricant. The radial clearance is very
small, typically�r=r = 10�3 for oil lubricated bearings. The smallness of this ratio allows
for a Cartesian coordinate to be located on the bearing surface. Thus, the Reynolds equation
has been used for a long time to describe the behaviour of a viscous flow between two close
surfaces in relative motion (see [37, 38] for historical references). The transition of the Stokes
equation to the Reynolds equation has been proved by Bayada and Chambat in [11]. In
dimensionless coordinates, it can be written asr � �h3rp� = ��x1�h�;
wherep is the pressure distribution, andh the height between the two surfaces.

Nevertheless, this modelling does not take into account cavitation phenomena: cavitation
is defined as the rupture of the continuous film due to the formation of air bubbles and makes
the Reynolds equation no longer valid in the cavitation area. In order to make it possible,
various models have been used, the most popular perhaps being variational inequalities which
have a strong mathematical basis but lack physical evidence. Thus, we use the Elrod-Adams
model, which introduces the hypothesis that the cavitationregion is a fluid-air mixture and
an additional unknown� (the saturation of fluid in the mixture) (see [22, 24, 25, 28]). The
model includes a modified Reynolds equation, here referredexact Reynolds equation with
cavitation(see problem(P�) in the next section). From a mathematical point of view, the
problem can be simplified using apenalized Reynolds equation with cavitation(see problem(P�) in the next section).

Homogenization process for lubrication problems is mainlyrelated to the roughness of
the surfaces. Let us mention that the Reynolds equation is still valid as long as"=� � 1," being a small parameter describing the roughness spacing, and � being the film thickness
order (assumed to be small too) (see [12] for details). The study of surface roughness effects
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in lubrication has gained an increasing attention from 1960since it was thought to be an
explanation for the unexpected load support in bearings.

Several methods have been used in order to study roughness effects in lubrication, the
most popular perhaps being the flow factor method (see [35, 36, 41]), which is based on a
formulation that is close to the initial one, only modified byflow factors related to anistropic
and microscopic effects.

So far this procedure has been used either by considering that no cavitation phenomena
occur or using variational inequation models. Let us mention that the homogenization of
cavitation models using variational inequalities has beenstudied in [16]. Recently many
papers have discussed cavitation phenomena coupled with roughness effects, in mechanical
engineering:� A generalized computational formulation, by Shi and Salant[40], has been applied to

the rotary lip seal and used to predict the performance characteristics over a range of
shaft speeds.� Interasperity cavitation has been studied in particular byHarp and Salant in [30] in
order to derive a modified Reynolds equation with flow factorsdescribing roughness
effects and macroscopic cavitation.� Modelling of cavitation has been pointed out in particular by Van Odyck and Venner
in [42] in order to discuss the validity of the Elrod-Adams model and the formation of
air bubbles leading to cavitation phenomena.

The above papers are based on averaging methods taking into account statistic roughness and
are mainly heuristic. Our purpose, in the present paper, is to study in a rigorous way the limit
of a three dimensional Stokes flow between two close rough surfaces using a double scale
asymptotic expansion analysis (see for instance [14]) in the Elrod-Adams model.

The paper is organized as follows:� Section 1 is devoted to the mathematical formulation of the lubrication problem: we
briefly present the exact Elrod-Adams problem along with itspenalized version. We
also give the existence and uniqueness results corresponding to each problem. For this,
we use a well-known penalization method to get the existenceresult. Uniqueness of the
pressure is obtained using the doubling variable method of Kružkov, which has been
extended by Carrillo to the dam problem.� Section 2 deals with the homogenization process: after somepreliminaries on the two-
scale technique, we first establish an uncomplete form of thehomogenized problem in
which an additional term in the direction perpendicular to the flow but also anisotropic
phenomena on the saturation appear. In order to complete thehomogenized problem,
we introduce additional assumptions that lead us to consider particular but realistic
cases: considering a separation of the microvariables on the gaps allows us to com-
pletely solve the difficulties previously mentioned; then,taking into account oblique
roughness, we show that we obtain an intermediary case between the uncomplete prob-
lem (general case) and the complete problem (with the separation of the microvari-
ables).� Section 3 presents the numerical method and results which illustrate the main theorems
established in the previous sections: we study longitudinal and transverse roughness
cases.
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1 Mathematical formulation

1.1 The lubrication problem

The dimensionless domain is denoted
 =℄0; 2�[�℄0; 1[ and we suppose that the following
assumptions are satisfied:

Assumption 1.1 h 2 C1(
) is 2�x1 periodic and satisfies9 h0; h1; 8 x 2 
; 0 < h0 � h(x) � h1:
Assumption 1.2 pa is a Lipschitz continuous non-negative function,2� periodic.

Now let us introduce the Elrod-Adams model taking into account cavitation phenomena.
Thus we introduce anexactproblem and apenalizedproblem.(i) Exact Reynolds problem -The strong formulation of the problem is given by the following
set of equations:8<: �r � �h3(x)rp(x)� = � ��x1��(x) h(x)�; x 2 
p(x) � 0; p(x) (1� �(x)) = 0; 0 � �(x) � 1; x 2 

with the following boundary conditions:p = 0 on�0 andp = pa on�a, (Dirichlet conditions)�h� h3 �p�x1 andp are2�x1 periodic, (periodic conditions)

where�(x) is the normalized height of fluid between the two surfaces. The boundaries�0
and�a are given on FIG.1. These boundary conditions are linked with a specific but wide
type of bearings: journal bearings with a pressure imposed on the top and at the bottom.
However, other boundary conditions can be considered.

The earlier problem can be formulated under a weak form as

x1
x2

�℄ �℄�a
�02�

1
Figure 1: Normalized lubrication domain (with supply pressure)

(P�)8><>: Find (p; �) 2 Va � L1(
) such that:Z
 h3rpr� = Z
 �h ���x1 ; 8 � 2 V0;p � 0; p (1� �) = 0; 0 � � � 1; a.e. in
,
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where the functional spaces are defined asVa = n� 2 H1(
); � is 2�x1 periodic; �j�0 = 0; �j�a = pao;V0 = n� 2 H1(
); � is 2�x1 periodic; �j�0 = 0; �j�a = 0o:(ii) Penalized Reynolds problem -In the penalized problem, an approximate relationship
betweenp and� is used. Defining the functionH�(z) = 8<: 0; if z < 0,z=�; if 0 � z � �,1; if z > 1,

the weak formulation of the problem is given by(P�)8><>: Find p� 2 Va, such that:Z
 h3rp�r� = Z
H�(p�)h ���x1 ; 8 � 2 V0;p� � 0; a.e. in
.

Hence,H�(p�) plays the role of the saturation function.

Let us mention that, by many aspects, the lubrication problem is close to the dam problem.
The dam problem has first been stated using variational inequalities (see [7, 8, 9, 17]). But
this approach is only possible for dams with vertical walls (typically rectangular dams). The
formulation of the dam problem for domains with general shapes has been introduced By Alt,
Brézis, Kinderlehrer and Stampacchia [2, 21]. Introducing the permeability of the porous
medium, denotedk, the formulation is based on Darcy’s law ([26] for historical references).
The basic problem is to find the pressurep and the fluid saturation� in the domain. The
main differences with the lubrication problem lie in the flowdirection (x1 in the lubrication
problem,x2 in the dam problem) and an additive sign condition on the fluidflow in the
dam problem, designed to eliminate the non physical solutions and meaning that no water
flows into the dam through the boundary in contact with the open air. Homogenization of the
dam problem using the�-convergence has been partially studied by Rodrigues (see [39] and
related references).

1.2 Existence and uniqueness results for(P�)
Let (Pn� ) be the auxiliary problem defined by(Pn� )8<: Findpn� 2 Va such that,pn�1� 2 Va being given,Z
 h3rpn�r� = Z
H�(pn�1� )h ���x1 ; 8 � 2 V0:
Lemma 1.3 Under Assumptions 1.1 and 1.2, problem(Pn� ) admits a unique solutionp�n.
Moreover, one has the following estimates:


p�n


H1(
) � C;
where C does not depend onn.
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Proof. Equivalently, withqn� (x1; x2) = pn� (x1; x2)� pa(x1) (x) (with  (x) = x2 for exam-
ple), one has to findqn� 2 V0 such thatZ
 h3rqn�r� = Z
H�(pn�1� )h ���x1 � Z
 h3r(pa )r�; 8 � 2 V0:
Existence and uniqueness are consequences of Lax-Milgram’s theorem. Estimates are ob-
tained usingqn� as a test function and Cauchy-Schwartz inequality, trace theorem and Poincaré-
Friedrichs inequality. �
Theorem 1.4 Under Assumptions 1.1 and 1.2, problem(P�) admits a unique solutionp�.
Proof.� Existence of a solution is obtained by studying the behaviour of pn� whenn goes to+1. By estimates of Lemma 1.3, there existsp� 2 H1(
) such that, up to a subsequence,pn� * p�; in H1(
).
Consequently, Z
 h3rpn�r� �! Z
 h3rp�r�;
for every� 2 V0.
AsH1(
) ,! L2(
) with compact injection andH� is Lipschitz continuous, one hasZ
H�(pn� )h ���x1 �! Z
H�(p�)h ���x1 ;
for every� 2 V0. Then one has:Z
 h3rp�r� = Z
H�(p�)h ���x1 ; 8� 2 V0: (1)

Moreover, by Theorem III.9 of [20], p� 2 Va: (2)

From Equations (1) and (2), we deduce thatp� is a solution of(P�).� Positivity of solutions is obtained by rewritingp� asp� = p+� � p�� withp+� = max(p�; 0);p�� = � min(p�; 0):
It can be proved thatp�� 2 V0. Usingp�� as a test-function in the variational formulation (1),
one has Z
 h3���rp�� ���2 = 0:
Thenp�� = 0 a.e. andp� � 0 a.e. in
.� Uniqueness of the solution is obtained using a particular test function (following an
idea developped in [10]). Letp1 andp2 be two solutions of(P�). Thenq = p1 � p2 satisfies:Z
 h3rqr� = Z
 �H�(p1)�H�(p2)�h ���x1 ; 8 � 2 V0: (3)
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We consider the test function� = fÆ(q), wherefÆ is defined with the usual notation for the
positive part of a function byfÆ(x) = ( �1� Æx�+; if x > 0,0; if x � 0.

SincefÆ is Lipschitz continuous,� = fÆ(q) 2 V0 (see [29]). Moreover, one hasr� = Æq2 �[q>Æ℄ rq;
where�A is the characteristic function, defined to be identically one onA and zero elsewhere.
From Equation (3) and Assumption 1.1, we deduce:h30 Zx2
; q(x)>Æ ���rq���2q2 Æ � h1 Zx2
; q(x)>Æ �H�(p1)�H�(p2)� �q=�x1q2 Æ� h1� Zx2
; q(x)>Æ ����q=�x1q ��� Æ:
Then it follows:h30 Z
 ���r ln�1 + (q � Æ)+Æ ����2 � h1� Z
 ��� ��x1 ln�1 + (q � Æ)+Æ ����� h1� Z
 ���r ln�1 + (q � Æ)+Æ ����:
Applying Poincaré’s inequality we obtain:Z
 ��� ln�1 + (q � Æ)+Æ ����2 � C;
whereC depends onh0, h1, j
j and� but does not depend onÆ. Then lettingÆ ! 0,q(x) � 0; a.e. in
.

Exchanging the roles ofp1 andp2 givesq(x) � 0 a.e. in
 so that, finally,q = p1 � p2 = 0
a.e. in
. �
1.3 Existence and uniqueness results for(P�)
Theorem 1.5 Under Assumptions 1.1 and 1.2, problem(P�) admits at least one solution.

Proof. Existence of a solution is obtained by studying the behaviour of p� when� goes to 0.
First, let us notice that the following estimates hold:


H�(p�)


L1(
) � C1;


p�


H1(
) � C2;
whereC1 andC2 do not depend on�. Indeed, they are easily obtained by considering the
properties ofH� and usingp� � pa  as a test function. From the earlier estimates, one has:
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(i) 9 � 2 L1(
),H�(p�)* �, in L1(
) weak-?. In particular,Z
H�(p�)h ���x1 �! Z
 �h ���x1 ; 8 � 2 V0;
(ii) 9 p 2 H1(
), p� * p, inH1(
) andp� ! p, in L2(
). In particular,Z
 h3rp�r� �! Z
 h3rpr�; 8 � 2 V0:

From(i) and(ii), we deduceZ
 h3rp�r� dx = Z
H�(p�)h ���x1 ; 8 � 2 V0:
Moreover, considering Theorem III.9 of [20],p 2 Va. It remains to prove the following
properties to complete the proof of existence of a solution for the initial problem(P�):(i) p � 0; a.e. in
,(ii) 0 � � � 1; a.e. in
,(iii) p (1� �) = 0; a.e. in
.� Proof of(i) is deduced from positivity ofp� (see Lemma 1.4) and strong convergence
of p� to p in L2(
).� Proof of (ii) is obtained considering the properties of the weak-? convergence (see
Proposition III.12. in [20]). Since we haveH�(p�)* �; in L1(
) weak-?,
then,




�


L1(
) � lim inf 


H�(p�)


L1(
) � 1, and finally,� � 1; a.e. in
.

Let us prove that� � 0 a.e. We settle�� = 1�H�(p�). We have



��


L1(
) � 1 and9 � 2 L1(
); �� * �; in L1(
) weak-?.

The weak-? topology is separated. Then� = 1� � and we have the following property:


�


L1(
) � lim inf 


��


L1(
) � 1;
which can be rewritten as


1� �


L1(
) � 1; i.e. � � 0; a.e. in
.� Proof of(iii) is obtained with the following method: letH denote the Heaviside graph.
Sincep� � 0 (see Lemma 1.4), the following property holds:�1�H(p�)� p� = 0:
From this, we havep� (1�H�(p�)) = p� (H(p�)�H�(p�)). This term is analyzed in two
steps:
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). Then,��� Z
 p� (1�H�(p�)) ��p (1��) � ��� = ��� Z
(p��p) (1�H�(p�)) �+Z
 p (��H�(p�)) � ���:
Using Cauchy-Schwarz inequality,��� Z
 p� (1�H�(p�)) ��p (1��) � ��� � 


p��p


L2(
) 


�


L2(
)+��� Z
 p (��H�(p�)) � ���:
With theL2 strong convergence ofp� to p and the weak-? convergence of1�H�(p�)
to 1� �, sincep � 2 L1(
), we get��� Z
 p� (1�H�(p�)) �� p (1� �) � ��� �! 0:
We have proved thatp� (1�H�(p�))* p (1� �); in L2(
).� 2nd step - Let� be a function inL2(
). Then, by construction ofH�,��� Z
 p� �H(p�)�H�(p�)� � ��� = ��� Z
� p� �1� p�� � � ���� ��� Z
� � � ��� � � Z
 �������:
with 
� = fx 2 
; 0 � p�(x) � �g. We have proved that�H(p�)�H�(p�)� p� * 0; in L2(
).

From uniqueness of the weak limit inL2(
) and the results stated in the two previous steps,
we deduce: p (1� �) = 0; in L2(
). �

We state a uniqueness result following an idea widely developped by Alvarez and Oujja
in [5] for the unstationary case. The uniqueness result is based on a monotonicity result
when comparing the value of two solutions on the upper boundary. Thus we first establish
the following lemma:

Lemma 1.6 Let (p1; �1) and(p2; �2) two solutions of (P�) with respective pressure boundary
valuesp1a andp2a on�a. Then,Z
 h3(x1; x2)�(p1 � p2)+�y �0(x2) dx � 0; 8 � 2 D+(0; 1):
Proof.� 1st step: Test functions
LetX = (x1; x2) andX 0 = (x01; x02) be two pairs of variables and let us define the following
function: �(X;X 0) = ��x2 + x022 � �"�x2 � x022 � �̂"0 �x1 � x012 � ;
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where� 2 D+(0; 1), �"(r) = 1" ��r"�, �̂"0(r) = 1"0 �̂� r"0�. � and �̂ are functions with

supports in(�1; 1).
If 0 < " < dist(Supp�; �[0; 1℄), then the functions�(X; �) and�(�; X 0) vanish on the bound-
ary�0[�a (see [4] for the details and [5]). Moreover, in order to get a2�x1 periodic function,
we choose an even function̂�"0 and redefine it when(x1; x01) belongs to the subsetT"0 [ S"0 = n(x1; x01) 2 [0; 2�℄� [0; 2�℄; ���x1 � x01��� � 2� � 2"0o;
by setting �̂"0 �x1 � x012 � = �̂"0 � jx1 � x01j � 2�2 � :
Then we define the following function:��(X;X 0) = min h(p1(X)� p2(X 0))+� ; �(X;X 0)i:
Thus, for fixedX 0 (resp.X), ��(�; X 0) (resp.��(X; �) belongs toV0.� 2nd step: Integral equality
Let us denote
1 andr1 (resp. 
2 andr2) the domain and the gradient vector for the
variableX (resp.X 0). For fixedX 0, let us use��(�; X 0) as a test function in the variational
formulation of(P�) with the variableX:Z
1 h3(X) r1hp1(X)ir1h��(X;X 0)i dX = Z
1 �1(X) h(X) ��x1 h��(X;X 0)i dX:
Integrating the previous equation on
2 gives us a first integral equality onQ = 
1 � 
2.
Applying the same method to the variableX 0 (and exchanging the roles ofX andX 0), we
get a second integral equality. Then from periodicity and boundary conditions, it is possible
to establish:ZQ hh3(X) (r1 +r2)�p1�� h3(X 0) (r1 +r2)�p2�i (r1 +r2)���� dX dX 0= ZQ �h(X)� h(X 0) �2(X 0)� ( ��x1 + ��x01 ) ���� dX dX 0:� 3rd step: Change of variables
We make the following change of variables:z = X +X 02 ; � = X �X 02 :
The integral equality becomes:ZQz;� hh3(z + �)rz�p1(z + �)�� h3(z � �)rz�p2(z � �)�i rz���(z + �; z � �)� dz d�= ZQz;� �h(z + �)� h(z � �)�2(z � �)� ��z1���(z + �; z � �)� dz d�;
whereQz;� is the image of the domainQ through the change of variables.
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Let us consider the sets:A� = n(z; �) 2 Qz;�; (p1(z + �)� p2(z � �))+� > �(z + �; z � �)o;B� = n(z; �) 2 Qz;�; (p1(z + �)� p2(z � �))+� � �(z + �; z � �)o:
Let us denoteI1 (resp. I2) the contribution ofA� (resp.B�) in the first integral and let us
denoteJ1 (resp.J2) the contribution ofA� (resp.B�) in the second integral. Then we have:I1 + I2 = J1 + J2.� 4th step: Study of the integrals� Let us studyJ1: since� does not depend onz1, one gets:J1 = 0.� Let us studyJ2:J2 = ZB� �h(z + �)� h(z � �) �2� ��z1�(p1 � p2)+� � dz d�= ZB� �h(z + �)� h(z � �)� ��z1�(p1 � p2)+� � dz d�+ ZB� h(z � �) �1� �2� ��z1�(p1 � p2)+� � dz d�:
The first integral can be rewritten asJ12 = ZQz;� �h(z + �)� h(z � �)� ��z1�min h(p1 � p2)+� ; �i� dz d�:
Integrating by parts, letting� ! 0, and using Lebesgue theorem, we get:lim�!0J12 = ZQz;� h �h�z1 (z + �)� �h�z1 (z � �)i �[p1>p2℄ �(z2) �"(�2) �̂"0(�1):
Since Supp(�") � [�"; "℄, Supp(�̂"0) � [�"0; "0℄ and

�h�z1 is a Lipschitz continuous function,

we get:
��� lim�!0 J12 ��� � C("+ "0) ZQz;� �(z2) �"(�2) �̂"0(�1), and finallylim";"0!0 ��� lim�!0J12 ��� = 0:

The second integral can be rewritten in the old variables asJ22 = ZQ h(X 0) �1� �2� h ��x1�p1 � p2� � + ��x01�p1 � p2� �i dz d�= ZQ h(X 0) �1� �2� ��x1�p1� � dz d�
since1� �2 = 0 whenp2 > 0. Rewriting the integral, one gets:J22 = ZQ h(X 0) �1� �2� ��x1 min hp1� ; �i� ZA� h(X 0) �1� �2� ��x1���= ZB� h(X 0) �1� �2� ��x1���;
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using the Green formula with periodicity and boundary conditions. Since the functionh(X 0) �1� �2(X 0)� ��x1�(X;X 0)
is bounded for each", "0, we conclude��� lim�!0 J22 ��� � lim�!0C���B���� = 0;
and finally, lim";"0!0 ��� lim�!0J22 ��� = 0:� Let us studyI1:I1 = ZA� hh3(z + �) rzp1 � h3(z � �) rzp2i rz��(z2) �"(�2) �̂"0(�1)�:
By Lebesgue theorem,lim�!0 I1 = ZQz;t hh3(z + �) �p1�z2 � h3(z � �) �p2�z2 i �[p1>p2℄ �0(z2) �"(�2) �̂"0(�1)= ZQz;t hh3(z + �) � h3(z � �)i �p2�z2 �[p1>p2℄ �0(z2) �"(�2) �̂"0(�1)+ ZQz;t h3(z + �) �p1 � p2�z2 �[p1>p2℄ �0(z2) �"(�2) �̂"0(�1):
Using the properties of�", �̂"0 and sinceh3 is a Lipschitz continuous function, it is easy to
conclude that the first integral goes to 0 when"; "0 ! 0. Then we obtain, studying the
behaviour of the second integral (see [4] for the details):lim�;";"0!0 I1 = Z
 h3(x) ��x2�p1 � p2�+ �0(x2) dx:� Let us studyI2:
RewritingI2 in the old variables gives:I2 = ZB� hh3(X) ���r1p1� ���2 + h3(X 0) ���r2p2� ���2i� ZB� h3(X) r1p1 r2�p2� �� ZB� h3(X 0) r2p2 r1�p1� �:
The first integral is positive. The second integral satisfies:ZB� h3(X)r1p1 r2�p2� �= � ZB� h3(X)r1p1 r2�p1 � p2� �= � ZQ h3(X)r1p1 r2���� + ZB� h3(X) r1p1 r2���= � ZQ h3(X)r1p1 r2���� + ZQ h3(X) r1p1 r2���� ZB� h3(X)r1p1 r2���= � ZB� h3(X)r1p1 r2���:
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By Hölder inequality and sincelim�!0 jB�j = 0, one gets:lim�!0 ZB� h3(X) r1p1 r2�p2� � � lim�!0 jB�j1=2 h ZQ h6(X) ���r1p1���2 ���r2����2i1=2 = 0:
In a similar way,lim�!0ZB� h3(X 0) r2p2 r1�p1� � � lim�!0 jB�j1=2 h ZQ h6(X 0) ���r2p2���2 ���r1����2i1=2 = 0;
and we deduce lim�;";"0!0 I2 � 0:
Now passing to the limit (�; "; "0 ! 0) in the integral equality concludes the proof. �
Theorem 1.7 Let (p1; �1) and(p2; �2) two solutions of (P�) with respective pressure bound-
ary valuesp1a andp2a on�a. Let us suppose thatp1a � p2a. Thenp1 � p2; a.e. in
.

Proof. From Lemma 1.6, denotingf = (p1 � p2)+, we have, for every� 2 D+(0; 1),Z
 h3(x) �f�x2 �0(x2) dx � 0:
Then one gets:Z
 fh3�00(x2) dx + Z
 f �h3�x2 �0(x2) dx � 0; 8 � 2 D+(0; 1):
Using the following notations:a(x2) = Z 2�0 f(x1; x2)h3(x1; x2) dx1; b(x2) = Z 2�0 f(x1; x2)�h3�y (x1; x2) dx1;
we get: Z 10 a(x2) �00(x2) dx2 + Z 10 b(x2) �0(x2) dx2 � 0; 8 � 2 D+(0; 1): (4)

Now let us suppose thata(x2) > 0, 8 x2 2 (y0; y1) � (0; 1) and let�0 be a solution of the
two points boundary problem:a(x2) �00(x2) + b(x2) �0(x2) = a(x2) 00; �(y0) = �(y1) = 0; (5)

where 2 C1[y0; y1℄ satisfying 00(x2) < 0; 8 x2 2 [y0; y1℄. From the minimum principle,�0(x2) � 0; 8 x2 2 [y0; y1℄. Then we define a regularizing functiong on [y0; y1℄ such thatg�0 is a test function for Equation (4) andg(x2) = 1 on [y0 + Æ; y1 � Æ℄. More precisely, letÆ
be a positive parameter andg the function defined on[y0; y1℄ by

g(x2) =
8>>>>>>>>>>>><>>>>>>>>>>>>:

2�x2 � y0Æ 2� ; x2 2 (y0; y0 + Æ=2)1� 2�1� x2 � y0Æ 2� ; x2 2 (y0 + Æ=2; y0 + Æ)1; x2 2 (y0 + Æ; y1 � Æ)1� 2�1� y1 � x2Æ 2� ; x2 2 (y1 � Æ; y1 � Æ=2)2�y1 � x2Æ 2� ; x2 2 (y1 � Æ=2; y1)
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This function satisfiesg(y0) = g(y1) = 0 and g0(y0) = g0(y1) = 0. Let be e�(x2) =g(x2)�0(x2), 8x2 2 [y0; y1℄. We havee� 2 C2(y0; y1), e�(y0) = e�(y1) = 0 and e�0(y0) =e�0(y1) = 0. Therefore, we can take� = e� in Equation (4) and getZ y1y0 a(x2) e�00(x2) + b(x2) e�0(x2) dx2 � 0:
By separating the integration intervals, we decompose thisintegral in the formZ y0+Æy0 a(x2) (g�0)00 + b(x2) (g�0)0 dx2 + Z y1�Æy0+Æ a(x2) �000 + b(x2) �00 dx2+ Z y1y1�Æ a(x2) (g�0)00 + b(x2) (g�0)0 dx2 � 0:(6)

From (5), the second integral is strictly negative, and for the two other integrals, we haveZ y0+Æy0 a(x2)(g�0)00 + b(x2)(g�0)0dx2= Z y0+Æy0 a(x2)(g00�0 + 2g0�0 + g�000) + b(x2)(g0�0 + g�00)dx2= Z y0+Æy0 (a(x2)g00�0 + 2a(x2)g0�0 + a(x2)g�000 + (b(x2)g0�0 + b(x2)g�00) dx2: (7)

Sincej g0(x2) j� 1=Æ, j g00(x2) j� 1=Æ2 and being the functionsa and�0 continuous in the
interval(y0; y0 + Æ), the terms under the last integral in (7) are bounded and we obtainZ y0+Æy0 a(x2)(g�0)00 + b(x2)(g�0)0dx2 � Æ:
In the same way, we haveZ y1y1�Æ a(x2)(g�0)00 + b(x2)(g�0)0dx2 � Æ:
Passing to the limit (Æ ! 0) in inequality (6), one gets:Z y1y0 a �000 + b �00 dx2 � 0:
But we have also: Z y1y0 a �000 + b �00 dx2 = Z y1y0 a  00 < 0:
Then we have:a(x2) = Z 2�0 f h3 dx1 � 0 on (0; 1), that is

Z 2�0 (p1 � p2)+ h3 dx1 � 0, and

we concludep1 � p2 a.e. in
. �
Theorem 1.8 Under Assumptions 1.1 and 1.2, problem(P�) admits at least one solution(p; �) whose pressurep is unique. Moreover, if there exists a set of positive measure wherep(x1; x2) > 0, for anyx2 > 0, then the saturation� is unique.
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Proof.� Uniqueness of the pressure is obtained from Theorem 1.7.� Let us consider(p; �1) and(p; �2) two solutions. Then we get, by means of substraction:Z
 h (�1 � �2) � �x1 = 0; 8  2 V; and
�h (�1 � �2)�x1 = 0; in D0(
),

so thath (�1 � �2) is a function only depending on thex2 variable, almost everywhere in
.
In particular, if there exists a set of positive measure where �1(x) = �2(x), for everyx2 > 0,
then�1 = �2 a.e. in
. �

We give a supplementary result :

Corollary 1.9 Under Assumptions 1.1 and 1.2 and ifh can be written under the formh(x1; x2) =h1(x1)h2(x2) (with 0 < hi0 � hi(xi) � hi1), then problem(P�) admits a unique solution.

Proof. By Theorem 1.8, it is sufficient to prove that, for anyx2 > 0, there exists a set of
positive measure, wherep(x1; x2) > 0. Let be a test function only depending onx2. Then
we haveZ
 h3 �p�x2 0 = 0; i.e.

Z 10 �Z 2�0 h3(x1; x2) �p�x2 (x1; x2) dx1� 0(x2) dx2 = 0:
Thus, we get Z 2�0 h3(x) �p�x2 (x) dx1 = C;
whereC is a real constant. Sinceh can be written under the formh(x1; x2) = h1(x1)h2(x2),
dividing the previous equality byh32(x2) gives��x2 �Z 2�0 h31(x1) p(x1; x2) dx1� = Ch32(x2) :
Integrating the previous equality and taking into account the boundary conditions on the
pressure,�Z 2�0 h31(x1) p(x1; x2) dx1� = Z 2�0 h31Z 10 h�32 pa Z x20 h�32 (t) dt > 0; 8 x2 > 0: (8)

We deduce from Equation (8) that, for anyx2 > 0, there exists a set of positive measure,
wherep(x1; x2) > 0. �

The next sections deal with homogenization of the lubrication problem, using two-scale
convergence techniques which have been introduced by Nguetseng in [34], and further de-
velopped by Allaire [1], Cioranescu, Damlamian and Griso [23] and Lukkassen, Nguetseng
and Wall [31].
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2 Homogenization of the lubrication problem

In the whole section,
 =℄0; 2�[�℄0; 1[ andY =℄0; 1[�℄0; 1[. Now we introduce the rough-
ness of the upper surface; the roughness is supposed to be periodic, characterized by a small
parameter" denoting the roughness spacing. Due to the shape of the Reynolds equation,
oscillating data appear in both sides of the equation. So we are led to consider the following
problem(P"� ) and assumptions:

Assumption 2.1 Leta andb be functions such that:

(i) a 2 L2℄ (
;C℄(Y )) or a 2 L2℄ (Y ;C℄(�
)),
(ii) b 2 L2℄ (
;C℄(Y )) or b 2 L2℄ (Y ;C℄(�
)),
(iii) 9ma;Ma; 8(x; y) 2 
� Y; 0 < ma � a(x; y) �Ma,
(iv) 9mb;Mb; 8(x; y) 2 
� Y; 0 < mb � b(x; y) �Mb.

We introduce the following functions defined on
:a"(x) = a�x; x"� ; b"(x) = b�x; x"� :
Then we introduce the following problem:(P"� )8><>: Find (p"; �") 2 Va � L1(
) such that:Z
 a"rp"r� = Z
 �"b" ���x1 ; 8 � 2 V0;p" � 0; p" (1� �") = 0; 0 � �" � 1; a.e. in
.

Existence and uniqueness results have been discussed in Section 1. Our purpose is to
discuss the behaviour of problem(P"� ) when" goes to 0, using two-scale convergence tech-
niques.

2.1 Preliminaries to the two-scale convergence technique

First we recall some useful definitions and results for the two-scale convergence (see [1, 23,
31]).

Lemma 2.2 The separable Banach spaceL2(
;C℄(Y )) is dense inL2(
 � Y ). Moreover,
if f 2 L2(
;C℄(Y )), thenx 7! �"(f)(x) = f(x; x=") is a measurable function such that


�"(f)


L2(
) � 


f


L2(
;C℄(Y ))
Definition 1 The sequenceu" 2 L2(
) two-scale converges to a limitu0 2 L2(
 � Y ) if,
for any 2 L2(
;C℄(Y )), one haslim"!0Z
 u"(x) �x; x"� dx = Z
 ZY u0(x; y) (x; y) dy dx:
Lemma 2.3 Letu" be a bounded sequence inL2(
). Then there existsu0 2 L2(
�Y ) such
that, up to a subsequence,u" two-scale converges tou0.
Lemma 2.4 Letu" be a bounded sequence inH1(
), which weakly converges to a limitu0 2H1(
). Thenu" two-scale converges tou0 and there exists a functionu1 2 L2(
;H1(Y )=R)
such that, up to a subsequence,ru" two-scale converges toru0 +ryu1.
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2.2 Two-scale convergence results

In this subsection,(p"; �") denotes a solution of problem(P"� ).
Lemma 2.5 There existsp0 2 Va such that, up to a subsequence:p" * p0 in H1(
) and p" ! p0 in L2(
).
We have also the following two-scale convergences:

(i) p" two-scale converges top0. Moreover, there existsp1 2 L2(
;H1℄ (Y )=R) and a
subsequence"0, still denoted", such thatrp" two-scale converges torp0 +ryp1.

(ii) There exists�0 2 L2(
 � Y ) and a subsequence"", still denoted", such that�" two-
scale converges to�0.

Moreover,p0 � 0 a.e. in
.

Proof. Since0 � �" � 1, �" is bounded inL1(
) and inL2(
), so thatk�"kL2(
) � C1,
whereC1 only depends on
. Moreover, from Assumptions 2.1(ii)–(iv), properties of�" and
the Cauchy-Schwarz inequality, we get the estimates onp" by usingp"� �pa (with �pa a regular
function such thatp" � �pa 2 V0) as a test function and Poincaré-Friedrichs inequality sothatkp"kH1(
) � C2 whereC2 only depends on
. The convergence results are the consequence
of the previous estimates (see Lemmas 2.3 and 2.4, or Proposition 1.14 in [1], Theorem 13 in
[31]). Finally p0 � 0 a.e. in
 due to the properties ofp". �

Now, we give the properties of the two-scale limitsp0 and�0, which are quite similar
to the ones of the initial functionsp" and �". These properties are obtained by means of
two-scale convergence techniques.

Proposition 2.6 0 � �0 � 1 a.e. in
� Y .

Proof. Let us introduce the classical notationw+ = max(w; 0) andw� = �min(w; 0), for
anyw 2 L2(
 � Y ). SinceL2(
;C℄(Y )) is dense inL2(
 � Y ) (see Theorem 3 in [31]),
let us consider a sequence�n 2 L2(
;C℄(Y )), �n � 0, which strongly converges to��0 in
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� Y ) (note that such a sequence exists1). Thus, defining the following sequencesA"n = Z
 �"(x) �n �x; x"� dx; A?n = Z
�Y �0(x; y) �n (x; y) dy dx;
we have, using the two-scale convergence of�",lim"!0A"n = A?n:

Obviously,A"n is a sequence of positive numbers so that we have also:A?n � 0. Now lettingn! +1, we have: limn!+1A?n = � Z
�Y (��0 )2 = A (� 0):
Thus,A?n being a sequence of positive numbers,A � 0 so that, finally,A = 0. Thus, we have
proved that��0 = 0 a.e. Similarly, it can be proved that(1� �0)� = 0 a.e. �
Proposition 2.7 p0 (1� �0) = 0 a.e. in
� Y .

Proof. By uniqueness of the two-scale limit (see [1, 31]), it is sufficient to prove thatp" (1��") two-scale converges top0 (1��0). Asp" two-scale converges top0, let us prove thatp" �"
two-scale converges top0 �0. The sequencef�"p"g is bounded inL2(
). Consequently, it
remains to prove (see Proposition 1 in [31]):Z
 p"(x) �"(x) ��x; x"� dx! Z
�Y p0(x) �0(x; y) �(x; y) dy dx;
for all � 2 D(
;C1℄ (Y )). Let� be a function inD(
;C1℄ (Y )) and let�" be defined by:�" = Z
 p"(x) �"(x) ��x; x"� dx� Z
�Y p0(x) �0(x; y) �(x; y) dy dx:
Our purpose is to prove that�" tends to 0. Then we have:

1Let 2 L2(
� Y ),  � 0. By Theorem 3 in [31], there exists a sequence n 2 L2(
;C℄(Y )) such that n strongly converges to in L2(
� Y ). Now it is sufficient to prove that

(i)  +n 2 L2(
;C℄(Y )),
(ii)  +n strongly converges to in L2(
� Y ) up to a subsequence.

We have the following characterization ofL2(
;C℄(Y )) (see Theorem 1 of [31]): a functionf belongs toL2(
� Y ) if and only if there exists a subsetE of measure zero in
 such that:

(a) for anyx 2 
 nE, the functiony ! f(x; y) is continuous andY periodic,

(b) for anyy 2 Y , the functionx! f(x; y) is measurable,

(c) the functionx! supy2Y jf(x; y)j has finiteL2(
) norm.

Thus, it is obvious that if n 2 L2(
;C℄(Y )), then +n 2 L2(
;C℄(Y )). It remains to prove that, up to a
subsequence, �n strongly converges to0 in L2(
�Y ). Thus, by Theorem IV.9 in [20], as n;  2 L2(
�Y )
with k n �  kL2(
�Y ) ! 0, there exists a subsequence nk such that

(a)  nk !  a.e. in
� Y ,

(b) j nk (x; y)j � �(x; y), for all nk, a.e. in
� Y , with h 2 L2(
� Y ).
Now, since �nk ! 0 a.e. on
 � Y and j �nk(x; y)j � j nk (x; y)j � �(x; y) we state from the Lebesgue
theorem thatk �nkkL2(
�Y ) ! 0, and the proof is concluded.
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�" = Z
 hp"(x)� p0(x)i �"(x) ��x; x"� dx| {z }�1"+ Z
 p0(x) �"(x) �(x; x" ) dx� Z
�Y p0(x) �0(x; y) �(x; y) dy dx| {z }�2" :� Using the Cauchy-Schwarz inequality and Lemma 2.2 (see alsoLemma 1.3 in [1] or
Theorem 3 in [31]), we have:����1"��� � 


p" � p0


L2(
)


�"(�)


L2(
) � 


p" � p0


L2(
)


�


L2(
;C℄(Y )):
As p" �! p0 in L2(
), we have:

����1"��� �! 0.� In order to prove that�2" ! 0, since�" two-scale converges to�0, it is sufficient to
prove that(x; y) !  (x; y) = p0(x) �(x; y) is an admissible test function for the two-scale
convergence (i.e. 2 L2(
;C℄(Y ))).
Let us prove that(x; y)! p0(x) �(x; y) 2 L2(
;C℄(Y )) for every� 2 D(
;C1℄ (Y )).B With � 2 D(
;C1℄ (Y )) andp0 2 H1(
), we have for a.e.x in 
:p0(x) �(x; �) 2 C1℄ (Y ) � C℄(Y ):B Let us denote	0(x; y) = p0(x) �(x; y). Asp0 2 H1(
) � L4(
),� 2 D(
;C1℄ (Y )) �L4(
;C℄(Y )), by the Cauchy-Schwarz inequality,


	0


2L2(
;C℄(Y )) = Z
 p20(x) supy2Y ����(x; y)���2 dx� �Z
 p40(x) dx�1=2 �Z
 supy2Y ����(x; y)���4 dx�1=2 < +1:

We have proved that(x; y) ! p0(x) �(x; y) 2 L2(
;C℄(Y )) for any function� 2D(
;C1℄ (Y )). Then,�2" ! 0. �
2.3 Homogenization of the lubrication problem (general case)

Using an idea developped in [1], one has the following macro-microscopic decomposition:

Theorem 2.8 From the initial formulation,� Macroscopic equation:Z
 �ZY ahrp0 +ryp1i dy�r� dx = Z
 �ZY �0b dy� ���x1 dx; (9)

for every� in V0.
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For a.e.x 2 
, ZY ahrp0 +ryp1iry dy = ZY �0b � �y1 dy; (10)

for every 2 H1℄ (Y ).
Proof. Using the test function �(x) + " �1(x) �x"�
with � 2 V0, �1 2 D(
) and 2 H1℄ (Y ) in problem(P"� ), one has:Z
 a�x; x"�rp"(x)hr�(x) + �1(x)ry �x"� + " �x"�rx�1(x)i dx= Z
 �"(x)b�x; x"� h ���x1 (x) + �1(x) � �y1 �x"�+ " �x"� ��1�x1 (x)i dx:
Passing to the limit (" ! 0) gives us the macroscopic equation (with�1 � 0) and the
microscopic equation (with� � 0), using density results. �

Let us define the local problems, respectively denoted(M?i ), (N ?i ) and(N 0i ):
FindW ?i , �?i , �0i (i = 1; 2) in L2(
;H1℄ (Y )=R), such that, for almost everyx 2 
:ZY a ryW ?i ry = ZY a � �yi ; 8 2 H1℄ (Y ) (i = 1; 2) (11)ZY a ry�?i ry = ZY b � �yi ; 8 2 H1℄ (Y ) (i = 1; 2) (12)ZY a ry�0i ry = ZY �0b � �yi ; 8 2 H1℄ (Y ) (i = 1; 2) (13)

We immediatly have:

Lemma 2.9 Problem(M?i ) (resp. (N ?i ),(N 0i )) admits a unique solutionW ?i (resp.�?i , �0i )
in L2(
;H1℄ (Y )=R).
Theorem 2.10 The homogenized problem can be written as(P?� )8><>: Find (p0;�1;�2) 2 Va � L1(
)� L1(
) such thatZ
A � rp0 r� = Z
 b0r�; 8 � 2 V0;p0 � 0 and p0 (1� �i) = 0; (i = 1; 2) a.e. in
,

withA = � a?11 a?12a?21 a?22 �, b0 = � �1b?1�2b?2 � and ef(x) = ZY f(x; y) dy, being the homogenized

coefficients defined asa?ij = ea Æij � ^ha�W ?j�yi i; b?i = eb� ^ha��?i�yi i:
Moreover, the homogenized problem admits at least a solution.



20 G. Bayada, S. Martin and C. Vázquez / Two-Scale Homogenization of the Elrod-Adams Model

Proof. From Lemma 2.9, one has:p1(x; y) = �W ?(x; y) � rp0(x) + �01(x; y); in L2(
;H1℄ (Y )=R) (14)

with W ? = � W ?1W ?2 �. Let us notice that�01(x; y) depends on�0(x; y) which is unknown.

Using Equation (14) in the macroscopic equation gives:Z
 hea I � ârW ?i � rp0 r� = Z
 h ℄(�0b)� ^�a��01�y1 � i ���x1+ Z
 h � ^�a��01�y2 � i ���x2 ; (15)

for every� 2 V0. Introducing the notationsb0i =℄(�0b)� ^�a��01�yi � (i = 1; 2), one getsZ
A � rp0 r� = Z
 b0r�; 8 � 2 V0;
with A = ea I � ârW ? b0 = � b01b02 � :
Introducing the ratios�i = b0i =b?i in the vectorb0 concludes the proof. �
Remark 2.11 The homogenized lubrication problem can be considered as a generalized
Reynolds-type problem with two saturation functions�i (i = 1; 2). Let us notice that if
there is no cavitation phenomena (i.e.p0 > 0) then�i = 1: thus, we get the classical homog-
enized Reynolds equation (without cavitation) (see [13]).But several aspects remain hard to
describe:

(a) The homogenized problem leads us to consider two different saturation functions, since
an extra term has to be added (in thex2 direction of the flow) when comparing the
homogenized problem to the initial problem.

(b) Another point is to consider the fact that the property0 � �i � 1 is missing, i.e.
we cannot guarantee that homogenized cavitation parameters are smaller than 1 in
cavitation areas !

(c) We are not able prove any uniqueness result, for the homogenized problem, using the
methods described in Section 1.

(d) Algorithms are known to solve the roughless problem (seefor instance the papers by
Alt [3], Bayada, Chambat and Vazquez [15], Marini and Pietra[32]). But how to
solve the homogenized problem numerically ? How to treat thetwo different saturation
functions?

Thus these four difficulties have to be underlined in the mostgeneral case and, in the follow-
ing subsections, we show how it is possible to solve them, fully or at least partially. Addi-
tional assumptions have to be made in order to get an homogenized problem with a structure
which is similar to the initial one. This will be the subject of the following subsection. Before
starting this study, let us conclude this subsection with the following theorem:
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Theorem 2.12 The homogenized problem(P?� ) admits a solution(p0;�;�) with 0 � � � 1
a.e. in
.

Proof. The result is obtained in three steps: first, we consider the penalized rough problem(P"�); then, we apply the homogenization process to the penalizedproblem (i.e. " ! 0);
finally, we pass to the limit on the penalization parameter (i.e.� ! 0).� 1st step -Let us consider the rough penalized problem:(P"�)8><>: Find p�" 2 Va such that:Z
 a"rp"r� = Z
H�(p�") b" ���x1 ; 8 � 2 V0:p" � 0; a.e. in
� 2nd step -Similarly to the exact rough problem, we get a priori estimates on the pres-
sure, i.e. kp�"kH1(
) � C3 whereC3 only depends on
. From the previous estimate, we
deduce that there existsp�0 2 Va (p�0 � 0 a.e. in
) such that, up to a subsequence,p�"
weakly converges top�0 in H1(
). Moreover,p�" two-scale converges top�0 and there ex-
ists p�1 2 L2(
;H1℄ (Y )=R) and a subsequence"0 still denoted" such thatrp�" two-scale
converges torp�0 + ryp�1. Then, with the two-scale homogenization technique, we getthe
following macro/microscopic decomposition:� Macroscopic equation:Z
 �ZY ahrp�0 +ryp�1i dy�r� dx = Z
 �ZY H�(p�0) b dy � ���x1 dx; (16)

for every� in V0.� Microscopic equation:
For a.e.x 2 
, ZY a hrp�0 +ryp�1iry dy = ZY H�(p�0) b � �x1 dy; (17)

for every 2 H1℄ (Y ).
Then introducing the local problems defined in Equations (11) and (12), we get:p�1(x; y) = �W ?(x; y) � rp�0(x) +H�(p�0(x)) �?1(x; y); in L2(
;H1℄ (Y )=R). (18)

Using Equation (18) in the macroscopic equation gives:Z
 heaI � ârW ?irp�0r� = Z
H�(p�0) h eb� ^�a��?1�y1 � i ���x1+ Z
H�(p�0) h � ^�a��?1�y2 � i ���x2 ; (19)

for every� 2 V0. Then, using the definitions ofb?i (i = 1; 2) (see Theorem 2.10) and
introducing vectorb? whoseith component isb?i , the homogenized penalized problem can be
written as (P?� )8><>: Find p�0 2 Va such thatZ
A � rp�0 r� = Z
H�(p�0) b?r�; 8 � 2 V0;p�0 � 0; a.e. in
.
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theH1(
) norm, which do not depend on�, so that there existsp0 2 Va, (p0 � 0 a.e. in
)
and� 2 L1(
) such that p�0 * p0; in H1(
),H�(p�0) * �; in L1(
) weak-?.
Passing to the limit (� ! 0) in problem (P?� ) concludes the proof, since the properties0 � � � 1 andp0 (1� �) = 0 a.e. in
 are classically obtained as in Section 1. �
Remark 2.13 Let us recall that we are not able to prove a uniqueness resulton the general
problem. But we can wonder if it is possible to obtain a uniqueness result among the class
of solutions(p0;�1;�2) satisfying�1 = �2 = � with 0 � � � 1 (and, of course,p0 � 0,p0 (1 � �) = 0). In fact, it is not possible to get such a result using the method described
in Section 1, because it is not well-suited to a flow whose component in thex2 direction is
different from 0.

Remark 2.14 Theorem 2.12 guarantees that we are able to build an homogenized problem
with isotropic saturation from the penalized problem, although it is not the case when directly
studying the homogenization of the exact problem (in the most general case):� the penalized problem allows us to build a solution in pressure/saturation(p0;�;�)

where the saturation� satisfies0 � � � 1 (and, also,p0 � 0 andp0 (1� �) = 0);� by contrast, the exact problem with the homogenization process builds a solution in
pressure / double-saturation(p0;�1;�2) for which we are not able to conclude that0 � �i � 1 (although the following properties hold:p0 � 0 and p0 (1 � �i) = 0,(i = 1; 2)).

At that point, it is important to know whether�0(x; y) depends ony or not: that �0 does
not depend on they variable would mean that the homogenized exact problem and the ho-
mogenized penalized problem (after passing to the limit on�) are identical, i.e. saturation
phenomena would be isotropic. More precisely, in the exact homogenized problem, such an
assumption leads us to�1 = �2 = �0 (see Equations (13) and (19)),0 � �i = �0 � 1 (see
Propositions 2.6 and 2.7). But, in fact, numerical tests evidence that such an assumption is
not valid in general, as it will be pointed out in the next section.

Remark 2.15 It is now possible to find, numerically, a solution of problem(P?� ), by focusing
on solutions(p0;�;�) satisfying0 � � � 1 (with p0 � 0 andp0 (1 � �) = 0), and using
algorithms that have been previously mentioned. In that prospect, it allows us to eliminate
another difficulty that has been underlined in Remark 2.11. But, since we do not have any
uniqueness result, we cannot guarantee that each solution(p;�1;�2) satisfies�1 = �2 and
we are not able to build numerically solutions with two different saturation functions. We
can neither illustrate numerically anisotropic effects onthe saturation, nor prove that all the
solutions have the form(p0;�;�).
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2.4 Some particular cases

2.4.1 Longitudinal and transverse roughness

Our interest in studying the behaviour of the solution when considering transverse or longi-
tudinal roughness is highly motivated by the mechanical applications. From a mathematical
point of view, we may even consider a product of transverse and longitudinal roughness i.e.
we should consider, in this subsection, the following assumption:

Assumption 2.16

(i) a(x; y) = a1(x; y1) a2(x; y2),
(ii) 9ma;i; Ma;i; 0 < ma;i � ai �Ma;i, (i = 1; 2),

(iii) b(x; y) = b1(x; y1) b2(x; y2),
(iv) 9mb;i; Mb;i; 0 < mb;i � bi �Mb;i, (i = 1; 2).

It is clear that the earlier assumption is just a separation of the microscale variables,
which allows us to take into account either transverse or longitudinal roughness effects, but
also particular full two dimensional roughness effects. For a dimensionless journal bearing,
we may consider gaps with roughness patterns described on FIG.2–5, corresponding to a
roughless gap1 + � 
os(x1), x 2℄0; 2�[�℄0; 1[.
Lemma 2.17 Under Assumption 2.16, it follows that:A = 0BBB� ea2ga�11 00 ea1ga�12

1CCCA :
Proof.� Diagonal terms of the matrix. For this, let us recall the variational formulation (see Equa-
tion (11)) of problem(M?i ) (i = 1; 2):ZY aryW ?i ry = ZY a� �yi ; 8 2 H1℄ (Y ):
Let j 2 f1; 2g, with j 6= i. Denoting

hfiYj the averaging process of a functionf on theyj
variable and using a test function only depending onyi, one has:ZYi ha �W ?i�yi iYj d dyi = ZYi haiYj d dyi ; 8 2 H1℄ (Yi)
Then, one has, for a.e.x 2 
, that:ha �W ?i�yi iYj = haiYj + Cii(x): (20)

Using Assumption 2.16 and dividing Equation (20) byai, we have:haj �W ?i�yi iYj = hajiYj + Ciiai :
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Figure 2: Normalized gap (no roughness patterns)
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Figure 3: Normalized gap with transverse roughness patterns
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Figure 4: Normalized gap with longitudinal roughness patterns
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Figure 5: Normalized gap with two dimensional roughness patterns
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Now, averaging on theyj variable and using theY periodicity ofW ?i give us0 = eaj + Cii ga�1i ;
so thatCii(x) = � eajga�1i . Moreover, using the definition ofAii (see Theorem 2.10) and

Equation (20), one hasCii(x) = �Aii(x), so thatAii(x) = eajga�1i (x); i = 1; 2:� Non-diagonal terms of the matrix. For this, leti; j 2 f1; 2g, j 6= i. Recalling the varia-
tional formulation of problem(M?i ) (i = 1; 2) and using a test function only depending onyj, one has: ZYj ha �W ?i�yj iYi d dyj = 0; 8 2 H1℄ (Yj):
Then, for a.e.x 2 
, we have: ha �W ?i�yj iYi = Cij(x): (21)

Using Assumption 2.16, dividing byaj, averaging on theyi variable and sinceW ?i is Y
periodic, we get thatCij(x) = 0 (for i 6= j). Moreover, using the definition ofAij (see
Theorem 2.10) and Equation (21), one hasCij(x) = �Aij(x) so thatAij(x) = 0 (i 6= j). �
Lemma 2.18 Under Assumption 2.16, we deduce that:b0 = � �1b?10 � ; (22)

where the following relationships hold:0 � �1 � 1 and p0 (1� �1) = 0 a.e. in
.

Moreover, the homogenized coefficientb?1 satisfies:b?1(x) = h 1ga�11 ℄� ba1�i(x): (23)

Proof. The first part of the proof lies in the determination of vectorb0. In the second part, we
calculate the homogenized coefficientb?1.� 1st part - Computation of the components of vectorb0:I Let us study the first term of vectorb0. Thus, denotingw1 = �?1 � �01 and combining

problems (N ?1 ) and (N 01 ), one gets, for a.e.x 2 
, that:ZY aryw1ry = ZY b(1� �0) � �y1 ; 8 2 H1℄ (Y ):
Now, using a test function only depending ony1, one has:
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Then, for a.e.x 2 
, we get:ha �w1�y1 iY2 = hb (1� �0)iY2 + C(x); (24)

whereC(x) is an additive constant only depending onx. Next, using Assumption
2.16, dividing bya1, averaging on they2 variable and using theY periodicity ofw1,
we deduce the following equality^h(1� �0) ba1i+ C(x)ga�11 = 0:
Now, from Proposition 2.6 and Assumption 2.16, it is easy to get C(x) � 0. Then,
averaging Equation (24) on they1 variable, we obtain that℄(�0b)� ^�a��01�y1 � � f(b)� ^�a��?1�y1 �; i.e. b01 � b?1:
Next, applying the earlier method to the variational formulation of problem (N 01 ), it is
easy to conclude0 � b01 (i = 1; 2).I Let us now study the second term of vectorb0. Applying the same mehod (as earlier)
to the variational formulation of problem (N 01 ), one has:ZY2 ha��01�y2 iY1 d dy2 = 0; 8 2 H1℄ (Y2):
Then, one gets: ha��01�y2 iY1 = 0; in H1℄ (Y2)=R.
From the previous equality, one obtains:ha��01�y2 iY1 = C(x); (25)

for a.e. x 2 
, whereC(x) is an additive constant only depending onx. Next, us-
ing Assumption 2.16, dividing bya2, averaging on they2 variable and using theY
periodicity of�01, we get thatC(x) = 0. So, from Equation (25), we deduce:� ^�a��01�y2 � = 0; i.e. b02 = 0:
With the earlier method applied to the variational formulation of problem (N ?1 ), it is
easy to conclude thatb?2 = 0.
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Now, since we have proved that0 � b01 � b?1 and0 = b02 = b?2, using the definitions of�i (i = 1; 2), it is easy to conclude that Equation (22) and property0 � �1 � 1 a.e. in

hold. Moreover, propertyp0 (1� �1) = 0 a.e. in
 is obtained from Proposition 2.7 and the
definition of�1. Thus, it remains to calculate the homogenized coefficientb?1.� 2nd part - Computation ofb?1:
First, considering problem (N ?1 ), one gets:ZY ary�?1ry = ZY b � �y1 ; 8 2 H1℄ (Y );
for a.e.x 2 
. Next, using a test function only depending ony1, one has:ZY1 ha��?1�y1 iY2 d dy1 = ZY1 hbiY2 d dy1 ; 8 2 H1℄ (Y1):
Then, ha��?1�y1 iY2 = hbiY2 + C?1(x); (26)

for a.e.x 2 
, whereC?1(x) is an additive constant only depending onx. Using Assumption
2.16, dividing bya1, averaging on they2 variable and using theY periodicity of�?1, leads to
the following equality: ℄h ba1 i+ C?1 (x) ea1 = 0: (27)

Next, from the definition ofb?1 (see Theorem 2.10) and Equation (26), we deduce thatC?1(x) =�b?1(x) so that, from Equation (27), we conclude the proof. �
Lemma 2.19 Under Assumption 2.16, it follows that�1(x) = � 1℄� ba1� �̂�0ba1 ��(x): (28)

Proof. Notice thatb01 can be calculated by using the same method which allowed us toobtainb?1 in the proof of Lemma 2.18, just replacing problem (N ?1 ), by problem (N 01 ). Then, we
have b01(x) = 1ga�11 ĥ�0ba1 i(x): (29)

The definition of�1 (see Theorem 2.10), Equations (23) and (29) conclude the proof. �
To summarize the earlier results, we establish the following homogenized problem:

Theorem 2.20 Under Assumption 2.16, the homogenized problem is:(P?� )8><>: Find (p0; �) 2 Va � L1(
) such that:Z
A � rp0 r� = Z
 � b?1 ���x1 ; 8 � 2 V0p0 � 0; p0 (1� �) = 0; 0 � � � 1; a.e. in

with the following homogenized coefficients:
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A = 0BBB� ea2ga�11 00 ea1ga�12
1CCCA ; b?1(x) = h 1ga�11 :℄� ba1�i(x)

Moreover(P?� ) admits at least(p0;�) as a solution, where�(x) = h 1℄� ba1� :�̂�0ba1 �i(x) (30)

and(p0; �0) is the two-scale limit of(p"; �") (solution of problem(P"� )).
Remark 2.21 In the lubrication problem, Assumption 2.16 implies that the gap between the
two sufaces is described by the function:h�x; x"� = h1 �x; x1" � h2 �x; x2" �
In this case, the homogenized coefficients are the followingones:A = 0BBBB� eh32gh�31 00 eh31gh�32

1CCCCA ; b?1(x) = hgh�21gh�31 eh2i(x)
and we get the precise link between the microscopic cavitation and the macroscopic cavita-
tion, i.e. �(x) = h 1eh2gh�21 :�̂�0h2h21 �i(x) (31)

Theorem 2.22(i) Under Assumption 2.16, problem(P?� ) admits at least a solution(p0;�). Moreover, the
pressurep0 is unique, and if there exists a set of positive measure wherep0(x1; x2) > 0, for
anyx2 > 0, then the saturation� is unique.(ii) If b? can be written under the formb?(x1; x2) = b?1(x1)b?2(x2), problem(P?� ) admits a
unique solution.

Proof. For(i), existence of a solution is stated in Theorem 2.20, by means of construction via
the two-scale convergence techniques. Uniqueness of the pressure and, under the additional
assumption, of the saturation is obtained as in Theorem 1.8.For (ii), the result is obtained as
in Corollary 1.9. �
Remark 2.23 A primal “naive” attempt leading to the homogenized problemwould be to
determine an equation satisfied by the weak limits of(p"; �"), namely(p0; e�0). Interestingly,
the weak limit of the pressure does appear in the homogenizedproblem, but the macroscopic
homogenized saturation� is a modified average of�0, weighted by the roughness effects
through the influence of functionshi.
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It is interesting to notice that Assumption 2.16 allows us tosolve the four difficulties that
we could not overcome in the most general case (see Remark 2.11). In particular, there is one
single saturation function; the homogenized problem can benumerically solved using algo-
rithms applied to the roughless problem; and it is easy, under additional realistic assumptions,
to obtain a uniqueness result on both pressure and saturation. Moreover, Assumption 2.16
includes some important particular cases in terms of mechanical applications: transverse and
longitudinal roughness. The results are easily deduced from Theorem 2.22 and given, in the
next results, for a strong formulation.

Corollary 2.24 If h does not depend ony2 (transverse roughness), then the homogenized
problem can be written as:8<: ��x1 h 1gh�3 �p0�x1 i+ ��x2 h eh3 �p0�x2 i = ��x1 h � gh�2gh�3 i; x 2 
;p0(x) � 0; p0(x) (1� �(x)) = 0; 0 � �(x) � 1; x 2 
;
with the following boundary conditions:p0 = 0 on�0 andp0 = pa on�a (Dirichlet conditions)� gh�2gh�3 � 1gh�3 �p0�x1 andp0 are2�x1 periodic (periodic conditions)

Corollary 2.25 If h does not depend ony1 (longitudinal roughness), then the homogenized
problem can be written as:8<: ��x1 h eh3 �p0�x1 i+ ��x2 h 1gh�3 �p0�x2 i = ��x1 h � eh i; x 2 
;p0(x) � 0; p0(x) (1� �(x)) = 0; 0 � �(x) � 1; x 2 
;
with the following boundary conditions:p0 = 0 on�0 andp0 = pa on�a (Dirichlet conditions)� eh� eh3 �p0�x1 andp0 are2�x1 periodic (periodic conditions)

Under Assumption 2.16, the homogenized problem is similar to the" dependent one,
since there is one single saturation function. This assumption, imposing a particular form of
the roughness, seems to be strong but it allows us to take intoaccount some two dimensional
roughness effects. Moreover, it is somewhat surprising to see that passing from the classical
homogenized equation (without cavitation) (see [13]) to the one obtained in our paper (in-
cluding cavitation) only needs to introduce a saturation inthe right hand side; in other terms,
comparing the homogenized Reynolds equations - with or without cavitation -, the homog-
enized coefficients are not modified, although the Elrod-Adams model introduces a strong
nonlinearity through the saturation function and its properties.

In the next subsubsection, we deal with oblique roughness. Obviously, this case does not
fall into Assumption 2.16 which enables us to completely overcome the mentioned difficulties
stated in the general case. However, it seems that a change ofvariables could allow us to
recover a structure in which Assumption 2.16 is satisfied. Wewill see that it is not really
the case and that the change of variables will introduce additional terms which are not fully
controlled by the homogenization process; nevertheless, it allows us to define, in a rigorous
way, two homogenized saturation functions, thus describing anisotropic phenomena on the
cavitation. This structure can be considered as an intermediary one between the general case
and the microvariables separation case.
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2.4.2 Oblique roughness

Let us consider the mappingF
 defined as:F
 : R2 �! R2x �! X = F
(x) , with

� X
1 (x) = 
os 
 x1 + sin 
 x2X
2 (x) = � sin 
 x1 + 
os 
 x2
We suppose that the effective gap can be described as follows:

Assumption 2.26 For a given angle
, let beh" a function such that8x 2 
; h"(x) = h1�x; X
1 (x)" � h2�x; X
2 (x)" � ;
with 0 < m0i � hi � M0i a.e. in
 (i = 1; 2).
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Figure 6: Normalized gap with oblique roughness patterns

Obviously, heights satisfying Assumption 2.26 (see for instance FIG.6) do not satisfy
Assumption 2.16 (except for particular values of
). Let us drop the overscripts
 (for the
sake of simplicity). Now, we say thatx = (x1; x2) (resp.X = (X1; X2)) denotes the original
(resp. new) spatial coordinates. So, introducing the vectore�
 = (
os 
;� sin 
), problem(P"� ) can be described in theX coordinates as follows:� �P�"�8>><>>: Find (�p"; ��") 2 �Va � L1(�
) such that:Z�
 �h3"(X)r�p"(X)r�(X) dX = Z�
 ��"(X)�h"(X)e�
r�(X) dX; 8 � 2 �V0;�p" � 0; �p" (1� ��") = 0; 0 � ��" � 1; a.e. in�
,

where �f(X) = f(x) and�
 = F
(
), with the following functional spaces:�Va = n� 2 H1(�
); �j��l = �j��r ; �j��0 = 0; �j��a = �pao;�V0 = n� 2 H1(�
); �j��l = �j��r ; �j��0 = 0; �j��a = 0o;
where�l (resp.�r) denotes the left (resp.right) lateral boundary.

Remark 2.27 In the new coordinates, one has�h"(X) = �h1�X; X1" � �h2�X; X2" �:
From now on, we denote�ai(X; yi) = �h3i (X; yi) and�bi(X; yi) = �hi(X; yi) (i = 1; 2). Then�a(X; y) = �a1(X; y1) �a2(X; y2) and�b(X; y) = �b1(X; y1) �b2(X; y2) satisfy Assumption 2.16 in
theX coordinates.
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Remark 2.28 The formulation of the lubrication problem in the new coordinates system is
equivalent to a generalized Reynolds problem as it happens with an oblique flow directione�
 = (
os 
;� sin 
), instead ofe = (1; 0) in the classical one.

Theorem 2.29 We have the following convergences:

(i) There exists�p0 2 H1(�
) such that, up to a subsequence,�p" * �p0; in H1(�
) and �p" ! �p0; in L2(�
).
Moreover�p0 2 �Va, and�p0 � 0 a.e. in�
.

(ii) �p"(X) two-scale converges to�p0(X). Moreover, there exists�p1(X; y) 2 L2(�
;H1℄ (Y )=R)
and a subsequence"0 still denoted" such thatr�p"(X) two-scale converges tor�p0(X)+ry �p1(X; y).

(iii) There exists��0(X; y) 2 L2(�
 � Y ) and a subsequence"" still denoted" such that��"(X) two-scale converges to��0(X; y).
Proof. The result is easily obtained after establishing a priori estimates which do not depend
on " (see Subsection 2.1). �
Theorem 2.30 Under Assumption 2.26, one gets the following homogenized problem in theX coordinates:( �P�?)8>><>>: Find (�p0; ��1; ��2) 2 �Va � L1(�
)� L1(�
) such that:Z�
 �A(X) � r�p0(X)r�(X) = Z�
 �B0(X) � e�
r�(X); 8 � 2 �V0;�p0 � 0; �p0 (1� ��i) = 0; 0 � ��i � 1; (i = 1; 2) a.e. in�
,

with the following expressions:�A = 0BBBB� e�a2g�a�11 00 e�a1g�a�12
1CCCCA ; �B0 = 0BB� ��1 �b?1 00 ��2 �b?2 1CCA ;

and �b?i (X) = h 1g�a�1i ℄� �b�ai�i(X); i = 1; 2:
Moreover problem( �P�?) admits(�p0; ��1; ��2) as a solution, where��i(X) = h 1℄� �b�ai� :�̂ ��0�b�ai �i(X); i = 1; 2
and(�p0; ��0) is the two-scale limit of(�p"; ��") (solution of problem( �P�")).
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Proof. We use the same techniques as before, the only modification comes from the presence
of an additional term in the right-hand side of the equation.We briefly sketch the main steps
of the complete proof:� 1st step: Properties of the two-scale limits -Let (�p0; ��0) be the two-scale limit of(�p"; ��") (see Theorem 2.29). Then one has:

(i) �p0 (1� ��0) = 0 in L2(�
� Y ),
(ii) 0 � ��0 � 1 a.e. in �
� Y .� 2nd step: Macro/microscopic decomposition -Using the classical techniques (previ-

ously used in Subsections 2.1 and 2.3), one gets:

(i) Macroscopic equation:Z�
 �ZY �ahr�p0 +ry �p1i dy �r� = Z�
 �ZY ��0 �b dy� e�
r�;
for every� in �V0.

(ii) Microscopic equation:

For a.e.X 2 �
,
ZY �ahr�p0 +ry �p1iry dy = ZY ��0 �b e�
ry dy;

for every 2 H1℄ (Y ).� 3rd step: Local problems and macroscopic equation -The local problems( �M?i ), ( �N ?i )
and( �N 0i ) are identical to the ones defined in Subsection 2.3 (up to the notations adapted to
theX coordinates). Then, one has:Z�
 �A � r�p0r� = Z�
 �B0 � e�
 r�; 8 � 2 �V0;
with the following notations:�A = 0BBB� e�a� ^h�a�W ?1�y1 i � ^h�a�W ?2�y1 i� ^h�a�W ?1�y2 i e�a� ^h�a�W ?2�y2 i

1CCCA ; �B0 = 0BB� ��11 �b?11 ��12 �b?12��21 �b?21 ��22 �b?22 1CCA ;
using the notations (i; j = 1; 2):�b?ij = e�b Æij � ^h�a��?j�yi i; �b0ij =℄h��0�bi Æij � ^h�a��0j�yi i;
and defining the following ratios (i; j = 1; 2):��ij = �b0ij�b?ij ;
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whereW ?i , �?i and�0i are the solutions of the local problems( �M?i ), ( �N ?i ) and( �N 0i ) (consider
the analogy with Equations (11), (12) and (13)).� 4th step: Simplifications due to Assumption 2.26 -Assumption 2.16 in theX coordi-
nates (issued from Assumption 2.26) allows us to use the sametechniques as in the previous
subsubsection to obtain the simplifications on�A and �B0. �
Remark 2.31 The earlier formulation is the weak formulation of a generalized Reynolds-
type problem including cavitation. The main difference with the initial problem given in the
formulation of( �P�") lies in anistropic effects on the homogenized coefficients,which is a
classical result in homogenization theory, but also on the saturation function.

Theorem 2.32 [Homogenized exact problem] Under Assumption 2.26, one gets the follow-
ing homogenized problem in thex coordinate:(P?� )8><>: Find (p0; �1; �2) 2 Va � L1(
)� L1(
) such that:Z
A � rp0r� = Z
 b01 ���x1 + Z
 b02 ���x2 ; 8 � 2 V0;p0 � 0; p0 (1� �i) = 0; 0 � �i � 1; (i = 1; 2) a.e. in
,

with the following expressions:A(x) = � a?1(x) 00 a?2(x) �+ (a?1(x)� a?2(x)) sin 
 � � sin 
 
os 

os 
 sin 
 � ;b01(x) = ��b?1(x) �1(x)� b?2(x) �2(x)� sin2 
 + b?1(x) �1(x);b02(x) = �b?1(x) �1(x)� b?2(x) �2(x)� sin 
 
os 
,

and the following homogenized coefficients (i; j = 1; 2 andj 6= i):a?i (x) = eh3jgh�3i (x) and b?i (x) = hgh�2igh�3i ehji(x):
Moreover, problem(P?� ) admits(p0; �1; �2) as a solution, where�i(x) = h 1gh�2i ehj �̂�0hjh2i �i(x); i; j = 1; 2; j 6= i; (32)

and(p0; �0) is the two-scale limit of(p"; �") (solution of problem(P"� )).
Proof. Theorem 2.32 is obtained from Theorem 2.30 using the inversechange of coordinates,
with �f(X; y) = f(x; y). �
Remark 2.33 Theorem 2.32 implies that we have been able to solve one of thedifficulties
that raised in the most general case (see Remark 2.11). Indeed there are two saturation
functions, but we have proved that they satisfy:0 � �i � 1 (i = 1; 2), which was not
guaranteed in the general case. In this way, the homogenizedproblem has a structure that is
close to the initial one. But, as in the most general case, we cannot prove a uniqueness result
with the methods of Section 1, nor can we numerically solve the problem using algorithms
that have been previously mentioned, since we still have twosaturation functions.

Remark 2.34 Let us recall that, in Theorem 2.10, we wrote the right hand side asb0i = �ib?i ,
thus defining “fake” saturation functions (since we were notable to prove that0 � �i � 1).
In fact, according to Theorem 2.32,b0i should be considered as a combination of�ib?i , where�i can be considered as “real” saturation functions (since they satisfy0 � �i � 1).
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Remark 2.35 Theorem 2.32 gives an example of an homogenized problem withnon-diagonal
terms in the matrix and additional homogenized coefficientsin the second member (see The-
orem 2.10 corresponding to the most general case). Indeed, let us try to understand the
homogenized problem(P"� ) in a form that is a perturbation of the homogenized one defined
under Assumption 2.16. For this, we define the main termAm and the residual termAr in the
matrix as follows:A(x) = � a?1(x) 00 a?2(x) �| {z }Am(x) +(a?1(x)� a?2(x)) sin 
 � � sin 
 
os 

os 
 sin 
 �| {z }Ar(x) :
In the same way, we introduce in the second member the main componentbm1 and the residual
onesbr1 andbr2:b01(x) = ��b?1(x) �1(x)� b?2(x) �2(x)� sin2 
| {z }br1 + �1(x) b?1(x)| {z }bm1 ;b02(x) = �b?1(x) �1(x)� b?2(x) �2(x)� sin 
 
os 
| {z }br2 :
Let us notice that the main term in the second member only appears in thex1 direction, cor-
responding to the flow direction. Moreover neglecting the residual terms in the formulation
gives us the classical homogenized problem with
 = k�=2 (k 2 Z) (see Theorem 2.20).

Remark 2.36 Considering the dam problem, an homogenized problem analogous to the
initial one cannot be obtained in the most general case, since it is possible to show (see
[2, 33, 39]) that there exists the possibility of the non-convergence of the unsatured regions
(i.e. fp" = 0g \ f0 < �" < 1g). But the counter-example developped in the previous
references is valid only for initial anisotropic permeability cases. In the lubrication case,
this assumption is not relevant and the possibility to statean homogenized problem whose
structure is similar to the initial one remains an open question.

3 Numerical methods and results

In this section, the numerical simulation of a microhydrodynamic contact is performed to
illustrate the theoretical results of convergence stated in the previous sections. For the nu-
merical solution of the" dependent problems and their corresponding homogenized one, we
propose the characteristics method adapted to steady-state problems to deal with the con-
vection term combined with a finite element spatial discretization. Moreover, the maximal
monotone nonlinearity associated to the Elrod-Adams modelfor cavitation is treated by a du-
ality method. The combination of these numerical techniques has been already successfully
used in previous papers dealing with hydrodynamic aspects (see [15, 19]), and even with
elastohydrodynamic aspects (see, for instance, [6, 27]).

3.1 The characteristics method� 1st step - Time discretization -Considering problem(P�), the departure point is the in-
troduction of an artificial dependence on timet in all the stationary functions, i.e.� (x; t) =
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operator, i.e. DDt = ��t + ~u � r = � ��x1 ;
then the stationary problem(P�) gives place to the artificial evolutive oneZ
 �h D � Dt dx+ Z
 h3rpr � dx = 0 and � 2 H(p):
Next, we consider the upwinded approximation of the total derivativeD � Dt �  (x)�  (Xk(x))k ;
wherek is an artificial time step andXk(x) denotes the position of a particle placed in the
point x at timet � k moving along the integral path of the velocity field~u, i.e. Xk(x) =X(x; t; t� k). X is the solution of the O.D.E. of characteristicsdd� (X(x; t; �)) = u(X(x; t; �)) and X(x; t; t) = x:
In this way, the time discretized problem is written asZ
 �h  �  ÆXkk dx+ Z
 h3rpr dx = 0 and � 2 H(p);
which suggests to move the term containing ÆXk into the right hand side of the equation
and to look for the solution of this evolutive problem whent ! +1 by means of step by
step algorithm in time.� 2nd step - Computation of one time step -For each time steptn = n�t, the finite element
discretization in space defines the final discretized problem(P�)8<: 1k Z
 �n+1h h h dx+ Z
 h3rpn+1h r h dx = 1k Z
 �nhh( h ÆXk) dx; 8 �h 2 Voh;�n+1h (b) 2 H(pn+1(b)); 8 b node of�h;
where�h is the triangularization of the domain. The finite element spaces are defined asVh = fvh 2 C0(
); vhjE 2 P1; 8 E 2 �hg;Voh = fvh 2 Vh; vhj�a[�0 = 0g:
Each iteration of the characteristics algorithms requiresto solve the nonlinear problem(P�).
For this, we use use the new unknown,rn+1, defined byrn+1 2 H(pn+1)� Æ pn+1 in 
;Æ being an arbitrary positive real constant. Then, dropping the subscriptsh,(PÆ�)8>>><>>>: Æk Z
 pn+1h  dx+ Z
 h3rpn+1r dx= 1k Z
 �nhh ( ÆXk) dx� 1k Z
 rn+1h  dx; 8 �h 2 Voh;rn+1 = HÆ�(pn+1 + � rn+1);
whereHÆ� denotes the Yosida approximation ofH � ÆI, I being the identity operator. The
fixed-point algorithm to solve(PÆ�) proceeds as follows: at the beginning of each iteration
we knowr. Then we computep as the solution of the linear problem(PÆ�)-(i) and updater
with (PÆ�)-(ii).
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3.2 Numerical tests

We adress the numerical simulation of journal bearing devices with circumferential supply
of lubricant (see FIG.7 and 8).

!
1

2 3

4

1 bearing (radiusRb)
2 shaft (radiusRj) 3 lubricant

4 supply groove

L=2

Figure 7: Journal bearing


 x1
x2

�℄ �℄�a
�02�Rm

L2
Figure 8: Journal bearing (developped configuration)

Indeed we simulate a journal-bearing device whose length isL = 0:075 m, mean radiusRm = (Rb+Rj)=2 = 0:0375m (Rb andRj being the bearing and journal radii, respectively)
and the clearance is
 = Rb � Rj = 0:001 m. The supply pressure ispa = 100000 Pa orpa = 150000 Pa (according to the case study), the lubricant viscosity is� = 0:03382 Pa:s
and the velocity of the journal is taken tov0 = 30m=s. Moreover, the roughless gap between
the two surfaces is given by:h(x) = 
�1 + � 
os� x1Rm�� ; x = (x1; x2) 2 (0; 2�Rm)� �0; L2� ;
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where the eccentricity� varies from 0.6 to 0.8 (according to the case study). The classical
Reynolds problem, in real variables, should be posed as:8<: r � �h3s6�rp� = v0 ��x1��hs�; in (0; 2�Rm)� (0; L=2),p � 0; p (1� �) = 0; 0 � � � 1; in (0; 2�Rm)� (0; L=2),
with the boundary conditions:p = 0, on ℄0; 2�Rm[�f0g andp = pa, on(0; 2�Rm)� fL=2g ;p andv0�hs � h3s6� �p�x1 are2�Rmx1 periodic.

Now let us introduce the dimensionless coordinates and quantities that provide the effective
system to solve (see [6]):X1 = x1Rm ; X2 = 2 y2L ; Hs(X) = hs(x)
 ;P = 
26v0Rm� p; Pa = 
26v0Rm� pa; � = 2RmL :
Then, the dimensionless Reynolds problem becomes:8<: ��X1�H3s �P�X1� + �2 ��X2�H3s �P�X2� = ��X1��Hs�; in (0; 2�)� (0; 1),P � 0; P (1� �) = 0; 0 � � � 1; in (0; 2�)� (0; 1),
with the boundary conditions:P = 0, on ℄0; 2�[�f0g andP = Pa, on(0; 2�)� f1g ;P and�Hs �H3s �P�X1 are2�X1 periodic,

and the roughless gap is nowHs(X) = 1 + � 
os (X1). Let us now introduce the roughness
patterns: we propose in the rough case the following expression for the dimensionless gap:H"(X) = H �X; X" � = 8>><>>: Hs(X) + hr sin�X1" � ; for transverse roughness,Hs(X) + hr sin�2�X2" � ; for longitudinal roughness,

wherehr denotes the amplitude of the roughnesses and" represents the spacing of the rough-
ness. In order to guarantee the positivity of the gap, we choosehr so thathr > 1 � �. The
homogenized problem to solve can be written under the form:8<: ��X1�a1 �P0�X1�+ �2 ��X2�a2 �P0�X2� = ��X1��b�; in (0; 2�)� (0; 1),P � 0; P0 (1� �) = 0; 0 � � � 1; in (0; 2�)� (0; 1),
with the boundary conditions:P0 = 0, on ℄0; 2�[�f0g andP0 = Pa, on(0; 2�)� f1g ;P0 and�b� a1 �P0�X1 are2�X1 periodic.

In TABLE 1, we present the coefficientsa1, a2 andb that appear in the homogenized problem
for purely transverse and purely longitudinal roughness cases which have been computed
with MATHEMATICA Software Package:
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Transverse roughness Longitudinal roughnessH(X; Y ) Hs(X) + hr sin (Y1) Hs(X) + hr sin (2�Y2)a1(X) 2(Hs(X)2 � h2r)5=22Hs(X)2 + h2r Hs(X)3 + 32 Hs(X) h2ra2(X) Hs(X)3 + 32 Hs(X) h2r 2 (Hs(X)2 � h2r)5=22Hs(X)2 + h2rb(X) 2Hs(X) Hs(X)2 � h2r2Hs(X)2 + h2r Hs(X)
Table 1: Hydrodynamic homogenized coefficients

3.2.1 Case 1: Transverse roughness tests

Numerical tests have been made for two different regimes: the first one is a realistic regime
in terms of the size of the roughness linked to mechanical applications; the second one is a
severe unrealistic regime, since the deformability of the surface should be taken into account.
However, in both cases, we have considered the following physical data: the eccentricity is� = 0:6. The numerical methods parameters are the following ones: atriangular uniform
finite element mesh whose parameters�x1 and�x2 are given further, an artificial time step
for the characteristics method (see [15])�t = �x1; the Bermudez-Moreno parameters are! = 1 and� = 1=(2!) ; the stopping test in all algorithms is equal toÆ = 10�4 (correspond-
ing to the absolute error in the discreteL1 norm between two iterations in time).� Case1a: The amplitude of the roughness is given by�=(1 � �) = 0:5. The mesh
parameters are�x1 = 2�=600 and�x2 = 1=50, so that we have 60000 triangles and 30651
vertices. Numerical tests illustrate the two-scale convergence results established in previous
sections. In particular, FIG.9 and 10 represent the cuts atx2 = 0:0016 m for the pressure
and saturation variables for different numbers of roughness patternsN" = 2�=" and the
homogenized solution. The figures illustrate the convergence of the pressure but also the
behaviour of the cavitation function:� FIG.9: it illustrates the strong convergence ofp" to p0 in L2(
).� FIG.10: as pointed out in Remark 2.14, it is clear that�" converges inL2(
) only in

a weak sense; in particular, one sees that the amplitude of the gradient explodes when"! 0, so that�0(x; y) actually depends on they variable.

Finally, FIG.11 and 12 present the homogenized pressure and saturation in the whole domain.� Case1b: In this severe regime, the amplitude of the roughness is given by�=(1��) =0:9. The mesh parameters are�x1 = 2�=400 and�x2 = 1=50, so that we have 40000
triangles and 20451 vertices. FIG.14 and 15 represent the cuts atx2 = 0:0032 m for the
pressure and saturation variables for different numbers ofroughness patternsN" = 2�=" and
the homogenized solution. FIG.14 and 15 illustrate the convergence results. The comments
that have been established in Case1a are still valid, even in a severe regime. Let us notice
that numerical computations become very difficult whenN" becomes greater than 60: it is,
of course, a case which really falls into the scope of homogenization studies and shows the
interest of the method.

Finally, let us denoterN" the residual termrN" = 


p" � p0


L2(
):
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Figure 9: Hydrodynamic pressure atx2 = 0:0016m (transverse roughness; case1a)
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Figure 10: Hydrodynamic saturation atx2 = 0:0016m (transverse roughness; case1a)
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Figure 11: Hydrodynamic homogenized pressure (transverseroughness; case1a)
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Figure 12: Hydrodynamic homogenized saturation (transverse roughness; case1a)
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Supposing thatp" converges strongly top0 in L2(
) with an order of convergenceO("�), we
numerically calculate�: FIG.13 is obtained so that� = 1.
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Figure 13: Convergence speed of the pressure (transverse roughness; case1b)
3.2.2 Case2: Longitudinal roughness tests

For this test, we have considered the following physical data: the eccentricity is� = 0:8
and the amplitude of the roughness is given by�=(1� �) = 0:5, which is a realistic regime
in terms of mechanical applications. The numerical methodsparameters are the following
ones: a triangular uniform finite element mesh with�x1 = 2�=400, �x2 = 1=80 (so that
we have 64000 triangles and 32481 vertices), an artificial time step for the characteristics
method�t = �x1; the Bermudez-Moreno parameters are still! = 1 and� = 1=(2!) ; the
stopping test in all algorithms is equal toÆ = 10�5.

FIG.16 and 17 represent the cuts atx1 = 0:1060 m andx1 = 0:1355m respectively, for
the deterministic pressure (for different numbers of roughness patternsN" = 2�=") and the
homogenized pressure.� FIG.16: the section of the bearing does not contain any cavitation area (p > 0) so that

the saturation function is constant and equal to 1 (therefore the corresponding figure
is omitted). Notice that the section corresponds to the minimum gap (and maximum
pressure).� FIG.17: in this case, the section does contain a cavitated area.

Thus, the figures allow us to observe convergence phenomena for the pressure in both cav-
itated and non-cavitated areas. Let us notice that, not surprisingly, the convergence of the
pressure is better in the longitudinal roughness case, as the influence of the roughness on the
pressure is relatively small. As in the transverse roughness tests, we could numerically illus-
trate the weak convergence of the saturation. Finally, FIG.18 and 19 present the homogenized
pressure and saturation in the whole domain.
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Figure 14: Hydrodynamic pressure atx2 = 0:0032m (transverse roughness; case1b)
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Figure 15: Hydrodynamic saturation atx2 = 0:0032m (transverse roughness; case1b)
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Figure 16: Hydrodynamic pressure atx1 = 0:1060m (longitudinal roughness; case2)
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Figure 17: Hydrodynamic pressure atx1 = 0:1355m (longitudinal roughness; case2)
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Figure 18: Hydrodynamic homogenized pressure (longitudinal roughness; case2)
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Figure 19: Hydrodynamic homogenized saturation (longitudinal roughness; case2)
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