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GRAD AND CLASSES WITH BOUNDED EXPANSION I.

DECOMPOSITIONS.

JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Abstract. We introduce classes of graphs with bounded expansion as a gen-
eralization of both proper minor closed classes and degree bounded classes.
Such classes are based on a new invariant, the greatest reduced average density
(grad) of G with rank r, ∇r(G). For these classes we prove the existence of
several partition results such as the existence of low tree-width and low tree-
depth colorings. This generalizes and simplifies several earlier results (obtained

for minor closed classes).

1. Introduction

Let us start with the following particular case which illustrates some of the
motivation of this paper: It is well known that not only the chromatic number of
planar graphs is bounded but so are various of its variants such as acyclic or star
chromatic number (by 5 and 20, see for instance [2] and [1]). For which other classes
of graphs does this hold? While these variants of chromatic number are unbounded
even for bipartite graphs, we proved in [12] that any proper minor closed class of
graphs has a bounded star chromatic number: For any minor closed class of graphs
C excluding at least one graph — what we shall call a proper minor closed class —
there exists an integer N(C) such that any graph G ∈ C has a colorex by N(C colors
such that any two colors induce a star forest. Thus also acyclic chromatic number
of graphs from a proper minor closed class is bounded. This particular case also
follows from a recent result of DeVos et al. [6] who proved, using the Structural
Theorem of Robertson and Seymour [17], that for any fixed integer p ≥ 1, any
proper minor closed class of graphs has a bounded coloring such that any i ≤ p
parts induce a graph of tree-width at most (i − 1). Such a coloring is called low
tree-width coloring.

In [15], we presented a strengthened version of [6] : we introduced the tree-depth
of a graph and proved that for any fixed p, any proper minor closed class of graphs
has a bounded coloring such that any i ≤ p parts induce a graph of tree-depth
at most i. We also proved that tree-depth is the best graph invariant with this
property (see [15] and below for more details) . Also this result uses [6] and thus
also the Structural Theorem. Such a coloring is called low tree-depth coloring and
this naturally leads to a sequence χ1, χ2, . . . of chromatic numbers χp, where χ1 is
the usual chromatic number, χ2 is the star chromatic number and, more generally,
χp is the minimum number of colors such that any i ≤ p parts induce a graph with
tree-depth at most i.

It is well known that χ1 is bounded on a class of graphs if the maximum average
degree of graphs in the class is bounded. In [12], we actually proved that χ2 is
bounded if the graphs obtained by contracting star forests have bounded maximum
average degree. Also, if χ2 is bounded then so is the maximum average degree
(Assume χ2(G) ≤ N . Then for any two colors i 6= j, i, j ≤ N , orient the edges of G
such that any vertex has indegree at most one in the star forest induced by colors
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2 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

i and j. Then the indegree of any vertex is at most
(

N
2

)

and thus the graph has

maximum average degree at most 2
(

N
2

)

.)
This indicates that the minor closed classes are perhaps not the most natural

restriction in the context of graph partitions. One is naturally led to the study
of minors with bounded depth (of the contracted forest) and their edge densities.
This in turn leads to the notion of bounded expansion which is the central notion
of this paper.

Very schematically this relationship between the χp’s and the bounded depth
minors naturally leads to the following two questions:

Do there exist integral functions f1 and f2 such that, for any integer p:

• If the minors of depth at most f1(p) of the graphs of a class C have bounded
maximum average degree then the graphs in C have bounded χp,

• If the graphs in C have bounded χf2(p) then all the minors of depth at most
p of the graphs of a class C have bounded maximum average degree.

In this paper, we prove that both questions have a positive answer. This is
the main result of this paper formulated below as Theorem 8.1. It implies the
above result of [15]. Perhaps more interestingly our proof does not rely on the
Structural Theorem and yield an effective algorithm (in fact a linear algorithm, see
our companion paper [13]).

Let us describe this development in a greater detail: The concept of tree-width
[8],[16],[23] is central to the analysis of graphs with forbidden minors done by
Robertson and Seymour and gained much algorithmic attention thanks to the gen-
eral complexity result of Courcelle about monadic second-order logic graph prop-
erties decidability for graphs with bounded tree-width [3],[4]. This computational
property (and similar algorithmic aspects), as well as a question of R. Thomas
[20], motivated the study of graph partitions where k parts induce a subgraph of
tree-width at most (k− 1). Such partitions have been proved to exists by DeVos et
al. for proper minor closed classes of graphs [6], relying on Structural Theorem of
Robertson and Seymour on the structure of graphs without a particular graph as
a minor [17]. This result has been extended by the authors to tree-depth decom-
positions in [15]. Advancing the definition of tree depth let us recall the definition
of the tree width by means of k-trees: A k-tree is a graph which is either a clique
of size at most k or is obtained from a smaller k-tree by adding a vertex adjacent
to at most k vertices which are pairwise adjacent. The tree-width tw(G) of a graph
G is the smallest integer k such that G is a subgraph of a k-tree, that is: a partial
k-tree. The tree-depth td(G) of a connected graph G is the minimum height of a
rooted tree which closure contains G as a subgraph (height is defined here as the
maximum number of vertices of a path from the root to a leaf of the tree; the
closure of a rooted tree is the graph formed by the ancestor relation). (The tree
depth of a disconnected graph G is the maximal tree depth of a component of G.)

The tree depth is a minor monotone invariant. It is related to the tree-width by
tw(G) + 1 ≤ td(G) ≤ tw(G) log2 n, where n is the order of G and is actually equal
to the vertex ranking number [5][18] and to the minimum height of an elimination
tree [5]. For our purposes it is important that td(G) has an alternative definition by
means of centered coloring: a coloring of the vertices of a graph G is called centered
if in any connected subgraph G′ of G some color appears exactly once (thus a
centered coloring is necessarily proper). It may be seen then that the tree-depth of
a graph G is the minimum number of colors in a centered coloring of G. As well as
graphs with large tree-width may be characterized by large grid minors, tree-depth
may be characterized by excluded paths: a graph has large tree-depth if and only
if it includes a long path.

Generalizing [6] we proved in [15] the following:
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Theorem 1.1 (Corollary 5.3 of [15]). For any proper minor closed class of graphs
K and for any fixed integer p ≥ 1, χp(G) is bounded on K.

An alternative way to look at this result is the following: for any integer k and
any proper minor closed class of graphs K, there exists an integer N(K, k) such that
any subgraph H ⊆ G gets at least min(k, td(H)) colors (hence i < k parts induce
graphs of tree-depth at most i).

In[15] we proved that this statement is optimal in the following sense: Let φ be
an integral graph function (i.e. we assume that φ(G) is an integer for any graph G).
Assume that for any integer k and for any proper minor closed class K there exists
an integer N(K, k) such that any graph G ∈ K has a partition into ≤ N(K, k) parts
with the property that any subgraph H ⊆ G gets at at least min(k, φ(H)) colors.
Then φ(H) ≤ td(H).

Here we extend Theorem 1.1 to more general classes of graphs. In fact it ap-
pears that proper minor closed classes are unnecessary restrictive for the validity
of Theorem 1.1.

Let f be a function assigning to every positive integer n a real value f(n).
Instead of dealing with proper minor closed classes we shall work with classes
of graphs with f -bounded expansion. This definition is introduced in Section 4.
Informally, a graph G is said to have f -bounded expansion if every minor G′ of G
which we obtain by contracting a disjoint union of connected subgraphs of radius
≤ r and then deleting some vertices have edge density bounded by f(r). The main
consequence of our approach here is a generalization of Theorem 1.1 to the classes of
graphs with f -bounded expansion. This is indeed a generalization as each proper
minor closed class has expansion bounded by a constant. Also bounded degree
graphs are fitting into this scheme (they are bounded by an exponential function).
(See Section 4 where the bounded expansion is defined and discussed in detail.)
Actually, we not only extend Theorem 1.1 to classes with bounded expansion but
prove that it cannot be extended further: classes with bounded expansion may be
actually characterized by the validity of Theorem 1.1.

It is perhaps surprising that one can prove the full analogy of Theorem 1.1 on this
level of generality. The main reason for this is that we approach the decomposition
theorem via graph orientations and their local properties. Note that triangulated

graphs, like k-trees, have orientations with strong local properties. A digraph ~G

is fraternally oriented if (x, z) ∈ E(~G) and (y, z) ∈ E(~G) implies (x, y) ∈ E(~G) or

(y, x) ∈ E(~G). This concept was introduced by Skrien [19] and a characterization
of fraternally oriented digraphs having no symmetrical arcs has been obtained by
Gavril and Urrutia [7], who also proved that triangulated graphs and circular arc
graphs are all fraternally orientable graphs. An orientation is transitive if (x, y) ∈

E(~G) and (y, z) ∈ E(~G) implies (x, z) ∈ E(~G). It is obvious that a graph has an
acyclic transitive fraternal orientation in which every vertex has indegree at most
(k − 1) if and only if it is the closure of a rooted forest of height k. It follows that
tree-depth and transitive fraternal orientation are closely related.

This paper is organized as follows: In Sections 2,3,4 we introduce the above
notions in a greater detail. The key notion is the notion of the greatest reduced
average density (grad) ∇r(G) of rank r of a graph G. We then derive several
results about local properties of orientations. This is the reason why we use or
introduce relaxed versions, like p-centered colorings (in which in every subgraph,
either some color appears exactly once or at least p colors appear), or transitive
fraternal augmentations (each augmentation step consists in adding the missing arcs
while applying the fraternity and transitivity rules on the initial arcs). The Section
5 is devoted to the proof of the stability of the notion of classes with bounded
expansion with respect to the lexicographic product with an arbitrary fixed size



4 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

complete graph (Lemma 5.2). This key lemma will allow to prove in Section 6
the existence of transitive fraternal augmentations with indegrees bounded as a
function of the grad. These augmentations will be used in Section 7 to exhibit
p-centered colorings, eventually leading us to Theorem 8.1 in Section 8.

Further corollaries and applications of our method will appear in the 3 companion
papers, see [13, 14, 11].

2. Low tree-width coloring

A k-tree is recursively defined as a single vertex graph or a graph obtained from
a smaller k-tree by adding a vertex adjacent to a clique of size at most k. The
tree-width tw(G) of a graph G is the minimum integer k such that G is a subgraph
of a k-tree.

A class C has a low tree-width coloring if, for any integer p ≥ 1, there exists an
integer N(p) such that any graph G ∈ C may be vertex-colored using N(p) colors so
that each of the connected components of the subgraph induced by any i ≤ p parts
has tree-width at most (i − 1). According to this definition, the result of DeVos et
al. may be expressed as

Theorem 2.1 ([6]). Any minor closed class of graphs excluding at least one graph
has a low tree-width coloring.

3. Low tree-depth coloring and p-centered colorings

In [15], we introduced the tree-depth td(G) of a graph G as follows:
A rooted forest is a disjoint union of rooted trees. The height of a vertex x in

a rooted forest F is the number of vertices of a path from the root (of the tree to
which x belongs to) to x and is noted height(x, F ). The height of F is the maximum
height of the vertices of F . Let x, y be vertices of F . The vertex x is an ancestor
of y in F if x belongs to the path linking y and the root of the tree of F to which
y belongs to. The closure clos(F ) of a rooted forest F is the graph with vertex set
V (F ) and edge set {{x, y} : x is an ancestor of y in F, x 6= y}. A rooted forest F
defines a partial order on its set of vertices: x ≤F y if x is an ancestor of y in F . The
comparability graph of this partial order is obviously clos(F ). The tree-depth td(G)
of a graph G is the minimum height of a rooted forest F such that G ⊆ clos(F ).
As a consequence, we have:

Lemma 3.1 ([15]). Let G be a graph and let G1, . . . , Gp be its connected compo-
nents. Then:

td(G) =











1, if |V (G)| = 1;

1 + minv∈V (G) td(G − v), if p = 1 and |V (G)| > 1;

maxp
i=1 td(Gi), otherwise.

As we introduced low tree-width coloring, we say that a class C has a low tree-
depth coloring if, for any integer p ≥ 1, there exists an integer N(p) such that any
graph G ∈ C may be vertex-colored using N(p) colors so that each of the connected
components of the subgraph induced by any i ≤ p parts has tree-depth at most i.
As td(G) ≥ tw(G)−1, a class having a low-tree depth coloring has a low tree-width
coloring. In [15] is proved a strengthening of Theorem 2.1:

Theorem 3.2 ([15]). Any minor closed class of graphs excluding at least one graph
has a low tree-depth coloring.

Notation 3.1. Following [15], we will make use of the notation χp(G) for the mini-
mum number of colors need for a vertex coloring of G such that i < p parts induce
a subgraph of tree-depth at most i.



GRAD AND CLASSES WITH BOUNDED EXPANSION I. DECOMPOSITIONS. 5

Theorem 3.2 relies on p-centered colorings, which have also been introduced in
[15]: A p-centered coloring of a graph G is a vertex coloring such that, for any
(induced) connected subgraph H , either some color c(H) appears exactly once in
H , or H gets at least p colors.

For the sake of completeness we recall some lemmas of [15]:

Lemma 3.3 ([15]). Let G, G0 be graphs, let p = td(G0), let c be a q-centered
coloring of G where q ≥ p. Then any subgraph H of G isomorphic to G0 gets at
least p colors in the coloring of G. �

From this lemma follows that p-centered colorings induce low tree-depth color-
ings:

Corollary 3.4. Let p be an integer, let G be a graph and let c be a p-centered
coloring of G.

Then i < p parts induce a subgraph of tree-depth at most i

Proof. Let G′ be any subgraph of G induced by i < p parts. Assume td(G′) > i.
According to Lemma 3.1, the deletion of one vertex decreases the tree-depth by
at most one. Hence there exists an induced subgraph H of G′ such that td(H) =
i + 1 ≤ p. According to lemma 3.3 (choosing G0 = H), H gets at least p colors, a
contradiction. �

Lemma 3.5 ([15]). Let p, k be integers. Then there exists an integer N(p, k) such
that any graph G with tree width at most k has a p-centered coloring using N(p, k)
colors. �

The following lemma is proved in [15] for the particular case of proper minor
closed classes of graphs and tree-width. We shall state it here in its general form.

Lemma 3.6. Let C be a class of graphs. Assume that for any integer p ≥ 1 there
exists a class of graphs Cp such that:

• there exists an integer N(Cp, p), such that any graph G ∈ Cp has a p-centered
coloring using at most N(Cp, p) colors,

• there exists an integer C(p) such that any G ∈ C has a C(p) vertex coloring
such that p classes induce a graph in Cp.

Then there exists an integer X(p), such that every graph in C has a p-centered
coloring using X(p) colors.

Proof. Let G ∈ C. According to the assumption, there exists a vertex partition
into C(p) parts, such that any p parts form a graph in Cp. This partition will be
defined as a coloring c̄ : V (G) −→ {1, 2, . . . , C(p)}. For any set P of p parts let
GP be the graph induced by all the parts in P . According to the assumption, each
of the GP has p-centered coloring cP using N(Cp, p) colors. Consider the following
(“product”) coloring c defined as

c(v) = (c̄(v), (cP (v); |P | = p, P ⊂ {1, 2, . . . , C(p)})).

This is the product of the coloring of G by C(p) colors and of the colorings of

the GP . This new coloring of G (with X(p) = C(p)N(Cp, p)(
C(p)

p ) colors. Let H be
a connected subgraph of G. Then, either H gets at least p + 1 colors, or V (H) is
included in some subgraph GP of G induced by p parts. In the later case, some
color appears exactly once in H . �

Theorem 3.7. Let C be a class of graphs having low tree-width colorings and let
p be an integer. Then there exists integer X(p), such that every graph in C has a
p-centered coloring using X(p) colors.
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Proof. Let Cp be the class of graphs with tree-width at most (p− 1). According to
Theorem 2.1 and Lemma 3.5, the conditions of Lemma 3.6 are satisfied hence X(p)
exists. �

As a consequence we have the following equivalence of the various (seemingly
unrelated) above notions:

Theorem 3.8. Let C be a class of graphs. Then the following conditions are equiv-
alent:

• C has a low tree-width coloring,
• C has a low tree-depth coloring,
• for any integer p, {χp(G) : G ∈ C} is bounded,
• for any integer p, there exists an integer X(p) such that any graph G ∈ C

has a p-centered colorings using at most X(p) colors.

Our main result (Theorem 8.1) is a non-trivial extension of this equivalence.

4. The grad of a graph and classes with bounded expansion

Recall that the maximum average degree mad(G) of a graph G is the maxi-
mum over all subgraphs H of G of the average degree of H , that is mad(G) =

maxH⊆G
2|E(H)|
|V (H)| . The distance d(x, y) between two vertices x and y of a graph is

the minimum length of a path linking x and y, or ∞ if x and y do not belong to
the same connected component.

We introduce several notations:

• The radius ρ(G) of a connected graph G is:

ρ(G) = min
r∈V (G)

max
x∈V (G)

d(r, x)

• A center of G is a vertex r such that maxx∈V (G) d(r, x) = ρ(G).

Definition 4.1. Let G be a graph. A ball of G is a subset of vertices inducing a
connected subgraph. The set of all the families of balls of G is noted B(G).

Let P = {V1, . . . , Vp} be a family of balls of G.

• The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X ])
• The complexity of P is ζ(P) = maxv∈V (G)|{i : v ∈ Vi}|.
• The quotient G/P of G by P is a graph with vertex set {1, . . . , p} and edge

set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩ Vj 6= ∅}.

We introduce several invariants that refine the notion of maximum average de-
gree:

Definition 4.2. The greatest reduced average density (grad) of G with rank r and
complexity c is

c

∇r(G) = max
P∈B(G)

ρ(P)≤r,ζ(P)≤c

|E(G/P)|

|P|
.

For the sake of simplicity, we also define:

• The grad of G with rank r:

∇r(G) =
1

∇r(G) = max
P∈B(G)

ρ(P)≤r,ζ(P)=1

|E(G/P)|

|P|

• The grad of G:

∇(G) = max
r

∇r(G) = max
H�G

|E(H)|

|V (H)|
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Notice that we have:

(1)
mad(G)

2
= ∇0(G) ≤ ∇1(G) ≤ · · · ≤ ∇ρ(G)(G) = ∇(G)

and that ∇(G) is related to the Hadwiger number h(G) of G (that is the maximum
order of a complete graph which is a minor of G) by:

(2)
h(G) − 1

2
≤ ∇(G) ≤ O(h(G)

√

log h(G)),

Proof. Let h = h(G). As Kh is a (h − 1)-regular minor of G , h−1
2 ≤ ∇(G).

Moreover, there exists a constant C such that if ∇(G) > C(h+1)
√

log(h + 1) then

G has a minor with minimum degree at least γ(h + 1)
√

log(h + 1) hence a minor
Kh+1 as proved by Kostochka [9] and Thomason [21] (extending earlier work of
Mader [10]; see [22] for an tight value of constant γ). �

Also notice the following well known facts (usually expressed by means of the
maximum average degree):

Fact 4.1. Let G be a graph. Then G has an orientation such that the maximum
indegree of G is at most k if and only if k ≥ ∇0(G).

Fact 4.2. Let G be a graph. Then G is ⌊2∇0(G)⌋-degenerated, hence ⌊2∇0(G)+1⌋-
colorable.

The grad actually appears to be related to low tree-depth colorings:

Lemma 4.1. For any graph G and any integer r:

(3) ∇r(G) ≤ (2r + 1)

(

χ2r+2(G)

2r + 2

)

Proof. Consider a vertex coloring c of G with N = χ2r+2(G) colors such that any

i ≤ 2r + 2 colors induce a subgraph of tree-depth at most i. For any J ∈
(

[N ]
2r+2

)

,

let GJ = G[c−1(J)] and let YJ be a rooted forest of height td(GJ ) ≤ 2r + 2 such
that GJ ⊆ clos(YJ ).

Let P = {X1, . . . , Xp} be a family of balls of G with radius r and complexity 1

achieving the bound ∇r(G) (that is: such that ∇r(G) = |E(G/P)|
|P| ). Let x1, . . . , xk

be centers of X1, . . . , Xk. If Xi and Xj are adjacent in G/P then there exists a

path Pi,j of length at most 2r + 1 linking xi and xj . Let Ii,j ∈
(

[N ]
2r+2

)

be such that

Ii,j ⊇ c(V (Pi,j)). Then the path Pi,j is included in some connected component
of GIi,j

. It follows that there exists in Pi,j a vertex vi,j which is minimum with
respect to the partial order defined by YIi,j

. As {xi, xj} ⊆ V (Pi,j) ⊆ Xi ∪ Xj and
as Xi ∩ Xj = ∅ (because ζ(P) = 1), vi,j either belongs to Xi or to Xj . Depending
on the case, vi,j is a vertex of Xi which is an ancestor of xj in YIi,j

∩Xi or a vertex
of Xj which is an ancestor of xi in YIi,j

∩ Xj . Thus:

p∇r(G) ≤
∑

I∈( [N ]
2r+2)

∑

1≤i≤p

∑

1≤j≤p
j 6=i

|{v : v ancestor of xi in YI ∩ Xj}|

≤
∑

I∈( [N ]
2r+2)

p
∑

i=1

|{v : v ancestor of xi in YI}|

≤

(

N

2r + 2

)

× p × (2r + 1)
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Hence

∇r(G) ≤ (2r + 1)

(

N

2r + 1

)

�

This lemma motivates the following definition:

Definition 4.3. A class of graphs C has bounded expansion if there exists a function
f : N → R such that for every graph G ∈ C and every r holds

(4) ∇r(G) ≤ f(r)

Theorem 4.2. If a class C has low tree-width colorings then C has bounded expan-
sion.

Proof. As low tree-width colorings and low tree-depth colorings are equivalent, the
theorem is a direct consequence of Lemma 4.1. �

The main theorem of this paper may be seen as a converse of Theorem 4.2.

5. Grad stability over lexicographic product

Let G, H be graphs. The lexicographic product G • H is defined by V (G •
H) = V (G) × V (H) and E(G • H) = {{(x, y), (x′, y′) : {x, y} ∈ E(G) or x =
x′ and {y, y′} ∈ E(H)}.

Let us note at this place that the lexicographic product (or blowing up of vertices)
is an operation which is incompatible with the minors. One can see easily that
every graph is a minor of a graph of the form G • K2 for a planar graph G. But
the lexicographic product is naturally related to the notion of complexity we have
introduced for grad:

Lemma 5.1. For any graph G and any integers c, r, we have:
c

∇r(G) = ∇r(G • Kc)

Proof. Let P = {V1, . . . , Vp} be a ball family of G with complexity c = ζ(P) and
radius r = ρ(P). As ζ(P) = c there exists a function f : V (G) × {1, . . . , p} →
{1, . . . , c} such that if x ∈ Vi ∩ Vj then f(x, i) 6= f(x, j).

For 1 ≤ i′ ≤ p, define V ′
i = {(x, f(x, i)) : x ∈ Vi}. Then P ′ = {V ′

1 , . . . , V ′
p} has

radius r and complexity 1. Moreover, G/P is obviously isomorphic to a subgraph

of (G • Kc)/P ′. It follows that ∇r(G • Kc) ≥
c

∇r(G).
Conversely, let P ′ = {V ′

1 , . . . , V ′
q} be a ball family of G•Kc, define the ball family

P = {V1, . . . , Vq} of G by x ∈ Vi if there exists α ∈ {1, . . . , c} such that (x, α) ∈ V ′
i .

Then ρ(P) ≤ ρ(P ′) and ζ(P) ≤ c. It follows that
c

∇r(G) ≥ ∇r(G • Kc). �

The remaining of the section will be dedicated to the proof of the following key
lemma:

Lemma 5.2. There exist polynomials Pi (i ≥ 0) such that for any graph G and
integers r and c:

(5)
c

∇r(G) ≤ Pr(c,∇r(G))

In the following, a directed graph ~G may not have a loop and for any two of its

vertices x and y, ~G includes at most one arc from x to y and at most one arc from
y to x.

If a directed path ~P has starting vertex x and end vertex y, we note x
~P

+3/o/o y.
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If x
~P1

+3/o/o z, y
~P2

+3/o/o z and if no internal vertex or edges of ~P1 belongs to ~P2 nor

the converse, we note x
~P1

+3/o/o z
~P2

ks o/ o/ y. In such a case, either ~P1 ∪ ~P2 is a path, or
~P1 ∪ ~P2 is a cycle and x = y. Moreover, if x 6= y, |~P1| ≤ a and |~P2| ≤ b, we say that
y is (a, b)-reachable from x.

Definition 5.1. Let ~G be a directed graph, let a, b be integers. A set ~Λ of arcs

with endpoints in V (~G) is an (a, b)-augmentation of ~G if, for any x, y ∈ V (~G) with

y (a, b)-reachable from x, either (x, y) or (y, x) belongs to ~Λ.

The maximum indegree of ~Λ is

∆–(~Λ) = max
y∈V (~G)

|{x ∈ V (~G) : (x, y) ∈ ~Λ}|

Notice that if a or b is at least 1, E(~G) is obviously included in any (a, b)-

augmentation of ~G.

Lemma 5.3. Let ~G be a directed graph, let a, b be integers and let ~Λ be an (a, b)-

augmentation of ~G.

Then there exists a vertex coloring γ~Λ using at most 2 ∆–(~Λ)+1 colors such that
for any vertex x, γ~Λ(y) 6= γ~Λ(x) for any vertex y (a, b)-reachable from x.

Proof. Let ~H be the directed graph with vertex set ~G and arc set ~Λ. If y is (a, b)-

reachable from x in ~G then (x, y) or (y, x) belongs to E( ~H). As ~H has maximum

indegree ∆–(~Λ), it is (2 ∆–(~Λ) + 1)-choosable. Any proper coloration of ~H will
do. �

Lemma 5.4. Let ~G be a directed graph with maximum indegree ∆–(~G), let a, b be

integers and let ~Λ be an (a, b)-augmentation of ~G.

Then there exists an edge coloring Υ~Λ using at most (2 ∆–(~Λ) + 1)∆–(~G) colors

such that for any x
~P1

+3/o/o z
~P2

ks o/ o/ y with |~P1| ≤ a + 1 and |~P2| ≤ b + 1, all the edges

of ~P1 ∪ ~P2 get different colors.

Proof. Consider an edge coloring c0 such that two edges having the same end vertex

have different colors (this is achieved with ∆–(~G) colors) and the vertex coloring γ~Λ
defined in Lemma 5.3. Then for any arc e = (x, y) define Υ~Λ(e) = (c0(e), γ~Λ(y)).

Then if e = (x, y) and f = (x′, y′) are two different arcs in ~P1 ∪ ~P2 where either
y 6= y′ thus y′ is (a, b)-reachable from y or y is (a, b)-reachable from y′ hence
γ~Λ(y′) 6= γ~Λ(y), or y = y′ hence c0(e) 6= c0(f). �

Notation 5.2. Let Υ be an arc-coloring of a directed graph ~G and let ~P be a directed

path of ~G of length l. We note Υ(~P ) = ~α = (α1, . . . , αl) the sequence of the colors

Υ(e) of the arcs of ~P , taken in the order in which they appear on ~P .

Lemma 5.5. Let ~G be a directed graph with maximum indegree ∆–(~G), let a, b

be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the edge coloring
defined in Lemma 5.4.

Let ~P1, ~P2 be two directed paths of length l ≤ max(a, b) + 1, such that the initial

vertex of one of them is different from the end vertex of the other one. If Υ~Λ(~P1) =

Υ~Λ(~P2) then either ~P1 and ~P2 do not intersect, or they share the same initial vertex

and there exists 0 ≤ a ≤ l such that ~P1 and ~P2 share their a first edges and do not
intersect thereafter.
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Proof. Without loss of generality, we may assume a ≥ b. Let ~α = Υ~Λ(~P1). Assume

there exists a vertex v having one incoming edge in ~P1 (the ith of ~P1, hence colored

αi) and one (different) incoming edge in ~P2 (the jth of ~P2, hence colored αj).
Without loss of generality, we may assume i ≥ j. Then the (j + 1)th vertex u of
~P1 has an incoming edge in ~P1 colored αj and belong to the initial subpath of ~P1

ending at v. It follows that v is (a, 0) reachable from u. Hence an incoming edge of
u may not have the same color of an incoming edge of v, contradiction. Similarly,
the initial vertex of one of the path may not be internal to the second one. As the
case where the initial vertex of one of the path is the end vertex of the other one,
we conclude that either the two paths do not intersect or they share their a first
edges. �

Lemma 5.6. Let ~G be a directed graph with maximum indegree ∆–(~G), let a, b

be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the edge coloring
defined in Lemma 5.4. Let ~α be a sequence of l ≤ max(a, b)+1 distinct edge colors.

Then the union T~Λ(~α) of all the directed paths ~P such that Υ~Λ(~P ) = ~α is a directed
rooted forest.

Proof. This is a direct consequence of Lemma 5.5. �

Lemma 5.7. Let ~G be a directed graph with maximum indegree ∆–(~G), let a ≥ b

be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the edge coloring

defined in Lemma 5.4. Let ~α and ~β be sequences of respective lengths p ≤ a + 1

and q ≤ b + 1. Let Π~Λ(~α, ~β) be the union of all the ~P1 ∪ ~P2 where Υ~Λ(~P1) = ~α,

Υ~Λ(~P2) = ~β and there exists three distinct vertices x, y, z so that x
~P1

+3/o/o z
~P2

ks o/ o/ y.

Then a directed tree Y1 in Π~Λ(~α, ~β)∩T~Λ(~α) and a directed tree Y2 in Π~Λ(~α, ~β)∩

T~Λ(~β) with different roots may only intersect at a leaf of both of them.

Proof. Let r1, r2 be the roots of Y1 and Y2. If Y1 and Y2 intersects, there exists

r1

~P1
+3/o/o z

~P2
ks o/ o/ y and x′

~P ′

1
+3/o/o z′

~P ′

2
ks o/ o/ r2, so that Υ~Λ(~P1) = Υ~Λ(~P ′

1) = ~α, Υ~Λ(~P2) =

Υ~Λ(~P ′
2) = ~β, and ~P ′

2 intersects ~P1 at a vertex v (up to an exchange of Y1 and Y2).

As r1 6= r2, v has in ~P2 an incoming edge e of color βi for some 1 ≤ i ≤ b + 1. Let

w be the vertex of ~P2 having in ~P2 an incoming edge of color βi. If w 6= v, we are
led to a contradiction, according to Lemma 5.4, as w is then (p, q)-reachable from

v. Hence v = w and v is the end vertex of ~P1 and ~P2. Thus v is also the end vertex
of ~P ′

1 and ~P ′
2. It follows that v is a leaf of both Y1 and Y2. �

Lemma 5.8. Let ~G be a directed graph with maximum indegree ∆–(~G), let r be an

integer and let ~Λ be an (r, r − 1)-augmentation of ~G.

Then ~Λ may be extended into an (r + 1, r)-augmentation ~Λ′ such that ∆–(~Λ′) ≤

∆–(~Λ) + ((2 ∆–(~Λ) + 1)∆–(~G))2r+1∇r(G).

Proof. Let Υ~Λ be the edge coloring defined in Lemma 5.4.

For two sequences ~α and ~β of respective lengths p ≤ r+1 and q ≤ r, let Π~Λ(~α, ~β)

be the union of all the ~P1 ∪ ~P2 where Υ~Λ(~P1) = ~α, Υ~Λ(~P2) = ~β and there exists

three distinct vertices x, y, z so that x
~P1

+3/o/o z
~P2

ks o/ o/ y. Also, let G~α,~β be the graph

obtained from G by contracting all the edges of Π~Λ(~α, ~β) but those colored αp.
Let x, y be vertices of G so that y is (r + 1, r)-reachable from x, as witnessed

by x
~P1

+3/o/o z
~P2

ks o/ o/ y. Let ~α = Υ~Λ(~P1) and ~β = Υ~Λ(~P2). The vertices x, y are the

roots of directed trees in Π~Λ(~α, ~β)∩T~Λ(~α) and Π~Λ(~α, ~β)∩T~Λ(~β), respectively, hence
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to two adjacent distinct vertices in G~α,~β . Similarly, two distinct vertices of G~α,~β

adjacent by an edge of color αp (where p = |~α|) correspond uniquely to the roots

of a tree in Π~Λ(~α, ~β) ∩ T~Λ(~α) and Π~Λ(~α, ~β) ∩ T~Λ(~β), respectively.

It follows that there exists an (r + 1, r)-augmentation ~Λ′ of ~G extending ~Λ such
that

∆–(~Λ′) − ∆–(~Λ) ≤
∑

|~α|≤r+1

|~β|≤r

∇0(G~α,~β) ≤ ((2 ∆–(~Λ) + 1)∆–(~G))2r+1∇r(G)

�

Lemma 5.9. For any integer r, there exists a polynomial Φr such that any directed

graph ~G has a (r+1, r)-augmentation ~Λ, where ∆–(~Λ) ≤ Φr(∆
–(~G),∇r(G)), where

G is the underlying simple graph of ~G.

Proof. This is a direct consequence of Lemma 5.8. �

Proof of Lemma 5.2. Define Pr(x, y) = Φr(x + y, y).
Consider a family P of balls of G with radius at most r and complexity at most

c. We construct a directed graph ~G with underlying undirected graph G. Recall

that ~G may have, for each edge of G, one arc in each direction. First we orient
the edges of G with indegree ∇0(G) (thus obtaining one arc per edge). For each
X ∈ P , let v be the center of G[X ]. Let Y be a minimum distance tree of G[X ]

with root v. If ~G does not include the arcs corresponding to an orientation of Y
from its root v, we add the missing arcs. We also add if necessary all the arcs going
from a leaf of Y to a vertex out of X .

Notice that the vertices of ~G have indegree at most ∇0(G) + c. Moreover, if
r1, r2 are the roots of the trees Y1 and Y2 corresponding to some parts X1, X2 ∈ P
which are adjacent in G/P then r2 is (r+1, r)-reachable from r1 in ~G (by a directed
path of length at most r in Y1, possibly followed by an arc between the parts and
a directed path of length at most r in Y2 in opposite direction). Hence r1 and r2

are adjacent in any (r + 1, r)-augmentation of ~G. According to Lemma 5.9, there

exists such an augmentation ~Λ with ∆–(~Λ) ≤ Φr(∇0(G) + c,∇r(G)). As G/P is

isomorphic to a subgraph of the graph with vertex set V (G) and edge set ~Λ. As

this subgraph has an orientation with indegree at most ∆–(~Λ) we have, according
to Fact 4.1 and Lemma 5.9:

c

∇r(G) = ∇0(G/P) ≤ ∆–(~Λ) ≤ Φr(∇0(G) + c,∇r(G)) ≤ Pr(c,∇r(G)).

�

6. Transitive fraternal augmentation

Definition 6.1. Let ~G be a directed graph. A 1-transitive fraternal augmentation

of ~G is a directed graph ~H with the same vertex set, including all the arcs of ~G and
such that, for any vertices x, y, z,

• if (x, z) and (z, y) are arcs of ~G then (x, y) is an arc of ~H (transitivity),

• if (x, z) and (y, z) are arcs of ~G then (x, y) or (y, x) is an arc of ~H (frater-
nity).

A transitive fraternal augmentation of a directed graph ~G is a sequence ~G =
~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · , such that ~Gi+1 is a 1-transitive fraternal

augmentation of ~Gi for any i ≥ 1.

The main key lemma here is that the notion of classes of bounded expansion is
stable under 1-fraternal augmentations. More precisely:
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Lemma 6.1. Let ~G be a directed graph and let ~H be a 1-transitive fraternal aug-

mentation of ~G. Then

(6)
c

∇r(H) ≤
c(∆–(~G)+1)

∇2r+1 (G) ≤ P2r+1(c(∆
–(~G) + 1),∇2r+1(G)).

Proof. Consider a ball family P = {V1, . . . , Vp} of H with radius at most r and

complexity c. Let P ′ = {V ′
1 , . . . , V ′

p}, where V ′
i = Vi ∪ {z : ∃x ∈ Vi, (x, z) ∈ E(~G)}.

Then for any x, y ∈ Vi which are adjacent in H , either x and y are adjacent in
G or there exists z ∈ V ′

i so that {x, z} and {y, z} are edges of G. Hence V ′
i is

a ball of G with radius at most 2r + 1. Any vertex v of G belongs to a most

c + ∆– ~G balls of P ′ for v belongs to V ′
i if and only if either v belongs to Vi (there

are at most c such Vi) or there exists an arc from a vertex z ∈ Vi to v in ~G (there

are at most ∆–(~G) such z hence at most c ∆–(~G) such Vi). Hence the complexity

of P ′ is at most c(∆–(~G) + 1). As H/P is isomorphic to a subgraph of G/P ′

|E(H/P)| ≤ |E(G/P ′)| thus
c

∇r(H) = |E(H/P)|
|P| ≤ |E(G/P′)|

|P′| ≤
c(∆–(~G)+1)

∇2r+1 (G).

We conclude using Lemma 5.2. �

Corollary 6.2. There exists polynomials Qi (i ≥ 1), such that any directed graph
~G has a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where

(7) ∆–(~Gi) ≤ Qi(∆
–(~G),∇2i+1−1(G))

We also deduce:

Corollary 6.3. Let C be a class with bounded expansion. Then there exists a
function g such that each graph G ∈ C has a transitive fraternal augmentation
~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where ∆–(~Gi) ≤ g(i).

7. Back to p-centered colorings

The aim of this section is to prove that transitive fraternal augmentations allow
us to construct p-centered colorings.

Lemma 7.1. Let N(p, t) = 1 + (t − 1)(2 + ⌈log2 p⌉), let ~G be a directed graph and

let ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · be a transitive fraternal augmentation of ~G.

Then ~GN(p,td(G)) either includes an acyclically oriented clique of size p or a

rooted directed tree ~Y such that G ⊆ clos(Y ) and clos(~Y ) ⊆ ~GN(p,td(G)).

Proof. We fix the integer p and prove the lemma by induction on t = td(~G). The
base case t = 1 corresponds to a graph without edges, for which the property is obvi-
ous. Assume the lemma has been proved for directed graphs with tree-depth at most

t and let ~G be a directed graph with tree-depth t+1. As we may consider each con-

nected component of ~G independently, we may assume that ~G is connected. Then

there exists a vertex s ∈ V (~G) such that the connected components ~H1, . . . , ~Hk of

G − s have tree-depth at most t. As ~Hi = ~G1[V ( ~Hi)] ⊆ · · · ⊆ ~Gj [V ( ~Hi)] ⊆ · · ·

is a transitive fraternal augmentation of ~Hi we have, according to the induction

hypothesis, that, for each 1 ≤ i ≤ k, there exists in ~Hi either an acyclically ori-

ented clique of size p or a rooted tree ~Yi rooted at ri such that Hi ⊆ clos(Yi) and

clos(~Yi) ⊆ ~GN(p,td(G))[V ( ~Hi)]. If the first case occurs for some i, then ~G includes an

acyclically oriented clique of size p. Hence assume it does not. As ~G is connected,

the vertex s has at least a neighbor xi in ~Hi (for each 1 ≤ i ≤ k). Let x be any

neighbor of s in ~Hi. If y is an ancestor of x in ~Yi, (y, x) is an arc of ~GN(p,t) hence s

and y are adjacent in ~GN(p,t)+1. Moreover, if (x, s) is an arc of ~GN(p,t) then (y, s)

is an arc of ~GN(p,t)+1. Let Di be the subset of V ( ~Hi) of the vertices x such that
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(x, s) belongs to ~GN(p,t) and of their ancestors in ~Yi and let D =
⋃k

i=1 Di. Then D

includes a clique in ~GN(p,t)+2. Thus there exists a directed Hamiltonian path ~P in
~GN(p,t)+2[D].

Let r be the start vertex of ~P . Define π : V (G) − r → V (G) as follows:

• if x ∈ D, the π(x) is the predecessor y of x in ~P (the arc (y, x) belongs to
~GN(p,t)+2);

• otherwise, if x = s, π(x) is the end vertex y of ~P (the arc (y, x) belongs to
~GN(p,t)+1);

• otherwise, if x = ri then π(x) = s (the arc (s, ri) belongs to ~GN(p,t)+2);

• otherwise, if the father of x ∈ V ( ~Hi) \ D does not belong to D, then π(x)

is the father of x in ~Yi;

• otherwise, if no descendant of x in ~Yi has an arc coming from s in ~GN(p,t)+1,

π(x) is the father of x in ~Yi;

• otherwise, π(x) = s (the arc (s, x) belongs to ~GN(p,t)+2).

It is easily checked that the so defined “father mapping” π actually defines a directed

rooted tree ~Y of ~GN(p,t)+2 with root r and that G ⊆ clos(~Y ). Moreover, either ~Y

has height at least p and ~GN(p,t)+2+⌈log2 p⌉ includes an acyclically oriented clique

of size p or clos(~Y ) ⊆ ~GN(p,t)+2+⌈log2 p⌉. As N(p, t+1) = N(p, t)+2+ ⌈log2 p⌉, the
induction follows. �

Lemma 7.2. Let p be an integer, let ~G be a directed graph and let ~G = ~G1 ⊆ ~G2 ⊆
· · · ⊆ ~Gi ⊆ · · · be a transitive fraternal augmentation of ~G. Then either ~GN(p,p)

includes an acyclically oriented clique of size p or td(G) ≤ p − 1 and there exists

in ~GN(p,p) a rooted directed tree Y so that G ⊆ clos(Y ) and clos(~Y ) ⊆ ~GN(p,p).

Proof. If td(G) > p we may consider a connected subgraph of H of tree-depth p.

According to Lemma 7.1, there will exists in ~GN(p,p)[V (H)] an acyclically oriented

clique of size p or a rooted directed tree ~Y so that H ⊆ clos(Y ) and clos(~Y ) ⊆
~GN(p,p)[V (H)]. In the later case, if td(G) = p then the height of ~Y is at least

td(H) = p and clos(~Y ) includes an acyclically oriented clique of size p. �

Corollary 7.3. Let R(p) = 1 + (p − 1)(2 + ⌈log2 p⌉) = O(p log2 p).

For any graph G, for any transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆
· · · ⊆ ~Gi ⊆ · · · of G and for any integer p:

(8) χp(G) ≤ 2 ∆–(~GR(p)) + 1

And also:

Corollary 7.4. Let C be a class of graphs. Assume there exists a function f such

that each graph G ∈ C has a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆
· · · ⊆ ~Gi ⊆ · · · such that ∆–(~Gi) ≤ f(i). Then, for any integer p there exists an
integer X(p) such that every G ∈ C has a p-centered coloring using at most X(p)
colors.

8. Conclusion

All previous results are gathered in the following equivalence:

Theorem 8.1. Let C be a class of graphs. The following conditions are equivalent:

• C has low tree-width colorings,
• C has low tree-depth colorings,
• for any integer p, {χp(G) : G ∈ C} is bounded,
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• for any integer p, there exists an integer X(p) such that any graph G ∈ C
has a p-centered colorings using at most X(p) colors,

• C has bounded expansion,
• for any integer c, the class C•Kc = {G•Kc : G ∈ C} has bounded expansion,
• for any integer k, the class C′ of the 1-transitive fraternal augmentations

of directed graphs ~G with ∆–(~G) ≤ k and G ∈ C form a class with bounded
expansion,

• there exists a function F such that any orientation ~G of a graph G ∈ C has

a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where

∆–(~Gi) ≤ F (∆–(~G), i),
• there exists a function f such that any graph G ∈ C has a transitive fraternal

augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where ∆–(~Gi) ≤ f(i).

Now that we know that bounded expansion is the more general condition for low
tree-depth coloring to exist and that low tree-width coloring (although seemingly
weaker) does not relax this condition, we may wonder what may be the weakest
coloring condition equivalent to low tree-width coloring. It appears that this is a
direct consequence of Lemma 3.6 and Theorem 8.1:

Corollary 8.2. Let C be a class of graphs. Then C has bounded expansion if, and
only if, for every integer p ≥ 1 there exists a class of graphs Cp and an integer C(p)
such that:

• Cp has bounded expansion,
• any graph G ∈ C has a C(p) vertex-coloring such that any p parts induce a

graph in Cp.

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, and R. Ramamurthi, Coloring
with no 2-colored P4’s, Electronic Journal of Combinatorics 11 (2004), no. 1, R26.

[2] N. Alon, B. Mohar, and D.P. Sanders, On acyclic colorings of graphs on surfaces, Israel J.
Math. (1994), no. 94, 273–283.

[3] B. Courcelle, Graph rewriting: an algebraic and logic approach, Handbook of Theoretical
Computer Science (J. van Leeuwen, ed.), vol. 2, Elsevier, Amsterdam, 1990, pp. 142–193.

[4] , The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform.
Comput. 85 (1990), 12–75.

[5] J.S. Deogun, T. Kloks, D. Kratsch, and H. Muller, On vertex ranking for permutation and
other graphs, Proceedings if the 11th Annual Symposium on Theoretical Aspects of Computer
Science (Springer, ed.), Lecture Notes in Computer Science, vol. 775, 1994, pp. 747–758.

[6] M. DeVos, G. Ding, B. Oporowski, D.P. Sanders, B. Reed, P.D. Seymour, and D. Vertigan,
Exluding any graph as a minor allows a low tree-width 2-coloring, Journal of Combinatorial
Theory, Series B 91 (2004), 25–41.

[7] F. Gavril and J. Urrutia, An algorithm for fraternal orientation of graphs, Inform. Process.
Lett. (1992), no. 41, 271–274.

[8] R. Halin, S-functions for graphs, J. Geom. 8 (1976), 171–176.
[9] A. Kostochka, On the minimum of the hadwiger number for graphs with given average de-

gree, Metody Diskret. Analiz. (1982), no. 38, 37–58, in Russian, English translation: AMS
Translations (2), 132(1986), 15-32.

[10] W. Mader, Homomorphiesätze für graphen, Math. Ann. (1968), no. 178, 154–168.
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