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A NOTE ON DOMINO SHUFFLING

É. JANVRESSE, T. DE LA RUE, AND Y. VELENIK

Abstract. We present a variation of James Propp’s generalized domino shuffling, which pro-
vides an efficient way to obtain perfect matchings of weighted Aztec diamonds. Our modification
is specially tailored to deal with cases when some of the weights are zero. This allows us to tile
efficiently a large class of planar graphs, by embedding them in a large enough Aztec diamond.
We also give a sufficient condition on the size of the latter diamond for the algorithm to succeed.

Key words: Domino shuffling, Perfect matching, Random tiling, Random generation, Aztec Dia-
mond.
AMS subject classification: 05B45, 05C70, 52C20, 68R10.

1. Introduction

The domino-shuffling algorithm was originally introduced in [1] for counting the perfect match-
ings (henceforth, we only write matching) of the Aztec diamond of order n (see Figure 1). It
was soon realized that this algorithm could also be used to generate a uniform sampling of such
matchings (see [2]).

In [5], James Propp introduced a generalized version of the shuffling algorithm allowing to effi-
ciently generate random matchings of Aztec diamonds with weighted edges. However his method
does not always apply when some of the weights are set to zero. Actually, Propp mentions a way
to use his algorithm to compute various quantities when such a problem occurs (by setting the
corresponding weights to ε > 0 and keeping only the terms of lowest order in ε > 0), but although
this might be suitable when performing some analytical computations, it is not clear how it should
be efficiently implemented on a computer. To be able to treat the case of zero-weights is impor-
tant, since this allows one to forbid some edges, and consequently to obtain matchings of a great
variety of planar graphs, not only Aztec diamonds.

We propose in this paper a slight variant of Propp’s generalized shuffling algorithm, which is
adapted to situations where edges of zero-weight are present. It allows one to generate random
matchings of a large class of weighted subgraphs of the square lattice, by embedding them in a
large enough Aztec diamond. We also provides (reasonably good) bounds on the minimal size of
the Aztec diamond in which the graph should be embedded, which shows that the computational
cost for constructing matchings of these graphs is of the same order as for the original generalized
shuffling.

Other efficient algorithms applying to various subgraphs of the square lattice exist. The most
efficient one uses Wilson’s algorithm to generate random spanning trees [6] and a mapping from
spanning trees to matchings originally introduced by Temperley, and extended to weighted graphs
in [3]. However the latter mapping imposes some constraints on the graph and does not seem to
apply to graphs such as the semi-regular 4-6-12 tesselation. This case and many others can be
treated using a combination of generalized shuffling and urban renewal, see [4] for examples of
implementations.

1.1. Definitions and notations. The Aztec Diamond of order n ≥ 1 is a planar graph, which
can be seen as a subset of the square lattice; its set of vertices is defined as follows

An =

{

(x, y) :
∣

∣x−
1

2

∣

∣ +
∣

∣y −
1

2

∣

∣ ≤ n

}

,

and there is one edge connecting each pair of vertices at Euclidean distance 1.
1
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Figure 1. The Aztec diamond of order 4.

A (perfect) matching of a graph is a subset of edges of the graph such that each vertex of the
graph belongs to exactly one edge of the subset.

Associating to each edge e of a graph G a weight w(e), we can define a probability measure on
the set of all matchings of G, by setting the probability of a given matching π to be proportional
to the product of the weights of the edges in π.

To each perfect matching of a graph corresponds a unique tiling of its dual. In the sequel, we
will sometimes use the dual terminology even when talking about graphs; for example, we will say
that two vertices are covered by a domino when they are matched, and say that a graph is tileable
when it admits a perfect matching.

1.2. Roadmap for the paper. The algorithm is described in Section 2, while the proof that
it actually does what is claimed is relegated to Section 3. A lower bound on the size of the
Aztec diamond in which the graph should be embedded is given in Section 4, as well as some
examples of planar graphs that can be tiled with this algorithm (including the 6-6-6, 4-8-8 and
4-6-12 (semi-)regular tesselations).

2. Description of the shuffling algorithm

Let G be a finite weighted subgraph of the square lattice, with non-negative edge-weights w(e).
We make the following assumption:

Assumption 1. There exists a large Aztec diamond An containing G, such that the complement

of G in An is tileable.

Sufficient conditions on G for Assumption 1 to hold will be discussed in Section 4. To generate
a matching of G, it is sufficient to generate a matching of An in which all edges connecting G to
its complement are forbidden. We can therefore restrict our attention to matchings of An with
weighted edges, some of the weights being possibly zero. The procedure we are going to describe
is a slight variant of Propp’s generalized shuffling algorithm. It consists in recursively computing
weights wm(e) of edges in each Aztec diamond Am for n ≥ m ≥ 1, then generating matchings of
these weighted graphs, from A1 up to An. This procedure will halt prematurely if and only if the
graph is not tileable.

Let us start by defining the weights wn(e) for each edge e of An.

wn(e) :=











w(e) if e is an edge in G

0 if e connects G to its complement in An

1 otherwise.

(1)

We now define recursively the rules to compute the weights wm−1(e) of Am−1 from the weights
wm(e) of Am. This will be achieved in two steps. Let us suppose that the faces of the square lattice
are colored as a chessboard. Notice that all faces of the inner boundary of Am are of the same color.
During the computation of wm−1, we will call active faces the faces of Am of this color. Each edge e
is on the boundary of a unique active face C = C(e). We write e′ = e′(e) the opposite edge (i.e., the
edge on the boundary of the same active face as e, which is not adjacent to e). To each active face
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C, we associate a number DPm(C) defined as follows: DPm(C) = wm(e1)wm(e′1)+wm(e2)wm(e′2),
where e1 and e2 are two adjacent edges on the boundary of C.

Step 1: Pre-computation of the weights wm−1. The first step is described in Figure 21, where we
denote by α, β, γ, δ the weights wm of the edges of the boundary of an active face of Am, and
indicate the weights wm−1 of the same edges in Am−1. We consider three different cases to deal
with edges with zero weight.

βδ

δ/DPβ/DP

α

γ

γ/DP

α/DP

DP = αγ + βδ 6= 0

β0

1/(α + β)

α

0

α

α + β 6= 0

1/(α + β)

β

00

1/
√

2

0

0

1/
√

2

1/
√

2

1/
√

2

Figure 2. Pre-computation of the weights wm−1 from the weights wm.

Step 2: Edge-erasing procedure. In this step, we apply a special treatment each time we find two
adjacent edges of an active cell with zero wm-weight.

Stop condition 1. If we find two adjacent edges of an active cell with zero wm-weight lying on

the boundary of Am, the procedure stops: The graph G is not tileable.

If these two edges do not lie on the boundary of Am, we denote by V the vertex where these
two edges meet, and replace by 0 the computed weights wm−1 of all other edges of Am−1 incident
on V , as indicated on Figure 3.

0

0

0

0

Figure 3. Edge-erasing procedure: On the left part of the figure, we indicate
edges whose wm-weight is zero, and on the right part the edges whose wm−1-
weight is set to zero.

We will now generate random matchings of Am, m = 1, . . . , n distributed according to the
weights wm. Assume we have already constructed a matching of Am; we describe how to obtain a
matching of Am+1. The active faces during this step are those colored like the inner boundary of
Am+1. There are three possible cases depending on the number of dominoes on the boundary of
each active face (see the picture below): If there is a single domino, along edge e, we move it to e′;
if there are two dominoes, we remove them; if there are no domino, we place two new dominoes
on opposite edges, choosing their orientation with probability depending on the weights wm+1.

1In all the pictures, the described rules are invariant by rotation, and the active faces are shaded.
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βδ

α

γ

βδ/(αγ + βδ)αγ/(αγ + βδ)

Figure 4. Shuffling: A matching of Am (top) is randomly mapped to a matching
of Am+1 (bottom).

To initiate the process, i.e. to tile A1, we simply apply the third rule to choose the orientation
of the two dominoes.

Stop condition 2. If the probabilities used to fill in the empty faces are not well defined, i.e. if

the involved double product αγ+βδ vanishes, then the procedure stops: The graph G is not tileable.

Remark 2.1. It turns out that if the probabilities involved when constructing a matching of A1

are well defined, then all subsequent probabilities are also well defined and G is tileable.

Remark 2.2. The fact that we may have to consider situations where double products vanish dur-

ing the computation of the weights does not mean that G is not tileable. Indeed, the corresponding

active faces may never be empty during the shuffling process.

Theorem 1. Under Assumption 1, either G is tileable and the procedure described above generates

a random matching of G according to the weights w. If G is not tileable, the procedure stops

prematurely.

3. Proof that it works

3.1. Equivalence classes of matchings. We first define an equivalence relation on all matchings
of Am, when faces of a given color are active. Let π be a matching of Am, and C be an active
face. We say that C is empty in π if there is no domino on its boundary; we say that C is full in
π if there are two dominoes on its boundary; and we say that an edge e is lonely in π if it carries
the only domino on the boundary of the adjacent active face. Let π1 and π2 be two matchings of
Am. We say that they are equivalent when they have the same empty faces, the same full faces
and the same lonely edges. We denote by π∗ an equivalence class of matchings of Am, and define
its weight as follows:

wm(π∗) :=
∑

π∈π∗

∏

e∈π

wm(e)

=
∏

e lonely in π∗

wm(e)
∏

C full in π∗

DPm(C). (2)

In some matching π of Am, we say that a vertex v is tied to the active face F if the domino
which covers v lies on the boundary of F . Every vertex is tied to exactly one of its two adjacent
active faces. We can observe that the equivalence class of a given matching is characterized by
stating to which active face is tied each vertex.

3.2. Shuffling on equivalence classes. Let π∗ be an equivalence class of matchings of Am,
where we have chosen the active faces to be colored like the inner boundary of Am. We define
σ(π∗) as the equivalence class of matchings of Am−1 obtained using the following rules: Faces
which were full in π∗ are empty in σ(π∗); faces which were empty in π∗ are full in σ(π∗); if e was
lonely in π∗, e′ is lonely in σ(π∗).
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full full

full full

empty

empty empty

empty

Figure 5. The transformation from π∗ to σ(π∗) simply exchanges the active face
to which the vertex is tied.

The fact that we get an equivalence class of matchings of Am−1 is ensured by the following obser-
vation: Each vertex in Am−1 is adjacent to exactly two active faces in Am, and the transformation
from π∗ to σ(π∗) simply exchanges the active face to which the vertex is tied (Figure 5), which
shows that such a vertex is covered by exactly one domino in σ(π∗). The vertices in Am \ Am−1

were necessarily tied in π∗ to an active face belonging to the inner boundary of Am, and are not
covered anymore by a domino in σ(π∗).

Lemma 2. Assuming that we cannot find two adjacent edges of an active cell with zero wm-weight

lying on the boundary of Am, there exists a constant Dm such that, for any equivalence class π∗

of matchings in Am, we have

wm(π∗) = Dm wm−1(σ(π∗)). (3)

Proof. Let us first consider the case wm(π∗) 6= 0. We introduce DP⋆
m(C) = DPm(C) if DPm(C) 6= 0

and DP⋆
m(C) = 1 otherwise. Then, using (2) and observing that each cell C which is full in π∗

satisfies DPm(C) 6= 0, we get

wm(π∗) =
∏

e lonely in π∗

wm(e)

DP⋆
m(C(e))

∏

C empty in π∗

1

DP⋆
m(C)

∏

C

DP⋆
m(C).

Setting Dm =
∏

C DP⋆
m(C), we can rewrite the above expression as

wm(π∗) = Dm

∏

e lonely in σ(π∗)

wm−1(e)
∏

C full in σ(π∗)

DPm−1(C) .

Indeed, it is enough to check that this identity holds in all the situations described in Section 2,
which we proceed to do now.

Observe that we have chosen the weights wm−1 in such a way that DPm−1(C) is always equal
to 1/DP⋆

m(C) before the edge-erasing procedure is applied. Now, observe that the edge-erasing
procedure has no effect on DPm−1(C) when C is full in σ(π∗). Indeed, if the latter procedure
results in setting the weight of some edges e1 to zero, then the corresponding cell C(e) cannot be
full in σ(π∗) under the condition wm(π∗) 6= 0 (see Figure 6).

We must now take care of the lonely edges in σ(π∗). An edge e can be lonely in σ(π∗) only
if e′ was lonely in π∗, which can only happen if wm(e′) 6= 0; among the three cases depicted in
Fig. 2, this only leaves the first two, for which it is obvious that wm−1(e) = wm(e′)/DP⋆

m(C(e′)).
Now, the same argument as above proves that the edge-erasing procedure does not affect wm−1(e)
when e is lonely in σ(π∗) (see Figure 7). Notice that in π∗ one of the two edges e1 or e2 must
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0

0

0

0

v

e

v
C(e)
empty full

Figure 6. Let e be an edge whose weight has been set to zero by the edge-
erasing procedure. If C(e) is full in σ(π∗), the vertex v is tied to C(e) in σ(π∗),
and therefore is tied to the adjacent active cell in π∗. Thus a zero-wm-weight
edge must be occupied in π∗.

0

0

0

0
e

vv
C(e)

Figure 7. Let e be an edge whose weight has been set to zero by the edge-
erasing procedure. If e is lonely in σ(π∗), the vertex v is tied to C(e) in σ(π∗),
and therefore is tied to the adjacent active cell in π∗. Thus a zero-wm-weight
edge must be occupied in π∗.

0

0

0

0

0

0
0

0
vC vC v

e
v

full empty

Figure 8. Left: case of a full cell. Right: case of a lonely edge. Notice that the
vertex v where the two zero-wm-weight edges meet belongs to Am−1 by virtue of
the assumption made in the lemma.

have been covered. Now, either the opposite edge was also covered, and the cell was then full in
π∗ and therefore empty in σ(π∗), or e1 (or e2) was lonely in π∗ and therefore neither e1 nor e2

are covered in σ(π∗). We thus conclude that e1 and e2 must both be empty in σ(π∗), and thus
setting the weight of these edges to zero does not affect the above expression.

Let us now turn to the case wm(π∗) = 0. This can happen only if either there is a full cell C
in π∗ with DPm(C) = 0, or a lonely edge e with wm(e) = 0. In the case of a full cell C, Figure 8,
left, shows that the resulting weight wm−1(σ(π∗)) is also zero. We can thus turn our attention to
the case of a lonely edge e with wm(e) = 0. If DPm(C(e)) 6= 0, the weight is moved together with
the lonely edge across C, and therefore the resulting weight is also zero. If DPm(C(e)) = 0, we
conclude as before (see Figure 8, right).

�

The previous lemma immediately implies the claim made in Remark 2.1.

Lemma 3. If there exists m ≥ 1 such that two adjacent edges of an active cell with zero wm-weight

lie on the boundary of Am, then G is not tileable.

Proof. We may assume that m is the greatest integer satisfying the assumption of the lemma.
Let π be a matching of An and π∗ its equivalence class. Then, by several applications of
Lemma 2, wm(σn−m(π∗)) ∝ wn(π∗). The hypothesis of the lemma yields wm(σn−m(π∗)) = 0,
hence wn(π∗) = 0. �
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Proof of Theorem 1. Let us introduce the notation

Zm :=
∑

π∈Π(Am)

wm(π).

Lemma 2 shows that if G is not tileable and the procedure has not stopped before constructing
the weights w1 (see Stop condition 1), then Z1 ∝ Zn = 0. This means that A1 is not tileable,
hence DP1(C) = 0 for the unique cell C of A1. The procedure stops.

If G is tileable, we prove by induction that for all m = 1, . . . , n, the generated random matching
πm of Am is distributed according to the weights wm. This is obvious for m = 1. Let’s suppose it
is true for some 1 ≤ m < n. For any equivalence class π∗ of matching of Am+1, Lemma 2 yields

wm+1(π
∗)

Zm+1
=

wm(σ(π∗))

Zm
.

By induction hypothesis, the probability that πm ∈ σ(π∗) is given by wm(σ(π∗))
Zm

. But πm ∈ σ(π∗)

if and only if πm+1 ∈ π∗. Therefore, the probability that πm+1 ∈ π∗ is wm+1(π
∗)

Zm+1
.

It remains to check that the probability to get π when πm+1 ∈ π∗ is given by wm+1(π)
wm+1(π∗) . This

follows from the fact that the only freedom in selecting π in π∗ comes from the choice of the
orientation of the edges in full active cells. This is done independently for each of the latter, with
probability given in Figure 4. This concludes the proof. �

4. Embedding a graph into an Aztec diamond

4.1. How large should the containing diamond be? In Section 2, we have proposed an
algorithm to tile a weighted subgraph G of the square lattice by embedding it in a sufficiently
large Aztec diamond. In this section, we give a sufficient condition on G for this algorithm to be
applicable, and provide an explicit criterion to determine the size of the Aztec diamond in which
G should be embedded. In this part, “vertex” means “vertex in Z

2” (or point (x, y) ∈ Z
2).

It is convenient to define cardinal points on the plane, in such a way that the vector (1, 1) points
towards north. An S-N diagonal of Z

2 is a set of vertices of the form {(x, y) ∈ Z
2 : x − y = k}.

Similarly, a W-E diagonal of Z
2 is a set of vertices of the form

Dk := {(x, y) ∈ Z
2 : x + y = k}.

Definition 4.1. We say that a subset V ⊂ Z
2 is gapless if, for any pair of vertices v1, v2 ∈ V

lying on the same diagonal, any other vertex v lying on the same diagonal between v1 and v2 also

belongs to V .

Definition 4.2. We say that a subset V ⊂ Z
2 is connected if, for any pair of vertices v, w ∈ V ,

there exists a path v0 = v, v1, . . . , vℓ−1, vℓ = w of vertices in V such that |vk+1 − vk| = 1.

Let us denote by G the set of all finite, tileable subgraphs G of the square lattice, the vertices
of which form a gapless and connected set, see Figure 9. Observe that except for tileability, there
is no condition on the edges of G. We do not even demand that G be a connected graph. Given
G ∈ G, we consider the smallest rectangle with sides parallel to the S-N and W-E-diagonals, and
we define by HS-N (resp. HW-E) the maximum number of vertices of Z

2 on S-N (resp. W-E)
diagonal slices of this rectangle, see Figure 10.

Let b = min{k : G ∩ Dk 6= ∅} and t = max{k : G ∩ Dk 6= ∅}. Let also ℓ (resp. r) be the
index of one of the diagonals containing the western-most (resp. eastern-most) vertices of G. (See
Figure 10.)

Theorem 4. Let G ∈ G. Then for all

n ≥ HW-E + 2 max

{

⌈
r − b

2
⌉, ⌈

t− r

2
⌉

}

+ 2 max

{

⌈
ℓ− b

2
⌉, ⌈

t− ℓ

2
⌉

}

, (4)

there exists a translate of An containing G such that the complement of G in An is tileable. In

particular, this is true if

n ≥ HW-E + 4HS-N.
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Figure 9. Three tileable graphs G1, G2 and G3. G1 belongs to G, but neither
does G2 (because it contains two diagonal slices with gaps), nor G3 (because it is
not connected).

HW-E

HS-N

D
r

D
b

E

NW

S
D

t

D
ℓ

Figure 10. A graph G ∈ G (drawn with red vertices), embedded in an Aztec
diamond. In this picture, HS-N = 5 and HW-E = 9.

Remark 4.1. The second and third examples in Figure 9 show that Theorem 4 can fail when G
is not connected, or not gapless.

Proof. Let us start by introducing some terminology (see Figure 11).

Definition 4.3. Let n ≥ 1. A W-E Aztec tube of size n is a translate of a subset of the form

T (b,t)
n := {(x, y) ∈ Z

2 : b ≤ x + y ≤ t and |x− y| ≤ n},

where b ≤ t are two integers.

Note that such a tube is the union of W-E diagonal slices

Dk
n := {(x, y) : x + y = k and |x− y| ≤ n}, b ≤ k ≤ t.

Definition 4.4. A quasi-matching of T
(b,t)
n is a collection of edges with endpoints in T

(b,t)
n , such

that all vertices of T
(b,t)
n , except possibly those on Db

n ∪Dt
n, belong to exactly one edge.
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(0, 0)

D3
5

D1
5

E

NW

S

Figure 11. Left: the W-E Aztec tube of size 5 with b = 1 and t = 3, and
a quasi-matching. Right: extension of this quasi-matching to a matching of an
Aztec diamond of size 5.

D
m

−

n

D
m+
n

Figure 12. Extension (northward) of a quasi-matching of T
(m−,m+)
n . Note that

the resulting quasi-matching of T
(m−,m++1)
n cannot be extended northward any-

more.

Given a finite subset of vertices V ⊂ Dk and a set of edges E, we denote by |V | the cardinality
of V , and by #N (V ) (resp. #S(V )) the number of edges in E with one endpoint in V and the
other endpoint in Dk+1 (resp. Dk−1).

Lemma 5. Any quasi-matching of T
(b,t)
n can be extended to a matching of some Aztec diamond

An of size n containing T
(b,t)
n .

Proof of Lemma 5. We are going to extend the quasi-matching of T
(b,t)
n to larger and larger tubes

of size n as long as we can, then check that what we obtain is a matching of an Aztec diamond of
size n.

Notice that the W-E diagonals of an Aztec diamond of size n contain alternatively n and n + 1
vertices, and that the same is true for W-E Aztec tubes of size n. We call the former short diagonals

and the latter long diagonals. We extend this quasi-matching using the following procedure, see
Figure 12.

Step 0. Let m+ = t and m− = b.
Step 1. If all the vertices of D

m+
n are already covered in the quasi-matching, go to Step 2; observe

that this can only happen when D
m+
n is short, since each vertex has to be linked with a vertex

on D
m+−1
n . If D

m+
n contains at least one uncovered vertex, we claim that it is always possible

to extend it one step further. Indeed, there are at most n edges to add, and there are at least n

vertices on D
m++1
n , see Figure 13. Choose one such extension, set m+ ← m+ + 1 and return to

Step 1.
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N

D
m++1
n

D
m+
n

D
m+−1
n

Figure 13. The uncovered vertices of D
m+
n are naturally partitionned by the

covered ones. For each group, we choose all dominoes from D
m+
n to D

m++1
n with

the same orientation. The only constraints we have are at the boundary of D
m+
n

when it is a long diagonal; in that case the orientation is forced. If we have at
least one covered vertex in D

m+
n , then these constraints do not matter.

Step 2. If all the vertices of D
m−

n are already covered in the quasi-matching, stop the procedure;
again, this can only happen when D

m−

n is short. If D
m−

n contains at least one uncovered vertex,
it is again possible to extend it one step further. Choose one such extension, set m− ← m− − 1
and return to Step 2.

We explain now why this procedure will stop after a finite number of steps.
Suppose that Dk

n is a short diagonal, and that the quasi-matching covers Dk+2
n . Let j =

#N (Dk
n), then among the n + 1 vertices of Dk+1

n , exactly j are connected to Dk
n, and therefore

#N (Dk+1
n ) = n + 1 − j. But this implies that among the n vertices of Dk+2

n , exactly j − 1 are
connected to Dk+3

n , i.e. #N (Dk+2
n ) = j − 1. This implies that the procedure stops with a finite

value of m+, and similarly with a finite value of m−. We thus have obtained a matching of a tube

of size n, T
(m−,m+)
n , extending the quasi-matching of T

(b,t)
n . There only remains to check that

T
(m−,m+)
n is actually an Aztec diamond of size n, i.e. that m+ −m− = 2n.
By construction, #N (D

m+
n ) = 0, and the above argument shows that

#N (Dm+−k
n ) =

{

k
2 if k is even

n + 1− k+1
2 if k is odd

. (5)

In particular, #N (D
m+−2n
n ) = n. But this implies that m− = m+−2n and the proof of the lemma

is over. �

Remark 4.2. It follows from the proof of the preceding lemma that, for a quasi-matching of T
(b,t)
n

to exist, it is necessary that n ≥ (t− b)/2.

We now start with a matching of G, and show that, for n satisfying (4), we can extend it to a

quasi-matching of a translate of the Aztec tube of size n T
(b,t)
n , for n ≥ . . . , which will conclude

the proof of Theorem 4 by virtue of Lemma 5. We fix such a translate which contains G, and
denote by Lb, . . . , Lt its W-E diagonals. We partition each line Lk, k = b, . . . , t, into three gapless
sets PW

k , PG
k , PE

k , where PG
k = Lk ∩G.

We will need the following lemma.

Lemma 6. For all k, r ≤ k ≤ t− 1, we have

|PE
k+1| ≥ |P

E
k | − 1, (6)

and for all k, r ≤ k ≤ t− 2, we have

|PE
k+2| ≥ |P

E
k |. (7)

Proof of Lemma 6. Suppose that (6) does not hold for some r ≤ k ≤ t− 1. Then the two eastern-
most vertices vk and vk+1 of G located on the two consecutive W-E diagonals Lk and Lk+1 are
not nearest neighbours and vk+1 is further east than vk (see Figure 14). Since the set of vertices
of G is connected, we can find two paths of vertices of G (white in the picture), one connecting vk

and the eastern-most vertex vr of G on Lr, the other connecting vk and vk+1. These paths must
cross the S-N diagonal located one-step west of that containing vk+1 at two vertices w1 and w2.
Since the set of vertices of G is gapless, all vertices located between w1 and w2 on their common
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w1

w2

vr

Lr

Lk+1

vk

Lk

vk+1

N

S E

W

Figure 14. The construction in the proof of Lemma 6. Observe that the edges
drawn on this picture are not necessarily edges of G.

E

NW

S

HS-N

Lr

Lb

Lℓ

Lt

HW-E

Figure 15. The graph G embedded in a tube. We want to extend the matching
of G to a quasi-matching of the tube.

S-N diagonal (drawn in blue in the picture) must also belong to G. This contradicts the fact that
vk was the eastern-most vertex of G on Lk, and therefore (6) holds. The proof of (7) is similar.

�

We are going to investigate the required conditions in order to extend the matching of G to
a quasi-matching of the tube. We first fill in dominoes with at least one endpoint in PE

r , then
fill all layers PE

k , k = r + 1, . . . , t− 1, one after the other. We then do the same thing proceding
southward, filling all PE

k , k = r − 1, . . . , b + 1, and then repeat this procedure with PW
k , starting

with PW
l and filling first northward, and then southward.

So we first need to understand under which conditions we can fill the layer PE
k+1 once all the

layers PE
m , m = r, . . . , k have been filled. A similar argument as in Figure 13 together with (6)

shows that this is possible as soon as

#N (PE
k ) ≥ 1. (8)

Using (6) and #N (PE
m) = PE

m −#N (PE
m−1), we have

#N (PE
k+2) ≥ #N (PE

k )− 1. (9)
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We thus see that, in order to be able to extend the construction up to level t− 1, it is sufficient
that, at level r, we have

#N (PE
r ) ≥ ⌊

t− r

2
⌋, (10)

#S(PE
r ) ≥ ⌈

t− r

2
⌉. (11)

Indeed, the inequality (11) together with (6) implies that

#N (PE
r+1) = |PE

r+1| −
(

|PE
r | −#S(PE

r )
)

= #S(PE
r ) +

(

|PE
r+1| − |P

E
r |

)

≥ #S(PE
r )− 1

≥ ⌈
t− r

2
⌉ − 1. (12)

Inequalities (9), (10) and (12) imply that (8) is satisfied for all k, r ≤ k ≤ t− 1.
We get a similar condition to fill in layers PE

k , k = r − 1, . . . , b + 1: it is possible as soon as

#S(PE
r ) ≥ ⌊

r − b

2
⌋, (13)

#N (PE
r ) ≥ ⌈

r − b

2
⌉. (14)

Hence, the eastern side of the tube can be filled if the following condition is satisfied:

|PE
r | ≥ 2 max

{

⌈
r − b

2
⌉, ⌈

t− r

2
⌉

}

. (15)

Similarly, the western side of the tube can be filled if the following condition is satisfied:

|PW
ℓ | ≥ 2 max

{

⌈
ℓ− b

2
⌉, ⌈

t− ℓ

2
⌉

}

. (16)

�

4.2. The case of a diamond embedded in a diamond. We now show on a specific example
that Theorem 4 is essentially optimal in general. The case we consider is when G is itself an Aztec
diamond, G = Am. Let 0 < ρi < ρe; we call Aztec ring of internal size ρi and external size ρe the
graph obtained by removing from an aztec diamond Aρe

all the vertices of the concentric Aztec
diamond Aρi

; the thickness of the ring is the difference ρe − ρi. Choosing the best possible values
for r and ℓ in that case, Theorem 4 tells us that a sufficient condition for an Aztec ring to be
tileable is ρe ≥ 3ρi + 1 if ρi is even, and ρe ≥ 3ρi + 3 otherwise. The main result of this section is
the following proposition, which shows that this estimate is essentially optimal.

Proposition 1. The Aztec ring of internal size ρi and external size ρe is tileable if and only if at

least one of the following conditions holds

ρe − ρi is even, (17)

ρe ≥ 3ρi − 1. (18)

Proof. Let us first prove that under (17), the Aztec ring is always tileable. It is sufficient to notice
that the Aztec diamond Aρe

can always be tiled using only horizontal edges; since in this matching
there are no edges between vertices of Aρe

and vertices of Aρe
\ Aρi

, this provides a matching of
the ring (see Figure 16 a).

Let us now show that there is always a matching of an Aztec ring of odd thickness, as soon
as condition (18) is verified. By the previous result it is enough to construct a matching when
ρe = 3ρi − 1. Indeed, this matching can then be extended to any Aztec ring of odd thickness,
same internal size, and larger external size, since the added vertices form an Aztec ring with
even thickness. When ρe = 3ρi − 1, we can partition the ring in such a way that we obtain
eight subgraphs, which are all tileable. Four of the latter are actually Aztec diamond, while
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E

NW

S

(a) (b) (c) (d)

Figure 16. Four Aztec rings with ρi = 4 and ρe = 8, 9, 11 and 13. The second
one is not tileable, while the other three are, since a ring is tileable if and only if
either ρe − ρi is even or ρe ≥ 3ρi − 1.

the remaining four can be tiled using parallel edges (two of them with horizontal edges, and the
remaining two with vertical edges); see Figure 16 c.

Let us finally prove that it is never possible to tile an Aztec ring with ρe−ρi odd and ρe < 3ρi−1.
Indeed suppose that we have constructed a matching of the Aztec ring. Together with a matching
of the inner (concentric) Aztec diamond of size ρi, this provides a matching of an Aztec diamond
of size ρe. As we already observed when deriving (5), all ρe dominoes on the northern-most W-E
diagonal of Aρe

are oriented southwards, therefore the number of dominoes oriented southward
on the W-E diagonal just north of the concentric Aztec diamond Aρi

is ρe − (ρe − (ρi + 1))/2.
However, since the matching should not connect vertices from the ring with vertices from Aρi

,
at most ρe − ρi + 1 edges on this diagonal can be oriented southwards. But this implies that
ρe ≥ 3ρi − 1. �

4.3. Tiling other graphs. Our algorithm provides an efficient way of obtaining random match-
ings of various planar graphs, provided they can be embedded in Z

2. To illustrate this, we show in
Figure 17 how the 6-6-6, 4-8-8 and 4-6-12 (semi-)regular tesselations can be embedded (obviously,
the remaing 7 (semi-)regular tesselations cannot be embedded in Z

2 as they all contain triangles).
Notice that the first two of the latter embeddings do belong to G, but that this is not the case
of the last one, which is not gapless. It is easy to remedy this by completing the embedding with
new edges, as illustrated in Figure 18. In Figures 20 and 21, we show the dual random tilings for
these three graphs, as described in Figure 19.
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Figure 17. The 6-6-6, 4-8-8 and 4-6-12 (semi-)regular tesselations and their
embedding in Z

2. The shapes chosen in the last two cases are known as the
fortress and the dungeon.

Figure 18. Extending the embedding of the 4-6-12 (semi-)regular tesselation in
order to make it gapless.

Figure 19. Left: The 6-6-6 tesselation and its dual. Middle: a matching of the
graph. Right: The corresponding tiling of the hexagon with dual lozenges.
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Figure 20. Examples of tiling of the duals of the 6-6-6 and 4-8-8 (semi-)regular
tesselations generated by the algorithm.

Figure 21. Example of tiling of the dual of the 4-6-12 semi-regular tesselations
generated by the algorithm.
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