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Two-scale homogenization of a hydrodynamic
Elrod-Adams model

G. Bayada
MAPLY CNRS UMR-5585/ LAMCOS CNRS UMR-5514, INSA Lyon, 8dbdrbanne cedex, France
S. Martin
MAPLY CNRS UMR-5585, INSA Lyon, 69621 Villeurbanne cedarck
C. Vazquez
Dep. Matenaticas, Universidade A Cofia, Campus ElVia, 15071-A Corila, Esp#ia

ABSTRACT The present paper deals with the analysis and homogenizafia lubrica-
tion problem, via two-scale convergence. We study in padicthe Elrod-Adams problem
with highly oscillating roughness effects.

0 Statement of the problem

Cylindrical thin film bearings are commonly used for load o of rotating machinery.
Fluid film bearings also introduce viscous damping that aidsducing the amplitude of
vibrations in operating machinery. A plain cylindrical joal bearing is made of an inner
rotating cylinder and an outer cylinder. The two cylinde®s elosely spaced and the annular
gap between the two cylinders is filled with some lubricanhe Tadial clearance is very
small, typicallyAr /r = 1073 for oil lubricated bearings. The smallness of this ratioat
for a Cartesian coordinate to be located on the bearingairiehus, the Reynolds equation
has been used for a long time to describe the behaviour otawsslow between two close
surfaces in relative motion (see [37, 38] for historicaérehces). The transition of the Stokes
equation to the Reynolds equation has been proved by Bayati€hambat in [11]. In
dimensionless coordinates, it can be written as

v. <h3Vp> - a%(h),

wherep is the pressure distribution, andhe height between the two surfaces.

Nevertheless, this modelling does not take into accountataan phenomena: cavitation
is defined as the rupture of the continuous film due to the faomaf air bubbles and makes
the Reynolds equation no longer valid in the cavitation adeaorder to make it possible,
various models have been used, the most popular perhagsvagiational inequalities which
have a strong mathematical basis but lack physical evidéitugs, we use the Elrod-Adams
model, which introduces the hypothesis that the cavitatsgmon is a fluid-air mixture and
an additional unknows (the saturation of fluid in the mixture) (see [22, 24, 25, 29]he
model includes a modified Reynolds equation, here refezraatt Reynolds equation with
cavitation(see problemP,) in the next section). From a mathematical point of view, the
problem can be simplified usingeenalized Reynolds equation with cavitat{see problem
(P,) in the next section).

Homogenization process for lubrication problems is manehated to the roughness of
the surfaces. Let us mention that the Reynolds equatiorllivatd as long ass/o > 1,
¢ being a small parameter describing the roughness spacidg; being the film thickness
order (assumed to be small too) (see [12] for details). Tindysdf surface roughness effects



2 G. Bayada, S. Martin and C. Vazquez / Two-Scale Homogeizaf the Elrod-Adams Model

in lubrication has gained an increasing attention from 19®@e it was thought to be an
explanation for the unexpected load support in bearings.

Several methods have been used in order to study roughrfessseh lubrication, the
most popular perhaps being the flow factor method (see [35486, which is based on a
formulation that is close to the initial one, only modifiedfliw factors related to anistropic
and microscopic effects.

So far this procedure has been used either by considerihgdheavitation phenomena
occur or using variational inequation models. Let us mentlwat the homogenization of
cavitation models using variational inequalities has bstewlied in [16]. Recently many
papers have discussed cavitation phenomena coupled wigihmess effects, in mechanical
engineering:

B A generalized computational formulation, by Shi and Sajd@}, has been applied to
the rotary lip seal and used to predict the performance clteatics over a range of
shaft speeds.

B Interasperity cavitation has been studied in particulaHayp and Salant in [30] in
order to derive a modified Reynolds equation with flow factescribing roughness
effects and macroscopic cavitation.

B Modelling of cavitation has been pointed out in particulgrMan Odyck and Venner
in [42] in order to discuss the validity of the Elrod-Adamsaeband the formation of
air bubbles leading to cavitation phenomena.

The above papers are based on averaging methods takingaaiord statistic roughness and
are mainly heuristic. Our purpose, in the present papeay,study in a rigorous way the limit
of a three dimensional Stokes flow between two close rouglases using a double scale
asymptotic expansion analysis (see for instance [14])erBinod-Adams model.

The paper is organized as follows:

B Section 1 is devoted to the mathematical formulation of theitation problem: we
briefly present the exact Elrod-Adams problem along witlpésalized version. We
also give the existence and uniqueness results corresgptaieach problem. For this,
we use a well-known penalization method to get the existegmdt. Uniqueness of the
pressure is obtained using the doubling variable methodrokkov, which has been
extended by Catrrillo to the dam problem.

B Section 2 deals with the homogenization process: after sweleninaries on the two-
scale technique, we first establish an uncomplete form didmeogenized problem in
which an additional term in the direction perpendiculati® flow but also anisotropic
phenomena on the saturation appear. In order to completeothegenized problem,
we introduce additional assumptions that lead us to congiddicular but realistic
cases: considering a separation of the microvariables emgdps allows us to com-
pletely solve the difficulties previously mentioned; théaking into account oblique
roughness, we show that we obtain an intermediary case bettive uncomplete prob-
lem (general case) and the complete problem (with the separaf the microvari-
ables).

B Section 3 presents the numerical method and results whistrate the main theorems
established in the previous sections: we study longitudind transverse roughness
cases.
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1 Mathematical formulation
1.1 The lubrication problem

The dimensionless domain is denoted=|0, 27[x]0, 1] and we suppose that the following
assumptions are satisfied:

Assumption 1.1 h € C'(Q) is 2rrz, periodic and satisfies
Elho,hl, VI'GQ, O<h0§h(l‘)§h1
Assumption 1.2 p, is a Lipschitz continuous non-negative functidn,periodic.

Now let us introduce the Elrod-Adams model taking into act@avitation phenomena.
Thus we introduce aexactproblem and genalizedproblem.

(i) Exact Reynolds problenThe strong formulation of the problem is given by the follagi
set of equations:

0
. (p3 -7
v (h (x)Vp(x)) o (9(@ h(x)), zeQ
p(@) >0, pla) (1-0(x) =0, 0<0(z)<1, z€Q
with the following boundary conditions:
p=0onlyandp =p,onl,, (Dirichlet conditions)

Oh — h3§7p andp are2rx; periodic, (periodic conditions)
1
wheref(z) is the normalized height of fluid between the two surfacese Bbundaries’,
andIl', are given on K5.1. These boundary conditions are linked with a specific bdew
type of bearings: journal bearings with a pressure imposethe top and at the bottom.
However, other boundary conditions can be considered.
The earlier problem can be formulated under a weak form as

)
L'y
—_— )
/) //
/ 7
/ /
/ /
Iy 7 7y 1
/
/ /
/ /i
/ /i
/ 7
// FU // 1‘1
= 2m =

Figure 1: Normalized lubrication domain (with supply presy

Find (p, 0) € V, x L>(Q2) such that:

(Py) /h?’v;ov@s:/ehai, V6V,
Q Q 014

p>0, p(1—-0)=0, 0<H<1, a.e.inQ,
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where the functional spaces are defined as

Vo = {¢ € H'(Q), ¢is2mz, periodic ¢, =0, ¢, :pa},
Vo = {qb € H'(Q), ¢ is2rx, periodig T 0}_

(i7) Penalized Reynolds problemin the penalized problem, an approximate relationship
betweerp andf is used. Defining the function

0, ifz<0,
Hy(z) =< z/n, if0<z<n,
1, ifz>1,

the weak formulation of the problem is given by

Find p, € V,, such that:
¢

P03 [ BVnTo= [ Bt Voe
Q Ja 1
pp >0, a.e.inf.

Hence,H, (p,) plays the role of the saturation function.

Let us mention that, by many aspects, the lubrication proldeclose to the dam problem.
The dam problem has first been stated using variational algigs (see [7, 8, 9, 17]). But
this approach is only possible for dams with vertical walgically rectangular dams). The
formulation of the dam problem for domains with general gsapas been introduced By Alt,
Brézis, Kinderlehrer and Stampacchia [2, 21]. Introdgdine permeability of the porous
medium, denoted, the formulation is based on Darcy’s law ([26] for histoticeferences).
The basic problem is to find the presswrand the fluid saturatiodl in the domain. The
main differences with the lubrication problem lie in the flowection (:; in the lubrication
problem, z, in the dam problem) and an additive sign condition on the fflod/ in the
dam problem, designed to eliminate the non physical solatamd meaning that no water
flows into the dam through the boundary in contact with thenaoe Homogenization of the
dam problem using thE-convergence has been partially studied by Rodrigues &3apd
related references).

1.2 Existence and uniqueness resultsfoy)

Let (P;) be the auxiliary problem defined by

0
/h?’vpgw = / H,(pp~ "k 99 Vo eV
Q Q

Findp; € V, such thatp;~' € V, being given,
(Py)
alj,

Lemma 1.3 Under Assumptions 1.1 and 1.2, problé;) admits a unique solutiop).
Moreover, one has the following estimates:

P

where C does not depend en
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Proof. Equivalently, withgy (z1, z2) = pj (21, 72) — pa(z1)¢(z) (With ¢ (z) = z, for exam-
ple), one has to fing; € V; such that

3 n _ n—1 a_qs_ 3
/Qh anw—/QHn(p,, o /Qh V)V, VoET

Existence and uniqueness are consequences of Lax-Milgitii@dorem. Estimates are ob-
tained using, as atest function and Cauchy-Schwartz inequality, traeerm and Poincaig-
Friedrichs inequality.

O

Theorem 1.4 Under Assumptions 1.1 and 1.2, probléR),) admits a unique solutiop”.

Proof.
B Existence of a solution is obtained by studying the behavady; whenn goes to
+00. By estimates of Lemma 1.3, there exisfse H'(Q2) such that, up to a subsequence,

Py — Py, N HY(Q).
Consequently,
/ W VpIVe —s / WV p, Vo,
Q Q

for everyg € V.

As H'(Q) — L*(Q) with compact injection and, is Lipschitz continuous, one has

1, 09 %
[ g — [ Hng

for every¢ € V,. Then one has:

3 _ 99
[ wvmvo= [ Hpgngt. voev, ()

Moreover, by Theorem 111.9 of [20],
Py € Vo 2)

From Equations (1) and (2), we deduce thats a solution of(P,).

B Positivity of solutions is obtained by rewriting asp, = p," — p, with

Py = max(py, 0),
Py =- min(p,, 0).

It can be proved thai, € V4. Usingp, as a test-function in the variational formulation (1),

/h
Q

Thenp, = 0 a.e. ang, > 0 a.e. inQ).

2
=0.

Vp,;

B Uniqueness of the solution is obtained using a particulstrftenction (following an
idea developped in [10]). Let; andp, be two solutions ofP,)). Theng = p; — p, satisfies:

[ wvave = [ (o) - Hym)hgs voeta ©
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We consider the test functioh = f5(¢q), wherefs is defined with the usual notation for the
positive part of a function by

Nt .
0, if z <O0.
Since f; is Lipschitz continuousp = f5(q) € Vi (see [29]). Moreover, one has

)
Vo = o X[g>8] Vs

wherey 4 is the characteristic function, defined to be identicallg onA and zero elsewhere.
From Equation (3) and Assumption 1.1, we deduce:

2
‘Vq 0q/0x
wf o s [ (- me) 2
z€Q, q(z)>6 4 z€Q, q(z)>6 q
n z€Q, q(z)>6 q

Then it follows:

h /Q ‘vm (1+ =90 _56)+>

2
<

[+ 575)

/va(H@)\_

<

3| T3 |F

Applying Poincaré’s inequality we obtain:

Aln(l—i—@)

whereC' depends oihg, A1, |2| andn but does not depend @n Then lettingd — 0,

2
<C,

q(z) <0, a.e.inQ.
Exchanging the roles gf; andp, givesq(z) > 0 a.e. inQ so that, finallyg = p; — p, =0
a.e. in(Q. O
1.3 Existence and uniqueness results 7ey)
Theorem 1.5 Under Assumptions 1.1 and 1.2, probléRy) admits at least one solution.

Proof. Existence of a solution is obtained by studying the behavabw, whenn goes to 0.
First, let us notice that the following estimates hold:

| ) <a,

whereC; and(C, do not depend on. Indeed, they are easily obtained by considering the
properties offf,, and using, — p, ¢’ as a test function. From the earlier estimates, one has:

L>(Q)

7 <C
p H1(9) > V2,
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(i) 36 € L>(Q2), Hy(p,) — 6, in L°°(Q) weak«. In particular,
ad)

(i) Ipe HY(Q), p, — p, in H(Q) andp, — p, in L*(Q). In particular,
/ h*Vp, Vo —s / R¥VpV o, V¢ € V.
Q Q

From(:) and(ii), we deduce

0
/ h*Vp, V¢ dx = / Hn(pn)h—¢, V¢ eV
Q Q 0y

Moreover, considering Theorem 111.9 of [20), € V,. It remains to prove the following
properties to complete the proof of existence of a solutioritie initial problem(P,):

(1) p>0, a.e. in<,
(i) 0<0<1, a.e. inQ,
(1ii) p(1—0)=0, a.e.inQ.

W Proof of (i) is deduced from positivity of, (see Lemma 1.4) and strong convergence
of p, topin L?(Q).

B Proof of (i7) is obtained considering the properties of the weatenvergence (see
Proposition 111.12. in [20]). Since we have

H,(p,) = 6, inL>*(Q)weak=x,

0 < 1, and finally,

L>(Q)

then,

< lim inf HHn(pn)

L>(Q)

<1, a.e.inQ.
Let us prove thaf > 0 a.e. We settlg, = 1 — H,(p,). We haveHXnH o <1land
LOC
Ix € L™(Q), xn = x, inL>®(Q) weak.
The weakx topology is separated. Then= 1 — # and we have the following property:

<1

— I

L%(9)

< lim inf‘
HXHLOO(Q) B Xn

which can be rewritten as

Hl — GH <1, i.e. >0, a.e.inQ.
L= (Q

B Proof of (iii) is obtained with the following method: 1&f denote the Heaviside graph.
Sincep, > 0 (see Lemma 1.4), the following property holds:

<1 - H(pn)> py = 0.

From this, we have, (1 — H,(p,)) = p, (H(p,) — Hy(py,)). This term is analyzed in two
steps:
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e 1ststep - Let) be a function inZ?(2). Then,

/pn (1=Hy(py)) o—p (1-0) qb‘ ‘/pn (1—H,( pn))¢+[2p(9—Hn(pn))¢‘,I

Using Cauchy-Schwarz inequality,

‘ /Qpn (1=H,(p,)) p—p (1-0) ¢ ‘ <

SNy |

With the L? strong convergence @f, to p and the weak- convergence of — H,(p,)
tol— 0, sincep ¢ € L'(Q), we get

/pn Hy(py)) ¢ — p(1—9¢‘—>0
We have proved that
py (1= Hy(py)) = p (1 =0), inL*Q).

e 2nd step - Let be a function inZ?(2). Then, by construction off,,

/Qpn (H(pn)_Hn(pn)> qﬁ‘ = >¢‘
<| /;nas<n/\¢\

with Q" = {z € Q,0 < p,(z) < n}. We have proved that
(H(pn) - Hn(pn)) py — 0, inL*Q).

From uniqueness of the weak limit it¥ (2) and the results stated in the two previous steps,
we deduce:
p(1—0)=0, inL*Q).

O

We state a uniqueness result following an idea widely dgped by Alvarez and Oujja
in [5] for the unstationary case. The uniqueness result sethan a monotonicity result
when comparing the value of two solutions on the upper boyndehus we first establish
the following lemma:

Lemma 1.6 Let(py, 6;) and(p,, 02) two solutions of P,) with respective pressure boundary
valuesp! andp? onT,. Then,

/ h?’(xl,xg)Mf'(xg) dr <0, Vé&eDH0,1).
Q dy

Proof.
B 1st step: Test functions
Let X = (z1,29) and X' = (2, z},) be two pairs of variables and let us define the following

function: , ’ ’
To + X To — X . Ty — T
X, X') = 2 ) p. 2] pe -

o(X, X) f( 5 >p ( 5 )p ( 5 :
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1 1 . .
where¢ € D1(0,1), p(r) = P (g) per(r) = = p (§> p andp are functions with

supports in—1, 1).

If 0 < e < dist(Supg, 9]0, 1]), then the functiong (X, -) and¢(-, X') vanish on the bound-
aryl'oUl', (see [4] for the details and [5]). Moreover, in order to getra; periodic function,
we choose an even functign and redefine it whefr;, ') belongs to the subset

T.US. = {(xl,x'l) € [0,27] x [0,27], |21 — | > 27 — 25’},
by setting
(=2 L (o= - 2n
Pe! 9 = pPe 9 .
Then we define the following function:
X) —po( X))
(00, ) = min [P 22Dy ]

Thus, for fixedX’ (resp.X), n, (-, X') (resp.n, (X, -) belongs toj.

H 2nd step: Integral equality

Let us denote?; and V; (resp. 2, and V,) the domain and the gradient vector for the
variableX (resp. X’). For fixed X', let us use), (-, X') as a test function in the variational
formulation of(Py) with the variableX:

/Q W3 (X) ¥V, [pl(X)] v, [nl,(X, X')} dX :/Q 8,(X) h(X) a%[ny(x, X')] X,

Integrating the previous equation 63 gives us a first integral equality ap = Q; x Q.
Applying the same method to the variablé (and exchanging the roles &f and X'), we
get a second integral equality. Then from periodicity andratary conditions, it is possible
to establish:

/Q {hS(X) (Vi +V3) <p1> — W2 (X") (V1 + Vo) (PQ)] (Vi+Vy) (m) dX dX'

:/Q (n(X) = h(X") 6,(X")) (a% + ai'l) () ax ax"

Bl 3rd step: Change of variables
We make the following change of variables:

X+ X' X -X
— g = .
92 3

z

The integral equality becomes:

/Qm [h3(z +0)V, (p1(z + 0)) — h¥(z —0)V, (pg(z — 0))} \V (ny(z +0,2— a)) dz do

— / <h(z +0)—h(z—0)by(z — a)) aiZl <77,,(z +o0,2z— a)) dz do,

z,0

where(), , is the image of the domai through the change of variables.
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Let us consider the sets:

(p1(z4+0) —p2(z —0))F
(1(2 + 0) = pa(z — 0))

A ={(z0) € Qe
B, ={(:,0) € Q...

> ¢(z+0,z—0)},

n
< ¢(z+a,z—a)}.

Let us denotd; (resp. I,) the contribution of4, (resp. B,) in the first integral and let us
denote/; (resp..J;) the contribution of4, (resp.B,) in the second integral. Then we have:
Il+[2 — J1+J2.

M 4th step: Study of the integrals
e Let us study/;: since¢ does not depend on, one gets./; = 0.

e Let us study/s:
0 — )t
Jy = / (h(z +0)—h(z—o0) 92) 8—2<M> dz do
1

v

v

+

- / (h(z—l—O’)—h(z—g)) i(@

0% v

)dz do

v

—|—/B h(z — o) <1 —92) %(M) dz do.

The first integral can be rewritten as

Jy = / (h(z +0)—h(z — a)) %(min [M, qﬁ]) dz do.

z,0

Integrating by parts, letting — 0, and using Lebesgue theorem, we get:

) oh oh .
lim J} = /Q 5o (2 0) = 5 (2= 0)] Xipsgal §(22) pe(02) ().

: h . . : : .
Since Supfy.) C [—¢,¢|, Supfp.) C [—¢', €] andaa— is a Lipschitz continuous function,
21

we get: lin% Jy| < Cle + s’)/ £(22) pe(09) per(071), and finally
v Q:.o
lim |lim J;| = 0.
g,e!—=0 | v=0

The second integral can be rewritten in the old variables as

7= [ (1) [ () + 2 ()] e
_ /Q nX) (1-0,) a%(%) dz do
sincel — 6, = 0 whenp, > 0. Rewriting the integral, one gets:
J2 = /Q h(X") (1 . 92> a%min [%,d)} . /A h(X') (1 . 92> a%(d))

- /B nx) (1= 02) 5 (9)
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using the Green formula with periodicity and boundary ctods. Since the function

h(X') (1 - 92(X')) a—m¢(X LX)

is bounded for each, £/, we conclude

lim J2| < lim C|B,| = 0,
v—0 v—0
and finally,
lim |lim J7| = 0.
e,e’ =0 | v—=0

e Let us study/;:

= [ [+ ) Vo = 1 = 0) Vo] 9. (603) pi(o) plon)

v

By Lebesgue theorem,

. op Opa
_ 3 13
i = [, [Pero g -re-0 32
3 3 Ip2 / .
= [ [t B )] 2 o €62) pi(o) pe(o)
Qz,t ZQ

| Xpisra1 €1(22) p2(02) (o)

Op1 —p )
[ B 0) B v €) pulon) o),
Qz,t ZQ

Using the properties of., p.» and since:? is a Lipschitz continuous function, it is easy to
conclude that the first integral goes to 0 whens’ — 0. Then we obtain, studying the
behaviour of the second integral (see [4] for the details):

) +
. . 3 _ !
V’g}drgo I = /Q h*(z) —8x2 <P1 P2> £ (x2) dx.

e Let us studyls:
Rewriting I in the old variables gives:

2
= [ o o o e
_/Bu W (X) Vips VQ(;) _/Bu h*(X') Vapo V1(%>-

The first integral is positive. The second integral satisfies

v

/ )
/Qh3 X) Vips Vo) + /Qh3(X) Vipi V2 () —/ P(X) Vip1 V(9)
- [ #0 v (o)



12 G. Bayada, S. Martin and C. Vazquez / Two-Scale Homogeanizaf the Elrod-Adams Model

By Holder inequality and sinchr% 'B,| =0, one gets:
vV—r

2

. 3 D2 . 1/2 6 ‘ 291/2 _
tim [ 1) Vi ¥ (22) < lim 15, [/Qh X) [V [0 ] =00
In a similar way,
. 30y P : 1/2 6y ? ‘ ' _
ll_r)% Byh(X)V2P2V1<V>§,1/1_T)%Bu| {/Qh(X) Vopa| |Vig ] =0,

and we deduce

v,e,e' =0

Now passing to the limit, =, " — 0) in the integral equality concludes the proof. O

Theorem 1.7 Let (py, 6;) and (p,, 65) two solutions of Py) with respective pressure bound-
ary valuesp! andp? onT,. Let us suppose thaf < p?. Then

p1 < py, a.e. in€.

Proof. From Lemma 1.6, denotinfj= (p; — p2)*, we have, for ever§y € D*(0, 1),

9
/Qh3(:1:)a—a‘if'(xg) dz < 0.

Then one gets:

3
/th3§”(x2) dzx —I—/Qfg—z2 "(z9) dz >0, VE&eDH0,1).

Using the following notations:

2T 2 ah?,
a(ry) = f($1;x2)h3(x1,$2) dzxy, b(zq) = f($1,$2)a—($1,372) dzxy,
0 0 Yy
we get: 1 1
/ a(zy) £ (x5) dxso -l-/ b(zs) & (29) dxg >0, VE€DH(0,1). (4)
0 0

Now let us suppose tha{z,) > 0,V x5 € (yo,y1) C (0,1) and let§, be a solution of the
two points boundary problem:

a(w2) &' (x2) + b(xa) §'(v2) = alz2)y", £(yo) = &) =0, (5)

wherey € C*®[y,, y;| satisfyingy” (z3) < 0, V¥ x5 € [yo, y1]. From the minimum principle,
&o(x2) > 0, VY 23 € [yo,y1]. Then we define a regularizing functignon [y, y1] such that
g&o 1s a test function for Equation (4) andz,) = 1 on [y, + J, y1 — §]. More precisely, leb
be a positive parameter agdhe function defined ofy,, y1] by

([ (72— yo?
2<2Ty0>’ T2 € (Yo, Yo + 0/2)
_ 2
1-2(1—”6‘%), T9 € (Yo +0/2,y0 +0)
g(gj2):% 1, ) 3?2€(y0+5:y1—5)
— X
1—2(1—y15 2), To € (y1 — 0,41 — 6/2)
_ 2
L2<y16$2>, :cze(yl—(?/?,yl)
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This function satisfieg/(yo) = g(y1) = 0 andg'(yo) =

(1‘2)&)(1‘2) VIQ S [yg,yl] We haVEf~ € 02(y0,y1)

= g(y) = 0. Let beé(xy) =
&y
£ (y,) = 0. Therefore, we can take= ¢ in Equation (4) an

g
) ()—Oandﬁ()=
nd g

/yl a(m2) €' (1) + b(x2) € (x2) day > 0.

Yo
By separating the integration intervals, we decomposartegral in the form

y1—4

/yo a(x2) (9&0)" + b(w2) (9&o) dzy + / a(w2) & + bxa) & ds

Yo Yo+0

+ /y1 a(zz) (9€0)" + b(x2) (9&)" d2 > (6)
y1—6

From (5), the second integral is strictly negative, and iertivo other integrals, we have

/yo a(w2)(96)" + bx2)(g&o) ds

Yo

yo+4
= / a(z2)(9"& +29'€ + 9&) + b(x2)(9'&0 + 9&p)ds

Yo

yo+0
= [ Galen)g+ 20(aa)g'6o + alagly + Owz)g'6o + ba)g6h) doa. (1)

Yo

Since| ¢'(z2) |~ 1/6, | ¢"(z2) |~ 1/6% and being the functions and&, continuous in the
interval (yo, yo + 0), the terms under the last integral in (7) are bounded and warob

/yH a(z2)(go)" + b(x2)(9&0) dxy ~ 6.

Yo

In the same way, we have

Y1
/ a(x2)(9&0)" + b(z2)(9&) dzg & 6.
y1—0
Passing to the limit{ — 0) in inequality (6), one gets:

Y1
/ a&) +b& dry > 0.

Yo

But we have also: " "
/ af(')'—i-bf(')dxgz/ ay" <.
Yo Yo

2m 2w
Then we haveu(zy) = / f h?dx; <00on(0,1), that is/ (p1 — p2)t ¥ dx, <0, and
0

0
we concludey; < p, a.e. inQQ. O
Theorem 1.8 Under Assumptions 1.1 and 1.2, probl¢#®) admits at least one solution

(p, 8) whose pressurg is unique. Moreover, if there exists a set of positive meastrere
p(z1,x9) > 0, for anyz, > 0, then the saturatiofl is unique.
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Proof.

B Unigueness of the pressure is obtained from Theorem 1.7.
B Let us conside(p, #;) and(p, 6,) two solutions. Then we get, by means of substraction:

Oh (0, — 6,)

/h(91—92) aw:(), VeV, and
Q 0z,

= =0, inD(Q
e 0, inD'(Q),

so thath (0, — 6,) is a function only depending on thg variable, almost everywhere {n.
In particular, if there exists a set of positive measure whefz) = 0y(z), for everyz, > 0,
thend, = 0, a.e. inQ. O

We give a supplementary result :

Corollary 1.9 Under Assumptions 1.1 and 1.2 and ifan be written under the forim(z;, z5) =|}
hi(z1)ha(xs) (With 0 < hi < h;(x;) < h%), then problen{P,) admits a unique solution.

Proof. By Theorem 1.8, it is sufficient to prove that, for amy > 0, there exists a set of
positive measure, wheggz, x2) > 0. Let bet a test function only depending an. Then
we have

1 2w
h3%w’ = 0, i.e. / (/ h3(x1,x2)@(x1,x2) dI1> 'Lp’(iﬁg) dl‘2 = 0.
0 0 Oy

Q 09
Thus, we get

2w ap
3 _— =
/0 h’(x) 9es (x) dzy = C,

whereC' is a real constant. Sindecan be written under the fort(x;, z5) = hy(z1)ha(x2),
dividing the previous equality b3 (z-) gives

0 2m C
i h3 d = .
04 </0 1(£E1) p($1,$2) ZE1> hg(:@)

Integrating the previous equality and taking into accotna boundary conditions on the
pressure,

27
2 h? )
(/ hi(xy) play, z2) dx1> =22 p, / hy?(t)dt >0, Va,>0. (8)
0 0

1
=
0

We deduce from Equation (8) that, for amy > 0, there exists a set of positive measure,
wherep(zy, x2) > 0. O

The next sections deal with homogenization of the lubrazaproblem, using two-scale
convergence techniques which have been introduced by Blgngtin [34], and further de-
velopped by Allaire [1], Cioranescu, Damlamian and Gris8] [@hd Lukkassen, Nguetseng
and Wall [31].
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2 Homogenization of the lubrication problem

In the whole sectior) =]0, 27[x]0, 1] andY” =]0, 1[x]0, 1[. Now we introduce the rough-
ness of the upper surface; the roughness is supposed toibdipecharacterized by a small
parameter denoting the roughness spacing. Due to the shape of the Risyequation,
oscillating data appear in both sides of the equation. Sorevéed to consider the following
problem(P;) and assumptions:

Assumption 2.1 Leta andb be functions such that:
(i) a€ Li(QCy(Y)) ora € L7 (Y; Cy(Q)),
(i) be L7 (QCy(Y)) orb e Li(V;Cy(Q)),
(i) Ime, M,, Y(z,y) € QxY, 0<my<a(z,y) < M,
(V) Fmp, My, V(z,y) € Q2 xY, 0<my <b(z,y) < M,

We introduce the following functions defined on

x

T

a-(z) = a (x, E) , b(x)=1D (x, E) :
Then we introduce the following problem:
Find (p., 6.) € V, x L>(Q) such that:
0
)3 [anve= [0 voet

o) O aZEl )

pe>0, p.(1-6.)=0, 0<6.<1, ae. inQ.

Existence and uniqueness results have been discussedtionSEc Our purpose is to
discuss the behaviour of problef®;) whene goes to 0, using two-scale convergence tech-
niques.

2.1 Preliminaries to the two-scale convergence technique

First we recall some useful definitions and results for the-seale convergence (see [1, 23,
31)).

Lemma 2.2 The separable Banach spaéé(Q2; C;(Y")) is dense inL?(Q2 x Y). Moreover,
if f e L*(Q;C4(Y)), thenz — o.(f)(z) = f(x,z/¢) is a measurable function such that

|o-() f

Definition 1 The sequence. € L?(Q) two-scale converges to a limiy € L?(Q2 x Y) if,
foranyy € L*(Q; C4(Y)), one has

lim ng(x)w (z, g) dx = /Q/Yuo(x,y)w(x,y) dy dx.

<]
L3 (Q) L2(;C4(Y))

e—0

Lemma 2.3 Letu, be a bounded sequencelii(Q2). Then there exists, € L*(Q x Y) such
that, up to a subsequence, two-scale converges tq.

Lemma 2.4 Letu, be a bounded sequencefift (Q2), which weakly converges to a limig €
H'(Q). Thenu, two-scale converges tg, and there exists a function € L?(Q; H(Y)/R)
such that, up to a subsequeng&e;. two-scale converges Gu, + V,u;.
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2.2 Two-scale convergence results

In this subsection(p., f.) denotes a solution of proble(®;).

Lemma 2.5 There existg, € V, such that, up to a subsequence:
pe — po In HY(Q) and  p. — po in L*(Q).

We have also the following two-scale convergences:

(i) p. two-scale converges t@. Moreover, there exists; € L*(©; H/(Y)/R) and a
subsequencé, still denotedkt, such thatVp, two-scale converges @p, + V,p.

(i) There existg), € L*(2 x Y) and a subsequenecé, still denoted:, such tha®, two-
scale converges t.

Moreover,p, > 0 a.e. inf).

Proof. Since0 < 6. < 1, 6. is bounded inL>*(Q2) and in L*(2), so that||6.|;2@q) < Ci,
whereC; only depends of2. Moreover, from Assumptions 2(1;)—(iv), properties of). and

the Cauchy-Schwarz inequality, we get the estimates &y usingp. — p, (with p, a regular
function such thap. — p, € V) as a test function and Poincaré-Friedrichs inequalitthabd

e || ) < €2 whereC, only depends of2. The convergence results are the consequence
of the previous estimates (see Lemmas 2.3 and 2.4, or Ptmpokil4 in [1], Theorem 13 in
[31]). Finallypy > 0 a.e. inf2 due to the properties ¢f. O

Now, we give the properties of the two-scale limitsandd,, which are quite similar
to the ones of the initial functions. andf.. These properties are obtained by means of
two-scale convergence techniques.

Proposition 2.6 0 < 0y, < la.e.inQ x Y.

Proof. Let us introduce the classical notatiori = max(w,0) andw~ = — min(w, 0), for
anyw € L*(Q x Y). SinceL?(Q2; Cy4(Y)) is dense inL*(Q2 x Y) (see Theorem 3 in [31]),
let us consider a sequengg € L?(Q2; C4(Y)), ¢, > 0, which strongly converges ) in
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L%(Q2 x Y) (note that such a sequence exist3hus, defining the following sequences

T
4= [0.@ 6 (0.2) do ar= [ bwy) on(ey) dydo,
Q € OxY
we have, using the two-scale convergence.of
lim A = A7,
e—0

Obviously, A is a sequence of positive numbers so that we have also: 0. Now letting
n — 400, we have:

n—-+0o0o

lim A* — —/ 02 =A (<0).
QxY

Thus, A being a sequence of positive numbets: 0 so that, finally,4 = 0. Thus, we have
proved that, = 0 a.e. Similarly, it can be proved that — 6,)~ = 0 a.e. O

Proposition 2.7 py (1 — 6y) = 0 a.e. inQ x Y.

Proof. By unigueness of the two-scale limit (see [1, 31]), it is Sudint to prove thap. (1 —
6.) two-scale converges % (1 —6,). As p. two-scale converges g, let us prove thap. 6.
two-scale converges t@ . The sequencéd.p.} is bounded inL?(Q2). Consequently, it
remains to prove (see Proposition 1 in [31]):

[ 006 () do s [ mle) ule) o) dy o

QxY

forall ¢ € D(Q;C°(Y)). Letg be a function inD(Q; C2°(Y)) and leta. be defined by:

a, = /ng(x) 0.(x) ¢ (x, g) dr — /Qxypo(x) Oo(z,y) ¢(x,y) dy du.

Our purpose is to prove that tends to 0. Then we have:

lLety € L2(Q2 x V), 4 > 0. By Theorem 3 in [31], there exists a sequegigec L2(€2; Cy(Y')) such that
¥y, strongly convergeste in L2(Q x Y'). Now it is sufficient to prove that

() ot € L2 Cy(Y)),
(i) ¢ strongly convergeste in L2(2 x V') up to a subsequence.

We have the following characterization &f(2; Cy(Y')) (see Theorem 1 of [31]): a functiofi belongs to
L?(Q x Y) if and only if there exists a subs&tof measure zero if2 such that:

(@) foranyz € Q\ E, the functiony — f(z,y) is continuous and” periodic,
(b) foranyy € Y, the functionz — f(x,y) is measurable,
(c) the functionz — sup,cy | f(x,y)| has finiteL? () norm.

Thus, it is obvious that ify,, € L?(Q; C4(Y)), thenyt € L*(Q;C4(Y)). It remains to prove that, up to a
subsequence;,, strongly convergestoin L(Q x Y). Thus, by Theorem IV.9in [20], ag,,, ¥ € L2(2xY)
with [, — 9||L2(@xy) — 0, there exists a subsequengg, such that

(@) Yn, > Yae inQ xY,
) |, (z,y)] < A(z,y), forallng, a.e. inQ x Y, withh € L?2(Q x V).

Now, sincey,, — 0 a.e. onQ x Y and|[,, (z,y)| < |[¢n, (z,y)| < A(z,y) we state from the Lebesgue
theorem thaljv,, I|z2axy) — 0, and the proof is concluded.
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o8

) di — / (o) Bu(e.) bl ) dy da.

J/

-~

A2

€

B Using the Cauchy-Schwarz inequality and Lemma 2.2 (seeladsuma 1.3 in [1] or
Theorem 3 in [31]), we have:

Al < <

Pe — Do O'S(Qﬁ) Pe — Do

L2(Q) ‘ L2(Q) L2(Q) H L2(0;04(Y))

As p. — po in L?(Q), we have;Al| — 0.

Al

M In order to prove that\? — 0, sincef. two-scale converges i, it is sufficient to
prove that(z, y) — ¥ (x,y) = po(x) é(z,y) is an admissible test function for the two-scale
convergence (i.e) € L?(Q; C4(Y))).

Let us prove thatz,y) — po(z) ¢(x,y) € L*(; Cy(Y)) for everyg € D(Q; C*(Y)).
> With ¢ € D(Q; C;°(Y')) andp, € H'(S2), we have for a.ev in Q:
po(x) Bz, ) € CF(Y) C Cy(Y).

> Letusdenotel(z,y) = po(z) ¢(z,y). Aspy € H'(Q) C L*(Q), ¢ € D(Q;C2(Y)) Cf
L*(Q; C4(Y)), by the Cauchy-Schwarz inequality,

2
dx

e

? - /ng(x) sup‘¢(%y)

L2(;C4(Y)) yey

< (f ritaran) " ( | sup oty

We have proved thatz,y) — po(z) ¢(x,y) € L*(;Cy(Y)) for any functiong €
D(€; Ce2(Y)). Then, A2 — 0.

4 1/2
dx) < +o00.

O

2.3 Homogenization of the lubrication problem (generaktas

Using an idea developped in [1], one has the following mawnreroscopic decomposition:
Theorem 2.8 From the initial formulation,

B Macroscopic equation:

/Q</Ya[Vpo + Yy dy) Vo do = /Q (/Yeob dy) S_Z de, ()

for every¢ in V.
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B Microscopic equation:
Fora.e.xz € Q,

0
/ a{Vpo + Vypl} Vo dy = / GOba—w dy, (10)
Y Y Y1
for every)) € H/(Y).

Proof. Using the test function

T

o) += hi(@)y (2)

with ¢ € Vo, ¢1 € D(R2) andy € H/(Y') in problem(P;), one has:

/Q a(a:,?) Vp.(z) [V¢( )+ ¢1(2)Vy ¢ <E) + et <E> V.o (z >]
:/995(@6 <x —) {SZ( )+ iz ) 0y <€> +5¢< )gfi(x)] dr.

Passing to the limitg — 0) gives us the macroscopic equation (with = 0) and the
microscopic equation (with = 0), using density results. O

Let us define the local problems, respectively dengtetf), (A7) and(N)):

Find W, x5, xi (i = 1,2) in L*(Q; H{(Y")/R), such that, for almost eveny € Q:

x O :
/Yavym vV, = / @ B Vip € HI(Y) (i=1,2) (11)
0
[avicve = [ 058 wemy) (=12 12)
oy .
/Yava? V) = /Yeob o Vipe H(Y) (i=1,2) (13)

We immediatly have:

Lemma 2.9 Problem(M?) (resp. (N7),(N?)) admits a unique solutiofV’* (resp. x7, x?)
in L2(Q; H)(Y)/R).

Theorem 2.10 The homogenized problem can be written as

Find (po, Z1,Z9) € Vo, x L®(Q) x L*(£2) such that
P [ A w—/bOw, Vo eTh,
Q
po>0 and py(1—-%;) =0, (:1=1,2) a.e.inQ,

with A = < ZE ZP ) b = < flbi > andf / f(z,y) dy, being the homogenized
21 22
coefficients defined as

aw*} - fbv_[ axl]

S B [ ‘ _
Gy = 0% Ay ' Ay

Moreover, the homogenized problem admits at least a solutio
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Proof. From Lemma 2.9, one has:

pl(x: y) = _W*(x: y) ’ VPO(@ + X(l)(x: y): in L2(Q Hﬁl(Y)/R) (14)
. W*
* 1
with W* = Wi
Using Equation (14) in the macroscopic equation gives:

[l e = [[ @0 () ]2

. Let us notice thay!(z,y) depends o (x,y) which is unknown.

. (15)
2)%1
* /Q | B (“a—y) } oy
: : —~— oy .
for every¢ € Vj. Introducing the notations§ = (6,b) — (a 5 ) (t=1,2), one gets
[A-vmvo= [ 196, voev,
Q Q
with
- ey bY
A=al—-aVW* = ( 0 )
2
Introducing the ratiog; = b?/b* in the vecton’ concludes the proof. O

Remark 2.11 The homogenized lubrication problem can be considered asnerglized
Reynolds-type problem with two saturation functi@G)s(: = 1,2). Let us notice that if
there is no cavitation phenomena (izg. > 0) then=; = 1: thus, we get the classical homog-
enized Reynolds equation (without cavitation) (see [1B{t several aspects remain hard to
describe:

(&) The homogenized problem leads us to consider two ditfesguration functions, since
an extra term has to be added (in the direction of the flow) when comparing the
homogenized problem to the initial problem.

(b) Another point is to consider the fact that the propedity< =; < 1 is missing, i.e.
we cannot guarantee that homogenized cavitation parameter smaller than 1 in

cavitation areas !

(c) We are not able prove any uniqueness result, for the hemngd problem, using the
methods described in Section 1.

(d) Algorithms are known to solve the roughless problem {seastance the papers by
Alt [3], Bayada, Chambat and Vazquez [15], Marini and PiefB2]). But how to
solve the homogenized problem numerically ? How to treatvtioedifferent saturation

functions?

Thus these four difficulties have to be underlined in the meseral case and, in the follow-
ing subsections, we show how it is possible to solve theig,dubt least partially. Addi-
tional assumptions have to be made in order to get an homagémiroblem with a structure
which is similar to the initial one. This will be the subjecthbe following subsection. Before
starting this study, let us conclude this subsection wighféllowing theorem:



G. Bayada, S. Martin and C. Vazquez / Two-Scale Homogeizaf the Elrod-Adams Model 21

Theorem 2.12 The homogenized problef®;) admits a solutior{p,, =, Z) with0 < = < 1
a.e. inf.

Proof. The result is obtained in three steps: first, we consider émalzed rough problem
(Py); then, we apply the homogenization process to the penapizgilem (i.e.c — 0);
finally, we pass to the limit on the penalization parameter (i — 0).

B 1st step L et us consider the rough penalized problem:

Find p? € V, such that:
0
(P;) / a.Vp.Vo = / H,(p!) bg—qs, Vo e V.
! Q 0 aZEl
p. >0, a.e.inQ

H 2nd step Similarly to the exact rough problem, we get a priori estiesatn the pres-
sure, i.e. ||p!||m ) < Cs whereC; only depends ofi2. From the previous estimate, we
deduce that there existg € V, (p/ > 0 a.e. inQ) such that, up to a subsequengg,
weakly converges tpg] in H'(Q). Moreover,p! two-scale converges tg, and there ex-
istsp] € L*(; H/(Y)/R) and a subsequenee still denoteds such thatVp! two-scale
converges t&p, + V,p!. Then, with the two-scale homogenization technique, welget
following macro/microscopic decomposition:

e Macroscopic equation:

/Q(/Ya[vpg+vypﬂ dy)ngdx:/ /H bdy §¢ dz, (16)

for everyo in V.
e Microscopic equation:
Fora.ex € Q,

0
[ alvi+ vt vds= [ o5 an an
Y Y Z1

for everyy € H/(Y).
Then introducing the local problems defined in Equation$ &ht (12), we get:

pi(z,y) = =W*(z,y) - Vpg(x) + Hy(pg () xi(z,y), in L*(Q; H) (Y)/R).  (18)

Using Equation (18) in the macroscopic equation gives:

/Q{a]—aVW*}Vp Vo = /H o) ?5—( g;(ll) ]g—z

o R GO

for every¢ € V,. Then, using the definitions df (: = 1,2) (see Theorem 2.10) and
introducing vectob* whoseith component i}, the homogenized penalized problem can be
written as

(19)

Find p{ € V, such that

P8 [ Avive= [ mapyve. voet
Q Q
pe >0, a.e.in,
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B 3rd step -As A is a coercice matrix (see [18]), we establish a priori estamany], in
the H'(Q2) norm, which do not depend op so that there exists, € V,, (py > 0 a.e. inQ)
and= € L>°(Q) such that

H,(p{) E, in L>(Q) weakx.
Passing to the limit7{ — 0) in problem (P;) concludes the proof, since the properties
0 <=Z<1landp, (1 —Z=)=0a.e.inQ are classically obtained as in Section 1. O

Remark 2.13 Let us recall that we are not able to prove a uniqueness resuthe general
problem. But we can wonder if it is possible to obtain a unitess result among the class
of solutions(pg, =1, =5) satisfying=; = =, = Zwith0 < = < 1 (and, of coursep, > 0,

po (1 — =) = 0). In fact, it is not possible to get such a result using thehodtdescribed
in Section 1, because it is not well-suited to a flow whose oot in ther, direction is
different from O.

Remark 2.14 Theorem 2.12 guarantees that we are able to build an hompgérproblem
with isotropic saturation from the penalized problem, alligh it is not the case when directly
studying the homogenization of the exact problem (in the gesgeral case):

B the penalized problem allows us to build a solution in pres&aturation(p,, =, =)
where the saturatiof satisfied) < = < 1 (and, alsop, > 0 andp, (1 — =) = 0);

B by contrast, the exact problem with the homogenizationgseduilds a solution in
pressure / double-saturatiofp,, =, =;) for which we are not able to conclude that
0 < =Z; < 1 (although the following properties holdy, > 0 andp, (1 — =Z;) = 0,
(i =1,2)).

At that point, it is important to know whethéj(x, y) depends ory or not: thatf, does
not depend on the variable would mean that the homogenized exact problem laadho-
mogenized penalized problem (after passing to the limig)oare identical, i.e. saturation
phenomena would be isotropic. More precisely, in the exantdgenized problem, such an
assumption leads us , = =, = 6, (see Equations (13) and (19)),< =; =, < 1 (see
Propositions 2.6 and 2.7). But, in fact, numerical testslemce that such an assumption is
not valid in general, as it will be pointed out in the next s@at

Remark 2.15 It is now possible to find, numerically, a solution of probléhj), by focusing
on solutions(py, Z, Z) satisfyingd < = < 1 (withpy > 0 andp, (1 — =) = 0), and using
algorithms that have been previously mentioned. In thaspeat, it allows us to eliminate
another difficulty that has been underlined in Remark 2.1dt, Bince we do not have any
uniqueness result, we cannot guarantee that each solgpidfy , =,) satisfiess; = =, and
we are not able to build numerically solutions with two difiet saturation functions. We
can neither illustrate numerically anisotropic effectstbe saturation, nor prove that all the
solutions have the forrfp,, =, Z).
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2.4 Some particular cases

2.4.1 Longitudinal and transverse roughness

Our interest in studying the behaviour of the solution whensidering transverse or longi-
tudinal roughness is highly motivated by the mechanicaliegiions. From a mathematical
point of view, we may even consider a product of transverselamgitudinal roughness i.e.
we should consider, in this subsection, the following agstion:

Assumption 2.16
() a(z,y) = ai(z, y1) az(z,2),
(i) Img,, Mo, 0<mg; <a; < Mg, (i =1,2),
(i) b(x,y) = bi(z,y1) ba(z, y2),
(iv) Impi, My, 0 <my; <b; < My, (i =1,2).

It is clear that the earlier assumption is just a separatiotih@ microscale variables,
which allows us to take into account either transverse agitadinal roughness effects, but
also particular full two dimensional roughness effectst &dimensionless journal bearing,
we may consider gaps with roughness patterns described@@-f, corresponding to a
roughless gap + pcos(x1), = €]0, 27[x]0, 1].

Lemma 2.17 Under Assumption 2.16, it follows that:

——— 0

A=| @
N
a;l

Proof.
Bl Diagonal terms of the matrix-or this, let us recall the variational formulation (seai&q
tion (11)) of problemM?) (: = 1, 2):

aj, Y € H;(Y).

/ aV, WiV, = / a
Y Y 0
Letj € {1,2}, with j # i. Denoting[f]y the averaging process of a functigron they;
variable and using a test function only d]epending/pm)ne has:

/Yi {aa;/y;*]mj_i: v Myj % v € H;(Y))

Then, one has, for a.e. € , that:

[a aaVVy;*L/j = {a}yj + Cji(x). (20)

Using Assumption 2.16 and dividing Equation (20)dyywe have:

{aj a;f}n N [aﬂ}yj i %
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Figure 2: Normalized gap (no roughness patterns)
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Figure 3: Normalized gap with transverse roughness pattern
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Figure 4: Normalized gap with longitudinal roughness pate
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Figure 5: Normalized gap with two dimensional roughnestepias
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Now, averaging on thg; variable and using th¥ periodicity of W give us
0=a;+Cy gi::

so thatCj;(z) = —i. Moreover, using the definition ofl;; (see Theorem 2.10) and
a;

Equation (20), one has;;(z) = —A;;(x), so that

a; .

Am(l‘) = :(l'), 1 = 1, 2.

a;l
B Non-diagonal terms of the matrixor this, leti, j € {1,2}, j # i. Recalling the varia-
tional formulation of problem{M?) (i = 1,2) and using a test function only depending on

yj, one has:
oW di :
7 °Y _ H Y .
/Y. [a 0y, }YZ dy, 0, V¢ € Hy(Y))

Then, for a.ez € 2, we have:

[a a;f}n = Cyi(a). 1)

Using Assumption 2.16, dividing by, averaging on the; variable and sincéV; is Y
periodic, we get tha€;;(z) = 0 (for i # j). Moreover, using the definition ofl;; (see
Theorem 2.10) and Equation (21), one hagz) = —A;;(z) sothatd;;(z) =0 (i # j). O

Lemma 2.18 Under Assumption 2.16, we deduce that:

p = =0 (22)
= 0 3

where the following relationships hold:
0<Z <1 and py(1-%1)=0 a.e.inf.

Moreover, the homogenized coefficiensatisfies:

i) = [= (2)]@. (23)

-1 aq
ay

Proof. The first part of the proof lies in the determination of vediprin the second part, we
calculate the homogenized coefficiéht

B 1st part - Computation of the components of veéfor

» Let us study the first term of vecté?. Thus, denotings; = x* — x? and combining
problems {/}) and (\?), one gets, for a.ex € Q, that:

0y
/Yavywlvyw = /;b(l - go)a—yl, V'I,/J S Hul(Y)

Now, using a test function only depending @n one has:
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[l [ pa-w], % wemon

Then, for a.ez € (2, we get:

6w1
[a 8—1/1]1@ - [b (1— 90)} , O, (24)
whereC(x) is an additive constant only depending @n Next, using Assumption
2.16, dividing bya,, averaging on the, variable and using th& periodicity of w;,
we deduce the following equality

(-] + O =0

a1

Now, from Proposition 2.6 and Assumption 2.16, it is easyao(@(z) < 0. Then,
averaging Equation (24) on the variable, we obtain that

0 - (12 <G - (a59).  ie <

Next, applying the earlier method to the variational foratidn of problem A7), it is
easy to conclude < 1? (i = 1, 2).

» Let us now study the second term of veditr Applying the same mehod (as earlier)
to the variational formulation of problem\({’), one has:

oxiy) dy |
a—| — =0, Yy e H;(Y>).
/yz { ayQ]YI dya v u( 2)

Then, one gets:

oxY .

ZL =0, inH(Y,)/R.
|:aay2:|Y1 ’ ﬁ( 2)/
From the previous equality, one obtains:

[ag—zﬂ v = C(x), (25)

for a.e. z € , whereC(z) is an additive constant only depending en Next, us-
ing Assumption 2.16, dividing byt;, averaging on the, variable and using th&
periodicity of x?, we get thatU(z) = 0. So, from Equation (25), we deduce:

—(ag—;f) —0, e M=o

With the earlier method applied to the variational formigiatof problem (V}), it is
easy to conclude thag = 0.
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Now, since we have proved that< ») < bt and0 = b3 = b3, using the definitions of
=; (i = 1,2), itis easy to conclude that Equation (22) and propérty =; < 1 a.e. in{
hold. Moreover, property, (1 — =;) = 0 a.e. inQ is obtained from Proposition 2.7 and the
definition of=,. Thus, it remains to calculate the homogenized coeffidignt

H 2nd part - Computation df;:
First, considering problem\(;"), one gets:

/ ViV = / o Yy € Hﬂl(Y),

for a.e.x € €. Next, using a test function only dependingm@none has:

[ 1530, - 0, v e

Oy1 1v, dyl va dyy
Then, )
4251, = ], cio 2

for a.e.x € Q, whereC¥(z) is an additive constant only depending:anUsing Assumption
2.16, dividing bya,, averaging on thg, variable and using th¥& periodicity of x1, leads to
the following equality:

—~

b ~
=]+ et a=o. 27)
a
Next, from the definition 0b} (see Theorem 2.10) and Equation (26), we deducethat) =|j
—b%(z) so that, from Equation (27), we conclude the proof. O

Lemma 2.19 Under Assumption 2.16, it follows that

_ B 1 0ob
~1($)_ |:/'5/ (al )}(:E) (28)
(@)
Proof. Notice that)} can be calculated by using the same method which allowedalsté&in

bt in the proof of Lemma 2.18, just replacing probleid?(), by problem {/?). Then, we
have

1
— {%b] (). (29)
The definition of=; (see Theorem 2.10), Equations (23) and (29) conclude thed.pro [J
To summarize the earlier results, we establish the follgviiomogenized problem:
Theorem 2.20 Under Assumption 2.16, the homogenized problem is:

Find (po, Z) € V, X L°°(Q) such that:
(7)) /A Vo Vo = /_b* Vel
po>0, po(1—25)=0, 0§E§1, a.e. inQ)

with the following homogenized coefficients:
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%2
ol 1 /by
— al ~ b* — | ==.| —
A= G | Hw [all ()]@
a2_1
Moreover(P;) admits at leastp,, =) as a solution, where
RN I BN
=@) = [==(7")] @ (30)

b
(@)
and (po, 6) is the two-scale limit ofp., 6.) (solution of problen{?;)).

Remark 2.21 In the lubrication problem, Assumption 2.16 implies tha ¢fap between the
two sufaces is described by the function:

() =i () e (2 2)

In this case, the homogenized coefficients are the follooes:

b3
:23 0 -~
h_ * -
A= " S| i) = [%_3 hg} ()
(- hy
h,*

and we get the precise link between the microscopic casitand the macroscopic cavita-
tion, i.e.

=(z) = {@%}5.(%)} (x) (31)

Theorem 2.22

(7) Under Assumption 2.16, problef®;) admits at least a solutiofp,, =). Moreover, the
pressurep, is unique, and if there exists a set of positive measure whgreg, x5) > 0, for

anyz, > 0, then the saturatio& is unique.

(i7) If b* can be written under the fort (z, z2) = bi(x)b5(z2), problem(P;) admits a
unique solution.

Proof. For (i), existence of a solution is stated in Theorem 2.20, by mefcmnstruction via
the two-scale convergence techniques. Uniqueness of dssyme and, under the additional
assumption, of the saturation is obtained as in TheorenFbig:i), the result is obtained as
in Corollary 1.9. O

Remark 2.23 A primal “naive” attempt leading to the homogenized problemuld be to
determine an equation satisfied by the weak limitgofo. ), namely(p,, 6y). Interestingly,
the weak limit of the pressure does appear in the homogepioddem, but the macroscopic
homogenized saturatiof is a modified average df,, weighted by the roughness effects
through the influence of functionhs.
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It is interesting to notice that Assumption 2.16 allows usdtve the four difficulties that
we could not overcome in the most general case (see Remdrk hlarticular, there is one
single saturation function; the homogenized problem canuweerically solved using algo-
rithms applied to the roughless problem; and it is easy, uad@itional realistic assumptions,
to obtain a uniqueness result on both pressure and saturdfioreover, Assumption 2.16
includes some important particular cases in terms of mecakapplications: transverse and
longitudinal roughness. The results are easily deduced rbeorem 2.22 and given, in the
next results, for a strong formulation.

Corollary 2.24 If h does not depend om, (transverse roughness), then the homogenized
problem can be written as:

0 1 Opo 0 1 ~ Opo 0 1_ h2
— h? = = = Q
oxy [ h—3 0xy ] + 012 [ 012 ] oxy [ h—3 :|’ TES
with the following boundary conditions:
po =00onlyandp, =p, onT, (Dirichlet conditions)
-2 1
= L - = il andp, are 2rx; periodic (periodic conditions)
B3 3 Or

Corollary 2.25 If h does not depend on (longitudinal roughness), then the homogenized
problem can be written as:

0 =~ 8pg 1 6p0 0 -7
h? e = =h Q
8331{ 6351] +8x2{h3 6.752} 8331{ ]’ T e
po(x) >0, po(z) (1—Z=(x) =0, 0<Z(x) <1, ze€,

with the following boundary conditions:
po = 0onlyandpy = p, onl, (Dirichlet conditions)

=h— h3 % andp, are 2rx; periodic (periodic conditions)
1

Under Assumption 2.16, the homogenized problem is simdathé s dependent one,
since there is one single saturation function. This assiemptnposing a particular form of
the roughness, seems to be strong but it allows us to takadctmunt some two dimensional
roughness effects. Moreover, it is somewhat surprisin@éotBat passing from the classical
homogenized equation (without cavitation) (see [13]) ® ¢ime obtained in our paper (in-
cluding cavitation) only needs to introduce a saturatiotheright hand side; in other terms,
comparing the homogenized Reynolds equations - with orawitlcavitation -, the homog-
enized coefficients are not modified, although the Elrodvslanodel introduces a strong
nonlinearity through the saturation function and its praps.

In the next subsubsection, we deal with oblique roughnebsidDsly, this case does not
fall into Assumption 2.16 which enables us to completelyrogme the mentioned difficulties
stated in the general case. However, it seems that a changeiables could allow us to
recover a structure in which Assumption 2.16 is satisfied. wiesee that it is not really
the case and that the change of variables will introducetiaddi terms which are not fully
controlled by the homogenization process; nevertheleaipivs us to define, in a rigorous
way, two homogenized saturation functions, thus desagilimsotropic phenomena on the
cavitation. This structure can be considered as an inteemedne between the general case
and the microvariables separation case.
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2.4.2 Oblique roughness
Let us consider the mappirsg, defined as:

F, : R — R? with X{(z) =  cosyxy +siny zy
r — X=F/(x)’ X7 (x) = —sinvy x4 cosvy 3

We suppose that the effective gap can be described as follows
Assumption 2.26 For a given angley, let beh. a function such that
X/ X,
Ve e Q, ho(x)=mn (:r, #) ho (a:, #) ,

with0 < m! < h; < M? a.e.inQ (i = 1,2).

Figure 6: Normalized gap with oblique roughness patterns

Obviously, heights satisfying Assumption 2.26 (see fotanse FG.6) do not satisfy
Assumption 2.16 (except for particular valuesyof Let us drop the overscripts (for the
sake of simplicity). Now, we say that= (z{, z5) (resp. X = (X, X)) denotes the original
(resp. new) spatial coordinates. So, introducing the veetor = (cos vy, —sin~y), problem
(P5) can be described in th€ coordinates as follows:

Find (3., 6.) € V, x L>()) such that:
(P){ [ ROTR0V6) aX = [ 8.00h(X)e,To(X) dX, Vo T
pe>0, p.(1—6.)=0, 0<60,<1, a.e.inQ,
wheref(X) = f(z) and2 = F,(Q), with the following functional spaces:
= {0 H'®), ¢, =6, 6, =0. 6, =}
= {¢ € H'(Q), ¢, = s O, =0, 0, = 0},
wherel’; (resp.I',) denotes the leftrésp.right) lateral boundary.

Va
v

Remark 2.27 In the new coordinates, one has
. o X\ v X
he(X) = In (X, —1) ho (X, —2).
g £

From now on, we denote (X, y;) = h3(X,y;) andb; (X, y:) = hi(X,y) (G = 1,2). Then
a(X,y) = a1(X,y1) ax(X, y2) andb(X, y) = b1(X, y1) bo( X, yo) satisfy Assumption 2.16 in
the X coordinates.
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Remark 2.28 The formulation of the lubrication problem in the new coostes system is
equivalent to a generalized Reynolds problem as it happdfisan oblique flow direction
sin+y), instead ok = (1, 0) in the classical one.

e_, = (cosy, —
Theorem 2.29 We have the following convergences:
(i) There existgi, € H'(Q2) such that, up to a subsequence,

e — Po, In H'(Q) and  p. — po, in L2(Q).

Moreovery, € V,, andp, > 0 a.e. inf).

(i) p.(X)two-scale converges fi3(X ). Moreover, there exists (X, y) € L2(<; H;(Y)/]R)I
and a subsequeneéstill denoted such thatVp. (X') two-scale converges ¥, (X )+

Vyﬁl (X: y)'
(i) There existsdy(X,y) € L*() x Y) and a subsequencé still denoted: such that
f.(X) two-scale converges # (X, y).

Proof. The result is easily obtained after establishing a pridinestes which do not depend
one (see Subsection 2.1). O

Theorem 2.30 Under Assumption 2.26, one gets the following homogeniz#slgm in the

X coordinates:

ﬂwﬁ(X), VeV,

o
() / ACX) - Vi(X)V6(X) = / BO(X)-
1, (i=1,2) a.e.in,

150207 pO (l_él)zoa

with the following expressions:

2 0 = by 0
v—1
A= %™ - B° =
O dl 3 o 3
dg_l 0 =9 b2

and .

y 1 /b

) = |= (2)](x), i=12

d—l a;

(3

and (p,, ) is the two-scale limit of., 6.) (solution of problen{P,)).
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32
Proof. We use the same techniques as before, the only modificatroastrom the presence
of an additional term in the right-hand side of the equati®e.briefly sketch the main steps

of the complete proof:
B 1st step: Properties of the two-scale limitdet (py, 50) be the two-scale limit of

(9., 0.) (see Theorem 2.29). Then one has:
() po (1—0,)=0 in L*QxY),

(i) 0<fy<1 ae.in QxY.

B 2nd step: Macro/microscopic decompositiobsing the classical techniques (previ-

ously used in Subsections 2.1 and 2.3), one gets:

(i) Macroscopic equation:
</ 0o de) e_, Vo,
Y

é(/ya[wﬁvym} dy)VqS:/ﬁ

for everyg in V.
(i) Microscopic equation:
Fora.e.X e Q/ i Vi + V1| Ty dy = / by be_, V0 dy,
Y Y

for everyy € H/(Y).
W 3rd step: Local problems and macroscopic equatidine local problemgAt?), (N7¥)
and (N}?) are identical to the ones defined in Subsection 2.3 (up todketions adapted to

the X coordinates). Then, one has:
[fi-vpovas:[[éo-e_7 Vo, Voe,
Q Q

= Ik
Z12 by

with the following notations:
R A |
X ~ *
_[53812} G — [a%‘?ﬁ] So b5, o b,
using the notations(j = 1, 2):
R R P
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wherelV#, x* andy? are the solutions of the local problerst?), (M) and(N?) (consider
the analogy with Equations (11), (12) and (13)).

Bl 4th step: Simplifications due to Assumption 2.26sumption 2.16 in th& coordi-
nates (issued from Assumption 2.26) allows us to use the sacheiques as in the previous
subsubsection to obtain the simplifications.4mand3°. |

Remark 2.31 The earlier formulation is the weak formulation of a generadl Reynolds-
type problem including cavitation. The main differencehvite initial problem given in the
formulation of (P,") lies in anistropic effects on the homogenized coefficiemtich is a
classical result in homogenization theory, but also on gaesation function.

Theorem 2.32 [Homogenized exact problem] Under Assumption 2.26, one thet follow-
ing homogenized problem in thecoordinate:

Find (po, =1, Z2) € V, x L®(Q) x L*(Q) such that:

G /thwows:/bm5 w2 vsen

Q_la—xl Q_Qal‘Q’
Py > 0, Po (1 — El) = 0, 0< El < 1, (Z = 1, 2) a.e. inQ,

with the following expressions:

Ay = (70 ) e - sy (T,

cos7y sinvy

) = —(b(e) Zi(@) - () Zala)) sin’ 5 + bi(2) = (2),
W) = (bi() Zi() - Byle) S(x)) siny cosy,
and the following homogenized coefficiernitg (= 1,2 andj # 9):
* ]?3 * ﬁzzé 7
ai(@) = ==(x) and b(x) = | == by ().
h, h:

7 )

Moreover, problen{P;) admits(py, =;, =5) as a solution, where

—_

Ei(a:):[ﬁ (ezijj)}(x), =12 j#i, (32)

and (py, 0y) is the two-scale limit ofp., 6.) (solution of problen{?;)).

Proof. Theorem 2.32 is obtained from Theorem 2.30 using the inv@raege of coordinates,
with f(X,y) = f(z,y). O

Remark 2.33 Theorem 2.32 implies that we have been able to solve one diifffeilties
that raised in the most general case (see Remark 2.11). dntlese are two saturation
functions, but we have proved that they satigiy< =; < 1 (: = 1,2), which was not
guaranteed in the general case. In this way, the homogempizdalem has a structure that is
close to the initial one. But, as in the most general case,ama@t prove a uniqueness result
with the methods of Section 1, nor can we numerically soleepthblem using algorithms
that have been previously mentioned, since we still havesaturation functions.

Remark 2.34 Let us recall that, in Theorem 2.10, we wrote the right hau sish! = =;b%,
thus defining “fake” saturation functions (since we were able to prove that < =; < 1).
In fact, according to Theorem 2.32, should be considered as a combinatiorEg, where
=,; can be considered as “real” saturation functions (sinceytlsatisfy0 < =; < 1).
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Remark 2.35 Theorem 2.32 gives an example of an homogenized problemavitbdiagond]
terms in the matrix and additional homogenized coefficiantse second member (see The-
orem 2.10 corresponding to the most general case). Indetd)d try to understand the
homogenized problefP;) in a form that is a perturbation of the homogenized one defined
under Assumption 2.16. For this, we define the main téfhand the residual term” in the
matrix as follows:

=
s
Il
7N
=}
o=
8
SN—r
>*
—~ O
=
S~
+

KN ok . —sinvy cos 7y
(o) —aso) siny (70T ).

—~ —~

A (z) AT (z)

In the same way, we introduce in the second member the maporemt)]” and the residual
onesh] andbj:

W) = —(B@) 26 -3 D) sty + D) K),

Vs
7' 1
bl

W(z) = \(bf(x) Ei(z) — b5(z) EQ(x)> siny COS’}:.

by

Let us notice that the main term in the second member onlyaappethezx; direction, cor-
responding to the flow direction. Moreover neglecting th&deal terms in the formulation
gives us the classical homogenized problem with k7 /2 (k € Z) (see Theorem 2.20).

Remark 2.36 Considering the dam problem, an homogenized problem anabdgo the
initial one cannot be obtained in the most general case,esihés possible to show (see
[2, 33, 39]) that there exists the possibility of the nonengence of the unsatured regions
(i.,e. {p- = 0} N {0 < 6. < 1}). But the counter-example developped in the previous
references is valid only for initial anisotropic permeatyilcases. In the lubrication case,
this assumption is not relevant and the possibility to statdhomogenized problem whose
structure is similar to the initial one remains an open qi@st

3 Numerical methods and results

In this section, the numerical simulation of a microhydnodmic contact is performed to
illustrate the theoretical results of convergence statetheé previous sections. For the nu-
merical solution of the dependent problems and their corresponding homogenizzdyan
propose the characteristics method adapted to steadygmtaiblems to deal with the con-
vection term combined with a finite element spatial diseegton. Moreover, the maximal
monotone nonlinearity associated to the Elrod-Adams miodelvitation is treated by a du-
ality method. The combination of these numerical techrsduees been already successfully
used in previous papers dealing with hydrodynamic aspseis [15, 19]), and even with
elastohydrodynamic aspects (see, for instance, [6, 27]).

3.1 The characteristics method

B 1st step - Time discretizationGonsidering problent?;), the departure point is the in-
troduction of an artificial dependence on timia all the stationary functions, i.ei(z,t) =
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Y(x). By considering the velocity field = (—1,0) and the corresponding total derivative

operator, i.e.

D 8 0
Do TV e

then the stationary problefiP,) gives place to the artificial evolutive one
D 5 o,
0h — dx + thvwdx_O and 6 € H(p).
o Dt

Next, we consider the upwinded approximation of the totaivdéive

Dy _ v(x) = $(X*(x))

Dt k ’
wherek is an artificial time step and’*(z) denotes the position of a particle placed in the

point z at timet — k£ moving along the integral path of the velocity fiefdi.e. X*(z) =
X(x,t;t — k). X is the solution of the O.D.E. of characteristics

L (X t7) = u(X (2 1:7)) and X(z,#1) =

dr
In this way, the time discretized problem is written as
_ Xk
h % dz + / WVpVi de =0 and 0 € H(p),
Q Q

which suggests to move the term containifg X* into the right hand side of the equation
and to look for the solution of this evolutive problem whers +oc by means of step by
step algorithm in time.

H 2nd step - Computation of one time stéfor each time stefd = n At, the finite element
discretization in space defines the final discretized proble

(Pa) { /enﬂhwh dx+/h3vp“+1wh de = /9“ (Y 0 X¥) dx, ¥ ¢y € Vi,
67 () € Hp™+'(8)), ¥ b node ofr,,
wherer, is the triangularization of the domain. The finite elemersicgs are defined as
Vi = {v, € C%Q), vy € P, VE €1},
Von = {vn € Vi, vpr,ur, = 0}.

Each iteration of the characteristics algorithms requbesolve the nonlinear proble(®, ).
For this, we use use the new unknowfr;!, defined by

e H@p™) -6p" inQ,
0 being an arbitrary positive real constant. Then, droppnegstubscripts,

o /p"“hw dr + / RAVP" IV da

k Q Q
=7 th("(/)OX)dx—E r" " hp dx, ¥ oy € Vi,
n+1 Hé( n+1 —|—)\Tn+1), Q

where H? denotes the Yosida approximation Bf— 61, I being the identity operator. The
fixed-point algorithm to solvéP? ) proceeds as follows: at the beginning of each iteration
we knowr. Then we computp as the solution of the linear proble(®? )-(i) and updater
with (P2)-(ii).
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3.2 Numerical tests

We adress the numerical simulation of journal bearing a=vigith circumferential supply
of lubricant (see K.7 and 8).

(D) bearing (radius?,) (3 lubricant
(2) shaft (radius;) (4) supply groove

Figure 7: Journal bearing

\\\ ) e
L'y
. .
/) //
/ 7
/ o
7
Fu /) @) y F]j -
7 2
/ /
/ /i
/ /
/ /i
// FO // l,l
=7 2 Ry, —

Figure 8: Journal bearing (developped configuration)

Indeed we simulate a journal-bearing device whose length=s0.075 m, mean radius
R,, = (Ry+R;)/2 = 0.0375 m (R, andR; being the bearing and journal radii, respectively)
and the clearance is= R, — R; = 0.001 m. The supply pressure js, = 100000 Pa or
pe = 150000 Pa (according to the case study), the lubricant viscosity is 0.03382 Pa.s
and the velocity of the journal is takentg = 30 m/s. Moreover, the roughless gap between

the two surfaces is given by:

hz) = c (1 +p cos (2—1» 2= (mLam) € (0,27R,) x (o, g) |

m
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where the eccentricity varies from 0.6 to 0.8 (according to the case study). Thesdabk
Reynolds problem, in real variables, should be posed as:

B3 ) .
V. <@Vp> - voa—xl(ﬁh5>, in (0,27 R,,) % (0,L/2),
p>0, p(1-0)=0, 0<0<1, in(0,27Ry) x (0,L/2),

with the boundary conditions:

p=0,0n]0,27R,,[x{0} andp = p,, on (0, 27 R,,) x {L/2},
h3 0 L
p anduvyfh, — 8 9P are2r R,,x; periodic.
6/L aZEl
Now let us introduce the dimensionless coordinates andtijigarthat provide the effective
system to solve (see [6]):

2 h
X, =, =20 =)
R, L c
c? P c? 2R,
== a — a) K= —".
6vg Ryt P 6vo Ry 11 p L

Then, the dimensionless Reynolds problem becomes:

0 (30PN o, 0 ( . OP\ 0 |
e (HsaXl)H; i <H56X2> = 3%, <9H> in (0,27) % (0,1),
P>0, P(1-6)=0, 0<0<1, in (0,27) % (0, 1),

with the boundary conditions:
P =0,0n]0,27[x{0} andP = P,,on (0,27) x {1},
P .
P andfH, — Hfa— are2n X, periodic,
0X,

and the roughless gap is ndi#(X) = 1 + p cos (X;). Let us now introduce the roughness
patterns: we propose in the rough case the following exjmessr the dimensionless gap:

X
X Hy(X) + h, sin —1> : for transverse roughness,
HE(X):H<X,—> = 4
< H,(X) + h, sin 27r—2> . for longitudinal roughness,
3

whereh, denotes the amplitude of the roughnesses-amegresents the spacing of the rough-
ness. In order to guarantee the positivity of the gap, we sbbpso thath, > 1 — p. The
homogenized problem to solve can be written under the form:

O ( 0PN , 0 ( 0P\ _ 0 [\ .
6—)(1(a16—)(1> TN, (”ax) ~ 99X, (“b>’ in (0, 2) > (0, 1),
P>0, P (1-5)=0, 0<=<1, in (0,27) x (0,1),

with the boundary conditions:
P, =0, 0n]0,2x[x{0} andP, = P,,on(0,27) x {1},

Py -
Py and=b — a;—— are2r X, periodic.
0 CL1aX1 TX1 P
In TABLE 1, we present the coefficienis, a; andb that appear in the homogenized problem
for purely transverse and purely longitudinal roughnessesavhich have been computed
with MATHEMATICA Software Package:
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| | Transverse roughness Longitudinal roughness
H(X,Y) | Hy(X)+hysin(Y1) | Hy(X) =+ hy sin (27Y2)
(H(X)? — h2)""

3 3 2
w(x) | Hy o | o TR
b)) | 20, (x) LX) =B H,(X)

2H,(X)2 + 2

Table 1: Hydrodynamic homogenized coefficients

3.2.1 Case 1: Transverse roughness tests

Numerical tests have been made for two different regimesfitkt one is a realistic regime
in terms of the size of the roughness linked to mechanicdicgijons; the second one is a
severe unrealistic regime, since the deformability of tiéege should be taken into account.
However, in both cases, we have considered the followingighydata: the eccentricity is
p = 0.6. The numerical methods parameters are the following onésarsgular uniform
finite element mesh whose parametars, and Ax, are given further, an artificial time step
for the characteristics method (see [1B])) = Ax;; the Bermudez-Moreno parameters are
w = 1and\ = 1/(2w) ; the stopping test in all algorithms is equalte- 10~ (correspond-
ing to the absolute error in the discrdi& norm between two iterations in time).

B Casel”: The amplitude of the roughness is given By(1 — p) = 0.5. The mesh
parameters arAz; = 27/600 andAz, = 1/50, so that we have 60000 triangles and 30651
vertices. Numerical tests illustrate the two-scale cageece results established in previous
sections. In particular, 1IE.9 and 10 represent the cutszat = 0.0016 m for the pressure
and saturation variables for different numbers of rougbrEstternsV, = 27 /¢ and the
homogenized solution. The figures illustrate the convergesf the pressure but also the
behaviour of the cavitation function:

e FI1G.9: itillustrates the strong convergencepofto p, in L?(Q2).

e FIG.10: as pointed out in Remark 2.14, it is clear thatonverges in.?(2) only in
a weak sense; in particular, one sees that the amplitude afrddient explodes when
e — 0, so that), (z, y) actually depends on thevariable.

Finally, FG.11 and 12 present the homogenized pressure and saturatieewhole domain.

W Casel’: In this severe regime, the amplitude of the roughness isdives/ (1 — p) =
0.9. The mesh parameters afer; = 27/400 and Az, = 1/50, so that we have 40000
triangles and 20451 vertices.id&=14 and 15 represent the cutszat = 0.0032 m for the
pressure and saturation variables for different numbersugfhness patterns. = 27/ and
the homogenized solution.I&.14 and 15 illustrate the convergence results. The comments
that have been established in Ca8are still valid, even in a severe regime. Let us notice
that numerical computations become very difficult whiénbecomes greater than 60: it is,
of course, a case which really falls into the scope of homzgéion studies and shows the
interest of the method.

Finally, let us denote, the residual term

Pe — Do

N, = ‘ .
L2(Q)
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Supposing that. converges strongly ta, in L?(2) with an order of convergena@(=“), we
numerically calculate:: FIG.13 is obtained so that = 1.

8.8
8.6

8.4

log(r,)

7.8+

741

7.2

1
2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
log(N)

Figure 13: Convergence speed of the pressure (transvergbness; case’)

3.2.2 Case: Longitudinal roughness tests

For this test, we have considered the following physicahd#he eccentricity i = 0.8
and the amplitude of the roughness is given#y1l — p) = 0.5, which is a realistic regime
in terms of mechanical applications. The numerical methgadtameters are the following
ones: a triangular uniform finite element mesh with;, = 27 /400, Az, = 1/80 (so that
we have 64000 triangles and 32481 vertices), an artifioiaé tstep for the characteristics
methodAt = Ax;; the Bermudez-Moreno parameters are sti- 1 and\ = 1/(2w) ; the
stopping test in all algorithms is equalde= 10-°.

FIG.16 and 17 represent the cutsiat= 0.1060 m andz; = 0.1355 m respectively, for
the deterministic pressure (for different numbers of roegs patternd’. = 27 /<) and the
homogenized pressure.

e FIG.16: the section of the bearing does not contain any camitatrea f > 0) so that
the saturation function is constant and equal to 1 (theeefioe corresponding figure
is omitted). Notice that the section corresponds to the mimn gap (and maximum
pressure).

e FIG.17: in this case, the section does contain a cavitated area.

Thus, the figures allow us to observe convergence phenoroeniaef pressure in both cav-
itated and non-cavitated areas. Let us notice that, notisurgly, the convergence of the
pressure is better in the longitudinal roughness casegasflbence of the roughness on the
pressure is relatively small. As in the transverse roughtests, we could numerically illus-
trate the weak convergence of the saturation. Finalty, 8 and 19 present the homogenized
pressure and saturation in the whole domain.
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Figure 17: Hydrodynamic pressureaat = 0.1355 m (longitudinal roughness; cag®
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Figure 19: Hydrodynamic homogenized saturation (longjitalboughness; casy)
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